xref: /openbmc/linux/fs/ocfs2/file.c (revision 2ae1beb3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * file.c
4  *
5  * File open, close, extend, truncate
6  *
7  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/fs.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/highmem.h>
15 #include <linux/pagemap.h>
16 #include <linux/uio.h>
17 #include <linux/sched.h>
18 #include <linux/splice.h>
19 #include <linux/mount.h>
20 #include <linux/writeback.h>
21 #include <linux/falloc.h>
22 #include <linux/quotaops.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 
26 #include <cluster/masklog.h>
27 
28 #include "ocfs2.h"
29 
30 #include "alloc.h"
31 #include "aops.h"
32 #include "dir.h"
33 #include "dlmglue.h"
34 #include "extent_map.h"
35 #include "file.h"
36 #include "sysfile.h"
37 #include "inode.h"
38 #include "ioctl.h"
39 #include "journal.h"
40 #include "locks.h"
41 #include "mmap.h"
42 #include "suballoc.h"
43 #include "super.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "quota.h"
47 #include "refcounttree.h"
48 #include "ocfs2_trace.h"
49 
50 #include "buffer_head_io.h"
51 
52 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
53 {
54 	struct ocfs2_file_private *fp;
55 
56 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
57 	if (!fp)
58 		return -ENOMEM;
59 
60 	fp->fp_file = file;
61 	mutex_init(&fp->fp_mutex);
62 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
63 	file->private_data = fp;
64 
65 	return 0;
66 }
67 
68 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
69 {
70 	struct ocfs2_file_private *fp = file->private_data;
71 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
72 
73 	if (fp) {
74 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
75 		ocfs2_lock_res_free(&fp->fp_flock);
76 		kfree(fp);
77 		file->private_data = NULL;
78 	}
79 }
80 
81 static int ocfs2_file_open(struct inode *inode, struct file *file)
82 {
83 	int status;
84 	int mode = file->f_flags;
85 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
86 
87 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
88 			      (unsigned long long)oi->ip_blkno,
89 			      file->f_path.dentry->d_name.len,
90 			      file->f_path.dentry->d_name.name, mode);
91 
92 	if (file->f_mode & FMODE_WRITE) {
93 		status = dquot_initialize(inode);
94 		if (status)
95 			goto leave;
96 	}
97 
98 	spin_lock(&oi->ip_lock);
99 
100 	/* Check that the inode hasn't been wiped from disk by another
101 	 * node. If it hasn't then we're safe as long as we hold the
102 	 * spin lock until our increment of open count. */
103 	if (oi->ip_flags & OCFS2_INODE_DELETED) {
104 		spin_unlock(&oi->ip_lock);
105 
106 		status = -ENOENT;
107 		goto leave;
108 	}
109 
110 	if (mode & O_DIRECT)
111 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
112 
113 	oi->ip_open_count++;
114 	spin_unlock(&oi->ip_lock);
115 
116 	status = ocfs2_init_file_private(inode, file);
117 	if (status) {
118 		/*
119 		 * We want to set open count back if we're failing the
120 		 * open.
121 		 */
122 		spin_lock(&oi->ip_lock);
123 		oi->ip_open_count--;
124 		spin_unlock(&oi->ip_lock);
125 	}
126 
127 	file->f_mode |= FMODE_NOWAIT;
128 
129 leave:
130 	return status;
131 }
132 
133 static int ocfs2_file_release(struct inode *inode, struct file *file)
134 {
135 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
136 
137 	spin_lock(&oi->ip_lock);
138 	if (!--oi->ip_open_count)
139 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
140 
141 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
142 				 oi->ip_blkno,
143 				 file->f_path.dentry->d_name.len,
144 				 file->f_path.dentry->d_name.name,
145 				 oi->ip_open_count);
146 	spin_unlock(&oi->ip_lock);
147 
148 	ocfs2_free_file_private(inode, file);
149 
150 	return 0;
151 }
152 
153 static int ocfs2_dir_open(struct inode *inode, struct file *file)
154 {
155 	return ocfs2_init_file_private(inode, file);
156 }
157 
158 static int ocfs2_dir_release(struct inode *inode, struct file *file)
159 {
160 	ocfs2_free_file_private(inode, file);
161 	return 0;
162 }
163 
164 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
165 			   int datasync)
166 {
167 	int err = 0;
168 	struct inode *inode = file->f_mapping->host;
169 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
170 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
171 	journal_t *journal = osb->journal->j_journal;
172 	int ret;
173 	tid_t commit_tid;
174 	bool needs_barrier = false;
175 
176 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
177 			      oi->ip_blkno,
178 			      file->f_path.dentry->d_name.len,
179 			      file->f_path.dentry->d_name.name,
180 			      (unsigned long long)datasync);
181 
182 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
183 		return -EROFS;
184 
185 	err = file_write_and_wait_range(file, start, end);
186 	if (err)
187 		return err;
188 
189 	commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
190 	if (journal->j_flags & JBD2_BARRIER &&
191 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
192 		needs_barrier = true;
193 	err = jbd2_complete_transaction(journal, commit_tid);
194 	if (needs_barrier) {
195 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
196 		if (!err)
197 			err = ret;
198 	}
199 
200 	if (err)
201 		mlog_errno(err);
202 
203 	return (err < 0) ? -EIO : 0;
204 }
205 
206 int ocfs2_should_update_atime(struct inode *inode,
207 			      struct vfsmount *vfsmnt)
208 {
209 	struct timespec64 now;
210 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
211 
212 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
213 		return 0;
214 
215 	if ((inode->i_flags & S_NOATIME) ||
216 	    ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
217 		return 0;
218 
219 	/*
220 	 * We can be called with no vfsmnt structure - NFSD will
221 	 * sometimes do this.
222 	 *
223 	 * Note that our action here is different than touch_atime() -
224 	 * if we can't tell whether this is a noatime mount, then we
225 	 * don't know whether to trust the value of s_atime_quantum.
226 	 */
227 	if (vfsmnt == NULL)
228 		return 0;
229 
230 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
231 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
232 		return 0;
233 
234 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
235 		struct timespec64 ctime = inode_get_ctime(inode);
236 		struct timespec64 atime = inode_get_atime(inode);
237 		struct timespec64 mtime = inode_get_mtime(inode);
238 
239 		if ((timespec64_compare(&atime, &mtime) <= 0) ||
240 		    (timespec64_compare(&atime, &ctime) <= 0))
241 			return 1;
242 
243 		return 0;
244 	}
245 
246 	now = current_time(inode);
247 	if ((now.tv_sec - inode_get_atime_sec(inode) <= osb->s_atime_quantum))
248 		return 0;
249 	else
250 		return 1;
251 }
252 
253 int ocfs2_update_inode_atime(struct inode *inode,
254 			     struct buffer_head *bh)
255 {
256 	int ret;
257 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
258 	handle_t *handle;
259 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
260 
261 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
262 	if (IS_ERR(handle)) {
263 		ret = PTR_ERR(handle);
264 		mlog_errno(ret);
265 		goto out;
266 	}
267 
268 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
269 				      OCFS2_JOURNAL_ACCESS_WRITE);
270 	if (ret) {
271 		mlog_errno(ret);
272 		goto out_commit;
273 	}
274 
275 	/*
276 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
277 	 * have i_rwsem to guard against concurrent changes to other
278 	 * inode fields.
279 	 */
280 	inode_set_atime_to_ts(inode, current_time(inode));
281 	di->i_atime = cpu_to_le64(inode_get_atime_sec(inode));
282 	di->i_atime_nsec = cpu_to_le32(inode_get_atime_nsec(inode));
283 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
284 	ocfs2_journal_dirty(handle, bh);
285 
286 out_commit:
287 	ocfs2_commit_trans(osb, handle);
288 out:
289 	return ret;
290 }
291 
292 int ocfs2_set_inode_size(handle_t *handle,
293 				struct inode *inode,
294 				struct buffer_head *fe_bh,
295 				u64 new_i_size)
296 {
297 	int status;
298 
299 	i_size_write(inode, new_i_size);
300 	inode->i_blocks = ocfs2_inode_sector_count(inode);
301 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
302 
303 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
304 	if (status < 0) {
305 		mlog_errno(status);
306 		goto bail;
307 	}
308 
309 bail:
310 	return status;
311 }
312 
313 int ocfs2_simple_size_update(struct inode *inode,
314 			     struct buffer_head *di_bh,
315 			     u64 new_i_size)
316 {
317 	int ret;
318 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
319 	handle_t *handle = NULL;
320 
321 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
322 	if (IS_ERR(handle)) {
323 		ret = PTR_ERR(handle);
324 		mlog_errno(ret);
325 		goto out;
326 	}
327 
328 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
329 				   new_i_size);
330 	if (ret < 0)
331 		mlog_errno(ret);
332 
333 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
334 	ocfs2_commit_trans(osb, handle);
335 out:
336 	return ret;
337 }
338 
339 static int ocfs2_cow_file_pos(struct inode *inode,
340 			      struct buffer_head *fe_bh,
341 			      u64 offset)
342 {
343 	int status;
344 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
345 	unsigned int num_clusters = 0;
346 	unsigned int ext_flags = 0;
347 
348 	/*
349 	 * If the new offset is aligned to the range of the cluster, there is
350 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
351 	 * CoW either.
352 	 */
353 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
354 		return 0;
355 
356 	status = ocfs2_get_clusters(inode, cpos, &phys,
357 				    &num_clusters, &ext_flags);
358 	if (status) {
359 		mlog_errno(status);
360 		goto out;
361 	}
362 
363 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
364 		goto out;
365 
366 	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
367 
368 out:
369 	return status;
370 }
371 
372 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
373 				     struct inode *inode,
374 				     struct buffer_head *fe_bh,
375 				     u64 new_i_size)
376 {
377 	int status;
378 	handle_t *handle;
379 	struct ocfs2_dinode *di;
380 	u64 cluster_bytes;
381 
382 	/*
383 	 * We need to CoW the cluster contains the offset if it is reflinked
384 	 * since we will call ocfs2_zero_range_for_truncate later which will
385 	 * write "0" from offset to the end of the cluster.
386 	 */
387 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
388 	if (status) {
389 		mlog_errno(status);
390 		return status;
391 	}
392 
393 	/* TODO: This needs to actually orphan the inode in this
394 	 * transaction. */
395 
396 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
397 	if (IS_ERR(handle)) {
398 		status = PTR_ERR(handle);
399 		mlog_errno(status);
400 		goto out;
401 	}
402 
403 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
404 					 OCFS2_JOURNAL_ACCESS_WRITE);
405 	if (status < 0) {
406 		mlog_errno(status);
407 		goto out_commit;
408 	}
409 
410 	/*
411 	 * Do this before setting i_size.
412 	 */
413 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
414 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
415 					       cluster_bytes);
416 	if (status) {
417 		mlog_errno(status);
418 		goto out_commit;
419 	}
420 
421 	i_size_write(inode, new_i_size);
422 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
423 
424 	di = (struct ocfs2_dinode *) fe_bh->b_data;
425 	di->i_size = cpu_to_le64(new_i_size);
426 	di->i_ctime = di->i_mtime = cpu_to_le64(inode_get_ctime_sec(inode));
427 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode));
428 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
429 
430 	ocfs2_journal_dirty(handle, fe_bh);
431 
432 out_commit:
433 	ocfs2_commit_trans(osb, handle);
434 out:
435 	return status;
436 }
437 
438 int ocfs2_truncate_file(struct inode *inode,
439 			       struct buffer_head *di_bh,
440 			       u64 new_i_size)
441 {
442 	int status = 0;
443 	struct ocfs2_dinode *fe = NULL;
444 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
445 
446 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
447 	 * already validated it */
448 	fe = (struct ocfs2_dinode *) di_bh->b_data;
449 
450 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
451 				  (unsigned long long)le64_to_cpu(fe->i_size),
452 				  (unsigned long long)new_i_size);
453 
454 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
455 			"Inode %llu, inode i_size = %lld != di "
456 			"i_size = %llu, i_flags = 0x%x\n",
457 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
458 			i_size_read(inode),
459 			(unsigned long long)le64_to_cpu(fe->i_size),
460 			le32_to_cpu(fe->i_flags));
461 
462 	if (new_i_size > le64_to_cpu(fe->i_size)) {
463 		trace_ocfs2_truncate_file_error(
464 			(unsigned long long)le64_to_cpu(fe->i_size),
465 			(unsigned long long)new_i_size);
466 		status = -EINVAL;
467 		mlog_errno(status);
468 		goto bail;
469 	}
470 
471 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
472 
473 	ocfs2_resv_discard(&osb->osb_la_resmap,
474 			   &OCFS2_I(inode)->ip_la_data_resv);
475 
476 	/*
477 	 * The inode lock forced other nodes to sync and drop their
478 	 * pages, which (correctly) happens even if we have a truncate
479 	 * without allocation change - ocfs2 cluster sizes can be much
480 	 * greater than page size, so we have to truncate them
481 	 * anyway.
482 	 */
483 
484 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
485 		unmap_mapping_range(inode->i_mapping,
486 				    new_i_size + PAGE_SIZE - 1, 0, 1);
487 		truncate_inode_pages(inode->i_mapping, new_i_size);
488 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
489 					       i_size_read(inode), 1);
490 		if (status)
491 			mlog_errno(status);
492 
493 		goto bail_unlock_sem;
494 	}
495 
496 	/* alright, we're going to need to do a full blown alloc size
497 	 * change. Orphan the inode so that recovery can complete the
498 	 * truncate if necessary. This does the task of marking
499 	 * i_size. */
500 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
501 	if (status < 0) {
502 		mlog_errno(status);
503 		goto bail_unlock_sem;
504 	}
505 
506 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
507 	truncate_inode_pages(inode->i_mapping, new_i_size);
508 
509 	status = ocfs2_commit_truncate(osb, inode, di_bh);
510 	if (status < 0) {
511 		mlog_errno(status);
512 		goto bail_unlock_sem;
513 	}
514 
515 	/* TODO: orphan dir cleanup here. */
516 bail_unlock_sem:
517 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
518 
519 bail:
520 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
521 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
522 
523 	return status;
524 }
525 
526 /*
527  * extend file allocation only here.
528  * we'll update all the disk stuff, and oip->alloc_size
529  *
530  * expect stuff to be locked, a transaction started and enough data /
531  * metadata reservations in the contexts.
532  *
533  * Will return -EAGAIN, and a reason if a restart is needed.
534  * If passed in, *reason will always be set, even in error.
535  */
536 int ocfs2_add_inode_data(struct ocfs2_super *osb,
537 			 struct inode *inode,
538 			 u32 *logical_offset,
539 			 u32 clusters_to_add,
540 			 int mark_unwritten,
541 			 struct buffer_head *fe_bh,
542 			 handle_t *handle,
543 			 struct ocfs2_alloc_context *data_ac,
544 			 struct ocfs2_alloc_context *meta_ac,
545 			 enum ocfs2_alloc_restarted *reason_ret)
546 {
547 	struct ocfs2_extent_tree et;
548 
549 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
550 	return ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
551 					   clusters_to_add, mark_unwritten,
552 					   data_ac, meta_ac, reason_ret);
553 }
554 
555 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
556 				   u32 clusters_to_add, int mark_unwritten)
557 {
558 	int status = 0;
559 	int restart_func = 0;
560 	int credits;
561 	u32 prev_clusters;
562 	struct buffer_head *bh = NULL;
563 	struct ocfs2_dinode *fe = NULL;
564 	handle_t *handle = NULL;
565 	struct ocfs2_alloc_context *data_ac = NULL;
566 	struct ocfs2_alloc_context *meta_ac = NULL;
567 	enum ocfs2_alloc_restarted why = RESTART_NONE;
568 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
569 	struct ocfs2_extent_tree et;
570 	int did_quota = 0;
571 
572 	/*
573 	 * Unwritten extent only exists for file systems which
574 	 * support holes.
575 	 */
576 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
577 
578 	status = ocfs2_read_inode_block(inode, &bh);
579 	if (status < 0) {
580 		mlog_errno(status);
581 		goto leave;
582 	}
583 	fe = (struct ocfs2_dinode *) bh->b_data;
584 
585 restart_all:
586 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
587 
588 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
589 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
590 				       &data_ac, &meta_ac);
591 	if (status) {
592 		mlog_errno(status);
593 		goto leave;
594 	}
595 
596 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
597 	handle = ocfs2_start_trans(osb, credits);
598 	if (IS_ERR(handle)) {
599 		status = PTR_ERR(handle);
600 		handle = NULL;
601 		mlog_errno(status);
602 		goto leave;
603 	}
604 
605 restarted_transaction:
606 	trace_ocfs2_extend_allocation(
607 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
608 		(unsigned long long)i_size_read(inode),
609 		le32_to_cpu(fe->i_clusters), clusters_to_add,
610 		why, restart_func);
611 
612 	status = dquot_alloc_space_nodirty(inode,
613 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
614 	if (status)
615 		goto leave;
616 	did_quota = 1;
617 
618 	/* reserve a write to the file entry early on - that we if we
619 	 * run out of credits in the allocation path, we can still
620 	 * update i_size. */
621 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
622 					 OCFS2_JOURNAL_ACCESS_WRITE);
623 	if (status < 0) {
624 		mlog_errno(status);
625 		goto leave;
626 	}
627 
628 	prev_clusters = OCFS2_I(inode)->ip_clusters;
629 
630 	status = ocfs2_add_inode_data(osb,
631 				      inode,
632 				      &logical_start,
633 				      clusters_to_add,
634 				      mark_unwritten,
635 				      bh,
636 				      handle,
637 				      data_ac,
638 				      meta_ac,
639 				      &why);
640 	if ((status < 0) && (status != -EAGAIN)) {
641 		if (status != -ENOSPC)
642 			mlog_errno(status);
643 		goto leave;
644 	}
645 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
646 	ocfs2_journal_dirty(handle, bh);
647 
648 	spin_lock(&OCFS2_I(inode)->ip_lock);
649 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
650 	spin_unlock(&OCFS2_I(inode)->ip_lock);
651 	/* Release unused quota reservation */
652 	dquot_free_space(inode,
653 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
654 	did_quota = 0;
655 
656 	if (why != RESTART_NONE && clusters_to_add) {
657 		if (why == RESTART_META) {
658 			restart_func = 1;
659 			status = 0;
660 		} else {
661 			BUG_ON(why != RESTART_TRANS);
662 
663 			status = ocfs2_allocate_extend_trans(handle, 1);
664 			if (status < 0) {
665 				/* handle still has to be committed at
666 				 * this point. */
667 				status = -ENOMEM;
668 				mlog_errno(status);
669 				goto leave;
670 			}
671 			goto restarted_transaction;
672 		}
673 	}
674 
675 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
676 	     le32_to_cpu(fe->i_clusters),
677 	     (unsigned long long)le64_to_cpu(fe->i_size),
678 	     OCFS2_I(inode)->ip_clusters,
679 	     (unsigned long long)i_size_read(inode));
680 
681 leave:
682 	if (status < 0 && did_quota)
683 		dquot_free_space(inode,
684 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
685 	if (handle) {
686 		ocfs2_commit_trans(osb, handle);
687 		handle = NULL;
688 	}
689 	if (data_ac) {
690 		ocfs2_free_alloc_context(data_ac);
691 		data_ac = NULL;
692 	}
693 	if (meta_ac) {
694 		ocfs2_free_alloc_context(meta_ac);
695 		meta_ac = NULL;
696 	}
697 	if ((!status) && restart_func) {
698 		restart_func = 0;
699 		goto restart_all;
700 	}
701 	brelse(bh);
702 	bh = NULL;
703 
704 	return status;
705 }
706 
707 /*
708  * While a write will already be ordering the data, a truncate will not.
709  * Thus, we need to explicitly order the zeroed pages.
710  */
711 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
712 						      struct buffer_head *di_bh,
713 						      loff_t start_byte,
714 						      loff_t length)
715 {
716 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
717 	handle_t *handle = NULL;
718 	int ret = 0;
719 
720 	if (!ocfs2_should_order_data(inode))
721 		goto out;
722 
723 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
724 	if (IS_ERR(handle)) {
725 		ret = -ENOMEM;
726 		mlog_errno(ret);
727 		goto out;
728 	}
729 
730 	ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
731 	if (ret < 0) {
732 		mlog_errno(ret);
733 		goto out;
734 	}
735 
736 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
737 				      OCFS2_JOURNAL_ACCESS_WRITE);
738 	if (ret)
739 		mlog_errno(ret);
740 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
741 
742 out:
743 	if (ret) {
744 		if (!IS_ERR(handle))
745 			ocfs2_commit_trans(osb, handle);
746 		handle = ERR_PTR(ret);
747 	}
748 	return handle;
749 }
750 
751 /* Some parts of this taken from generic_cont_expand, which turned out
752  * to be too fragile to do exactly what we need without us having to
753  * worry about recursive locking in ->write_begin() and ->write_end(). */
754 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
755 				 u64 abs_to, struct buffer_head *di_bh)
756 {
757 	struct address_space *mapping = inode->i_mapping;
758 	struct page *page;
759 	unsigned long index = abs_from >> PAGE_SHIFT;
760 	handle_t *handle;
761 	int ret = 0;
762 	unsigned zero_from, zero_to, block_start, block_end;
763 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
764 
765 	BUG_ON(abs_from >= abs_to);
766 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
767 	BUG_ON(abs_from & (inode->i_blkbits - 1));
768 
769 	handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
770 						      abs_from,
771 						      abs_to - abs_from);
772 	if (IS_ERR(handle)) {
773 		ret = PTR_ERR(handle);
774 		goto out;
775 	}
776 
777 	page = find_or_create_page(mapping, index, GFP_NOFS);
778 	if (!page) {
779 		ret = -ENOMEM;
780 		mlog_errno(ret);
781 		goto out_commit_trans;
782 	}
783 
784 	/* Get the offsets within the page that we want to zero */
785 	zero_from = abs_from & (PAGE_SIZE - 1);
786 	zero_to = abs_to & (PAGE_SIZE - 1);
787 	if (!zero_to)
788 		zero_to = PAGE_SIZE;
789 
790 	trace_ocfs2_write_zero_page(
791 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
792 			(unsigned long long)abs_from,
793 			(unsigned long long)abs_to,
794 			index, zero_from, zero_to);
795 
796 	/* We know that zero_from is block aligned */
797 	for (block_start = zero_from; block_start < zero_to;
798 	     block_start = block_end) {
799 		block_end = block_start + i_blocksize(inode);
800 
801 		/*
802 		 * block_start is block-aligned.  Bump it by one to force
803 		 * __block_write_begin and block_commit_write to zero the
804 		 * whole block.
805 		 */
806 		ret = __block_write_begin(page, block_start + 1, 0,
807 					  ocfs2_get_block);
808 		if (ret < 0) {
809 			mlog_errno(ret);
810 			goto out_unlock;
811 		}
812 
813 
814 		/* must not update i_size! */
815 		block_commit_write(page, block_start + 1, block_start + 1);
816 	}
817 
818 	/*
819 	 * fs-writeback will release the dirty pages without page lock
820 	 * whose offset are over inode size, the release happens at
821 	 * block_write_full_page().
822 	 */
823 	i_size_write(inode, abs_to);
824 	inode->i_blocks = ocfs2_inode_sector_count(inode);
825 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
826 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
827 	di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode));
828 	di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
829 	di->i_mtime_nsec = di->i_ctime_nsec;
830 	if (handle) {
831 		ocfs2_journal_dirty(handle, di_bh);
832 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
833 	}
834 
835 out_unlock:
836 	unlock_page(page);
837 	put_page(page);
838 out_commit_trans:
839 	if (handle)
840 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
841 out:
842 	return ret;
843 }
844 
845 /*
846  * Find the next range to zero.  We do this in terms of bytes because
847  * that's what ocfs2_zero_extend() wants, and it is dealing with the
848  * pagecache.  We may return multiple extents.
849  *
850  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
851  * needs to be zeroed.  range_start and range_end return the next zeroing
852  * range.  A subsequent call should pass the previous range_end as its
853  * zero_start.  If range_end is 0, there's nothing to do.
854  *
855  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
856  */
857 static int ocfs2_zero_extend_get_range(struct inode *inode,
858 				       struct buffer_head *di_bh,
859 				       u64 zero_start, u64 zero_end,
860 				       u64 *range_start, u64 *range_end)
861 {
862 	int rc = 0, needs_cow = 0;
863 	u32 p_cpos, zero_clusters = 0;
864 	u32 zero_cpos =
865 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
866 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
867 	unsigned int num_clusters = 0;
868 	unsigned int ext_flags = 0;
869 
870 	while (zero_cpos < last_cpos) {
871 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
872 					&num_clusters, &ext_flags);
873 		if (rc) {
874 			mlog_errno(rc);
875 			goto out;
876 		}
877 
878 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
879 			zero_clusters = num_clusters;
880 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
881 				needs_cow = 1;
882 			break;
883 		}
884 
885 		zero_cpos += num_clusters;
886 	}
887 	if (!zero_clusters) {
888 		*range_end = 0;
889 		goto out;
890 	}
891 
892 	while ((zero_cpos + zero_clusters) < last_cpos) {
893 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
894 					&p_cpos, &num_clusters,
895 					&ext_flags);
896 		if (rc) {
897 			mlog_errno(rc);
898 			goto out;
899 		}
900 
901 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
902 			break;
903 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
904 			needs_cow = 1;
905 		zero_clusters += num_clusters;
906 	}
907 	if ((zero_cpos + zero_clusters) > last_cpos)
908 		zero_clusters = last_cpos - zero_cpos;
909 
910 	if (needs_cow) {
911 		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
912 					zero_clusters, UINT_MAX);
913 		if (rc) {
914 			mlog_errno(rc);
915 			goto out;
916 		}
917 	}
918 
919 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
920 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
921 					     zero_cpos + zero_clusters);
922 
923 out:
924 	return rc;
925 }
926 
927 /*
928  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
929  * has made sure that the entire range needs zeroing.
930  */
931 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
932 				   u64 range_end, struct buffer_head *di_bh)
933 {
934 	int rc = 0;
935 	u64 next_pos;
936 	u64 zero_pos = range_start;
937 
938 	trace_ocfs2_zero_extend_range(
939 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
940 			(unsigned long long)range_start,
941 			(unsigned long long)range_end);
942 	BUG_ON(range_start >= range_end);
943 
944 	while (zero_pos < range_end) {
945 		next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
946 		if (next_pos > range_end)
947 			next_pos = range_end;
948 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
949 		if (rc < 0) {
950 			mlog_errno(rc);
951 			break;
952 		}
953 		zero_pos = next_pos;
954 
955 		/*
956 		 * Very large extends have the potential to lock up
957 		 * the cpu for extended periods of time.
958 		 */
959 		cond_resched();
960 	}
961 
962 	return rc;
963 }
964 
965 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
966 		      loff_t zero_to_size)
967 {
968 	int ret = 0;
969 	u64 zero_start, range_start = 0, range_end = 0;
970 	struct super_block *sb = inode->i_sb;
971 
972 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
973 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
974 				(unsigned long long)zero_start,
975 				(unsigned long long)i_size_read(inode));
976 	while (zero_start < zero_to_size) {
977 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
978 						  zero_to_size,
979 						  &range_start,
980 						  &range_end);
981 		if (ret) {
982 			mlog_errno(ret);
983 			break;
984 		}
985 		if (!range_end)
986 			break;
987 		/* Trim the ends */
988 		if (range_start < zero_start)
989 			range_start = zero_start;
990 		if (range_end > zero_to_size)
991 			range_end = zero_to_size;
992 
993 		ret = ocfs2_zero_extend_range(inode, range_start,
994 					      range_end, di_bh);
995 		if (ret) {
996 			mlog_errno(ret);
997 			break;
998 		}
999 		zero_start = range_end;
1000 	}
1001 
1002 	return ret;
1003 }
1004 
1005 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1006 			  u64 new_i_size, u64 zero_to)
1007 {
1008 	int ret;
1009 	u32 clusters_to_add;
1010 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1011 
1012 	/*
1013 	 * Only quota files call this without a bh, and they can't be
1014 	 * refcounted.
1015 	 */
1016 	BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1017 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1018 
1019 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1020 	if (clusters_to_add < oi->ip_clusters)
1021 		clusters_to_add = 0;
1022 	else
1023 		clusters_to_add -= oi->ip_clusters;
1024 
1025 	if (clusters_to_add) {
1026 		ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1027 					      clusters_to_add, 0);
1028 		if (ret) {
1029 			mlog_errno(ret);
1030 			goto out;
1031 		}
1032 	}
1033 
1034 	/*
1035 	 * Call this even if we don't add any clusters to the tree. We
1036 	 * still need to zero the area between the old i_size and the
1037 	 * new i_size.
1038 	 */
1039 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1040 	if (ret < 0)
1041 		mlog_errno(ret);
1042 
1043 out:
1044 	return ret;
1045 }
1046 
1047 static int ocfs2_extend_file(struct inode *inode,
1048 			     struct buffer_head *di_bh,
1049 			     u64 new_i_size)
1050 {
1051 	int ret = 0;
1052 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1053 
1054 	BUG_ON(!di_bh);
1055 
1056 	/* setattr sometimes calls us like this. */
1057 	if (new_i_size == 0)
1058 		goto out;
1059 
1060 	if (i_size_read(inode) == new_i_size)
1061 		goto out;
1062 	BUG_ON(new_i_size < i_size_read(inode));
1063 
1064 	/*
1065 	 * The alloc sem blocks people in read/write from reading our
1066 	 * allocation until we're done changing it. We depend on
1067 	 * i_rwsem to block other extend/truncate calls while we're
1068 	 * here.  We even have to hold it for sparse files because there
1069 	 * might be some tail zeroing.
1070 	 */
1071 	down_write(&oi->ip_alloc_sem);
1072 
1073 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1074 		/*
1075 		 * We can optimize small extends by keeping the inodes
1076 		 * inline data.
1077 		 */
1078 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1079 			up_write(&oi->ip_alloc_sem);
1080 			goto out_update_size;
1081 		}
1082 
1083 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1084 		if (ret) {
1085 			up_write(&oi->ip_alloc_sem);
1086 			mlog_errno(ret);
1087 			goto out;
1088 		}
1089 	}
1090 
1091 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1092 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1093 	else
1094 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1095 					    new_i_size);
1096 
1097 	up_write(&oi->ip_alloc_sem);
1098 
1099 	if (ret < 0) {
1100 		mlog_errno(ret);
1101 		goto out;
1102 	}
1103 
1104 out_update_size:
1105 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1106 	if (ret < 0)
1107 		mlog_errno(ret);
1108 
1109 out:
1110 	return ret;
1111 }
1112 
1113 int ocfs2_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1114 		  struct iattr *attr)
1115 {
1116 	int status = 0, size_change;
1117 	int inode_locked = 0;
1118 	struct inode *inode = d_inode(dentry);
1119 	struct super_block *sb = inode->i_sb;
1120 	struct ocfs2_super *osb = OCFS2_SB(sb);
1121 	struct buffer_head *bh = NULL;
1122 	handle_t *handle = NULL;
1123 	struct dquot *transfer_to[MAXQUOTAS] = { };
1124 	int qtype;
1125 	int had_lock;
1126 	struct ocfs2_lock_holder oh;
1127 
1128 	trace_ocfs2_setattr(inode, dentry,
1129 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1130 			    dentry->d_name.len, dentry->d_name.name,
1131 			    attr->ia_valid, attr->ia_mode,
1132 			    from_kuid(&init_user_ns, attr->ia_uid),
1133 			    from_kgid(&init_user_ns, attr->ia_gid));
1134 
1135 	/* ensuring we don't even attempt to truncate a symlink */
1136 	if (S_ISLNK(inode->i_mode))
1137 		attr->ia_valid &= ~ATTR_SIZE;
1138 
1139 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1140 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1141 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1142 		return 0;
1143 
1144 	status = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1145 	if (status)
1146 		return status;
1147 
1148 	if (is_quota_modification(&nop_mnt_idmap, inode, attr)) {
1149 		status = dquot_initialize(inode);
1150 		if (status)
1151 			return status;
1152 	}
1153 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1154 	if (size_change) {
1155 		/*
1156 		 * Here we should wait dio to finish before inode lock
1157 		 * to avoid a deadlock between ocfs2_setattr() and
1158 		 * ocfs2_dio_end_io_write()
1159 		 */
1160 		inode_dio_wait(inode);
1161 
1162 		status = ocfs2_rw_lock(inode, 1);
1163 		if (status < 0) {
1164 			mlog_errno(status);
1165 			goto bail;
1166 		}
1167 	}
1168 
1169 	had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1170 	if (had_lock < 0) {
1171 		status = had_lock;
1172 		goto bail_unlock_rw;
1173 	} else if (had_lock) {
1174 		/*
1175 		 * As far as we know, ocfs2_setattr() could only be the first
1176 		 * VFS entry point in the call chain of recursive cluster
1177 		 * locking issue.
1178 		 *
1179 		 * For instance:
1180 		 * chmod_common()
1181 		 *  notify_change()
1182 		 *   ocfs2_setattr()
1183 		 *    posix_acl_chmod()
1184 		 *     ocfs2_iop_get_acl()
1185 		 *
1186 		 * But, we're not 100% sure if it's always true, because the
1187 		 * ordering of the VFS entry points in the call chain is out
1188 		 * of our control. So, we'd better dump the stack here to
1189 		 * catch the other cases of recursive locking.
1190 		 */
1191 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1192 		dump_stack();
1193 	}
1194 	inode_locked = 1;
1195 
1196 	if (size_change) {
1197 		status = inode_newsize_ok(inode, attr->ia_size);
1198 		if (status)
1199 			goto bail_unlock;
1200 
1201 		if (i_size_read(inode) >= attr->ia_size) {
1202 			if (ocfs2_should_order_data(inode)) {
1203 				status = ocfs2_begin_ordered_truncate(inode,
1204 								      attr->ia_size);
1205 				if (status)
1206 					goto bail_unlock;
1207 			}
1208 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1209 		} else
1210 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1211 		if (status < 0) {
1212 			if (status != -ENOSPC)
1213 				mlog_errno(status);
1214 			status = -ENOSPC;
1215 			goto bail_unlock;
1216 		}
1217 	}
1218 
1219 	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1220 	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1221 		/*
1222 		 * Gather pointers to quota structures so that allocation /
1223 		 * freeing of quota structures happens here and not inside
1224 		 * dquot_transfer() where we have problems with lock ordering
1225 		 */
1226 		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1227 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1228 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1229 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1230 			if (IS_ERR(transfer_to[USRQUOTA])) {
1231 				status = PTR_ERR(transfer_to[USRQUOTA]);
1232 				transfer_to[USRQUOTA] = NULL;
1233 				goto bail_unlock;
1234 			}
1235 		}
1236 		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1237 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1238 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1239 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1240 			if (IS_ERR(transfer_to[GRPQUOTA])) {
1241 				status = PTR_ERR(transfer_to[GRPQUOTA]);
1242 				transfer_to[GRPQUOTA] = NULL;
1243 				goto bail_unlock;
1244 			}
1245 		}
1246 		down_write(&OCFS2_I(inode)->ip_alloc_sem);
1247 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1248 					   2 * ocfs2_quota_trans_credits(sb));
1249 		if (IS_ERR(handle)) {
1250 			status = PTR_ERR(handle);
1251 			mlog_errno(status);
1252 			goto bail_unlock_alloc;
1253 		}
1254 		status = __dquot_transfer(inode, transfer_to);
1255 		if (status < 0)
1256 			goto bail_commit;
1257 	} else {
1258 		down_write(&OCFS2_I(inode)->ip_alloc_sem);
1259 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1260 		if (IS_ERR(handle)) {
1261 			status = PTR_ERR(handle);
1262 			mlog_errno(status);
1263 			goto bail_unlock_alloc;
1264 		}
1265 	}
1266 
1267 	setattr_copy(&nop_mnt_idmap, inode, attr);
1268 	mark_inode_dirty(inode);
1269 
1270 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1271 	if (status < 0)
1272 		mlog_errno(status);
1273 
1274 bail_commit:
1275 	ocfs2_commit_trans(osb, handle);
1276 bail_unlock_alloc:
1277 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1278 bail_unlock:
1279 	if (status && inode_locked) {
1280 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1281 		inode_locked = 0;
1282 	}
1283 bail_unlock_rw:
1284 	if (size_change)
1285 		ocfs2_rw_unlock(inode, 1);
1286 bail:
1287 
1288 	/* Release quota pointers in case we acquired them */
1289 	for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1290 		dqput(transfer_to[qtype]);
1291 
1292 	if (!status && attr->ia_valid & ATTR_MODE) {
1293 		status = ocfs2_acl_chmod(inode, bh);
1294 		if (status < 0)
1295 			mlog_errno(status);
1296 	}
1297 	if (inode_locked)
1298 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1299 
1300 	brelse(bh);
1301 	return status;
1302 }
1303 
1304 int ocfs2_getattr(struct mnt_idmap *idmap, const struct path *path,
1305 		  struct kstat *stat, u32 request_mask, unsigned int flags)
1306 {
1307 	struct inode *inode = d_inode(path->dentry);
1308 	struct super_block *sb = path->dentry->d_sb;
1309 	struct ocfs2_super *osb = sb->s_fs_info;
1310 	int err;
1311 
1312 	err = ocfs2_inode_revalidate(path->dentry);
1313 	if (err) {
1314 		if (err != -ENOENT)
1315 			mlog_errno(err);
1316 		goto bail;
1317 	}
1318 
1319 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1320 	/*
1321 	 * If there is inline data in the inode, the inode will normally not
1322 	 * have data blocks allocated (it may have an external xattr block).
1323 	 * Report at least one sector for such files, so tools like tar, rsync,
1324 	 * others don't incorrectly think the file is completely sparse.
1325 	 */
1326 	if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1327 		stat->blocks += (stat->size + 511)>>9;
1328 
1329 	/* We set the blksize from the cluster size for performance */
1330 	stat->blksize = osb->s_clustersize;
1331 
1332 bail:
1333 	return err;
1334 }
1335 
1336 int ocfs2_permission(struct mnt_idmap *idmap, struct inode *inode,
1337 		     int mask)
1338 {
1339 	int ret, had_lock;
1340 	struct ocfs2_lock_holder oh;
1341 
1342 	if (mask & MAY_NOT_BLOCK)
1343 		return -ECHILD;
1344 
1345 	had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1346 	if (had_lock < 0) {
1347 		ret = had_lock;
1348 		goto out;
1349 	} else if (had_lock) {
1350 		/* See comments in ocfs2_setattr() for details.
1351 		 * The call chain of this case could be:
1352 		 * do_sys_open()
1353 		 *  may_open()
1354 		 *   inode_permission()
1355 		 *    ocfs2_permission()
1356 		 *     ocfs2_iop_get_acl()
1357 		 */
1358 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1359 		dump_stack();
1360 	}
1361 
1362 	ret = generic_permission(&nop_mnt_idmap, inode, mask);
1363 
1364 	ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1365 out:
1366 	return ret;
1367 }
1368 
1369 static int __ocfs2_write_remove_suid(struct inode *inode,
1370 				     struct buffer_head *bh)
1371 {
1372 	int ret;
1373 	handle_t *handle;
1374 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1375 	struct ocfs2_dinode *di;
1376 
1377 	trace_ocfs2_write_remove_suid(
1378 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1379 			inode->i_mode);
1380 
1381 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1382 	if (IS_ERR(handle)) {
1383 		ret = PTR_ERR(handle);
1384 		mlog_errno(ret);
1385 		goto out;
1386 	}
1387 
1388 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1389 				      OCFS2_JOURNAL_ACCESS_WRITE);
1390 	if (ret < 0) {
1391 		mlog_errno(ret);
1392 		goto out_trans;
1393 	}
1394 
1395 	inode->i_mode &= ~S_ISUID;
1396 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1397 		inode->i_mode &= ~S_ISGID;
1398 
1399 	di = (struct ocfs2_dinode *) bh->b_data;
1400 	di->i_mode = cpu_to_le16(inode->i_mode);
1401 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
1402 
1403 	ocfs2_journal_dirty(handle, bh);
1404 
1405 out_trans:
1406 	ocfs2_commit_trans(osb, handle);
1407 out:
1408 	return ret;
1409 }
1410 
1411 static int ocfs2_write_remove_suid(struct inode *inode)
1412 {
1413 	int ret;
1414 	struct buffer_head *bh = NULL;
1415 
1416 	ret = ocfs2_read_inode_block(inode, &bh);
1417 	if (ret < 0) {
1418 		mlog_errno(ret);
1419 		goto out;
1420 	}
1421 
1422 	ret =  __ocfs2_write_remove_suid(inode, bh);
1423 out:
1424 	brelse(bh);
1425 	return ret;
1426 }
1427 
1428 /*
1429  * Allocate enough extents to cover the region starting at byte offset
1430  * start for len bytes. Existing extents are skipped, any extents
1431  * added are marked as "unwritten".
1432  */
1433 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1434 					    u64 start, u64 len)
1435 {
1436 	int ret;
1437 	u32 cpos, phys_cpos, clusters, alloc_size;
1438 	u64 end = start + len;
1439 	struct buffer_head *di_bh = NULL;
1440 
1441 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1442 		ret = ocfs2_read_inode_block(inode, &di_bh);
1443 		if (ret) {
1444 			mlog_errno(ret);
1445 			goto out;
1446 		}
1447 
1448 		/*
1449 		 * Nothing to do if the requested reservation range
1450 		 * fits within the inode.
1451 		 */
1452 		if (ocfs2_size_fits_inline_data(di_bh, end))
1453 			goto out;
1454 
1455 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1456 		if (ret) {
1457 			mlog_errno(ret);
1458 			goto out;
1459 		}
1460 	}
1461 
1462 	/*
1463 	 * We consider both start and len to be inclusive.
1464 	 */
1465 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1466 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1467 	clusters -= cpos;
1468 
1469 	while (clusters) {
1470 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1471 					 &alloc_size, NULL);
1472 		if (ret) {
1473 			mlog_errno(ret);
1474 			goto out;
1475 		}
1476 
1477 		/*
1478 		 * Hole or existing extent len can be arbitrary, so
1479 		 * cap it to our own allocation request.
1480 		 */
1481 		if (alloc_size > clusters)
1482 			alloc_size = clusters;
1483 
1484 		if (phys_cpos) {
1485 			/*
1486 			 * We already have an allocation at this
1487 			 * region so we can safely skip it.
1488 			 */
1489 			goto next;
1490 		}
1491 
1492 		ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1493 		if (ret) {
1494 			if (ret != -ENOSPC)
1495 				mlog_errno(ret);
1496 			goto out;
1497 		}
1498 
1499 next:
1500 		cpos += alloc_size;
1501 		clusters -= alloc_size;
1502 	}
1503 
1504 	ret = 0;
1505 out:
1506 
1507 	brelse(di_bh);
1508 	return ret;
1509 }
1510 
1511 /*
1512  * Truncate a byte range, avoiding pages within partial clusters. This
1513  * preserves those pages for the zeroing code to write to.
1514  */
1515 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1516 					 u64 byte_len)
1517 {
1518 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1519 	loff_t start, end;
1520 	struct address_space *mapping = inode->i_mapping;
1521 
1522 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1523 	end = byte_start + byte_len;
1524 	end = end & ~(osb->s_clustersize - 1);
1525 
1526 	if (start < end) {
1527 		unmap_mapping_range(mapping, start, end - start, 0);
1528 		truncate_inode_pages_range(mapping, start, end - 1);
1529 	}
1530 }
1531 
1532 /*
1533  * zero out partial blocks of one cluster.
1534  *
1535  * start: file offset where zero starts, will be made upper block aligned.
1536  * len: it will be trimmed to the end of current cluster if "start + len"
1537  *      is bigger than it.
1538  */
1539 static int ocfs2_zeroout_partial_cluster(struct inode *inode,
1540 					u64 start, u64 len)
1541 {
1542 	int ret;
1543 	u64 start_block, end_block, nr_blocks;
1544 	u64 p_block, offset;
1545 	u32 cluster, p_cluster, nr_clusters;
1546 	struct super_block *sb = inode->i_sb;
1547 	u64 end = ocfs2_align_bytes_to_clusters(sb, start);
1548 
1549 	if (start + len < end)
1550 		end = start + len;
1551 
1552 	start_block = ocfs2_blocks_for_bytes(sb, start);
1553 	end_block = ocfs2_blocks_for_bytes(sb, end);
1554 	nr_blocks = end_block - start_block;
1555 	if (!nr_blocks)
1556 		return 0;
1557 
1558 	cluster = ocfs2_bytes_to_clusters(sb, start);
1559 	ret = ocfs2_get_clusters(inode, cluster, &p_cluster,
1560 				&nr_clusters, NULL);
1561 	if (ret)
1562 		return ret;
1563 	if (!p_cluster)
1564 		return 0;
1565 
1566 	offset = start_block - ocfs2_clusters_to_blocks(sb, cluster);
1567 	p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset;
1568 	return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS);
1569 }
1570 
1571 static int ocfs2_zero_partial_clusters(struct inode *inode,
1572 				       u64 start, u64 len)
1573 {
1574 	int ret = 0;
1575 	u64 tmpend = 0;
1576 	u64 end = start + len;
1577 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1578 	unsigned int csize = osb->s_clustersize;
1579 	handle_t *handle;
1580 	loff_t isize = i_size_read(inode);
1581 
1582 	/*
1583 	 * The "start" and "end" values are NOT necessarily part of
1584 	 * the range whose allocation is being deleted. Rather, this
1585 	 * is what the user passed in with the request. We must zero
1586 	 * partial clusters here. There's no need to worry about
1587 	 * physical allocation - the zeroing code knows to skip holes.
1588 	 */
1589 	trace_ocfs2_zero_partial_clusters(
1590 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1591 		(unsigned long long)start, (unsigned long long)end);
1592 
1593 	/*
1594 	 * If both edges are on a cluster boundary then there's no
1595 	 * zeroing required as the region is part of the allocation to
1596 	 * be truncated.
1597 	 */
1598 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1599 		goto out;
1600 
1601 	/* No page cache for EOF blocks, issue zero out to disk. */
1602 	if (end > isize) {
1603 		/*
1604 		 * zeroout eof blocks in last cluster starting from
1605 		 * "isize" even "start" > "isize" because it is
1606 		 * complicated to zeroout just at "start" as "start"
1607 		 * may be not aligned with block size, buffer write
1608 		 * would be required to do that, but out of eof buffer
1609 		 * write is not supported.
1610 		 */
1611 		ret = ocfs2_zeroout_partial_cluster(inode, isize,
1612 					end - isize);
1613 		if (ret) {
1614 			mlog_errno(ret);
1615 			goto out;
1616 		}
1617 		if (start >= isize)
1618 			goto out;
1619 		end = isize;
1620 	}
1621 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1622 	if (IS_ERR(handle)) {
1623 		ret = PTR_ERR(handle);
1624 		mlog_errno(ret);
1625 		goto out;
1626 	}
1627 
1628 	/*
1629 	 * If start is on a cluster boundary and end is somewhere in another
1630 	 * cluster, we have not COWed the cluster starting at start, unless
1631 	 * end is also within the same cluster. So, in this case, we skip this
1632 	 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1633 	 * to the next one.
1634 	 */
1635 	if ((start & (csize - 1)) != 0) {
1636 		/*
1637 		 * We want to get the byte offset of the end of the 1st
1638 		 * cluster.
1639 		 */
1640 		tmpend = (u64)osb->s_clustersize +
1641 			(start & ~(osb->s_clustersize - 1));
1642 		if (tmpend > end)
1643 			tmpend = end;
1644 
1645 		trace_ocfs2_zero_partial_clusters_range1(
1646 			(unsigned long long)start,
1647 			(unsigned long long)tmpend);
1648 
1649 		ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1650 						    tmpend);
1651 		if (ret)
1652 			mlog_errno(ret);
1653 	}
1654 
1655 	if (tmpend < end) {
1656 		/*
1657 		 * This may make start and end equal, but the zeroing
1658 		 * code will skip any work in that case so there's no
1659 		 * need to catch it up here.
1660 		 */
1661 		start = end & ~(osb->s_clustersize - 1);
1662 
1663 		trace_ocfs2_zero_partial_clusters_range2(
1664 			(unsigned long long)start, (unsigned long long)end);
1665 
1666 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1667 		if (ret)
1668 			mlog_errno(ret);
1669 	}
1670 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
1671 
1672 	ocfs2_commit_trans(osb, handle);
1673 out:
1674 	return ret;
1675 }
1676 
1677 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1678 {
1679 	int i;
1680 	struct ocfs2_extent_rec *rec = NULL;
1681 
1682 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1683 
1684 		rec = &el->l_recs[i];
1685 
1686 		if (le32_to_cpu(rec->e_cpos) < pos)
1687 			break;
1688 	}
1689 
1690 	return i;
1691 }
1692 
1693 /*
1694  * Helper to calculate the punching pos and length in one run, we handle the
1695  * following three cases in order:
1696  *
1697  * - remove the entire record
1698  * - remove a partial record
1699  * - no record needs to be removed (hole-punching completed)
1700 */
1701 static void ocfs2_calc_trunc_pos(struct inode *inode,
1702 				 struct ocfs2_extent_list *el,
1703 				 struct ocfs2_extent_rec *rec,
1704 				 u32 trunc_start, u32 *trunc_cpos,
1705 				 u32 *trunc_len, u32 *trunc_end,
1706 				 u64 *blkno, int *done)
1707 {
1708 	int ret = 0;
1709 	u32 coff, range;
1710 
1711 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1712 
1713 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1714 		/*
1715 		 * remove an entire extent record.
1716 		 */
1717 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1718 		/*
1719 		 * Skip holes if any.
1720 		 */
1721 		if (range < *trunc_end)
1722 			*trunc_end = range;
1723 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1724 		*blkno = le64_to_cpu(rec->e_blkno);
1725 		*trunc_end = le32_to_cpu(rec->e_cpos);
1726 	} else if (range > trunc_start) {
1727 		/*
1728 		 * remove a partial extent record, which means we're
1729 		 * removing the last extent record.
1730 		 */
1731 		*trunc_cpos = trunc_start;
1732 		/*
1733 		 * skip hole if any.
1734 		 */
1735 		if (range < *trunc_end)
1736 			*trunc_end = range;
1737 		*trunc_len = *trunc_end - trunc_start;
1738 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1739 		*blkno = le64_to_cpu(rec->e_blkno) +
1740 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1741 		*trunc_end = trunc_start;
1742 	} else {
1743 		/*
1744 		 * It may have two following possibilities:
1745 		 *
1746 		 * - last record has been removed
1747 		 * - trunc_start was within a hole
1748 		 *
1749 		 * both two cases mean the completion of hole punching.
1750 		 */
1751 		ret = 1;
1752 	}
1753 
1754 	*done = ret;
1755 }
1756 
1757 int ocfs2_remove_inode_range(struct inode *inode,
1758 			     struct buffer_head *di_bh, u64 byte_start,
1759 			     u64 byte_len)
1760 {
1761 	int ret = 0, flags = 0, done = 0, i;
1762 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1763 	u32 cluster_in_el;
1764 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1765 	struct ocfs2_cached_dealloc_ctxt dealloc;
1766 	struct address_space *mapping = inode->i_mapping;
1767 	struct ocfs2_extent_tree et;
1768 	struct ocfs2_path *path = NULL;
1769 	struct ocfs2_extent_list *el = NULL;
1770 	struct ocfs2_extent_rec *rec = NULL;
1771 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1772 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1773 
1774 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1775 	ocfs2_init_dealloc_ctxt(&dealloc);
1776 
1777 	trace_ocfs2_remove_inode_range(
1778 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1779 			(unsigned long long)byte_start,
1780 			(unsigned long long)byte_len);
1781 
1782 	if (byte_len == 0)
1783 		return 0;
1784 
1785 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1786 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1787 					    byte_start + byte_len, 0);
1788 		if (ret) {
1789 			mlog_errno(ret);
1790 			goto out;
1791 		}
1792 		/*
1793 		 * There's no need to get fancy with the page cache
1794 		 * truncate of an inline-data inode. We're talking
1795 		 * about less than a page here, which will be cached
1796 		 * in the dinode buffer anyway.
1797 		 */
1798 		unmap_mapping_range(mapping, 0, 0, 0);
1799 		truncate_inode_pages(mapping, 0);
1800 		goto out;
1801 	}
1802 
1803 	/*
1804 	 * For reflinks, we may need to CoW 2 clusters which might be
1805 	 * partially zero'd later, if hole's start and end offset were
1806 	 * within one cluster(means is not exactly aligned to clustersize).
1807 	 */
1808 
1809 	if (ocfs2_is_refcount_inode(inode)) {
1810 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1811 		if (ret) {
1812 			mlog_errno(ret);
1813 			goto out;
1814 		}
1815 
1816 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1817 		if (ret) {
1818 			mlog_errno(ret);
1819 			goto out;
1820 		}
1821 	}
1822 
1823 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1824 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1825 	cluster_in_el = trunc_end;
1826 
1827 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1828 	if (ret) {
1829 		mlog_errno(ret);
1830 		goto out;
1831 	}
1832 
1833 	path = ocfs2_new_path_from_et(&et);
1834 	if (!path) {
1835 		ret = -ENOMEM;
1836 		mlog_errno(ret);
1837 		goto out;
1838 	}
1839 
1840 	while (trunc_end > trunc_start) {
1841 
1842 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1843 				      cluster_in_el);
1844 		if (ret) {
1845 			mlog_errno(ret);
1846 			goto out;
1847 		}
1848 
1849 		el = path_leaf_el(path);
1850 
1851 		i = ocfs2_find_rec(el, trunc_end);
1852 		/*
1853 		 * Need to go to previous extent block.
1854 		 */
1855 		if (i < 0) {
1856 			if (path->p_tree_depth == 0)
1857 				break;
1858 
1859 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1860 							    path,
1861 							    &cluster_in_el);
1862 			if (ret) {
1863 				mlog_errno(ret);
1864 				goto out;
1865 			}
1866 
1867 			/*
1868 			 * We've reached the leftmost extent block,
1869 			 * it's safe to leave.
1870 			 */
1871 			if (cluster_in_el == 0)
1872 				break;
1873 
1874 			/*
1875 			 * The 'pos' searched for previous extent block is
1876 			 * always one cluster less than actual trunc_end.
1877 			 */
1878 			trunc_end = cluster_in_el + 1;
1879 
1880 			ocfs2_reinit_path(path, 1);
1881 
1882 			continue;
1883 
1884 		} else
1885 			rec = &el->l_recs[i];
1886 
1887 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1888 				     &trunc_len, &trunc_end, &blkno, &done);
1889 		if (done)
1890 			break;
1891 
1892 		flags = rec->e_flags;
1893 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1894 
1895 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1896 					       phys_cpos, trunc_len, flags,
1897 					       &dealloc, refcount_loc, false);
1898 		if (ret < 0) {
1899 			mlog_errno(ret);
1900 			goto out;
1901 		}
1902 
1903 		cluster_in_el = trunc_end;
1904 
1905 		ocfs2_reinit_path(path, 1);
1906 	}
1907 
1908 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1909 
1910 out:
1911 	ocfs2_free_path(path);
1912 	ocfs2_schedule_truncate_log_flush(osb, 1);
1913 	ocfs2_run_deallocs(osb, &dealloc);
1914 
1915 	return ret;
1916 }
1917 
1918 /*
1919  * Parts of this function taken from xfs_change_file_space()
1920  */
1921 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1922 				     loff_t f_pos, unsigned int cmd,
1923 				     struct ocfs2_space_resv *sr,
1924 				     int change_size)
1925 {
1926 	int ret;
1927 	s64 llen;
1928 	loff_t size, orig_isize;
1929 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1930 	struct buffer_head *di_bh = NULL;
1931 	handle_t *handle;
1932 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1933 
1934 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1935 		return -EROFS;
1936 
1937 	inode_lock(inode);
1938 
1939 	/* Wait all existing dio workers, newcomers will block on i_rwsem */
1940 	inode_dio_wait(inode);
1941 	/*
1942 	 * This prevents concurrent writes on other nodes
1943 	 */
1944 	ret = ocfs2_rw_lock(inode, 1);
1945 	if (ret) {
1946 		mlog_errno(ret);
1947 		goto out;
1948 	}
1949 
1950 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1951 	if (ret) {
1952 		mlog_errno(ret);
1953 		goto out_rw_unlock;
1954 	}
1955 
1956 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1957 		ret = -EPERM;
1958 		goto out_inode_unlock;
1959 	}
1960 
1961 	switch (sr->l_whence) {
1962 	case 0: /*SEEK_SET*/
1963 		break;
1964 	case 1: /*SEEK_CUR*/
1965 		sr->l_start += f_pos;
1966 		break;
1967 	case 2: /*SEEK_END*/
1968 		sr->l_start += i_size_read(inode);
1969 		break;
1970 	default:
1971 		ret = -EINVAL;
1972 		goto out_inode_unlock;
1973 	}
1974 	sr->l_whence = 0;
1975 
1976 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1977 
1978 	if (sr->l_start < 0
1979 	    || sr->l_start > max_off
1980 	    || (sr->l_start + llen) < 0
1981 	    || (sr->l_start + llen) > max_off) {
1982 		ret = -EINVAL;
1983 		goto out_inode_unlock;
1984 	}
1985 	size = sr->l_start + sr->l_len;
1986 
1987 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1988 	    cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1989 		if (sr->l_len <= 0) {
1990 			ret = -EINVAL;
1991 			goto out_inode_unlock;
1992 		}
1993 	}
1994 
1995 	if (file && setattr_should_drop_suidgid(&nop_mnt_idmap, file_inode(file))) {
1996 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1997 		if (ret) {
1998 			mlog_errno(ret);
1999 			goto out_inode_unlock;
2000 		}
2001 	}
2002 
2003 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
2004 	switch (cmd) {
2005 	case OCFS2_IOC_RESVSP:
2006 	case OCFS2_IOC_RESVSP64:
2007 		/*
2008 		 * This takes unsigned offsets, but the signed ones we
2009 		 * pass have been checked against overflow above.
2010 		 */
2011 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
2012 						       sr->l_len);
2013 		break;
2014 	case OCFS2_IOC_UNRESVSP:
2015 	case OCFS2_IOC_UNRESVSP64:
2016 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
2017 					       sr->l_len);
2018 		break;
2019 	default:
2020 		ret = -EINVAL;
2021 	}
2022 
2023 	orig_isize = i_size_read(inode);
2024 	/* zeroout eof blocks in the cluster. */
2025 	if (!ret && change_size && orig_isize < size) {
2026 		ret = ocfs2_zeroout_partial_cluster(inode, orig_isize,
2027 					size - orig_isize);
2028 		if (!ret)
2029 			i_size_write(inode, size);
2030 	}
2031 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2032 	if (ret) {
2033 		mlog_errno(ret);
2034 		goto out_inode_unlock;
2035 	}
2036 
2037 	/*
2038 	 * We update c/mtime for these changes
2039 	 */
2040 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
2041 	if (IS_ERR(handle)) {
2042 		ret = PTR_ERR(handle);
2043 		mlog_errno(ret);
2044 		goto out_inode_unlock;
2045 	}
2046 
2047 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2048 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
2049 	if (ret < 0)
2050 		mlog_errno(ret);
2051 
2052 	if (file && (file->f_flags & O_SYNC))
2053 		handle->h_sync = 1;
2054 
2055 	ocfs2_commit_trans(osb, handle);
2056 
2057 out_inode_unlock:
2058 	brelse(di_bh);
2059 	ocfs2_inode_unlock(inode, 1);
2060 out_rw_unlock:
2061 	ocfs2_rw_unlock(inode, 1);
2062 
2063 out:
2064 	inode_unlock(inode);
2065 	return ret;
2066 }
2067 
2068 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2069 			    struct ocfs2_space_resv *sr)
2070 {
2071 	struct inode *inode = file_inode(file);
2072 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2073 	int ret;
2074 
2075 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2076 	    !ocfs2_writes_unwritten_extents(osb))
2077 		return -ENOTTY;
2078 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2079 		 !ocfs2_sparse_alloc(osb))
2080 		return -ENOTTY;
2081 
2082 	if (!S_ISREG(inode->i_mode))
2083 		return -EINVAL;
2084 
2085 	if (!(file->f_mode & FMODE_WRITE))
2086 		return -EBADF;
2087 
2088 	ret = mnt_want_write_file(file);
2089 	if (ret)
2090 		return ret;
2091 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2092 	mnt_drop_write_file(file);
2093 	return ret;
2094 }
2095 
2096 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2097 			    loff_t len)
2098 {
2099 	struct inode *inode = file_inode(file);
2100 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2101 	struct ocfs2_space_resv sr;
2102 	int change_size = 1;
2103 	int cmd = OCFS2_IOC_RESVSP64;
2104 	int ret = 0;
2105 
2106 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2107 		return -EOPNOTSUPP;
2108 	if (!ocfs2_writes_unwritten_extents(osb))
2109 		return -EOPNOTSUPP;
2110 
2111 	if (mode & FALLOC_FL_KEEP_SIZE) {
2112 		change_size = 0;
2113 	} else {
2114 		ret = inode_newsize_ok(inode, offset + len);
2115 		if (ret)
2116 			return ret;
2117 	}
2118 
2119 	if (mode & FALLOC_FL_PUNCH_HOLE)
2120 		cmd = OCFS2_IOC_UNRESVSP64;
2121 
2122 	sr.l_whence = 0;
2123 	sr.l_start = (s64)offset;
2124 	sr.l_len = (s64)len;
2125 
2126 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2127 					 change_size);
2128 }
2129 
2130 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2131 				   size_t count)
2132 {
2133 	int ret = 0;
2134 	unsigned int extent_flags;
2135 	u32 cpos, clusters, extent_len, phys_cpos;
2136 	struct super_block *sb = inode->i_sb;
2137 
2138 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2139 	    !ocfs2_is_refcount_inode(inode) ||
2140 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2141 		return 0;
2142 
2143 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2144 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2145 
2146 	while (clusters) {
2147 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2148 					 &extent_flags);
2149 		if (ret < 0) {
2150 			mlog_errno(ret);
2151 			goto out;
2152 		}
2153 
2154 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2155 			ret = 1;
2156 			break;
2157 		}
2158 
2159 		if (extent_len > clusters)
2160 			extent_len = clusters;
2161 
2162 		clusters -= extent_len;
2163 		cpos += extent_len;
2164 	}
2165 out:
2166 	return ret;
2167 }
2168 
2169 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2170 {
2171 	int blockmask = inode->i_sb->s_blocksize - 1;
2172 	loff_t final_size = pos + count;
2173 
2174 	if ((pos & blockmask) || (final_size & blockmask))
2175 		return 1;
2176 	return 0;
2177 }
2178 
2179 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2180 					    struct buffer_head **di_bh,
2181 					    int meta_level,
2182 					    int write_sem,
2183 					    int wait)
2184 {
2185 	int ret = 0;
2186 
2187 	if (wait)
2188 		ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2189 	else
2190 		ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2191 	if (ret < 0)
2192 		goto out;
2193 
2194 	if (wait) {
2195 		if (write_sem)
2196 			down_write(&OCFS2_I(inode)->ip_alloc_sem);
2197 		else
2198 			down_read(&OCFS2_I(inode)->ip_alloc_sem);
2199 	} else {
2200 		if (write_sem)
2201 			ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2202 		else
2203 			ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2204 
2205 		if (!ret) {
2206 			ret = -EAGAIN;
2207 			goto out_unlock;
2208 		}
2209 	}
2210 
2211 	return ret;
2212 
2213 out_unlock:
2214 	brelse(*di_bh);
2215 	*di_bh = NULL;
2216 	ocfs2_inode_unlock(inode, meta_level);
2217 out:
2218 	return ret;
2219 }
2220 
2221 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2222 					       struct buffer_head **di_bh,
2223 					       int meta_level,
2224 					       int write_sem)
2225 {
2226 	if (write_sem)
2227 		up_write(&OCFS2_I(inode)->ip_alloc_sem);
2228 	else
2229 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
2230 
2231 	brelse(*di_bh);
2232 	*di_bh = NULL;
2233 
2234 	if (meta_level >= 0)
2235 		ocfs2_inode_unlock(inode, meta_level);
2236 }
2237 
2238 static int ocfs2_prepare_inode_for_write(struct file *file,
2239 					 loff_t pos, size_t count, int wait)
2240 {
2241 	int ret = 0, meta_level = 0, overwrite_io = 0;
2242 	int write_sem = 0;
2243 	struct dentry *dentry = file->f_path.dentry;
2244 	struct inode *inode = d_inode(dentry);
2245 	struct buffer_head *di_bh = NULL;
2246 	u32 cpos;
2247 	u32 clusters;
2248 
2249 	/*
2250 	 * We start with a read level meta lock and only jump to an ex
2251 	 * if we need to make modifications here.
2252 	 */
2253 	for(;;) {
2254 		ret = ocfs2_inode_lock_for_extent_tree(inode,
2255 						       &di_bh,
2256 						       meta_level,
2257 						       write_sem,
2258 						       wait);
2259 		if (ret < 0) {
2260 			if (ret != -EAGAIN)
2261 				mlog_errno(ret);
2262 			goto out;
2263 		}
2264 
2265 		/*
2266 		 * Check if IO will overwrite allocated blocks in case
2267 		 * IOCB_NOWAIT flag is set.
2268 		 */
2269 		if (!wait && !overwrite_io) {
2270 			overwrite_io = 1;
2271 
2272 			ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2273 			if (ret < 0) {
2274 				if (ret != -EAGAIN)
2275 					mlog_errno(ret);
2276 				goto out_unlock;
2277 			}
2278 		}
2279 
2280 		/* Clear suid / sgid if necessary. We do this here
2281 		 * instead of later in the write path because
2282 		 * remove_suid() calls ->setattr without any hint that
2283 		 * we may have already done our cluster locking. Since
2284 		 * ocfs2_setattr() *must* take cluster locks to
2285 		 * proceed, this will lead us to recursively lock the
2286 		 * inode. There's also the dinode i_size state which
2287 		 * can be lost via setattr during extending writes (we
2288 		 * set inode->i_size at the end of a write. */
2289 		if (setattr_should_drop_suidgid(&nop_mnt_idmap, inode)) {
2290 			if (meta_level == 0) {
2291 				ocfs2_inode_unlock_for_extent_tree(inode,
2292 								   &di_bh,
2293 								   meta_level,
2294 								   write_sem);
2295 				meta_level = 1;
2296 				continue;
2297 			}
2298 
2299 			ret = ocfs2_write_remove_suid(inode);
2300 			if (ret < 0) {
2301 				mlog_errno(ret);
2302 				goto out_unlock;
2303 			}
2304 		}
2305 
2306 		ret = ocfs2_check_range_for_refcount(inode, pos, count);
2307 		if (ret == 1) {
2308 			ocfs2_inode_unlock_for_extent_tree(inode,
2309 							   &di_bh,
2310 							   meta_level,
2311 							   write_sem);
2312 			meta_level = 1;
2313 			write_sem = 1;
2314 			ret = ocfs2_inode_lock_for_extent_tree(inode,
2315 							       &di_bh,
2316 							       meta_level,
2317 							       write_sem,
2318 							       wait);
2319 			if (ret < 0) {
2320 				if (ret != -EAGAIN)
2321 					mlog_errno(ret);
2322 				goto out;
2323 			}
2324 
2325 			cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2326 			clusters =
2327 				ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2328 			ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2329 		}
2330 
2331 		if (ret < 0) {
2332 			if (ret != -EAGAIN)
2333 				mlog_errno(ret);
2334 			goto out_unlock;
2335 		}
2336 
2337 		break;
2338 	}
2339 
2340 out_unlock:
2341 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2342 					    pos, count, wait);
2343 
2344 	ocfs2_inode_unlock_for_extent_tree(inode,
2345 					   &di_bh,
2346 					   meta_level,
2347 					   write_sem);
2348 
2349 out:
2350 	return ret;
2351 }
2352 
2353 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2354 				    struct iov_iter *from)
2355 {
2356 	int rw_level;
2357 	ssize_t written = 0;
2358 	ssize_t ret;
2359 	size_t count = iov_iter_count(from);
2360 	struct file *file = iocb->ki_filp;
2361 	struct inode *inode = file_inode(file);
2362 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2363 	int full_coherency = !(osb->s_mount_opt &
2364 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2365 	void *saved_ki_complete = NULL;
2366 	int append_write = ((iocb->ki_pos + count) >=
2367 			i_size_read(inode) ? 1 : 0);
2368 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2369 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2370 
2371 	trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2372 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2373 		file->f_path.dentry->d_name.len,
2374 		file->f_path.dentry->d_name.name,
2375 		(unsigned int)from->nr_segs);	/* GRRRRR */
2376 
2377 	if (!direct_io && nowait)
2378 		return -EOPNOTSUPP;
2379 
2380 	if (count == 0)
2381 		return 0;
2382 
2383 	if (nowait) {
2384 		if (!inode_trylock(inode))
2385 			return -EAGAIN;
2386 	} else
2387 		inode_lock(inode);
2388 
2389 	/*
2390 	 * Concurrent O_DIRECT writes are allowed with
2391 	 * mount_option "coherency=buffered".
2392 	 * For append write, we must take rw EX.
2393 	 */
2394 	rw_level = (!direct_io || full_coherency || append_write);
2395 
2396 	if (nowait)
2397 		ret = ocfs2_try_rw_lock(inode, rw_level);
2398 	else
2399 		ret = ocfs2_rw_lock(inode, rw_level);
2400 	if (ret < 0) {
2401 		if (ret != -EAGAIN)
2402 			mlog_errno(ret);
2403 		goto out_mutex;
2404 	}
2405 
2406 	/*
2407 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2408 	 * inode_lock to guarantee coherency.
2409 	 */
2410 	if (direct_io && full_coherency) {
2411 		/*
2412 		 * We need to take and drop the inode lock to force
2413 		 * other nodes to drop their caches.  Buffered I/O
2414 		 * already does this in write_begin().
2415 		 */
2416 		if (nowait)
2417 			ret = ocfs2_try_inode_lock(inode, NULL, 1);
2418 		else
2419 			ret = ocfs2_inode_lock(inode, NULL, 1);
2420 		if (ret < 0) {
2421 			if (ret != -EAGAIN)
2422 				mlog_errno(ret);
2423 			goto out;
2424 		}
2425 
2426 		ocfs2_inode_unlock(inode, 1);
2427 	}
2428 
2429 	ret = generic_write_checks(iocb, from);
2430 	if (ret <= 0) {
2431 		if (ret)
2432 			mlog_errno(ret);
2433 		goto out;
2434 	}
2435 	count = ret;
2436 
2437 	ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2438 	if (ret < 0) {
2439 		if (ret != -EAGAIN)
2440 			mlog_errno(ret);
2441 		goto out;
2442 	}
2443 
2444 	if (direct_io && !is_sync_kiocb(iocb) &&
2445 	    ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2446 		/*
2447 		 * Make it a sync io if it's an unaligned aio.
2448 		 */
2449 		saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2450 	}
2451 
2452 	/* communicate with ocfs2_dio_end_io */
2453 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2454 
2455 	written = __generic_file_write_iter(iocb, from);
2456 	/* buffered aio wouldn't have proper lock coverage today */
2457 	BUG_ON(written == -EIOCBQUEUED && !direct_io);
2458 
2459 	/*
2460 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2461 	 * function pointer which is called when o_direct io completes so that
2462 	 * it can unlock our rw lock.
2463 	 * Unfortunately there are error cases which call end_io and others
2464 	 * that don't.  so we don't have to unlock the rw_lock if either an
2465 	 * async dio is going to do it in the future or an end_io after an
2466 	 * error has already done it.
2467 	 */
2468 	if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2469 		rw_level = -1;
2470 	}
2471 
2472 	if (unlikely(written <= 0))
2473 		goto out;
2474 
2475 	if (((file->f_flags & O_DSYNC) && !direct_io) ||
2476 	    IS_SYNC(inode)) {
2477 		ret = filemap_fdatawrite_range(file->f_mapping,
2478 					       iocb->ki_pos - written,
2479 					       iocb->ki_pos - 1);
2480 		if (ret < 0)
2481 			written = ret;
2482 
2483 		if (!ret) {
2484 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2485 			if (ret < 0)
2486 				written = ret;
2487 		}
2488 
2489 		if (!ret)
2490 			ret = filemap_fdatawait_range(file->f_mapping,
2491 						      iocb->ki_pos - written,
2492 						      iocb->ki_pos - 1);
2493 	}
2494 
2495 out:
2496 	if (saved_ki_complete)
2497 		xchg(&iocb->ki_complete, saved_ki_complete);
2498 
2499 	if (rw_level != -1)
2500 		ocfs2_rw_unlock(inode, rw_level);
2501 
2502 out_mutex:
2503 	inode_unlock(inode);
2504 
2505 	if (written)
2506 		ret = written;
2507 	return ret;
2508 }
2509 
2510 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2511 				   struct iov_iter *to)
2512 {
2513 	int ret = 0, rw_level = -1, lock_level = 0;
2514 	struct file *filp = iocb->ki_filp;
2515 	struct inode *inode = file_inode(filp);
2516 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2517 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2518 
2519 	trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2520 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2521 			filp->f_path.dentry->d_name.len,
2522 			filp->f_path.dentry->d_name.name,
2523 			to->nr_segs);	/* GRRRRR */
2524 
2525 
2526 	if (!inode) {
2527 		ret = -EINVAL;
2528 		mlog_errno(ret);
2529 		goto bail;
2530 	}
2531 
2532 	if (!direct_io && nowait)
2533 		return -EOPNOTSUPP;
2534 
2535 	/*
2536 	 * buffered reads protect themselves in ->read_folio().  O_DIRECT reads
2537 	 * need locks to protect pending reads from racing with truncate.
2538 	 */
2539 	if (direct_io) {
2540 		if (nowait)
2541 			ret = ocfs2_try_rw_lock(inode, 0);
2542 		else
2543 			ret = ocfs2_rw_lock(inode, 0);
2544 
2545 		if (ret < 0) {
2546 			if (ret != -EAGAIN)
2547 				mlog_errno(ret);
2548 			goto bail;
2549 		}
2550 		rw_level = 0;
2551 		/* communicate with ocfs2_dio_end_io */
2552 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2553 	}
2554 
2555 	/*
2556 	 * We're fine letting folks race truncates and extending
2557 	 * writes with read across the cluster, just like they can
2558 	 * locally. Hence no rw_lock during read.
2559 	 *
2560 	 * Take and drop the meta data lock to update inode fields
2561 	 * like i_size. This allows the checks down below
2562 	 * copy_splice_read() a chance of actually working.
2563 	 */
2564 	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2565 				     !nowait);
2566 	if (ret < 0) {
2567 		if (ret != -EAGAIN)
2568 			mlog_errno(ret);
2569 		goto bail;
2570 	}
2571 	ocfs2_inode_unlock(inode, lock_level);
2572 
2573 	ret = generic_file_read_iter(iocb, to);
2574 	trace_generic_file_read_iter_ret(ret);
2575 
2576 	/* buffered aio wouldn't have proper lock coverage today */
2577 	BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2578 
2579 	/* see ocfs2_file_write_iter */
2580 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2581 		rw_level = -1;
2582 	}
2583 
2584 bail:
2585 	if (rw_level != -1)
2586 		ocfs2_rw_unlock(inode, rw_level);
2587 
2588 	return ret;
2589 }
2590 
2591 static ssize_t ocfs2_file_splice_read(struct file *in, loff_t *ppos,
2592 				      struct pipe_inode_info *pipe,
2593 				      size_t len, unsigned int flags)
2594 {
2595 	struct inode *inode = file_inode(in);
2596 	ssize_t ret = 0;
2597 	int lock_level = 0;
2598 
2599 	trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2600 				     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2601 				     in->f_path.dentry->d_name.len,
2602 				     in->f_path.dentry->d_name.name,
2603 				     flags);
2604 
2605 	/*
2606 	 * We're fine letting folks race truncates and extending writes with
2607 	 * read across the cluster, just like they can locally.  Hence no
2608 	 * rw_lock during read.
2609 	 *
2610 	 * Take and drop the meta data lock to update inode fields like i_size.
2611 	 * This allows the checks down below filemap_splice_read() a chance of
2612 	 * actually working.
2613 	 */
2614 	ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level, 1);
2615 	if (ret < 0) {
2616 		if (ret != -EAGAIN)
2617 			mlog_errno(ret);
2618 		goto bail;
2619 	}
2620 	ocfs2_inode_unlock(inode, lock_level);
2621 
2622 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
2623 	trace_filemap_splice_read_ret(ret);
2624 bail:
2625 	return ret;
2626 }
2627 
2628 /* Refer generic_file_llseek_unlocked() */
2629 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2630 {
2631 	struct inode *inode = file->f_mapping->host;
2632 	int ret = 0;
2633 
2634 	inode_lock(inode);
2635 
2636 	switch (whence) {
2637 	case SEEK_SET:
2638 		break;
2639 	case SEEK_END:
2640 		/* SEEK_END requires the OCFS2 inode lock for the file
2641 		 * because it references the file's size.
2642 		 */
2643 		ret = ocfs2_inode_lock(inode, NULL, 0);
2644 		if (ret < 0) {
2645 			mlog_errno(ret);
2646 			goto out;
2647 		}
2648 		offset += i_size_read(inode);
2649 		ocfs2_inode_unlock(inode, 0);
2650 		break;
2651 	case SEEK_CUR:
2652 		if (offset == 0) {
2653 			offset = file->f_pos;
2654 			goto out;
2655 		}
2656 		offset += file->f_pos;
2657 		break;
2658 	case SEEK_DATA:
2659 	case SEEK_HOLE:
2660 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2661 		if (ret)
2662 			goto out;
2663 		break;
2664 	default:
2665 		ret = -EINVAL;
2666 		goto out;
2667 	}
2668 
2669 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2670 
2671 out:
2672 	inode_unlock(inode);
2673 	if (ret)
2674 		return ret;
2675 	return offset;
2676 }
2677 
2678 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2679 				     struct file *file_out, loff_t pos_out,
2680 				     loff_t len, unsigned int remap_flags)
2681 {
2682 	struct inode *inode_in = file_inode(file_in);
2683 	struct inode *inode_out = file_inode(file_out);
2684 	struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2685 	struct buffer_head *in_bh = NULL, *out_bh = NULL;
2686 	bool same_inode = (inode_in == inode_out);
2687 	loff_t remapped = 0;
2688 	ssize_t ret;
2689 
2690 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2691 		return -EINVAL;
2692 	if (!ocfs2_refcount_tree(osb))
2693 		return -EOPNOTSUPP;
2694 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2695 		return -EROFS;
2696 
2697 	/* Lock both files against IO */
2698 	ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2699 	if (ret)
2700 		return ret;
2701 
2702 	/* Check file eligibility and prepare for block sharing. */
2703 	ret = -EINVAL;
2704 	if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2705 	    (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2706 		goto out_unlock;
2707 
2708 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2709 			&len, remap_flags);
2710 	if (ret < 0 || len == 0)
2711 		goto out_unlock;
2712 
2713 	/* Lock out changes to the allocation maps and remap. */
2714 	down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2715 	if (!same_inode)
2716 		down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2717 				  SINGLE_DEPTH_NESTING);
2718 
2719 	/* Zap any page cache for the destination file's range. */
2720 	truncate_inode_pages_range(&inode_out->i_data,
2721 				   round_down(pos_out, PAGE_SIZE),
2722 				   round_up(pos_out + len, PAGE_SIZE) - 1);
2723 
2724 	remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2725 			inode_out, out_bh, pos_out, len);
2726 	up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2727 	if (!same_inode)
2728 		up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2729 	if (remapped < 0) {
2730 		ret = remapped;
2731 		mlog_errno(ret);
2732 		goto out_unlock;
2733 	}
2734 
2735 	/*
2736 	 * Empty the extent map so that we may get the right extent
2737 	 * record from the disk.
2738 	 */
2739 	ocfs2_extent_map_trunc(inode_in, 0);
2740 	ocfs2_extent_map_trunc(inode_out, 0);
2741 
2742 	ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2743 	if (ret) {
2744 		mlog_errno(ret);
2745 		goto out_unlock;
2746 	}
2747 
2748 out_unlock:
2749 	ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2750 	return remapped > 0 ? remapped : ret;
2751 }
2752 
2753 const struct inode_operations ocfs2_file_iops = {
2754 	.setattr	= ocfs2_setattr,
2755 	.getattr	= ocfs2_getattr,
2756 	.permission	= ocfs2_permission,
2757 	.listxattr	= ocfs2_listxattr,
2758 	.fiemap		= ocfs2_fiemap,
2759 	.get_inode_acl	= ocfs2_iop_get_acl,
2760 	.set_acl	= ocfs2_iop_set_acl,
2761 	.fileattr_get	= ocfs2_fileattr_get,
2762 	.fileattr_set	= ocfs2_fileattr_set,
2763 };
2764 
2765 const struct inode_operations ocfs2_special_file_iops = {
2766 	.setattr	= ocfs2_setattr,
2767 	.getattr	= ocfs2_getattr,
2768 	.permission	= ocfs2_permission,
2769 	.get_inode_acl	= ocfs2_iop_get_acl,
2770 	.set_acl	= ocfs2_iop_set_acl,
2771 };
2772 
2773 /*
2774  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2775  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2776  */
2777 const struct file_operations ocfs2_fops = {
2778 	.llseek		= ocfs2_file_llseek,
2779 	.mmap		= ocfs2_mmap,
2780 	.fsync		= ocfs2_sync_file,
2781 	.release	= ocfs2_file_release,
2782 	.open		= ocfs2_file_open,
2783 	.read_iter	= ocfs2_file_read_iter,
2784 	.write_iter	= ocfs2_file_write_iter,
2785 	.unlocked_ioctl	= ocfs2_ioctl,
2786 #ifdef CONFIG_COMPAT
2787 	.compat_ioctl   = ocfs2_compat_ioctl,
2788 #endif
2789 	.lock		= ocfs2_lock,
2790 	.flock		= ocfs2_flock,
2791 	.splice_read	= ocfs2_file_splice_read,
2792 	.splice_write	= iter_file_splice_write,
2793 	.fallocate	= ocfs2_fallocate,
2794 	.remap_file_range = ocfs2_remap_file_range,
2795 };
2796 
2797 WRAP_DIR_ITER(ocfs2_readdir) // FIXME!
2798 const struct file_operations ocfs2_dops = {
2799 	.llseek		= generic_file_llseek,
2800 	.read		= generic_read_dir,
2801 	.iterate_shared	= shared_ocfs2_readdir,
2802 	.fsync		= ocfs2_sync_file,
2803 	.release	= ocfs2_dir_release,
2804 	.open		= ocfs2_dir_open,
2805 	.unlocked_ioctl	= ocfs2_ioctl,
2806 #ifdef CONFIG_COMPAT
2807 	.compat_ioctl   = ocfs2_compat_ioctl,
2808 #endif
2809 	.lock		= ocfs2_lock,
2810 	.flock		= ocfs2_flock,
2811 };
2812 
2813 /*
2814  * POSIX-lockless variants of our file_operations.
2815  *
2816  * These will be used if the underlying cluster stack does not support
2817  * posix file locking, if the user passes the "localflocks" mount
2818  * option, or if we have a local-only fs.
2819  *
2820  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2821  * so we still want it in the case of no stack support for
2822  * plocks. Internally, it will do the right thing when asked to ignore
2823  * the cluster.
2824  */
2825 const struct file_operations ocfs2_fops_no_plocks = {
2826 	.llseek		= ocfs2_file_llseek,
2827 	.mmap		= ocfs2_mmap,
2828 	.fsync		= ocfs2_sync_file,
2829 	.release	= ocfs2_file_release,
2830 	.open		= ocfs2_file_open,
2831 	.read_iter	= ocfs2_file_read_iter,
2832 	.write_iter	= ocfs2_file_write_iter,
2833 	.unlocked_ioctl	= ocfs2_ioctl,
2834 #ifdef CONFIG_COMPAT
2835 	.compat_ioctl   = ocfs2_compat_ioctl,
2836 #endif
2837 	.flock		= ocfs2_flock,
2838 	.splice_read	= filemap_splice_read,
2839 	.splice_write	= iter_file_splice_write,
2840 	.fallocate	= ocfs2_fallocate,
2841 	.remap_file_range = ocfs2_remap_file_range,
2842 };
2843 
2844 const struct file_operations ocfs2_dops_no_plocks = {
2845 	.llseek		= generic_file_llseek,
2846 	.read		= generic_read_dir,
2847 	.iterate_shared	= shared_ocfs2_readdir,
2848 	.fsync		= ocfs2_sync_file,
2849 	.release	= ocfs2_dir_release,
2850 	.open		= ocfs2_dir_open,
2851 	.unlocked_ioctl	= ocfs2_ioctl,
2852 #ifdef CONFIG_COMPAT
2853 	.compat_ioctl   = ocfs2_compat_ioctl,
2854 #endif
2855 	.flock		= ocfs2_flock,
2856 };
2857