1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * file.c 5 * 6 * File open, close, extend, truncate 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/capability.h> 27 #include <linux/fs.h> 28 #include <linux/types.h> 29 #include <linux/slab.h> 30 #include <linux/highmem.h> 31 #include <linux/pagemap.h> 32 #include <linux/uio.h> 33 #include <linux/sched.h> 34 #include <linux/splice.h> 35 #include <linux/mount.h> 36 #include <linux/writeback.h> 37 #include <linux/falloc.h> 38 #include <linux/quotaops.h> 39 #include <linux/blkdev.h> 40 41 #include <cluster/masklog.h> 42 43 #include "ocfs2.h" 44 45 #include "alloc.h" 46 #include "aops.h" 47 #include "dir.h" 48 #include "dlmglue.h" 49 #include "extent_map.h" 50 #include "file.h" 51 #include "sysfile.h" 52 #include "inode.h" 53 #include "ioctl.h" 54 #include "journal.h" 55 #include "locks.h" 56 #include "mmap.h" 57 #include "suballoc.h" 58 #include "super.h" 59 #include "xattr.h" 60 #include "acl.h" 61 #include "quota.h" 62 #include "refcounttree.h" 63 #include "ocfs2_trace.h" 64 65 #include "buffer_head_io.h" 66 67 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 68 { 69 struct ocfs2_file_private *fp; 70 71 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 72 if (!fp) 73 return -ENOMEM; 74 75 fp->fp_file = file; 76 mutex_init(&fp->fp_mutex); 77 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 78 file->private_data = fp; 79 80 return 0; 81 } 82 83 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 84 { 85 struct ocfs2_file_private *fp = file->private_data; 86 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 87 88 if (fp) { 89 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 90 ocfs2_lock_res_free(&fp->fp_flock); 91 kfree(fp); 92 file->private_data = NULL; 93 } 94 } 95 96 static int ocfs2_file_open(struct inode *inode, struct file *file) 97 { 98 int status; 99 int mode = file->f_flags; 100 struct ocfs2_inode_info *oi = OCFS2_I(inode); 101 102 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 103 (unsigned long long)OCFS2_I(inode)->ip_blkno, 104 file->f_path.dentry->d_name.len, 105 file->f_path.dentry->d_name.name, mode); 106 107 if (file->f_mode & FMODE_WRITE) 108 dquot_initialize(inode); 109 110 spin_lock(&oi->ip_lock); 111 112 /* Check that the inode hasn't been wiped from disk by another 113 * node. If it hasn't then we're safe as long as we hold the 114 * spin lock until our increment of open count. */ 115 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) { 116 spin_unlock(&oi->ip_lock); 117 118 status = -ENOENT; 119 goto leave; 120 } 121 122 if (mode & O_DIRECT) 123 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 124 125 oi->ip_open_count++; 126 spin_unlock(&oi->ip_lock); 127 128 status = ocfs2_init_file_private(inode, file); 129 if (status) { 130 /* 131 * We want to set open count back if we're failing the 132 * open. 133 */ 134 spin_lock(&oi->ip_lock); 135 oi->ip_open_count--; 136 spin_unlock(&oi->ip_lock); 137 } 138 139 leave: 140 return status; 141 } 142 143 static int ocfs2_file_release(struct inode *inode, struct file *file) 144 { 145 struct ocfs2_inode_info *oi = OCFS2_I(inode); 146 147 spin_lock(&oi->ip_lock); 148 if (!--oi->ip_open_count) 149 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 150 151 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 152 oi->ip_blkno, 153 file->f_path.dentry->d_name.len, 154 file->f_path.dentry->d_name.name, 155 oi->ip_open_count); 156 spin_unlock(&oi->ip_lock); 157 158 ocfs2_free_file_private(inode, file); 159 160 return 0; 161 } 162 163 static int ocfs2_dir_open(struct inode *inode, struct file *file) 164 { 165 return ocfs2_init_file_private(inode, file); 166 } 167 168 static int ocfs2_dir_release(struct inode *inode, struct file *file) 169 { 170 ocfs2_free_file_private(inode, file); 171 return 0; 172 } 173 174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 175 int datasync) 176 { 177 int err = 0; 178 journal_t *journal; 179 struct inode *inode = file->f_mapping->host; 180 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 181 182 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 183 OCFS2_I(inode)->ip_blkno, 184 file->f_path.dentry->d_name.len, 185 file->f_path.dentry->d_name.name, 186 (unsigned long long)datasync); 187 188 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 189 if (err) 190 return err; 191 192 /* 193 * Probably don't need the i_mutex at all in here, just putting it here 194 * to be consistent with how fsync used to be called, someone more 195 * familiar with the fs could possibly remove it. 196 */ 197 mutex_lock(&inode->i_mutex); 198 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) { 199 /* 200 * We still have to flush drive's caches to get data to the 201 * platter 202 */ 203 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 204 blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 205 goto bail; 206 } 207 208 journal = osb->journal->j_journal; 209 err = jbd2_journal_force_commit(journal); 210 211 bail: 212 if (err) 213 mlog_errno(err); 214 mutex_unlock(&inode->i_mutex); 215 216 return (err < 0) ? -EIO : 0; 217 } 218 219 int ocfs2_should_update_atime(struct inode *inode, 220 struct vfsmount *vfsmnt) 221 { 222 struct timespec now; 223 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 224 225 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 226 return 0; 227 228 if ((inode->i_flags & S_NOATIME) || 229 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))) 230 return 0; 231 232 /* 233 * We can be called with no vfsmnt structure - NFSD will 234 * sometimes do this. 235 * 236 * Note that our action here is different than touch_atime() - 237 * if we can't tell whether this is a noatime mount, then we 238 * don't know whether to trust the value of s_atime_quantum. 239 */ 240 if (vfsmnt == NULL) 241 return 0; 242 243 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 244 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 245 return 0; 246 247 if (vfsmnt->mnt_flags & MNT_RELATIME) { 248 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 249 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0)) 250 return 1; 251 252 return 0; 253 } 254 255 now = CURRENT_TIME; 256 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 257 return 0; 258 else 259 return 1; 260 } 261 262 int ocfs2_update_inode_atime(struct inode *inode, 263 struct buffer_head *bh) 264 { 265 int ret; 266 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 267 handle_t *handle; 268 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 269 270 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 271 if (IS_ERR(handle)) { 272 ret = PTR_ERR(handle); 273 mlog_errno(ret); 274 goto out; 275 } 276 277 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 278 OCFS2_JOURNAL_ACCESS_WRITE); 279 if (ret) { 280 mlog_errno(ret); 281 goto out_commit; 282 } 283 284 /* 285 * Don't use ocfs2_mark_inode_dirty() here as we don't always 286 * have i_mutex to guard against concurrent changes to other 287 * inode fields. 288 */ 289 inode->i_atime = CURRENT_TIME; 290 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 291 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 292 ocfs2_journal_dirty(handle, bh); 293 294 out_commit: 295 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 296 out: 297 return ret; 298 } 299 300 static int ocfs2_set_inode_size(handle_t *handle, 301 struct inode *inode, 302 struct buffer_head *fe_bh, 303 u64 new_i_size) 304 { 305 int status; 306 307 i_size_write(inode, new_i_size); 308 inode->i_blocks = ocfs2_inode_sector_count(inode); 309 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 310 311 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 312 if (status < 0) { 313 mlog_errno(status); 314 goto bail; 315 } 316 317 bail: 318 return status; 319 } 320 321 int ocfs2_simple_size_update(struct inode *inode, 322 struct buffer_head *di_bh, 323 u64 new_i_size) 324 { 325 int ret; 326 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 327 handle_t *handle = NULL; 328 329 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 330 if (IS_ERR(handle)) { 331 ret = PTR_ERR(handle); 332 mlog_errno(ret); 333 goto out; 334 } 335 336 ret = ocfs2_set_inode_size(handle, inode, di_bh, 337 new_i_size); 338 if (ret < 0) 339 mlog_errno(ret); 340 341 ocfs2_commit_trans(osb, handle); 342 out: 343 return ret; 344 } 345 346 static int ocfs2_cow_file_pos(struct inode *inode, 347 struct buffer_head *fe_bh, 348 u64 offset) 349 { 350 int status; 351 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 352 unsigned int num_clusters = 0; 353 unsigned int ext_flags = 0; 354 355 /* 356 * If the new offset is aligned to the range of the cluster, there is 357 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 358 * CoW either. 359 */ 360 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 361 return 0; 362 363 status = ocfs2_get_clusters(inode, cpos, &phys, 364 &num_clusters, &ext_flags); 365 if (status) { 366 mlog_errno(status); 367 goto out; 368 } 369 370 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 371 goto out; 372 373 return ocfs2_refcount_cow(inode, NULL, fe_bh, cpos, 1, cpos+1); 374 375 out: 376 return status; 377 } 378 379 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 380 struct inode *inode, 381 struct buffer_head *fe_bh, 382 u64 new_i_size) 383 { 384 int status; 385 handle_t *handle; 386 struct ocfs2_dinode *di; 387 u64 cluster_bytes; 388 389 /* 390 * We need to CoW the cluster contains the offset if it is reflinked 391 * since we will call ocfs2_zero_range_for_truncate later which will 392 * write "0" from offset to the end of the cluster. 393 */ 394 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 395 if (status) { 396 mlog_errno(status); 397 return status; 398 } 399 400 /* TODO: This needs to actually orphan the inode in this 401 * transaction. */ 402 403 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 404 if (IS_ERR(handle)) { 405 status = PTR_ERR(handle); 406 mlog_errno(status); 407 goto out; 408 } 409 410 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 411 OCFS2_JOURNAL_ACCESS_WRITE); 412 if (status < 0) { 413 mlog_errno(status); 414 goto out_commit; 415 } 416 417 /* 418 * Do this before setting i_size. 419 */ 420 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 421 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 422 cluster_bytes); 423 if (status) { 424 mlog_errno(status); 425 goto out_commit; 426 } 427 428 i_size_write(inode, new_i_size); 429 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 430 431 di = (struct ocfs2_dinode *) fe_bh->b_data; 432 di->i_size = cpu_to_le64(new_i_size); 433 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 434 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 435 436 ocfs2_journal_dirty(handle, fe_bh); 437 438 out_commit: 439 ocfs2_commit_trans(osb, handle); 440 out: 441 return status; 442 } 443 444 static int ocfs2_truncate_file(struct inode *inode, 445 struct buffer_head *di_bh, 446 u64 new_i_size) 447 { 448 int status = 0; 449 struct ocfs2_dinode *fe = NULL; 450 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 451 452 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 453 * already validated it */ 454 fe = (struct ocfs2_dinode *) di_bh->b_data; 455 456 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 457 (unsigned long long)le64_to_cpu(fe->i_size), 458 (unsigned long long)new_i_size); 459 460 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 461 "Inode %llu, inode i_size = %lld != di " 462 "i_size = %llu, i_flags = 0x%x\n", 463 (unsigned long long)OCFS2_I(inode)->ip_blkno, 464 i_size_read(inode), 465 (unsigned long long)le64_to_cpu(fe->i_size), 466 le32_to_cpu(fe->i_flags)); 467 468 if (new_i_size > le64_to_cpu(fe->i_size)) { 469 trace_ocfs2_truncate_file_error( 470 (unsigned long long)le64_to_cpu(fe->i_size), 471 (unsigned long long)new_i_size); 472 status = -EINVAL; 473 mlog_errno(status); 474 goto bail; 475 } 476 477 /* lets handle the simple truncate cases before doing any more 478 * cluster locking. */ 479 if (new_i_size == le64_to_cpu(fe->i_size)) 480 goto bail; 481 482 down_write(&OCFS2_I(inode)->ip_alloc_sem); 483 484 ocfs2_resv_discard(&osb->osb_la_resmap, 485 &OCFS2_I(inode)->ip_la_data_resv); 486 487 /* 488 * The inode lock forced other nodes to sync and drop their 489 * pages, which (correctly) happens even if we have a truncate 490 * without allocation change - ocfs2 cluster sizes can be much 491 * greater than page size, so we have to truncate them 492 * anyway. 493 */ 494 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 495 truncate_inode_pages(inode->i_mapping, new_i_size); 496 497 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 498 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 499 i_size_read(inode), 1); 500 if (status) 501 mlog_errno(status); 502 503 goto bail_unlock_sem; 504 } 505 506 /* alright, we're going to need to do a full blown alloc size 507 * change. Orphan the inode so that recovery can complete the 508 * truncate if necessary. This does the task of marking 509 * i_size. */ 510 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 511 if (status < 0) { 512 mlog_errno(status); 513 goto bail_unlock_sem; 514 } 515 516 status = ocfs2_commit_truncate(osb, inode, di_bh); 517 if (status < 0) { 518 mlog_errno(status); 519 goto bail_unlock_sem; 520 } 521 522 /* TODO: orphan dir cleanup here. */ 523 bail_unlock_sem: 524 up_write(&OCFS2_I(inode)->ip_alloc_sem); 525 526 bail: 527 if (!status && OCFS2_I(inode)->ip_clusters == 0) 528 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 529 530 return status; 531 } 532 533 /* 534 * extend file allocation only here. 535 * we'll update all the disk stuff, and oip->alloc_size 536 * 537 * expect stuff to be locked, a transaction started and enough data / 538 * metadata reservations in the contexts. 539 * 540 * Will return -EAGAIN, and a reason if a restart is needed. 541 * If passed in, *reason will always be set, even in error. 542 */ 543 int ocfs2_add_inode_data(struct ocfs2_super *osb, 544 struct inode *inode, 545 u32 *logical_offset, 546 u32 clusters_to_add, 547 int mark_unwritten, 548 struct buffer_head *fe_bh, 549 handle_t *handle, 550 struct ocfs2_alloc_context *data_ac, 551 struct ocfs2_alloc_context *meta_ac, 552 enum ocfs2_alloc_restarted *reason_ret) 553 { 554 int ret; 555 struct ocfs2_extent_tree et; 556 557 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 558 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 559 clusters_to_add, mark_unwritten, 560 data_ac, meta_ac, reason_ret); 561 562 return ret; 563 } 564 565 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 566 u32 clusters_to_add, int mark_unwritten) 567 { 568 int status = 0; 569 int restart_func = 0; 570 int credits; 571 u32 prev_clusters; 572 struct buffer_head *bh = NULL; 573 struct ocfs2_dinode *fe = NULL; 574 handle_t *handle = NULL; 575 struct ocfs2_alloc_context *data_ac = NULL; 576 struct ocfs2_alloc_context *meta_ac = NULL; 577 enum ocfs2_alloc_restarted why; 578 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 579 struct ocfs2_extent_tree et; 580 int did_quota = 0; 581 582 /* 583 * This function only exists for file systems which don't 584 * support holes. 585 */ 586 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 587 588 status = ocfs2_read_inode_block(inode, &bh); 589 if (status < 0) { 590 mlog_errno(status); 591 goto leave; 592 } 593 fe = (struct ocfs2_dinode *) bh->b_data; 594 595 restart_all: 596 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 597 598 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 599 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 600 &data_ac, &meta_ac); 601 if (status) { 602 mlog_errno(status); 603 goto leave; 604 } 605 606 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list, 607 clusters_to_add); 608 handle = ocfs2_start_trans(osb, credits); 609 if (IS_ERR(handle)) { 610 status = PTR_ERR(handle); 611 handle = NULL; 612 mlog_errno(status); 613 goto leave; 614 } 615 616 restarted_transaction: 617 trace_ocfs2_extend_allocation( 618 (unsigned long long)OCFS2_I(inode)->ip_blkno, 619 (unsigned long long)i_size_read(inode), 620 le32_to_cpu(fe->i_clusters), clusters_to_add, 621 why, restart_func); 622 623 status = dquot_alloc_space_nodirty(inode, 624 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 625 if (status) 626 goto leave; 627 did_quota = 1; 628 629 /* reserve a write to the file entry early on - that we if we 630 * run out of credits in the allocation path, we can still 631 * update i_size. */ 632 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 633 OCFS2_JOURNAL_ACCESS_WRITE); 634 if (status < 0) { 635 mlog_errno(status); 636 goto leave; 637 } 638 639 prev_clusters = OCFS2_I(inode)->ip_clusters; 640 641 status = ocfs2_add_inode_data(osb, 642 inode, 643 &logical_start, 644 clusters_to_add, 645 mark_unwritten, 646 bh, 647 handle, 648 data_ac, 649 meta_ac, 650 &why); 651 if ((status < 0) && (status != -EAGAIN)) { 652 if (status != -ENOSPC) 653 mlog_errno(status); 654 goto leave; 655 } 656 657 ocfs2_journal_dirty(handle, bh); 658 659 spin_lock(&OCFS2_I(inode)->ip_lock); 660 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 661 spin_unlock(&OCFS2_I(inode)->ip_lock); 662 /* Release unused quota reservation */ 663 dquot_free_space(inode, 664 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 665 did_quota = 0; 666 667 if (why != RESTART_NONE && clusters_to_add) { 668 if (why == RESTART_META) { 669 restart_func = 1; 670 status = 0; 671 } else { 672 BUG_ON(why != RESTART_TRANS); 673 674 /* TODO: This can be more intelligent. */ 675 credits = ocfs2_calc_extend_credits(osb->sb, 676 &fe->id2.i_list, 677 clusters_to_add); 678 status = ocfs2_extend_trans(handle, credits); 679 if (status < 0) { 680 /* handle still has to be committed at 681 * this point. */ 682 status = -ENOMEM; 683 mlog_errno(status); 684 goto leave; 685 } 686 goto restarted_transaction; 687 } 688 } 689 690 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 691 le32_to_cpu(fe->i_clusters), 692 (unsigned long long)le64_to_cpu(fe->i_size), 693 OCFS2_I(inode)->ip_clusters, 694 (unsigned long long)i_size_read(inode)); 695 696 leave: 697 if (status < 0 && did_quota) 698 dquot_free_space(inode, 699 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 700 if (handle) { 701 ocfs2_commit_trans(osb, handle); 702 handle = NULL; 703 } 704 if (data_ac) { 705 ocfs2_free_alloc_context(data_ac); 706 data_ac = NULL; 707 } 708 if (meta_ac) { 709 ocfs2_free_alloc_context(meta_ac); 710 meta_ac = NULL; 711 } 712 if ((!status) && restart_func) { 713 restart_func = 0; 714 goto restart_all; 715 } 716 brelse(bh); 717 bh = NULL; 718 719 return status; 720 } 721 722 /* 723 * While a write will already be ordering the data, a truncate will not. 724 * Thus, we need to explicitly order the zeroed pages. 725 */ 726 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode) 727 { 728 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 729 handle_t *handle = NULL; 730 int ret = 0; 731 732 if (!ocfs2_should_order_data(inode)) 733 goto out; 734 735 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 736 if (IS_ERR(handle)) { 737 ret = -ENOMEM; 738 mlog_errno(ret); 739 goto out; 740 } 741 742 ret = ocfs2_jbd2_file_inode(handle, inode); 743 if (ret < 0) 744 mlog_errno(ret); 745 746 out: 747 if (ret) { 748 if (!IS_ERR(handle)) 749 ocfs2_commit_trans(osb, handle); 750 handle = ERR_PTR(ret); 751 } 752 return handle; 753 } 754 755 /* Some parts of this taken from generic_cont_expand, which turned out 756 * to be too fragile to do exactly what we need without us having to 757 * worry about recursive locking in ->write_begin() and ->write_end(). */ 758 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 759 u64 abs_to) 760 { 761 struct address_space *mapping = inode->i_mapping; 762 struct page *page; 763 unsigned long index = abs_from >> PAGE_CACHE_SHIFT; 764 handle_t *handle = NULL; 765 int ret = 0; 766 unsigned zero_from, zero_to, block_start, block_end; 767 768 BUG_ON(abs_from >= abs_to); 769 BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT)); 770 BUG_ON(abs_from & (inode->i_blkbits - 1)); 771 772 page = find_or_create_page(mapping, index, GFP_NOFS); 773 if (!page) { 774 ret = -ENOMEM; 775 mlog_errno(ret); 776 goto out; 777 } 778 779 /* Get the offsets within the page that we want to zero */ 780 zero_from = abs_from & (PAGE_CACHE_SIZE - 1); 781 zero_to = abs_to & (PAGE_CACHE_SIZE - 1); 782 if (!zero_to) 783 zero_to = PAGE_CACHE_SIZE; 784 785 trace_ocfs2_write_zero_page( 786 (unsigned long long)OCFS2_I(inode)->ip_blkno, 787 (unsigned long long)abs_from, 788 (unsigned long long)abs_to, 789 index, zero_from, zero_to); 790 791 /* We know that zero_from is block aligned */ 792 for (block_start = zero_from; block_start < zero_to; 793 block_start = block_end) { 794 block_end = block_start + (1 << inode->i_blkbits); 795 796 /* 797 * block_start is block-aligned. Bump it by one to force 798 * __block_write_begin and block_commit_write to zero the 799 * whole block. 800 */ 801 ret = __block_write_begin(page, block_start + 1, 0, 802 ocfs2_get_block); 803 if (ret < 0) { 804 mlog_errno(ret); 805 goto out_unlock; 806 } 807 808 if (!handle) { 809 handle = ocfs2_zero_start_ordered_transaction(inode); 810 if (IS_ERR(handle)) { 811 ret = PTR_ERR(handle); 812 handle = NULL; 813 break; 814 } 815 } 816 817 /* must not update i_size! */ 818 ret = block_commit_write(page, block_start + 1, 819 block_start + 1); 820 if (ret < 0) 821 mlog_errno(ret); 822 else 823 ret = 0; 824 } 825 826 if (handle) 827 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 828 829 out_unlock: 830 unlock_page(page); 831 page_cache_release(page); 832 out: 833 return ret; 834 } 835 836 /* 837 * Find the next range to zero. We do this in terms of bytes because 838 * that's what ocfs2_zero_extend() wants, and it is dealing with the 839 * pagecache. We may return multiple extents. 840 * 841 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 842 * needs to be zeroed. range_start and range_end return the next zeroing 843 * range. A subsequent call should pass the previous range_end as its 844 * zero_start. If range_end is 0, there's nothing to do. 845 * 846 * Unwritten extents are skipped over. Refcounted extents are CoWd. 847 */ 848 static int ocfs2_zero_extend_get_range(struct inode *inode, 849 struct buffer_head *di_bh, 850 u64 zero_start, u64 zero_end, 851 u64 *range_start, u64 *range_end) 852 { 853 int rc = 0, needs_cow = 0; 854 u32 p_cpos, zero_clusters = 0; 855 u32 zero_cpos = 856 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 857 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 858 unsigned int num_clusters = 0; 859 unsigned int ext_flags = 0; 860 861 while (zero_cpos < last_cpos) { 862 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 863 &num_clusters, &ext_flags); 864 if (rc) { 865 mlog_errno(rc); 866 goto out; 867 } 868 869 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 870 zero_clusters = num_clusters; 871 if (ext_flags & OCFS2_EXT_REFCOUNTED) 872 needs_cow = 1; 873 break; 874 } 875 876 zero_cpos += num_clusters; 877 } 878 if (!zero_clusters) { 879 *range_end = 0; 880 goto out; 881 } 882 883 while ((zero_cpos + zero_clusters) < last_cpos) { 884 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 885 &p_cpos, &num_clusters, 886 &ext_flags); 887 if (rc) { 888 mlog_errno(rc); 889 goto out; 890 } 891 892 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 893 break; 894 if (ext_flags & OCFS2_EXT_REFCOUNTED) 895 needs_cow = 1; 896 zero_clusters += num_clusters; 897 } 898 if ((zero_cpos + zero_clusters) > last_cpos) 899 zero_clusters = last_cpos - zero_cpos; 900 901 if (needs_cow) { 902 rc = ocfs2_refcount_cow(inode, NULL, di_bh, zero_cpos, 903 zero_clusters, UINT_MAX); 904 if (rc) { 905 mlog_errno(rc); 906 goto out; 907 } 908 } 909 910 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 911 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 912 zero_cpos + zero_clusters); 913 914 out: 915 return rc; 916 } 917 918 /* 919 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 920 * has made sure that the entire range needs zeroing. 921 */ 922 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 923 u64 range_end) 924 { 925 int rc = 0; 926 u64 next_pos; 927 u64 zero_pos = range_start; 928 929 trace_ocfs2_zero_extend_range( 930 (unsigned long long)OCFS2_I(inode)->ip_blkno, 931 (unsigned long long)range_start, 932 (unsigned long long)range_end); 933 BUG_ON(range_start >= range_end); 934 935 while (zero_pos < range_end) { 936 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE; 937 if (next_pos > range_end) 938 next_pos = range_end; 939 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos); 940 if (rc < 0) { 941 mlog_errno(rc); 942 break; 943 } 944 zero_pos = next_pos; 945 946 /* 947 * Very large extends have the potential to lock up 948 * the cpu for extended periods of time. 949 */ 950 cond_resched(); 951 } 952 953 return rc; 954 } 955 956 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 957 loff_t zero_to_size) 958 { 959 int ret = 0; 960 u64 zero_start, range_start = 0, range_end = 0; 961 struct super_block *sb = inode->i_sb; 962 963 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 964 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 965 (unsigned long long)zero_start, 966 (unsigned long long)i_size_read(inode)); 967 while (zero_start < zero_to_size) { 968 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 969 zero_to_size, 970 &range_start, 971 &range_end); 972 if (ret) { 973 mlog_errno(ret); 974 break; 975 } 976 if (!range_end) 977 break; 978 /* Trim the ends */ 979 if (range_start < zero_start) 980 range_start = zero_start; 981 if (range_end > zero_to_size) 982 range_end = zero_to_size; 983 984 ret = ocfs2_zero_extend_range(inode, range_start, 985 range_end); 986 if (ret) { 987 mlog_errno(ret); 988 break; 989 } 990 zero_start = range_end; 991 } 992 993 return ret; 994 } 995 996 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 997 u64 new_i_size, u64 zero_to) 998 { 999 int ret; 1000 u32 clusters_to_add; 1001 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1002 1003 /* 1004 * Only quota files call this without a bh, and they can't be 1005 * refcounted. 1006 */ 1007 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL)); 1008 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1009 1010 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1011 if (clusters_to_add < oi->ip_clusters) 1012 clusters_to_add = 0; 1013 else 1014 clusters_to_add -= oi->ip_clusters; 1015 1016 if (clusters_to_add) { 1017 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters, 1018 clusters_to_add, 0); 1019 if (ret) { 1020 mlog_errno(ret); 1021 goto out; 1022 } 1023 } 1024 1025 /* 1026 * Call this even if we don't add any clusters to the tree. We 1027 * still need to zero the area between the old i_size and the 1028 * new i_size. 1029 */ 1030 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1031 if (ret < 0) 1032 mlog_errno(ret); 1033 1034 out: 1035 return ret; 1036 } 1037 1038 static int ocfs2_extend_file(struct inode *inode, 1039 struct buffer_head *di_bh, 1040 u64 new_i_size) 1041 { 1042 int ret = 0; 1043 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1044 1045 BUG_ON(!di_bh); 1046 1047 /* setattr sometimes calls us like this. */ 1048 if (new_i_size == 0) 1049 goto out; 1050 1051 if (i_size_read(inode) == new_i_size) 1052 goto out; 1053 BUG_ON(new_i_size < i_size_read(inode)); 1054 1055 /* 1056 * The alloc sem blocks people in read/write from reading our 1057 * allocation until we're done changing it. We depend on 1058 * i_mutex to block other extend/truncate calls while we're 1059 * here. We even have to hold it for sparse files because there 1060 * might be some tail zeroing. 1061 */ 1062 down_write(&oi->ip_alloc_sem); 1063 1064 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1065 /* 1066 * We can optimize small extends by keeping the inodes 1067 * inline data. 1068 */ 1069 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1070 up_write(&oi->ip_alloc_sem); 1071 goto out_update_size; 1072 } 1073 1074 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1075 if (ret) { 1076 up_write(&oi->ip_alloc_sem); 1077 mlog_errno(ret); 1078 goto out; 1079 } 1080 } 1081 1082 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1083 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1084 else 1085 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1086 new_i_size); 1087 1088 up_write(&oi->ip_alloc_sem); 1089 1090 if (ret < 0) { 1091 mlog_errno(ret); 1092 goto out; 1093 } 1094 1095 out_update_size: 1096 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1097 if (ret < 0) 1098 mlog_errno(ret); 1099 1100 out: 1101 return ret; 1102 } 1103 1104 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr) 1105 { 1106 int status = 0, size_change; 1107 struct inode *inode = dentry->d_inode; 1108 struct super_block *sb = inode->i_sb; 1109 struct ocfs2_super *osb = OCFS2_SB(sb); 1110 struct buffer_head *bh = NULL; 1111 handle_t *handle = NULL; 1112 struct dquot *transfer_to[MAXQUOTAS] = { }; 1113 int qtype; 1114 1115 trace_ocfs2_setattr(inode, dentry, 1116 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1117 dentry->d_name.len, dentry->d_name.name, 1118 attr->ia_valid, attr->ia_mode, 1119 from_kuid(&init_user_ns, attr->ia_uid), 1120 from_kgid(&init_user_ns, attr->ia_gid)); 1121 1122 /* ensuring we don't even attempt to truncate a symlink */ 1123 if (S_ISLNK(inode->i_mode)) 1124 attr->ia_valid &= ~ATTR_SIZE; 1125 1126 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1127 | ATTR_GID | ATTR_UID | ATTR_MODE) 1128 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1129 return 0; 1130 1131 status = inode_change_ok(inode, attr); 1132 if (status) 1133 return status; 1134 1135 if (is_quota_modification(inode, attr)) 1136 dquot_initialize(inode); 1137 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1138 if (size_change) { 1139 status = ocfs2_rw_lock(inode, 1); 1140 if (status < 0) { 1141 mlog_errno(status); 1142 goto bail; 1143 } 1144 } 1145 1146 status = ocfs2_inode_lock(inode, &bh, 1); 1147 if (status < 0) { 1148 if (status != -ENOENT) 1149 mlog_errno(status); 1150 goto bail_unlock_rw; 1151 } 1152 1153 if (size_change && attr->ia_size != i_size_read(inode)) { 1154 status = inode_newsize_ok(inode, attr->ia_size); 1155 if (status) 1156 goto bail_unlock; 1157 1158 inode_dio_wait(inode); 1159 1160 if (i_size_read(inode) > attr->ia_size) { 1161 if (ocfs2_should_order_data(inode)) { 1162 status = ocfs2_begin_ordered_truncate(inode, 1163 attr->ia_size); 1164 if (status) 1165 goto bail_unlock; 1166 } 1167 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1168 } else 1169 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1170 if (status < 0) { 1171 if (status != -ENOSPC) 1172 mlog_errno(status); 1173 status = -ENOSPC; 1174 goto bail_unlock; 1175 } 1176 } 1177 1178 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1179 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1180 /* 1181 * Gather pointers to quota structures so that allocation / 1182 * freeing of quota structures happens here and not inside 1183 * dquot_transfer() where we have problems with lock ordering 1184 */ 1185 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1186 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1187 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1188 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1189 if (!transfer_to[USRQUOTA]) { 1190 status = -ESRCH; 1191 goto bail_unlock; 1192 } 1193 } 1194 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1195 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1196 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1197 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1198 if (!transfer_to[GRPQUOTA]) { 1199 status = -ESRCH; 1200 goto bail_unlock; 1201 } 1202 } 1203 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1204 2 * ocfs2_quota_trans_credits(sb)); 1205 if (IS_ERR(handle)) { 1206 status = PTR_ERR(handle); 1207 mlog_errno(status); 1208 goto bail_unlock; 1209 } 1210 status = __dquot_transfer(inode, transfer_to); 1211 if (status < 0) 1212 goto bail_commit; 1213 } else { 1214 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1215 if (IS_ERR(handle)) { 1216 status = PTR_ERR(handle); 1217 mlog_errno(status); 1218 goto bail_unlock; 1219 } 1220 } 1221 1222 setattr_copy(inode, attr); 1223 mark_inode_dirty(inode); 1224 1225 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1226 if (status < 0) 1227 mlog_errno(status); 1228 1229 bail_commit: 1230 ocfs2_commit_trans(osb, handle); 1231 bail_unlock: 1232 ocfs2_inode_unlock(inode, 1); 1233 bail_unlock_rw: 1234 if (size_change) 1235 ocfs2_rw_unlock(inode, 1); 1236 bail: 1237 brelse(bh); 1238 1239 /* Release quota pointers in case we acquired them */ 1240 for (qtype = 0; qtype < MAXQUOTAS; qtype++) 1241 dqput(transfer_to[qtype]); 1242 1243 if (!status && attr->ia_valid & ATTR_MODE) { 1244 status = ocfs2_acl_chmod(inode); 1245 if (status < 0) 1246 mlog_errno(status); 1247 } 1248 1249 return status; 1250 } 1251 1252 int ocfs2_getattr(struct vfsmount *mnt, 1253 struct dentry *dentry, 1254 struct kstat *stat) 1255 { 1256 struct inode *inode = dentry->d_inode; 1257 struct super_block *sb = dentry->d_inode->i_sb; 1258 struct ocfs2_super *osb = sb->s_fs_info; 1259 int err; 1260 1261 err = ocfs2_inode_revalidate(dentry); 1262 if (err) { 1263 if (err != -ENOENT) 1264 mlog_errno(err); 1265 goto bail; 1266 } 1267 1268 generic_fillattr(inode, stat); 1269 1270 /* We set the blksize from the cluster size for performance */ 1271 stat->blksize = osb->s_clustersize; 1272 1273 bail: 1274 return err; 1275 } 1276 1277 int ocfs2_permission(struct inode *inode, int mask) 1278 { 1279 int ret; 1280 1281 if (mask & MAY_NOT_BLOCK) 1282 return -ECHILD; 1283 1284 ret = ocfs2_inode_lock(inode, NULL, 0); 1285 if (ret) { 1286 if (ret != -ENOENT) 1287 mlog_errno(ret); 1288 goto out; 1289 } 1290 1291 ret = generic_permission(inode, mask); 1292 1293 ocfs2_inode_unlock(inode, 0); 1294 out: 1295 return ret; 1296 } 1297 1298 static int __ocfs2_write_remove_suid(struct inode *inode, 1299 struct buffer_head *bh) 1300 { 1301 int ret; 1302 handle_t *handle; 1303 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1304 struct ocfs2_dinode *di; 1305 1306 trace_ocfs2_write_remove_suid( 1307 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1308 inode->i_mode); 1309 1310 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1311 if (IS_ERR(handle)) { 1312 ret = PTR_ERR(handle); 1313 mlog_errno(ret); 1314 goto out; 1315 } 1316 1317 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1318 OCFS2_JOURNAL_ACCESS_WRITE); 1319 if (ret < 0) { 1320 mlog_errno(ret); 1321 goto out_trans; 1322 } 1323 1324 inode->i_mode &= ~S_ISUID; 1325 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1326 inode->i_mode &= ~S_ISGID; 1327 1328 di = (struct ocfs2_dinode *) bh->b_data; 1329 di->i_mode = cpu_to_le16(inode->i_mode); 1330 1331 ocfs2_journal_dirty(handle, bh); 1332 1333 out_trans: 1334 ocfs2_commit_trans(osb, handle); 1335 out: 1336 return ret; 1337 } 1338 1339 /* 1340 * Will look for holes and unwritten extents in the range starting at 1341 * pos for count bytes (inclusive). 1342 */ 1343 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos, 1344 size_t count) 1345 { 1346 int ret = 0; 1347 unsigned int extent_flags; 1348 u32 cpos, clusters, extent_len, phys_cpos; 1349 struct super_block *sb = inode->i_sb; 1350 1351 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 1352 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 1353 1354 while (clusters) { 1355 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 1356 &extent_flags); 1357 if (ret < 0) { 1358 mlog_errno(ret); 1359 goto out; 1360 } 1361 1362 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) { 1363 ret = 1; 1364 break; 1365 } 1366 1367 if (extent_len > clusters) 1368 extent_len = clusters; 1369 1370 clusters -= extent_len; 1371 cpos += extent_len; 1372 } 1373 out: 1374 return ret; 1375 } 1376 1377 static int ocfs2_write_remove_suid(struct inode *inode) 1378 { 1379 int ret; 1380 struct buffer_head *bh = NULL; 1381 1382 ret = ocfs2_read_inode_block(inode, &bh); 1383 if (ret < 0) { 1384 mlog_errno(ret); 1385 goto out; 1386 } 1387 1388 ret = __ocfs2_write_remove_suid(inode, bh); 1389 out: 1390 brelse(bh); 1391 return ret; 1392 } 1393 1394 /* 1395 * Allocate enough extents to cover the region starting at byte offset 1396 * start for len bytes. Existing extents are skipped, any extents 1397 * added are marked as "unwritten". 1398 */ 1399 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1400 u64 start, u64 len) 1401 { 1402 int ret; 1403 u32 cpos, phys_cpos, clusters, alloc_size; 1404 u64 end = start + len; 1405 struct buffer_head *di_bh = NULL; 1406 1407 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1408 ret = ocfs2_read_inode_block(inode, &di_bh); 1409 if (ret) { 1410 mlog_errno(ret); 1411 goto out; 1412 } 1413 1414 /* 1415 * Nothing to do if the requested reservation range 1416 * fits within the inode. 1417 */ 1418 if (ocfs2_size_fits_inline_data(di_bh, end)) 1419 goto out; 1420 1421 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1422 if (ret) { 1423 mlog_errno(ret); 1424 goto out; 1425 } 1426 } 1427 1428 /* 1429 * We consider both start and len to be inclusive. 1430 */ 1431 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1432 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1433 clusters -= cpos; 1434 1435 while (clusters) { 1436 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1437 &alloc_size, NULL); 1438 if (ret) { 1439 mlog_errno(ret); 1440 goto out; 1441 } 1442 1443 /* 1444 * Hole or existing extent len can be arbitrary, so 1445 * cap it to our own allocation request. 1446 */ 1447 if (alloc_size > clusters) 1448 alloc_size = clusters; 1449 1450 if (phys_cpos) { 1451 /* 1452 * We already have an allocation at this 1453 * region so we can safely skip it. 1454 */ 1455 goto next; 1456 } 1457 1458 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1459 if (ret) { 1460 if (ret != -ENOSPC) 1461 mlog_errno(ret); 1462 goto out; 1463 } 1464 1465 next: 1466 cpos += alloc_size; 1467 clusters -= alloc_size; 1468 } 1469 1470 ret = 0; 1471 out: 1472 1473 brelse(di_bh); 1474 return ret; 1475 } 1476 1477 /* 1478 * Truncate a byte range, avoiding pages within partial clusters. This 1479 * preserves those pages for the zeroing code to write to. 1480 */ 1481 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1482 u64 byte_len) 1483 { 1484 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1485 loff_t start, end; 1486 struct address_space *mapping = inode->i_mapping; 1487 1488 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1489 end = byte_start + byte_len; 1490 end = end & ~(osb->s_clustersize - 1); 1491 1492 if (start < end) { 1493 unmap_mapping_range(mapping, start, end - start, 0); 1494 truncate_inode_pages_range(mapping, start, end - 1); 1495 } 1496 } 1497 1498 static int ocfs2_zero_partial_clusters(struct inode *inode, 1499 u64 start, u64 len) 1500 { 1501 int ret = 0; 1502 u64 tmpend, end = start + len; 1503 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1504 unsigned int csize = osb->s_clustersize; 1505 handle_t *handle; 1506 1507 /* 1508 * The "start" and "end" values are NOT necessarily part of 1509 * the range whose allocation is being deleted. Rather, this 1510 * is what the user passed in with the request. We must zero 1511 * partial clusters here. There's no need to worry about 1512 * physical allocation - the zeroing code knows to skip holes. 1513 */ 1514 trace_ocfs2_zero_partial_clusters( 1515 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1516 (unsigned long long)start, (unsigned long long)end); 1517 1518 /* 1519 * If both edges are on a cluster boundary then there's no 1520 * zeroing required as the region is part of the allocation to 1521 * be truncated. 1522 */ 1523 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1524 goto out; 1525 1526 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1527 if (IS_ERR(handle)) { 1528 ret = PTR_ERR(handle); 1529 mlog_errno(ret); 1530 goto out; 1531 } 1532 1533 /* 1534 * We want to get the byte offset of the end of the 1st cluster. 1535 */ 1536 tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1)); 1537 if (tmpend > end) 1538 tmpend = end; 1539 1540 trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start, 1541 (unsigned long long)tmpend); 1542 1543 ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend); 1544 if (ret) 1545 mlog_errno(ret); 1546 1547 if (tmpend < end) { 1548 /* 1549 * This may make start and end equal, but the zeroing 1550 * code will skip any work in that case so there's no 1551 * need to catch it up here. 1552 */ 1553 start = end & ~(osb->s_clustersize - 1); 1554 1555 trace_ocfs2_zero_partial_clusters_range2( 1556 (unsigned long long)start, (unsigned long long)end); 1557 1558 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1559 if (ret) 1560 mlog_errno(ret); 1561 } 1562 1563 ocfs2_commit_trans(osb, handle); 1564 out: 1565 return ret; 1566 } 1567 1568 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1569 { 1570 int i; 1571 struct ocfs2_extent_rec *rec = NULL; 1572 1573 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1574 1575 rec = &el->l_recs[i]; 1576 1577 if (le32_to_cpu(rec->e_cpos) < pos) 1578 break; 1579 } 1580 1581 return i; 1582 } 1583 1584 /* 1585 * Helper to calculate the punching pos and length in one run, we handle the 1586 * following three cases in order: 1587 * 1588 * - remove the entire record 1589 * - remove a partial record 1590 * - no record needs to be removed (hole-punching completed) 1591 */ 1592 static void ocfs2_calc_trunc_pos(struct inode *inode, 1593 struct ocfs2_extent_list *el, 1594 struct ocfs2_extent_rec *rec, 1595 u32 trunc_start, u32 *trunc_cpos, 1596 u32 *trunc_len, u32 *trunc_end, 1597 u64 *blkno, int *done) 1598 { 1599 int ret = 0; 1600 u32 coff, range; 1601 1602 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1603 1604 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1605 /* 1606 * remove an entire extent record. 1607 */ 1608 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1609 /* 1610 * Skip holes if any. 1611 */ 1612 if (range < *trunc_end) 1613 *trunc_end = range; 1614 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1615 *blkno = le64_to_cpu(rec->e_blkno); 1616 *trunc_end = le32_to_cpu(rec->e_cpos); 1617 } else if (range > trunc_start) { 1618 /* 1619 * remove a partial extent record, which means we're 1620 * removing the last extent record. 1621 */ 1622 *trunc_cpos = trunc_start; 1623 /* 1624 * skip hole if any. 1625 */ 1626 if (range < *trunc_end) 1627 *trunc_end = range; 1628 *trunc_len = *trunc_end - trunc_start; 1629 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1630 *blkno = le64_to_cpu(rec->e_blkno) + 1631 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1632 *trunc_end = trunc_start; 1633 } else { 1634 /* 1635 * It may have two following possibilities: 1636 * 1637 * - last record has been removed 1638 * - trunc_start was within a hole 1639 * 1640 * both two cases mean the completion of hole punching. 1641 */ 1642 ret = 1; 1643 } 1644 1645 *done = ret; 1646 } 1647 1648 static int ocfs2_remove_inode_range(struct inode *inode, 1649 struct buffer_head *di_bh, u64 byte_start, 1650 u64 byte_len) 1651 { 1652 int ret = 0, flags = 0, done = 0, i; 1653 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1654 u32 cluster_in_el; 1655 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1656 struct ocfs2_cached_dealloc_ctxt dealloc; 1657 struct address_space *mapping = inode->i_mapping; 1658 struct ocfs2_extent_tree et; 1659 struct ocfs2_path *path = NULL; 1660 struct ocfs2_extent_list *el = NULL; 1661 struct ocfs2_extent_rec *rec = NULL; 1662 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1663 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1664 1665 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1666 ocfs2_init_dealloc_ctxt(&dealloc); 1667 1668 trace_ocfs2_remove_inode_range( 1669 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1670 (unsigned long long)byte_start, 1671 (unsigned long long)byte_len); 1672 1673 if (byte_len == 0) 1674 return 0; 1675 1676 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1677 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1678 byte_start + byte_len, 0); 1679 if (ret) { 1680 mlog_errno(ret); 1681 goto out; 1682 } 1683 /* 1684 * There's no need to get fancy with the page cache 1685 * truncate of an inline-data inode. We're talking 1686 * about less than a page here, which will be cached 1687 * in the dinode buffer anyway. 1688 */ 1689 unmap_mapping_range(mapping, 0, 0, 0); 1690 truncate_inode_pages(mapping, 0); 1691 goto out; 1692 } 1693 1694 /* 1695 * For reflinks, we may need to CoW 2 clusters which might be 1696 * partially zero'd later, if hole's start and end offset were 1697 * within one cluster(means is not exactly aligned to clustersize). 1698 */ 1699 1700 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) { 1701 1702 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1703 if (ret) { 1704 mlog_errno(ret); 1705 goto out; 1706 } 1707 1708 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1709 if (ret) { 1710 mlog_errno(ret); 1711 goto out; 1712 } 1713 } 1714 1715 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1716 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1717 cluster_in_el = trunc_end; 1718 1719 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1720 if (ret) { 1721 mlog_errno(ret); 1722 goto out; 1723 } 1724 1725 path = ocfs2_new_path_from_et(&et); 1726 if (!path) { 1727 ret = -ENOMEM; 1728 mlog_errno(ret); 1729 goto out; 1730 } 1731 1732 while (trunc_end > trunc_start) { 1733 1734 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1735 cluster_in_el); 1736 if (ret) { 1737 mlog_errno(ret); 1738 goto out; 1739 } 1740 1741 el = path_leaf_el(path); 1742 1743 i = ocfs2_find_rec(el, trunc_end); 1744 /* 1745 * Need to go to previous extent block. 1746 */ 1747 if (i < 0) { 1748 if (path->p_tree_depth == 0) 1749 break; 1750 1751 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1752 path, 1753 &cluster_in_el); 1754 if (ret) { 1755 mlog_errno(ret); 1756 goto out; 1757 } 1758 1759 /* 1760 * We've reached the leftmost extent block, 1761 * it's safe to leave. 1762 */ 1763 if (cluster_in_el == 0) 1764 break; 1765 1766 /* 1767 * The 'pos' searched for previous extent block is 1768 * always one cluster less than actual trunc_end. 1769 */ 1770 trunc_end = cluster_in_el + 1; 1771 1772 ocfs2_reinit_path(path, 1); 1773 1774 continue; 1775 1776 } else 1777 rec = &el->l_recs[i]; 1778 1779 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1780 &trunc_len, &trunc_end, &blkno, &done); 1781 if (done) 1782 break; 1783 1784 flags = rec->e_flags; 1785 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1786 1787 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1788 phys_cpos, trunc_len, flags, 1789 &dealloc, refcount_loc); 1790 if (ret < 0) { 1791 mlog_errno(ret); 1792 goto out; 1793 } 1794 1795 cluster_in_el = trunc_end; 1796 1797 ocfs2_reinit_path(path, 1); 1798 } 1799 1800 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1801 1802 out: 1803 ocfs2_schedule_truncate_log_flush(osb, 1); 1804 ocfs2_run_deallocs(osb, &dealloc); 1805 1806 return ret; 1807 } 1808 1809 /* 1810 * Parts of this function taken from xfs_change_file_space() 1811 */ 1812 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1813 loff_t f_pos, unsigned int cmd, 1814 struct ocfs2_space_resv *sr, 1815 int change_size) 1816 { 1817 int ret; 1818 s64 llen; 1819 loff_t size; 1820 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1821 struct buffer_head *di_bh = NULL; 1822 handle_t *handle; 1823 unsigned long long max_off = inode->i_sb->s_maxbytes; 1824 1825 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1826 return -EROFS; 1827 1828 mutex_lock(&inode->i_mutex); 1829 1830 /* 1831 * This prevents concurrent writes on other nodes 1832 */ 1833 ret = ocfs2_rw_lock(inode, 1); 1834 if (ret) { 1835 mlog_errno(ret); 1836 goto out; 1837 } 1838 1839 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1840 if (ret) { 1841 mlog_errno(ret); 1842 goto out_rw_unlock; 1843 } 1844 1845 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1846 ret = -EPERM; 1847 goto out_inode_unlock; 1848 } 1849 1850 switch (sr->l_whence) { 1851 case 0: /*SEEK_SET*/ 1852 break; 1853 case 1: /*SEEK_CUR*/ 1854 sr->l_start += f_pos; 1855 break; 1856 case 2: /*SEEK_END*/ 1857 sr->l_start += i_size_read(inode); 1858 break; 1859 default: 1860 ret = -EINVAL; 1861 goto out_inode_unlock; 1862 } 1863 sr->l_whence = 0; 1864 1865 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1866 1867 if (sr->l_start < 0 1868 || sr->l_start > max_off 1869 || (sr->l_start + llen) < 0 1870 || (sr->l_start + llen) > max_off) { 1871 ret = -EINVAL; 1872 goto out_inode_unlock; 1873 } 1874 size = sr->l_start + sr->l_len; 1875 1876 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) { 1877 if (sr->l_len <= 0) { 1878 ret = -EINVAL; 1879 goto out_inode_unlock; 1880 } 1881 } 1882 1883 if (file && should_remove_suid(file->f_path.dentry)) { 1884 ret = __ocfs2_write_remove_suid(inode, di_bh); 1885 if (ret) { 1886 mlog_errno(ret); 1887 goto out_inode_unlock; 1888 } 1889 } 1890 1891 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1892 switch (cmd) { 1893 case OCFS2_IOC_RESVSP: 1894 case OCFS2_IOC_RESVSP64: 1895 /* 1896 * This takes unsigned offsets, but the signed ones we 1897 * pass have been checked against overflow above. 1898 */ 1899 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 1900 sr->l_len); 1901 break; 1902 case OCFS2_IOC_UNRESVSP: 1903 case OCFS2_IOC_UNRESVSP64: 1904 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 1905 sr->l_len); 1906 break; 1907 default: 1908 ret = -EINVAL; 1909 } 1910 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1911 if (ret) { 1912 mlog_errno(ret); 1913 goto out_inode_unlock; 1914 } 1915 1916 /* 1917 * We update c/mtime for these changes 1918 */ 1919 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1920 if (IS_ERR(handle)) { 1921 ret = PTR_ERR(handle); 1922 mlog_errno(ret); 1923 goto out_inode_unlock; 1924 } 1925 1926 if (change_size && i_size_read(inode) < size) 1927 i_size_write(inode, size); 1928 1929 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 1930 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 1931 if (ret < 0) 1932 mlog_errno(ret); 1933 1934 if (file && (file->f_flags & O_SYNC)) 1935 handle->h_sync = 1; 1936 1937 ocfs2_commit_trans(osb, handle); 1938 1939 out_inode_unlock: 1940 brelse(di_bh); 1941 ocfs2_inode_unlock(inode, 1); 1942 out_rw_unlock: 1943 ocfs2_rw_unlock(inode, 1); 1944 1945 out: 1946 mutex_unlock(&inode->i_mutex); 1947 return ret; 1948 } 1949 1950 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 1951 struct ocfs2_space_resv *sr) 1952 { 1953 struct inode *inode = file_inode(file); 1954 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1955 int ret; 1956 1957 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 1958 !ocfs2_writes_unwritten_extents(osb)) 1959 return -ENOTTY; 1960 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 1961 !ocfs2_sparse_alloc(osb)) 1962 return -ENOTTY; 1963 1964 if (!S_ISREG(inode->i_mode)) 1965 return -EINVAL; 1966 1967 if (!(file->f_mode & FMODE_WRITE)) 1968 return -EBADF; 1969 1970 ret = mnt_want_write_file(file); 1971 if (ret) 1972 return ret; 1973 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 1974 mnt_drop_write_file(file); 1975 return ret; 1976 } 1977 1978 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 1979 loff_t len) 1980 { 1981 struct inode *inode = file_inode(file); 1982 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1983 struct ocfs2_space_resv sr; 1984 int change_size = 1; 1985 int cmd = OCFS2_IOC_RESVSP64; 1986 1987 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 1988 return -EOPNOTSUPP; 1989 if (!ocfs2_writes_unwritten_extents(osb)) 1990 return -EOPNOTSUPP; 1991 1992 if (mode & FALLOC_FL_KEEP_SIZE) 1993 change_size = 0; 1994 1995 if (mode & FALLOC_FL_PUNCH_HOLE) 1996 cmd = OCFS2_IOC_UNRESVSP64; 1997 1998 sr.l_whence = 0; 1999 sr.l_start = (s64)offset; 2000 sr.l_len = (s64)len; 2001 2002 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 2003 change_size); 2004 } 2005 2006 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2007 size_t count) 2008 { 2009 int ret = 0; 2010 unsigned int extent_flags; 2011 u32 cpos, clusters, extent_len, phys_cpos; 2012 struct super_block *sb = inode->i_sb; 2013 2014 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2015 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) || 2016 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2017 return 0; 2018 2019 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2020 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2021 2022 while (clusters) { 2023 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2024 &extent_flags); 2025 if (ret < 0) { 2026 mlog_errno(ret); 2027 goto out; 2028 } 2029 2030 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2031 ret = 1; 2032 break; 2033 } 2034 2035 if (extent_len > clusters) 2036 extent_len = clusters; 2037 2038 clusters -= extent_len; 2039 cpos += extent_len; 2040 } 2041 out: 2042 return ret; 2043 } 2044 2045 static void ocfs2_aiodio_wait(struct inode *inode) 2046 { 2047 wait_queue_head_t *wq = ocfs2_ioend_wq(inode); 2048 2049 wait_event(*wq, (atomic_read(&OCFS2_I(inode)->ip_unaligned_aio) == 0)); 2050 } 2051 2052 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2053 { 2054 int blockmask = inode->i_sb->s_blocksize - 1; 2055 loff_t final_size = pos + count; 2056 2057 if ((pos & blockmask) || (final_size & blockmask)) 2058 return 1; 2059 return 0; 2060 } 2061 2062 static int ocfs2_prepare_inode_for_refcount(struct inode *inode, 2063 struct file *file, 2064 loff_t pos, size_t count, 2065 int *meta_level) 2066 { 2067 int ret; 2068 struct buffer_head *di_bh = NULL; 2069 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2070 u32 clusters = 2071 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2072 2073 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2074 if (ret) { 2075 mlog_errno(ret); 2076 goto out; 2077 } 2078 2079 *meta_level = 1; 2080 2081 ret = ocfs2_refcount_cow(inode, file, di_bh, cpos, clusters, UINT_MAX); 2082 if (ret) 2083 mlog_errno(ret); 2084 out: 2085 brelse(di_bh); 2086 return ret; 2087 } 2088 2089 static int ocfs2_prepare_inode_for_write(struct file *file, 2090 loff_t *ppos, 2091 size_t count, 2092 int appending, 2093 int *direct_io, 2094 int *has_refcount) 2095 { 2096 int ret = 0, meta_level = 0; 2097 struct dentry *dentry = file->f_path.dentry; 2098 struct inode *inode = dentry->d_inode; 2099 loff_t saved_pos = 0, end; 2100 2101 /* 2102 * We start with a read level meta lock and only jump to an ex 2103 * if we need to make modifications here. 2104 */ 2105 for(;;) { 2106 ret = ocfs2_inode_lock(inode, NULL, meta_level); 2107 if (ret < 0) { 2108 meta_level = -1; 2109 mlog_errno(ret); 2110 goto out; 2111 } 2112 2113 /* Clear suid / sgid if necessary. We do this here 2114 * instead of later in the write path because 2115 * remove_suid() calls ->setattr without any hint that 2116 * we may have already done our cluster locking. Since 2117 * ocfs2_setattr() *must* take cluster locks to 2118 * proceed, this will lead us to recursively lock the 2119 * inode. There's also the dinode i_size state which 2120 * can be lost via setattr during extending writes (we 2121 * set inode->i_size at the end of a write. */ 2122 if (should_remove_suid(dentry)) { 2123 if (meta_level == 0) { 2124 ocfs2_inode_unlock(inode, meta_level); 2125 meta_level = 1; 2126 continue; 2127 } 2128 2129 ret = ocfs2_write_remove_suid(inode); 2130 if (ret < 0) { 2131 mlog_errno(ret); 2132 goto out_unlock; 2133 } 2134 } 2135 2136 /* work on a copy of ppos until we're sure that we won't have 2137 * to recalculate it due to relocking. */ 2138 if (appending) 2139 saved_pos = i_size_read(inode); 2140 else 2141 saved_pos = *ppos; 2142 2143 end = saved_pos + count; 2144 2145 ret = ocfs2_check_range_for_refcount(inode, saved_pos, count); 2146 if (ret == 1) { 2147 ocfs2_inode_unlock(inode, meta_level); 2148 meta_level = -1; 2149 2150 ret = ocfs2_prepare_inode_for_refcount(inode, 2151 file, 2152 saved_pos, 2153 count, 2154 &meta_level); 2155 if (has_refcount) 2156 *has_refcount = 1; 2157 if (direct_io) 2158 *direct_io = 0; 2159 } 2160 2161 if (ret < 0) { 2162 mlog_errno(ret); 2163 goto out_unlock; 2164 } 2165 2166 /* 2167 * Skip the O_DIRECT checks if we don't need 2168 * them. 2169 */ 2170 if (!direct_io || !(*direct_io)) 2171 break; 2172 2173 /* 2174 * There's no sane way to do direct writes to an inode 2175 * with inline data. 2176 */ 2177 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2178 *direct_io = 0; 2179 break; 2180 } 2181 2182 /* 2183 * Allowing concurrent direct writes means 2184 * i_size changes wouldn't be synchronized, so 2185 * one node could wind up truncating another 2186 * nodes writes. 2187 */ 2188 if (end > i_size_read(inode)) { 2189 *direct_io = 0; 2190 break; 2191 } 2192 2193 /* 2194 * We don't fill holes during direct io, so 2195 * check for them here. If any are found, the 2196 * caller will have to retake some cluster 2197 * locks and initiate the io as buffered. 2198 */ 2199 ret = ocfs2_check_range_for_holes(inode, saved_pos, count); 2200 if (ret == 1) { 2201 *direct_io = 0; 2202 ret = 0; 2203 } else if (ret < 0) 2204 mlog_errno(ret); 2205 break; 2206 } 2207 2208 if (appending) 2209 *ppos = saved_pos; 2210 2211 out_unlock: 2212 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2213 saved_pos, appending, count, 2214 direct_io, has_refcount); 2215 2216 if (meta_level >= 0) 2217 ocfs2_inode_unlock(inode, meta_level); 2218 2219 out: 2220 return ret; 2221 } 2222 2223 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb, 2224 const struct iovec *iov, 2225 unsigned long nr_segs, 2226 loff_t pos) 2227 { 2228 int ret, direct_io, appending, rw_level, have_alloc_sem = 0; 2229 int can_do_direct, has_refcount = 0; 2230 ssize_t written = 0; 2231 size_t ocount; /* original count */ 2232 size_t count; /* after file limit checks */ 2233 loff_t old_size, *ppos = &iocb->ki_pos; 2234 u32 old_clusters; 2235 struct file *file = iocb->ki_filp; 2236 struct inode *inode = file_inode(file); 2237 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2238 int full_coherency = !(osb->s_mount_opt & 2239 OCFS2_MOUNT_COHERENCY_BUFFERED); 2240 int unaligned_dio = 0; 2241 2242 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry, 2243 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2244 file->f_path.dentry->d_name.len, 2245 file->f_path.dentry->d_name.name, 2246 (unsigned int)nr_segs); 2247 2248 if (iocb->ki_left == 0) 2249 return 0; 2250 2251 appending = file->f_flags & O_APPEND ? 1 : 0; 2252 direct_io = file->f_flags & O_DIRECT ? 1 : 0; 2253 2254 mutex_lock(&inode->i_mutex); 2255 2256 ocfs2_iocb_clear_sem_locked(iocb); 2257 2258 relock: 2259 /* to match setattr's i_mutex -> rw_lock ordering */ 2260 if (direct_io) { 2261 have_alloc_sem = 1; 2262 /* communicate with ocfs2_dio_end_io */ 2263 ocfs2_iocb_set_sem_locked(iocb); 2264 } 2265 2266 /* 2267 * Concurrent O_DIRECT writes are allowed with 2268 * mount_option "coherency=buffered". 2269 */ 2270 rw_level = (!direct_io || full_coherency); 2271 2272 ret = ocfs2_rw_lock(inode, rw_level); 2273 if (ret < 0) { 2274 mlog_errno(ret); 2275 goto out_sems; 2276 } 2277 2278 /* 2279 * O_DIRECT writes with "coherency=full" need to take EX cluster 2280 * inode_lock to guarantee coherency. 2281 */ 2282 if (direct_io && full_coherency) { 2283 /* 2284 * We need to take and drop the inode lock to force 2285 * other nodes to drop their caches. Buffered I/O 2286 * already does this in write_begin(). 2287 */ 2288 ret = ocfs2_inode_lock(inode, NULL, 1); 2289 if (ret < 0) { 2290 mlog_errno(ret); 2291 goto out; 2292 } 2293 2294 ocfs2_inode_unlock(inode, 1); 2295 } 2296 2297 can_do_direct = direct_io; 2298 ret = ocfs2_prepare_inode_for_write(file, ppos, 2299 iocb->ki_left, appending, 2300 &can_do_direct, &has_refcount); 2301 if (ret < 0) { 2302 mlog_errno(ret); 2303 goto out; 2304 } 2305 2306 if (direct_io && !is_sync_kiocb(iocb)) 2307 unaligned_dio = ocfs2_is_io_unaligned(inode, iocb->ki_left, 2308 *ppos); 2309 2310 /* 2311 * We can't complete the direct I/O as requested, fall back to 2312 * buffered I/O. 2313 */ 2314 if (direct_io && !can_do_direct) { 2315 ocfs2_rw_unlock(inode, rw_level); 2316 2317 have_alloc_sem = 0; 2318 rw_level = -1; 2319 2320 direct_io = 0; 2321 goto relock; 2322 } 2323 2324 if (unaligned_dio) { 2325 /* 2326 * Wait on previous unaligned aio to complete before 2327 * proceeding. 2328 */ 2329 ocfs2_aiodio_wait(inode); 2330 2331 /* Mark the iocb as needing a decrement in ocfs2_dio_end_io */ 2332 atomic_inc(&OCFS2_I(inode)->ip_unaligned_aio); 2333 ocfs2_iocb_set_unaligned_aio(iocb); 2334 } 2335 2336 /* 2337 * To later detect whether a journal commit for sync writes is 2338 * necessary, we sample i_size, and cluster count here. 2339 */ 2340 old_size = i_size_read(inode); 2341 old_clusters = OCFS2_I(inode)->ip_clusters; 2342 2343 /* communicate with ocfs2_dio_end_io */ 2344 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2345 2346 ret = generic_segment_checks(iov, &nr_segs, &ocount, 2347 VERIFY_READ); 2348 if (ret) 2349 goto out_dio; 2350 2351 count = ocount; 2352 ret = generic_write_checks(file, ppos, &count, 2353 S_ISBLK(inode->i_mode)); 2354 if (ret) 2355 goto out_dio; 2356 2357 if (direct_io) { 2358 written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos, 2359 ppos, count, ocount); 2360 if (written < 0) { 2361 ret = written; 2362 goto out_dio; 2363 } 2364 } else { 2365 current->backing_dev_info = file->f_mapping->backing_dev_info; 2366 written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos, 2367 ppos, count, 0); 2368 current->backing_dev_info = NULL; 2369 } 2370 2371 out_dio: 2372 /* buffered aio wouldn't have proper lock coverage today */ 2373 BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT)); 2374 2375 if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) || 2376 ((file->f_flags & O_DIRECT) && !direct_io)) { 2377 ret = filemap_fdatawrite_range(file->f_mapping, pos, 2378 pos + count - 1); 2379 if (ret < 0) 2380 written = ret; 2381 2382 if (!ret && ((old_size != i_size_read(inode)) || 2383 (old_clusters != OCFS2_I(inode)->ip_clusters) || 2384 has_refcount)) { 2385 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2386 if (ret < 0) 2387 written = ret; 2388 } 2389 2390 if (!ret) 2391 ret = filemap_fdatawait_range(file->f_mapping, pos, 2392 pos + count - 1); 2393 } 2394 2395 /* 2396 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2397 * function pointer which is called when o_direct io completes so that 2398 * it can unlock our rw lock. 2399 * Unfortunately there are error cases which call end_io and others 2400 * that don't. so we don't have to unlock the rw_lock if either an 2401 * async dio is going to do it in the future or an end_io after an 2402 * error has already done it. 2403 */ 2404 if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2405 rw_level = -1; 2406 have_alloc_sem = 0; 2407 unaligned_dio = 0; 2408 } 2409 2410 if (unaligned_dio) { 2411 ocfs2_iocb_clear_unaligned_aio(iocb); 2412 atomic_dec(&OCFS2_I(inode)->ip_unaligned_aio); 2413 } 2414 2415 out: 2416 if (rw_level != -1) 2417 ocfs2_rw_unlock(inode, rw_level); 2418 2419 out_sems: 2420 if (have_alloc_sem) 2421 ocfs2_iocb_clear_sem_locked(iocb); 2422 2423 mutex_unlock(&inode->i_mutex); 2424 2425 if (written) 2426 ret = written; 2427 return ret; 2428 } 2429 2430 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe, 2431 struct file *out, 2432 struct splice_desc *sd) 2433 { 2434 int ret; 2435 2436 ret = ocfs2_prepare_inode_for_write(out, &sd->pos, 2437 sd->total_len, 0, NULL, NULL); 2438 if (ret < 0) { 2439 mlog_errno(ret); 2440 return ret; 2441 } 2442 2443 return splice_from_pipe_feed(pipe, sd, pipe_to_file); 2444 } 2445 2446 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe, 2447 struct file *out, 2448 loff_t *ppos, 2449 size_t len, 2450 unsigned int flags) 2451 { 2452 int ret; 2453 struct address_space *mapping = out->f_mapping; 2454 struct inode *inode = mapping->host; 2455 struct splice_desc sd = { 2456 .total_len = len, 2457 .flags = flags, 2458 .pos = *ppos, 2459 .u.file = out, 2460 }; 2461 2462 2463 trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry, 2464 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2465 out->f_path.dentry->d_name.len, 2466 out->f_path.dentry->d_name.name, len); 2467 2468 pipe_lock(pipe); 2469 2470 splice_from_pipe_begin(&sd); 2471 do { 2472 ret = splice_from_pipe_next(pipe, &sd); 2473 if (ret <= 0) 2474 break; 2475 2476 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 2477 ret = ocfs2_rw_lock(inode, 1); 2478 if (ret < 0) 2479 mlog_errno(ret); 2480 else { 2481 ret = ocfs2_splice_to_file(pipe, out, &sd); 2482 ocfs2_rw_unlock(inode, 1); 2483 } 2484 mutex_unlock(&inode->i_mutex); 2485 } while (ret > 0); 2486 splice_from_pipe_end(pipe, &sd); 2487 2488 pipe_unlock(pipe); 2489 2490 if (sd.num_spliced) 2491 ret = sd.num_spliced; 2492 2493 if (ret > 0) { 2494 int err; 2495 2496 err = generic_write_sync(out, *ppos, ret); 2497 if (err) 2498 ret = err; 2499 else 2500 *ppos += ret; 2501 2502 balance_dirty_pages_ratelimited(mapping); 2503 } 2504 2505 return ret; 2506 } 2507 2508 static ssize_t ocfs2_file_splice_read(struct file *in, 2509 loff_t *ppos, 2510 struct pipe_inode_info *pipe, 2511 size_t len, 2512 unsigned int flags) 2513 { 2514 int ret = 0, lock_level = 0; 2515 struct inode *inode = file_inode(in); 2516 2517 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry, 2518 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2519 in->f_path.dentry->d_name.len, 2520 in->f_path.dentry->d_name.name, len); 2521 2522 /* 2523 * See the comment in ocfs2_file_aio_read() 2524 */ 2525 ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level); 2526 if (ret < 0) { 2527 mlog_errno(ret); 2528 goto bail; 2529 } 2530 ocfs2_inode_unlock(inode, lock_level); 2531 2532 ret = generic_file_splice_read(in, ppos, pipe, len, flags); 2533 2534 bail: 2535 return ret; 2536 } 2537 2538 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb, 2539 const struct iovec *iov, 2540 unsigned long nr_segs, 2541 loff_t pos) 2542 { 2543 int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0; 2544 struct file *filp = iocb->ki_filp; 2545 struct inode *inode = file_inode(filp); 2546 2547 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry, 2548 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2549 filp->f_path.dentry->d_name.len, 2550 filp->f_path.dentry->d_name.name, nr_segs); 2551 2552 2553 if (!inode) { 2554 ret = -EINVAL; 2555 mlog_errno(ret); 2556 goto bail; 2557 } 2558 2559 ocfs2_iocb_clear_sem_locked(iocb); 2560 2561 /* 2562 * buffered reads protect themselves in ->readpage(). O_DIRECT reads 2563 * need locks to protect pending reads from racing with truncate. 2564 */ 2565 if (filp->f_flags & O_DIRECT) { 2566 have_alloc_sem = 1; 2567 ocfs2_iocb_set_sem_locked(iocb); 2568 2569 ret = ocfs2_rw_lock(inode, 0); 2570 if (ret < 0) { 2571 mlog_errno(ret); 2572 goto bail; 2573 } 2574 rw_level = 0; 2575 /* communicate with ocfs2_dio_end_io */ 2576 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2577 } 2578 2579 /* 2580 * We're fine letting folks race truncates and extending 2581 * writes with read across the cluster, just like they can 2582 * locally. Hence no rw_lock during read. 2583 * 2584 * Take and drop the meta data lock to update inode fields 2585 * like i_size. This allows the checks down below 2586 * generic_file_aio_read() a chance of actually working. 2587 */ 2588 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level); 2589 if (ret < 0) { 2590 mlog_errno(ret); 2591 goto bail; 2592 } 2593 ocfs2_inode_unlock(inode, lock_level); 2594 2595 ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos); 2596 trace_generic_file_aio_read_ret(ret); 2597 2598 /* buffered aio wouldn't have proper lock coverage today */ 2599 BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT)); 2600 2601 /* see ocfs2_file_aio_write */ 2602 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2603 rw_level = -1; 2604 have_alloc_sem = 0; 2605 } 2606 2607 bail: 2608 if (have_alloc_sem) 2609 ocfs2_iocb_clear_sem_locked(iocb); 2610 2611 if (rw_level != -1) 2612 ocfs2_rw_unlock(inode, rw_level); 2613 2614 return ret; 2615 } 2616 2617 /* Refer generic_file_llseek_unlocked() */ 2618 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2619 { 2620 struct inode *inode = file->f_mapping->host; 2621 int ret = 0; 2622 2623 mutex_lock(&inode->i_mutex); 2624 2625 switch (whence) { 2626 case SEEK_SET: 2627 break; 2628 case SEEK_END: 2629 offset += inode->i_size; 2630 break; 2631 case SEEK_CUR: 2632 if (offset == 0) { 2633 offset = file->f_pos; 2634 goto out; 2635 } 2636 offset += file->f_pos; 2637 break; 2638 case SEEK_DATA: 2639 case SEEK_HOLE: 2640 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2641 if (ret) 2642 goto out; 2643 break; 2644 default: 2645 ret = -EINVAL; 2646 goto out; 2647 } 2648 2649 if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) 2650 ret = -EINVAL; 2651 if (!ret && offset > inode->i_sb->s_maxbytes) 2652 ret = -EINVAL; 2653 if (ret) 2654 goto out; 2655 2656 if (offset != file->f_pos) { 2657 file->f_pos = offset; 2658 file->f_version = 0; 2659 } 2660 2661 out: 2662 mutex_unlock(&inode->i_mutex); 2663 if (ret) 2664 return ret; 2665 return offset; 2666 } 2667 2668 const struct inode_operations ocfs2_file_iops = { 2669 .setattr = ocfs2_setattr, 2670 .getattr = ocfs2_getattr, 2671 .permission = ocfs2_permission, 2672 .setxattr = generic_setxattr, 2673 .getxattr = generic_getxattr, 2674 .listxattr = ocfs2_listxattr, 2675 .removexattr = generic_removexattr, 2676 .fiemap = ocfs2_fiemap, 2677 .get_acl = ocfs2_iop_get_acl, 2678 }; 2679 2680 const struct inode_operations ocfs2_special_file_iops = { 2681 .setattr = ocfs2_setattr, 2682 .getattr = ocfs2_getattr, 2683 .permission = ocfs2_permission, 2684 .get_acl = ocfs2_iop_get_acl, 2685 }; 2686 2687 /* 2688 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2689 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2690 */ 2691 const struct file_operations ocfs2_fops = { 2692 .llseek = ocfs2_file_llseek, 2693 .read = do_sync_read, 2694 .write = do_sync_write, 2695 .mmap = ocfs2_mmap, 2696 .fsync = ocfs2_sync_file, 2697 .release = ocfs2_file_release, 2698 .open = ocfs2_file_open, 2699 .aio_read = ocfs2_file_aio_read, 2700 .aio_write = ocfs2_file_aio_write, 2701 .unlocked_ioctl = ocfs2_ioctl, 2702 #ifdef CONFIG_COMPAT 2703 .compat_ioctl = ocfs2_compat_ioctl, 2704 #endif 2705 .lock = ocfs2_lock, 2706 .flock = ocfs2_flock, 2707 .splice_read = ocfs2_file_splice_read, 2708 .splice_write = ocfs2_file_splice_write, 2709 .fallocate = ocfs2_fallocate, 2710 }; 2711 2712 const struct file_operations ocfs2_dops = { 2713 .llseek = generic_file_llseek, 2714 .read = generic_read_dir, 2715 .readdir = ocfs2_readdir, 2716 .fsync = ocfs2_sync_file, 2717 .release = ocfs2_dir_release, 2718 .open = ocfs2_dir_open, 2719 .unlocked_ioctl = ocfs2_ioctl, 2720 #ifdef CONFIG_COMPAT 2721 .compat_ioctl = ocfs2_compat_ioctl, 2722 #endif 2723 .lock = ocfs2_lock, 2724 .flock = ocfs2_flock, 2725 }; 2726 2727 /* 2728 * POSIX-lockless variants of our file_operations. 2729 * 2730 * These will be used if the underlying cluster stack does not support 2731 * posix file locking, if the user passes the "localflocks" mount 2732 * option, or if we have a local-only fs. 2733 * 2734 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2735 * so we still want it in the case of no stack support for 2736 * plocks. Internally, it will do the right thing when asked to ignore 2737 * the cluster. 2738 */ 2739 const struct file_operations ocfs2_fops_no_plocks = { 2740 .llseek = ocfs2_file_llseek, 2741 .read = do_sync_read, 2742 .write = do_sync_write, 2743 .mmap = ocfs2_mmap, 2744 .fsync = ocfs2_sync_file, 2745 .release = ocfs2_file_release, 2746 .open = ocfs2_file_open, 2747 .aio_read = ocfs2_file_aio_read, 2748 .aio_write = ocfs2_file_aio_write, 2749 .unlocked_ioctl = ocfs2_ioctl, 2750 #ifdef CONFIG_COMPAT 2751 .compat_ioctl = ocfs2_compat_ioctl, 2752 #endif 2753 .flock = ocfs2_flock, 2754 .splice_read = ocfs2_file_splice_read, 2755 .splice_write = ocfs2_file_splice_write, 2756 .fallocate = ocfs2_fallocate, 2757 }; 2758 2759 const struct file_operations ocfs2_dops_no_plocks = { 2760 .llseek = generic_file_llseek, 2761 .read = generic_read_dir, 2762 .readdir = ocfs2_readdir, 2763 .fsync = ocfs2_sync_file, 2764 .release = ocfs2_dir_release, 2765 .open = ocfs2_dir_open, 2766 .unlocked_ioctl = ocfs2_ioctl, 2767 #ifdef CONFIG_COMPAT 2768 .compat_ioctl = ocfs2_compat_ioctl, 2769 #endif 2770 .flock = ocfs2_flock, 2771 }; 2772