1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * file.c 4 * 5 * File open, close, extend, truncate 6 * 7 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/capability.h> 11 #include <linux/fs.h> 12 #include <linux/types.h> 13 #include <linux/slab.h> 14 #include <linux/highmem.h> 15 #include <linux/pagemap.h> 16 #include <linux/uio.h> 17 #include <linux/sched.h> 18 #include <linux/splice.h> 19 #include <linux/mount.h> 20 #include <linux/writeback.h> 21 #include <linux/falloc.h> 22 #include <linux/quotaops.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 26 #include <cluster/masklog.h> 27 28 #include "ocfs2.h" 29 30 #include "alloc.h" 31 #include "aops.h" 32 #include "dir.h" 33 #include "dlmglue.h" 34 #include "extent_map.h" 35 #include "file.h" 36 #include "sysfile.h" 37 #include "inode.h" 38 #include "ioctl.h" 39 #include "journal.h" 40 #include "locks.h" 41 #include "mmap.h" 42 #include "suballoc.h" 43 #include "super.h" 44 #include "xattr.h" 45 #include "acl.h" 46 #include "quota.h" 47 #include "refcounttree.h" 48 #include "ocfs2_trace.h" 49 50 #include "buffer_head_io.h" 51 52 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 53 { 54 struct ocfs2_file_private *fp; 55 56 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 57 if (!fp) 58 return -ENOMEM; 59 60 fp->fp_file = file; 61 mutex_init(&fp->fp_mutex); 62 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 63 file->private_data = fp; 64 65 return 0; 66 } 67 68 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 69 { 70 struct ocfs2_file_private *fp = file->private_data; 71 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 72 73 if (fp) { 74 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 75 ocfs2_lock_res_free(&fp->fp_flock); 76 kfree(fp); 77 file->private_data = NULL; 78 } 79 } 80 81 static int ocfs2_file_open(struct inode *inode, struct file *file) 82 { 83 int status; 84 int mode = file->f_flags; 85 struct ocfs2_inode_info *oi = OCFS2_I(inode); 86 87 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 88 (unsigned long long)oi->ip_blkno, 89 file->f_path.dentry->d_name.len, 90 file->f_path.dentry->d_name.name, mode); 91 92 if (file->f_mode & FMODE_WRITE) { 93 status = dquot_initialize(inode); 94 if (status) 95 goto leave; 96 } 97 98 spin_lock(&oi->ip_lock); 99 100 /* Check that the inode hasn't been wiped from disk by another 101 * node. If it hasn't then we're safe as long as we hold the 102 * spin lock until our increment of open count. */ 103 if (oi->ip_flags & OCFS2_INODE_DELETED) { 104 spin_unlock(&oi->ip_lock); 105 106 status = -ENOENT; 107 goto leave; 108 } 109 110 if (mode & O_DIRECT) 111 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 112 113 oi->ip_open_count++; 114 spin_unlock(&oi->ip_lock); 115 116 status = ocfs2_init_file_private(inode, file); 117 if (status) { 118 /* 119 * We want to set open count back if we're failing the 120 * open. 121 */ 122 spin_lock(&oi->ip_lock); 123 oi->ip_open_count--; 124 spin_unlock(&oi->ip_lock); 125 } 126 127 file->f_mode |= FMODE_NOWAIT; 128 129 leave: 130 return status; 131 } 132 133 static int ocfs2_file_release(struct inode *inode, struct file *file) 134 { 135 struct ocfs2_inode_info *oi = OCFS2_I(inode); 136 137 spin_lock(&oi->ip_lock); 138 if (!--oi->ip_open_count) 139 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 140 141 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 142 oi->ip_blkno, 143 file->f_path.dentry->d_name.len, 144 file->f_path.dentry->d_name.name, 145 oi->ip_open_count); 146 spin_unlock(&oi->ip_lock); 147 148 ocfs2_free_file_private(inode, file); 149 150 return 0; 151 } 152 153 static int ocfs2_dir_open(struct inode *inode, struct file *file) 154 { 155 return ocfs2_init_file_private(inode, file); 156 } 157 158 static int ocfs2_dir_release(struct inode *inode, struct file *file) 159 { 160 ocfs2_free_file_private(inode, file); 161 return 0; 162 } 163 164 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 165 int datasync) 166 { 167 int err = 0; 168 struct inode *inode = file->f_mapping->host; 169 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 170 struct ocfs2_inode_info *oi = OCFS2_I(inode); 171 journal_t *journal = osb->journal->j_journal; 172 int ret; 173 tid_t commit_tid; 174 bool needs_barrier = false; 175 176 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 177 oi->ip_blkno, 178 file->f_path.dentry->d_name.len, 179 file->f_path.dentry->d_name.name, 180 (unsigned long long)datasync); 181 182 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 183 return -EROFS; 184 185 err = file_write_and_wait_range(file, start, end); 186 if (err) 187 return err; 188 189 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid; 190 if (journal->j_flags & JBD2_BARRIER && 191 !jbd2_trans_will_send_data_barrier(journal, commit_tid)) 192 needs_barrier = true; 193 err = jbd2_complete_transaction(journal, commit_tid); 194 if (needs_barrier) { 195 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 196 if (!err) 197 err = ret; 198 } 199 200 if (err) 201 mlog_errno(err); 202 203 return (err < 0) ? -EIO : 0; 204 } 205 206 int ocfs2_should_update_atime(struct inode *inode, 207 struct vfsmount *vfsmnt) 208 { 209 struct timespec64 now; 210 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 211 212 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 213 return 0; 214 215 if ((inode->i_flags & S_NOATIME) || 216 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))) 217 return 0; 218 219 /* 220 * We can be called with no vfsmnt structure - NFSD will 221 * sometimes do this. 222 * 223 * Note that our action here is different than touch_atime() - 224 * if we can't tell whether this is a noatime mount, then we 225 * don't know whether to trust the value of s_atime_quantum. 226 */ 227 if (vfsmnt == NULL) 228 return 0; 229 230 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 231 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 232 return 0; 233 234 if (vfsmnt->mnt_flags & MNT_RELATIME) { 235 if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 236 (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0)) 237 return 1; 238 239 return 0; 240 } 241 242 now = current_time(inode); 243 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 244 return 0; 245 else 246 return 1; 247 } 248 249 int ocfs2_update_inode_atime(struct inode *inode, 250 struct buffer_head *bh) 251 { 252 int ret; 253 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 254 handle_t *handle; 255 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 256 257 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 258 if (IS_ERR(handle)) { 259 ret = PTR_ERR(handle); 260 mlog_errno(ret); 261 goto out; 262 } 263 264 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 265 OCFS2_JOURNAL_ACCESS_WRITE); 266 if (ret) { 267 mlog_errno(ret); 268 goto out_commit; 269 } 270 271 /* 272 * Don't use ocfs2_mark_inode_dirty() here as we don't always 273 * have i_mutex to guard against concurrent changes to other 274 * inode fields. 275 */ 276 inode->i_atime = current_time(inode); 277 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 278 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 279 ocfs2_update_inode_fsync_trans(handle, inode, 0); 280 ocfs2_journal_dirty(handle, bh); 281 282 out_commit: 283 ocfs2_commit_trans(osb, handle); 284 out: 285 return ret; 286 } 287 288 int ocfs2_set_inode_size(handle_t *handle, 289 struct inode *inode, 290 struct buffer_head *fe_bh, 291 u64 new_i_size) 292 { 293 int status; 294 295 i_size_write(inode, new_i_size); 296 inode->i_blocks = ocfs2_inode_sector_count(inode); 297 inode->i_ctime = inode->i_mtime = current_time(inode); 298 299 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 300 if (status < 0) { 301 mlog_errno(status); 302 goto bail; 303 } 304 305 bail: 306 return status; 307 } 308 309 int ocfs2_simple_size_update(struct inode *inode, 310 struct buffer_head *di_bh, 311 u64 new_i_size) 312 { 313 int ret; 314 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 315 handle_t *handle = NULL; 316 317 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 318 if (IS_ERR(handle)) { 319 ret = PTR_ERR(handle); 320 mlog_errno(ret); 321 goto out; 322 } 323 324 ret = ocfs2_set_inode_size(handle, inode, di_bh, 325 new_i_size); 326 if (ret < 0) 327 mlog_errno(ret); 328 329 ocfs2_update_inode_fsync_trans(handle, inode, 0); 330 ocfs2_commit_trans(osb, handle); 331 out: 332 return ret; 333 } 334 335 static int ocfs2_cow_file_pos(struct inode *inode, 336 struct buffer_head *fe_bh, 337 u64 offset) 338 { 339 int status; 340 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 341 unsigned int num_clusters = 0; 342 unsigned int ext_flags = 0; 343 344 /* 345 * If the new offset is aligned to the range of the cluster, there is 346 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 347 * CoW either. 348 */ 349 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 350 return 0; 351 352 status = ocfs2_get_clusters(inode, cpos, &phys, 353 &num_clusters, &ext_flags); 354 if (status) { 355 mlog_errno(status); 356 goto out; 357 } 358 359 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 360 goto out; 361 362 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 363 364 out: 365 return status; 366 } 367 368 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 369 struct inode *inode, 370 struct buffer_head *fe_bh, 371 u64 new_i_size) 372 { 373 int status; 374 handle_t *handle; 375 struct ocfs2_dinode *di; 376 u64 cluster_bytes; 377 378 /* 379 * We need to CoW the cluster contains the offset if it is reflinked 380 * since we will call ocfs2_zero_range_for_truncate later which will 381 * write "0" from offset to the end of the cluster. 382 */ 383 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 384 if (status) { 385 mlog_errno(status); 386 return status; 387 } 388 389 /* TODO: This needs to actually orphan the inode in this 390 * transaction. */ 391 392 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 393 if (IS_ERR(handle)) { 394 status = PTR_ERR(handle); 395 mlog_errno(status); 396 goto out; 397 } 398 399 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 400 OCFS2_JOURNAL_ACCESS_WRITE); 401 if (status < 0) { 402 mlog_errno(status); 403 goto out_commit; 404 } 405 406 /* 407 * Do this before setting i_size. 408 */ 409 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 410 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 411 cluster_bytes); 412 if (status) { 413 mlog_errno(status); 414 goto out_commit; 415 } 416 417 i_size_write(inode, new_i_size); 418 inode->i_ctime = inode->i_mtime = current_time(inode); 419 420 di = (struct ocfs2_dinode *) fe_bh->b_data; 421 di->i_size = cpu_to_le64(new_i_size); 422 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 423 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 424 ocfs2_update_inode_fsync_trans(handle, inode, 0); 425 426 ocfs2_journal_dirty(handle, fe_bh); 427 428 out_commit: 429 ocfs2_commit_trans(osb, handle); 430 out: 431 return status; 432 } 433 434 int ocfs2_truncate_file(struct inode *inode, 435 struct buffer_head *di_bh, 436 u64 new_i_size) 437 { 438 int status = 0; 439 struct ocfs2_dinode *fe = NULL; 440 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 441 442 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 443 * already validated it */ 444 fe = (struct ocfs2_dinode *) di_bh->b_data; 445 446 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 447 (unsigned long long)le64_to_cpu(fe->i_size), 448 (unsigned long long)new_i_size); 449 450 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 451 "Inode %llu, inode i_size = %lld != di " 452 "i_size = %llu, i_flags = 0x%x\n", 453 (unsigned long long)OCFS2_I(inode)->ip_blkno, 454 i_size_read(inode), 455 (unsigned long long)le64_to_cpu(fe->i_size), 456 le32_to_cpu(fe->i_flags)); 457 458 if (new_i_size > le64_to_cpu(fe->i_size)) { 459 trace_ocfs2_truncate_file_error( 460 (unsigned long long)le64_to_cpu(fe->i_size), 461 (unsigned long long)new_i_size); 462 status = -EINVAL; 463 mlog_errno(status); 464 goto bail; 465 } 466 467 down_write(&OCFS2_I(inode)->ip_alloc_sem); 468 469 ocfs2_resv_discard(&osb->osb_la_resmap, 470 &OCFS2_I(inode)->ip_la_data_resv); 471 472 /* 473 * The inode lock forced other nodes to sync and drop their 474 * pages, which (correctly) happens even if we have a truncate 475 * without allocation change - ocfs2 cluster sizes can be much 476 * greater than page size, so we have to truncate them 477 * anyway. 478 */ 479 480 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 481 unmap_mapping_range(inode->i_mapping, 482 new_i_size + PAGE_SIZE - 1, 0, 1); 483 truncate_inode_pages(inode->i_mapping, new_i_size); 484 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 485 i_size_read(inode), 1); 486 if (status) 487 mlog_errno(status); 488 489 goto bail_unlock_sem; 490 } 491 492 /* alright, we're going to need to do a full blown alloc size 493 * change. Orphan the inode so that recovery can complete the 494 * truncate if necessary. This does the task of marking 495 * i_size. */ 496 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 497 if (status < 0) { 498 mlog_errno(status); 499 goto bail_unlock_sem; 500 } 501 502 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 503 truncate_inode_pages(inode->i_mapping, new_i_size); 504 505 status = ocfs2_commit_truncate(osb, inode, di_bh); 506 if (status < 0) { 507 mlog_errno(status); 508 goto bail_unlock_sem; 509 } 510 511 /* TODO: orphan dir cleanup here. */ 512 bail_unlock_sem: 513 up_write(&OCFS2_I(inode)->ip_alloc_sem); 514 515 bail: 516 if (!status && OCFS2_I(inode)->ip_clusters == 0) 517 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 518 519 return status; 520 } 521 522 /* 523 * extend file allocation only here. 524 * we'll update all the disk stuff, and oip->alloc_size 525 * 526 * expect stuff to be locked, a transaction started and enough data / 527 * metadata reservations in the contexts. 528 * 529 * Will return -EAGAIN, and a reason if a restart is needed. 530 * If passed in, *reason will always be set, even in error. 531 */ 532 int ocfs2_add_inode_data(struct ocfs2_super *osb, 533 struct inode *inode, 534 u32 *logical_offset, 535 u32 clusters_to_add, 536 int mark_unwritten, 537 struct buffer_head *fe_bh, 538 handle_t *handle, 539 struct ocfs2_alloc_context *data_ac, 540 struct ocfs2_alloc_context *meta_ac, 541 enum ocfs2_alloc_restarted *reason_ret) 542 { 543 int ret; 544 struct ocfs2_extent_tree et; 545 546 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 547 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 548 clusters_to_add, mark_unwritten, 549 data_ac, meta_ac, reason_ret); 550 551 return ret; 552 } 553 554 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 555 u32 clusters_to_add, int mark_unwritten) 556 { 557 int status = 0; 558 int restart_func = 0; 559 int credits; 560 u32 prev_clusters; 561 struct buffer_head *bh = NULL; 562 struct ocfs2_dinode *fe = NULL; 563 handle_t *handle = NULL; 564 struct ocfs2_alloc_context *data_ac = NULL; 565 struct ocfs2_alloc_context *meta_ac = NULL; 566 enum ocfs2_alloc_restarted why = RESTART_NONE; 567 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 568 struct ocfs2_extent_tree et; 569 int did_quota = 0; 570 571 /* 572 * Unwritten extent only exists for file systems which 573 * support holes. 574 */ 575 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 576 577 status = ocfs2_read_inode_block(inode, &bh); 578 if (status < 0) { 579 mlog_errno(status); 580 goto leave; 581 } 582 fe = (struct ocfs2_dinode *) bh->b_data; 583 584 restart_all: 585 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 586 587 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 588 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 589 &data_ac, &meta_ac); 590 if (status) { 591 mlog_errno(status); 592 goto leave; 593 } 594 595 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); 596 handle = ocfs2_start_trans(osb, credits); 597 if (IS_ERR(handle)) { 598 status = PTR_ERR(handle); 599 handle = NULL; 600 mlog_errno(status); 601 goto leave; 602 } 603 604 restarted_transaction: 605 trace_ocfs2_extend_allocation( 606 (unsigned long long)OCFS2_I(inode)->ip_blkno, 607 (unsigned long long)i_size_read(inode), 608 le32_to_cpu(fe->i_clusters), clusters_to_add, 609 why, restart_func); 610 611 status = dquot_alloc_space_nodirty(inode, 612 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 613 if (status) 614 goto leave; 615 did_quota = 1; 616 617 /* reserve a write to the file entry early on - that we if we 618 * run out of credits in the allocation path, we can still 619 * update i_size. */ 620 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 621 OCFS2_JOURNAL_ACCESS_WRITE); 622 if (status < 0) { 623 mlog_errno(status); 624 goto leave; 625 } 626 627 prev_clusters = OCFS2_I(inode)->ip_clusters; 628 629 status = ocfs2_add_inode_data(osb, 630 inode, 631 &logical_start, 632 clusters_to_add, 633 mark_unwritten, 634 bh, 635 handle, 636 data_ac, 637 meta_ac, 638 &why); 639 if ((status < 0) && (status != -EAGAIN)) { 640 if (status != -ENOSPC) 641 mlog_errno(status); 642 goto leave; 643 } 644 ocfs2_update_inode_fsync_trans(handle, inode, 1); 645 ocfs2_journal_dirty(handle, bh); 646 647 spin_lock(&OCFS2_I(inode)->ip_lock); 648 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 649 spin_unlock(&OCFS2_I(inode)->ip_lock); 650 /* Release unused quota reservation */ 651 dquot_free_space(inode, 652 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 653 did_quota = 0; 654 655 if (why != RESTART_NONE && clusters_to_add) { 656 if (why == RESTART_META) { 657 restart_func = 1; 658 status = 0; 659 } else { 660 BUG_ON(why != RESTART_TRANS); 661 662 status = ocfs2_allocate_extend_trans(handle, 1); 663 if (status < 0) { 664 /* handle still has to be committed at 665 * this point. */ 666 status = -ENOMEM; 667 mlog_errno(status); 668 goto leave; 669 } 670 goto restarted_transaction; 671 } 672 } 673 674 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 675 le32_to_cpu(fe->i_clusters), 676 (unsigned long long)le64_to_cpu(fe->i_size), 677 OCFS2_I(inode)->ip_clusters, 678 (unsigned long long)i_size_read(inode)); 679 680 leave: 681 if (status < 0 && did_quota) 682 dquot_free_space(inode, 683 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 684 if (handle) { 685 ocfs2_commit_trans(osb, handle); 686 handle = NULL; 687 } 688 if (data_ac) { 689 ocfs2_free_alloc_context(data_ac); 690 data_ac = NULL; 691 } 692 if (meta_ac) { 693 ocfs2_free_alloc_context(meta_ac); 694 meta_ac = NULL; 695 } 696 if ((!status) && restart_func) { 697 restart_func = 0; 698 goto restart_all; 699 } 700 brelse(bh); 701 bh = NULL; 702 703 return status; 704 } 705 706 /* 707 * While a write will already be ordering the data, a truncate will not. 708 * Thus, we need to explicitly order the zeroed pages. 709 */ 710 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, 711 struct buffer_head *di_bh, 712 loff_t start_byte, 713 loff_t length) 714 { 715 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 716 handle_t *handle = NULL; 717 int ret = 0; 718 719 if (!ocfs2_should_order_data(inode)) 720 goto out; 721 722 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 723 if (IS_ERR(handle)) { 724 ret = -ENOMEM; 725 mlog_errno(ret); 726 goto out; 727 } 728 729 ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length); 730 if (ret < 0) { 731 mlog_errno(ret); 732 goto out; 733 } 734 735 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 736 OCFS2_JOURNAL_ACCESS_WRITE); 737 if (ret) 738 mlog_errno(ret); 739 ocfs2_update_inode_fsync_trans(handle, inode, 1); 740 741 out: 742 if (ret) { 743 if (!IS_ERR(handle)) 744 ocfs2_commit_trans(osb, handle); 745 handle = ERR_PTR(ret); 746 } 747 return handle; 748 } 749 750 /* Some parts of this taken from generic_cont_expand, which turned out 751 * to be too fragile to do exactly what we need without us having to 752 * worry about recursive locking in ->write_begin() and ->write_end(). */ 753 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 754 u64 abs_to, struct buffer_head *di_bh) 755 { 756 struct address_space *mapping = inode->i_mapping; 757 struct page *page; 758 unsigned long index = abs_from >> PAGE_SHIFT; 759 handle_t *handle; 760 int ret = 0; 761 unsigned zero_from, zero_to, block_start, block_end; 762 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 763 764 BUG_ON(abs_from >= abs_to); 765 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT)); 766 BUG_ON(abs_from & (inode->i_blkbits - 1)); 767 768 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh, 769 abs_from, 770 abs_to - abs_from); 771 if (IS_ERR(handle)) { 772 ret = PTR_ERR(handle); 773 goto out; 774 } 775 776 page = find_or_create_page(mapping, index, GFP_NOFS); 777 if (!page) { 778 ret = -ENOMEM; 779 mlog_errno(ret); 780 goto out_commit_trans; 781 } 782 783 /* Get the offsets within the page that we want to zero */ 784 zero_from = abs_from & (PAGE_SIZE - 1); 785 zero_to = abs_to & (PAGE_SIZE - 1); 786 if (!zero_to) 787 zero_to = PAGE_SIZE; 788 789 trace_ocfs2_write_zero_page( 790 (unsigned long long)OCFS2_I(inode)->ip_blkno, 791 (unsigned long long)abs_from, 792 (unsigned long long)abs_to, 793 index, zero_from, zero_to); 794 795 /* We know that zero_from is block aligned */ 796 for (block_start = zero_from; block_start < zero_to; 797 block_start = block_end) { 798 block_end = block_start + i_blocksize(inode); 799 800 /* 801 * block_start is block-aligned. Bump it by one to force 802 * __block_write_begin and block_commit_write to zero the 803 * whole block. 804 */ 805 ret = __block_write_begin(page, block_start + 1, 0, 806 ocfs2_get_block); 807 if (ret < 0) { 808 mlog_errno(ret); 809 goto out_unlock; 810 } 811 812 813 /* must not update i_size! */ 814 ret = block_commit_write(page, block_start + 1, 815 block_start + 1); 816 if (ret < 0) 817 mlog_errno(ret); 818 else 819 ret = 0; 820 } 821 822 /* 823 * fs-writeback will release the dirty pages without page lock 824 * whose offset are over inode size, the release happens at 825 * block_write_full_page(). 826 */ 827 i_size_write(inode, abs_to); 828 inode->i_blocks = ocfs2_inode_sector_count(inode); 829 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 830 inode->i_mtime = inode->i_ctime = current_time(inode); 831 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 832 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 833 di->i_mtime_nsec = di->i_ctime_nsec; 834 if (handle) { 835 ocfs2_journal_dirty(handle, di_bh); 836 ocfs2_update_inode_fsync_trans(handle, inode, 1); 837 } 838 839 out_unlock: 840 unlock_page(page); 841 put_page(page); 842 out_commit_trans: 843 if (handle) 844 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 845 out: 846 return ret; 847 } 848 849 /* 850 * Find the next range to zero. We do this in terms of bytes because 851 * that's what ocfs2_zero_extend() wants, and it is dealing with the 852 * pagecache. We may return multiple extents. 853 * 854 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 855 * needs to be zeroed. range_start and range_end return the next zeroing 856 * range. A subsequent call should pass the previous range_end as its 857 * zero_start. If range_end is 0, there's nothing to do. 858 * 859 * Unwritten extents are skipped over. Refcounted extents are CoWd. 860 */ 861 static int ocfs2_zero_extend_get_range(struct inode *inode, 862 struct buffer_head *di_bh, 863 u64 zero_start, u64 zero_end, 864 u64 *range_start, u64 *range_end) 865 { 866 int rc = 0, needs_cow = 0; 867 u32 p_cpos, zero_clusters = 0; 868 u32 zero_cpos = 869 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 870 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 871 unsigned int num_clusters = 0; 872 unsigned int ext_flags = 0; 873 874 while (zero_cpos < last_cpos) { 875 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 876 &num_clusters, &ext_flags); 877 if (rc) { 878 mlog_errno(rc); 879 goto out; 880 } 881 882 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 883 zero_clusters = num_clusters; 884 if (ext_flags & OCFS2_EXT_REFCOUNTED) 885 needs_cow = 1; 886 break; 887 } 888 889 zero_cpos += num_clusters; 890 } 891 if (!zero_clusters) { 892 *range_end = 0; 893 goto out; 894 } 895 896 while ((zero_cpos + zero_clusters) < last_cpos) { 897 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 898 &p_cpos, &num_clusters, 899 &ext_flags); 900 if (rc) { 901 mlog_errno(rc); 902 goto out; 903 } 904 905 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 906 break; 907 if (ext_flags & OCFS2_EXT_REFCOUNTED) 908 needs_cow = 1; 909 zero_clusters += num_clusters; 910 } 911 if ((zero_cpos + zero_clusters) > last_cpos) 912 zero_clusters = last_cpos - zero_cpos; 913 914 if (needs_cow) { 915 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, 916 zero_clusters, UINT_MAX); 917 if (rc) { 918 mlog_errno(rc); 919 goto out; 920 } 921 } 922 923 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 924 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 925 zero_cpos + zero_clusters); 926 927 out: 928 return rc; 929 } 930 931 /* 932 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 933 * has made sure that the entire range needs zeroing. 934 */ 935 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 936 u64 range_end, struct buffer_head *di_bh) 937 { 938 int rc = 0; 939 u64 next_pos; 940 u64 zero_pos = range_start; 941 942 trace_ocfs2_zero_extend_range( 943 (unsigned long long)OCFS2_I(inode)->ip_blkno, 944 (unsigned long long)range_start, 945 (unsigned long long)range_end); 946 BUG_ON(range_start >= range_end); 947 948 while (zero_pos < range_end) { 949 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE; 950 if (next_pos > range_end) 951 next_pos = range_end; 952 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); 953 if (rc < 0) { 954 mlog_errno(rc); 955 break; 956 } 957 zero_pos = next_pos; 958 959 /* 960 * Very large extends have the potential to lock up 961 * the cpu for extended periods of time. 962 */ 963 cond_resched(); 964 } 965 966 return rc; 967 } 968 969 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 970 loff_t zero_to_size) 971 { 972 int ret = 0; 973 u64 zero_start, range_start = 0, range_end = 0; 974 struct super_block *sb = inode->i_sb; 975 976 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 977 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 978 (unsigned long long)zero_start, 979 (unsigned long long)i_size_read(inode)); 980 while (zero_start < zero_to_size) { 981 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 982 zero_to_size, 983 &range_start, 984 &range_end); 985 if (ret) { 986 mlog_errno(ret); 987 break; 988 } 989 if (!range_end) 990 break; 991 /* Trim the ends */ 992 if (range_start < zero_start) 993 range_start = zero_start; 994 if (range_end > zero_to_size) 995 range_end = zero_to_size; 996 997 ret = ocfs2_zero_extend_range(inode, range_start, 998 range_end, di_bh); 999 if (ret) { 1000 mlog_errno(ret); 1001 break; 1002 } 1003 zero_start = range_end; 1004 } 1005 1006 return ret; 1007 } 1008 1009 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 1010 u64 new_i_size, u64 zero_to) 1011 { 1012 int ret; 1013 u32 clusters_to_add; 1014 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1015 1016 /* 1017 * Only quota files call this without a bh, and they can't be 1018 * refcounted. 1019 */ 1020 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode)); 1021 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1022 1023 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1024 if (clusters_to_add < oi->ip_clusters) 1025 clusters_to_add = 0; 1026 else 1027 clusters_to_add -= oi->ip_clusters; 1028 1029 if (clusters_to_add) { 1030 ret = ocfs2_extend_allocation(inode, oi->ip_clusters, 1031 clusters_to_add, 0); 1032 if (ret) { 1033 mlog_errno(ret); 1034 goto out; 1035 } 1036 } 1037 1038 /* 1039 * Call this even if we don't add any clusters to the tree. We 1040 * still need to zero the area between the old i_size and the 1041 * new i_size. 1042 */ 1043 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1044 if (ret < 0) 1045 mlog_errno(ret); 1046 1047 out: 1048 return ret; 1049 } 1050 1051 static int ocfs2_extend_file(struct inode *inode, 1052 struct buffer_head *di_bh, 1053 u64 new_i_size) 1054 { 1055 int ret = 0; 1056 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1057 1058 BUG_ON(!di_bh); 1059 1060 /* setattr sometimes calls us like this. */ 1061 if (new_i_size == 0) 1062 goto out; 1063 1064 if (i_size_read(inode) == new_i_size) 1065 goto out; 1066 BUG_ON(new_i_size < i_size_read(inode)); 1067 1068 /* 1069 * The alloc sem blocks people in read/write from reading our 1070 * allocation until we're done changing it. We depend on 1071 * i_mutex to block other extend/truncate calls while we're 1072 * here. We even have to hold it for sparse files because there 1073 * might be some tail zeroing. 1074 */ 1075 down_write(&oi->ip_alloc_sem); 1076 1077 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1078 /* 1079 * We can optimize small extends by keeping the inodes 1080 * inline data. 1081 */ 1082 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1083 up_write(&oi->ip_alloc_sem); 1084 goto out_update_size; 1085 } 1086 1087 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1088 if (ret) { 1089 up_write(&oi->ip_alloc_sem); 1090 mlog_errno(ret); 1091 goto out; 1092 } 1093 } 1094 1095 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1096 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1097 else 1098 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1099 new_i_size); 1100 1101 up_write(&oi->ip_alloc_sem); 1102 1103 if (ret < 0) { 1104 mlog_errno(ret); 1105 goto out; 1106 } 1107 1108 out_update_size: 1109 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1110 if (ret < 0) 1111 mlog_errno(ret); 1112 1113 out: 1114 return ret; 1115 } 1116 1117 int ocfs2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 1118 struct iattr *attr) 1119 { 1120 int status = 0, size_change; 1121 int inode_locked = 0; 1122 struct inode *inode = d_inode(dentry); 1123 struct super_block *sb = inode->i_sb; 1124 struct ocfs2_super *osb = OCFS2_SB(sb); 1125 struct buffer_head *bh = NULL; 1126 handle_t *handle = NULL; 1127 struct dquot *transfer_to[MAXQUOTAS] = { }; 1128 int qtype; 1129 int had_lock; 1130 struct ocfs2_lock_holder oh; 1131 1132 trace_ocfs2_setattr(inode, dentry, 1133 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1134 dentry->d_name.len, dentry->d_name.name, 1135 attr->ia_valid, attr->ia_mode, 1136 from_kuid(&init_user_ns, attr->ia_uid), 1137 from_kgid(&init_user_ns, attr->ia_gid)); 1138 1139 /* ensuring we don't even attempt to truncate a symlink */ 1140 if (S_ISLNK(inode->i_mode)) 1141 attr->ia_valid &= ~ATTR_SIZE; 1142 1143 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1144 | ATTR_GID | ATTR_UID | ATTR_MODE) 1145 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1146 return 0; 1147 1148 status = setattr_prepare(&init_user_ns, dentry, attr); 1149 if (status) 1150 return status; 1151 1152 if (is_quota_modification(inode, attr)) { 1153 status = dquot_initialize(inode); 1154 if (status) 1155 return status; 1156 } 1157 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1158 if (size_change) { 1159 /* 1160 * Here we should wait dio to finish before inode lock 1161 * to avoid a deadlock between ocfs2_setattr() and 1162 * ocfs2_dio_end_io_write() 1163 */ 1164 inode_dio_wait(inode); 1165 1166 status = ocfs2_rw_lock(inode, 1); 1167 if (status < 0) { 1168 mlog_errno(status); 1169 goto bail; 1170 } 1171 } 1172 1173 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh); 1174 if (had_lock < 0) { 1175 status = had_lock; 1176 goto bail_unlock_rw; 1177 } else if (had_lock) { 1178 /* 1179 * As far as we know, ocfs2_setattr() could only be the first 1180 * VFS entry point in the call chain of recursive cluster 1181 * locking issue. 1182 * 1183 * For instance: 1184 * chmod_common() 1185 * notify_change() 1186 * ocfs2_setattr() 1187 * posix_acl_chmod() 1188 * ocfs2_iop_get_acl() 1189 * 1190 * But, we're not 100% sure if it's always true, because the 1191 * ordering of the VFS entry points in the call chain is out 1192 * of our control. So, we'd better dump the stack here to 1193 * catch the other cases of recursive locking. 1194 */ 1195 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1196 dump_stack(); 1197 } 1198 inode_locked = 1; 1199 1200 if (size_change) { 1201 status = inode_newsize_ok(inode, attr->ia_size); 1202 if (status) 1203 goto bail_unlock; 1204 1205 if (i_size_read(inode) >= attr->ia_size) { 1206 if (ocfs2_should_order_data(inode)) { 1207 status = ocfs2_begin_ordered_truncate(inode, 1208 attr->ia_size); 1209 if (status) 1210 goto bail_unlock; 1211 } 1212 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1213 } else 1214 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1215 if (status < 0) { 1216 if (status != -ENOSPC) 1217 mlog_errno(status); 1218 status = -ENOSPC; 1219 goto bail_unlock; 1220 } 1221 } 1222 1223 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1224 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1225 /* 1226 * Gather pointers to quota structures so that allocation / 1227 * freeing of quota structures happens here and not inside 1228 * dquot_transfer() where we have problems with lock ordering 1229 */ 1230 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1231 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1232 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1233 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1234 if (IS_ERR(transfer_to[USRQUOTA])) { 1235 status = PTR_ERR(transfer_to[USRQUOTA]); 1236 transfer_to[USRQUOTA] = NULL; 1237 goto bail_unlock; 1238 } 1239 } 1240 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1241 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1242 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1243 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1244 if (IS_ERR(transfer_to[GRPQUOTA])) { 1245 status = PTR_ERR(transfer_to[GRPQUOTA]); 1246 transfer_to[GRPQUOTA] = NULL; 1247 goto bail_unlock; 1248 } 1249 } 1250 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1251 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1252 2 * ocfs2_quota_trans_credits(sb)); 1253 if (IS_ERR(handle)) { 1254 status = PTR_ERR(handle); 1255 mlog_errno(status); 1256 goto bail_unlock_alloc; 1257 } 1258 status = __dquot_transfer(inode, transfer_to); 1259 if (status < 0) 1260 goto bail_commit; 1261 } else { 1262 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1263 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1264 if (IS_ERR(handle)) { 1265 status = PTR_ERR(handle); 1266 mlog_errno(status); 1267 goto bail_unlock_alloc; 1268 } 1269 } 1270 1271 setattr_copy(&init_user_ns, inode, attr); 1272 mark_inode_dirty(inode); 1273 1274 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1275 if (status < 0) 1276 mlog_errno(status); 1277 1278 bail_commit: 1279 ocfs2_commit_trans(osb, handle); 1280 bail_unlock_alloc: 1281 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1282 bail_unlock: 1283 if (status && inode_locked) { 1284 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1285 inode_locked = 0; 1286 } 1287 bail_unlock_rw: 1288 if (size_change) 1289 ocfs2_rw_unlock(inode, 1); 1290 bail: 1291 1292 /* Release quota pointers in case we acquired them */ 1293 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) 1294 dqput(transfer_to[qtype]); 1295 1296 if (!status && attr->ia_valid & ATTR_MODE) { 1297 status = ocfs2_acl_chmod(inode, bh); 1298 if (status < 0) 1299 mlog_errno(status); 1300 } 1301 if (inode_locked) 1302 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1303 1304 brelse(bh); 1305 return status; 1306 } 1307 1308 int ocfs2_getattr(struct user_namespace *mnt_userns, const struct path *path, 1309 struct kstat *stat, u32 request_mask, unsigned int flags) 1310 { 1311 struct inode *inode = d_inode(path->dentry); 1312 struct super_block *sb = path->dentry->d_sb; 1313 struct ocfs2_super *osb = sb->s_fs_info; 1314 int err; 1315 1316 err = ocfs2_inode_revalidate(path->dentry); 1317 if (err) { 1318 if (err != -ENOENT) 1319 mlog_errno(err); 1320 goto bail; 1321 } 1322 1323 generic_fillattr(&init_user_ns, inode, stat); 1324 /* 1325 * If there is inline data in the inode, the inode will normally not 1326 * have data blocks allocated (it may have an external xattr block). 1327 * Report at least one sector for such files, so tools like tar, rsync, 1328 * others don't incorrectly think the file is completely sparse. 1329 */ 1330 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1331 stat->blocks += (stat->size + 511)>>9; 1332 1333 /* We set the blksize from the cluster size for performance */ 1334 stat->blksize = osb->s_clustersize; 1335 1336 bail: 1337 return err; 1338 } 1339 1340 int ocfs2_permission(struct user_namespace *mnt_userns, struct inode *inode, 1341 int mask) 1342 { 1343 int ret, had_lock; 1344 struct ocfs2_lock_holder oh; 1345 1346 if (mask & MAY_NOT_BLOCK) 1347 return -ECHILD; 1348 1349 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh); 1350 if (had_lock < 0) { 1351 ret = had_lock; 1352 goto out; 1353 } else if (had_lock) { 1354 /* See comments in ocfs2_setattr() for details. 1355 * The call chain of this case could be: 1356 * do_sys_open() 1357 * may_open() 1358 * inode_permission() 1359 * ocfs2_permission() 1360 * ocfs2_iop_get_acl() 1361 */ 1362 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1363 dump_stack(); 1364 } 1365 1366 ret = generic_permission(&init_user_ns, inode, mask); 1367 1368 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock); 1369 out: 1370 return ret; 1371 } 1372 1373 static int __ocfs2_write_remove_suid(struct inode *inode, 1374 struct buffer_head *bh) 1375 { 1376 int ret; 1377 handle_t *handle; 1378 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1379 struct ocfs2_dinode *di; 1380 1381 trace_ocfs2_write_remove_suid( 1382 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1383 inode->i_mode); 1384 1385 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1386 if (IS_ERR(handle)) { 1387 ret = PTR_ERR(handle); 1388 mlog_errno(ret); 1389 goto out; 1390 } 1391 1392 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1393 OCFS2_JOURNAL_ACCESS_WRITE); 1394 if (ret < 0) { 1395 mlog_errno(ret); 1396 goto out_trans; 1397 } 1398 1399 inode->i_mode &= ~S_ISUID; 1400 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1401 inode->i_mode &= ~S_ISGID; 1402 1403 di = (struct ocfs2_dinode *) bh->b_data; 1404 di->i_mode = cpu_to_le16(inode->i_mode); 1405 ocfs2_update_inode_fsync_trans(handle, inode, 0); 1406 1407 ocfs2_journal_dirty(handle, bh); 1408 1409 out_trans: 1410 ocfs2_commit_trans(osb, handle); 1411 out: 1412 return ret; 1413 } 1414 1415 static int ocfs2_write_remove_suid(struct inode *inode) 1416 { 1417 int ret; 1418 struct buffer_head *bh = NULL; 1419 1420 ret = ocfs2_read_inode_block(inode, &bh); 1421 if (ret < 0) { 1422 mlog_errno(ret); 1423 goto out; 1424 } 1425 1426 ret = __ocfs2_write_remove_suid(inode, bh); 1427 out: 1428 brelse(bh); 1429 return ret; 1430 } 1431 1432 /* 1433 * Allocate enough extents to cover the region starting at byte offset 1434 * start for len bytes. Existing extents are skipped, any extents 1435 * added are marked as "unwritten". 1436 */ 1437 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1438 u64 start, u64 len) 1439 { 1440 int ret; 1441 u32 cpos, phys_cpos, clusters, alloc_size; 1442 u64 end = start + len; 1443 struct buffer_head *di_bh = NULL; 1444 1445 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1446 ret = ocfs2_read_inode_block(inode, &di_bh); 1447 if (ret) { 1448 mlog_errno(ret); 1449 goto out; 1450 } 1451 1452 /* 1453 * Nothing to do if the requested reservation range 1454 * fits within the inode. 1455 */ 1456 if (ocfs2_size_fits_inline_data(di_bh, end)) 1457 goto out; 1458 1459 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1460 if (ret) { 1461 mlog_errno(ret); 1462 goto out; 1463 } 1464 } 1465 1466 /* 1467 * We consider both start and len to be inclusive. 1468 */ 1469 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1470 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1471 clusters -= cpos; 1472 1473 while (clusters) { 1474 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1475 &alloc_size, NULL); 1476 if (ret) { 1477 mlog_errno(ret); 1478 goto out; 1479 } 1480 1481 /* 1482 * Hole or existing extent len can be arbitrary, so 1483 * cap it to our own allocation request. 1484 */ 1485 if (alloc_size > clusters) 1486 alloc_size = clusters; 1487 1488 if (phys_cpos) { 1489 /* 1490 * We already have an allocation at this 1491 * region so we can safely skip it. 1492 */ 1493 goto next; 1494 } 1495 1496 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1497 if (ret) { 1498 if (ret != -ENOSPC) 1499 mlog_errno(ret); 1500 goto out; 1501 } 1502 1503 next: 1504 cpos += alloc_size; 1505 clusters -= alloc_size; 1506 } 1507 1508 ret = 0; 1509 out: 1510 1511 brelse(di_bh); 1512 return ret; 1513 } 1514 1515 /* 1516 * Truncate a byte range, avoiding pages within partial clusters. This 1517 * preserves those pages for the zeroing code to write to. 1518 */ 1519 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1520 u64 byte_len) 1521 { 1522 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1523 loff_t start, end; 1524 struct address_space *mapping = inode->i_mapping; 1525 1526 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1527 end = byte_start + byte_len; 1528 end = end & ~(osb->s_clustersize - 1); 1529 1530 if (start < end) { 1531 unmap_mapping_range(mapping, start, end - start, 0); 1532 truncate_inode_pages_range(mapping, start, end - 1); 1533 } 1534 } 1535 1536 /* 1537 * zero out partial blocks of one cluster. 1538 * 1539 * start: file offset where zero starts, will be made upper block aligned. 1540 * len: it will be trimmed to the end of current cluster if "start + len" 1541 * is bigger than it. 1542 */ 1543 static int ocfs2_zeroout_partial_cluster(struct inode *inode, 1544 u64 start, u64 len) 1545 { 1546 int ret; 1547 u64 start_block, end_block, nr_blocks; 1548 u64 p_block, offset; 1549 u32 cluster, p_cluster, nr_clusters; 1550 struct super_block *sb = inode->i_sb; 1551 u64 end = ocfs2_align_bytes_to_clusters(sb, start); 1552 1553 if (start + len < end) 1554 end = start + len; 1555 1556 start_block = ocfs2_blocks_for_bytes(sb, start); 1557 end_block = ocfs2_blocks_for_bytes(sb, end); 1558 nr_blocks = end_block - start_block; 1559 if (!nr_blocks) 1560 return 0; 1561 1562 cluster = ocfs2_bytes_to_clusters(sb, start); 1563 ret = ocfs2_get_clusters(inode, cluster, &p_cluster, 1564 &nr_clusters, NULL); 1565 if (ret) 1566 return ret; 1567 if (!p_cluster) 1568 return 0; 1569 1570 offset = start_block - ocfs2_clusters_to_blocks(sb, cluster); 1571 p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset; 1572 return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS); 1573 } 1574 1575 static int ocfs2_zero_partial_clusters(struct inode *inode, 1576 u64 start, u64 len) 1577 { 1578 int ret = 0; 1579 u64 tmpend = 0; 1580 u64 end = start + len; 1581 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1582 unsigned int csize = osb->s_clustersize; 1583 handle_t *handle; 1584 loff_t isize = i_size_read(inode); 1585 1586 /* 1587 * The "start" and "end" values are NOT necessarily part of 1588 * the range whose allocation is being deleted. Rather, this 1589 * is what the user passed in with the request. We must zero 1590 * partial clusters here. There's no need to worry about 1591 * physical allocation - the zeroing code knows to skip holes. 1592 */ 1593 trace_ocfs2_zero_partial_clusters( 1594 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1595 (unsigned long long)start, (unsigned long long)end); 1596 1597 /* 1598 * If both edges are on a cluster boundary then there's no 1599 * zeroing required as the region is part of the allocation to 1600 * be truncated. 1601 */ 1602 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1603 goto out; 1604 1605 /* No page cache for EOF blocks, issue zero out to disk. */ 1606 if (end > isize) { 1607 /* 1608 * zeroout eof blocks in last cluster starting from 1609 * "isize" even "start" > "isize" because it is 1610 * complicated to zeroout just at "start" as "start" 1611 * may be not aligned with block size, buffer write 1612 * would be required to do that, but out of eof buffer 1613 * write is not supported. 1614 */ 1615 ret = ocfs2_zeroout_partial_cluster(inode, isize, 1616 end - isize); 1617 if (ret) { 1618 mlog_errno(ret); 1619 goto out; 1620 } 1621 if (start >= isize) 1622 goto out; 1623 end = isize; 1624 } 1625 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1626 if (IS_ERR(handle)) { 1627 ret = PTR_ERR(handle); 1628 mlog_errno(ret); 1629 goto out; 1630 } 1631 1632 /* 1633 * If start is on a cluster boundary and end is somewhere in another 1634 * cluster, we have not COWed the cluster starting at start, unless 1635 * end is also within the same cluster. So, in this case, we skip this 1636 * first call to ocfs2_zero_range_for_truncate() truncate and move on 1637 * to the next one. 1638 */ 1639 if ((start & (csize - 1)) != 0) { 1640 /* 1641 * We want to get the byte offset of the end of the 1st 1642 * cluster. 1643 */ 1644 tmpend = (u64)osb->s_clustersize + 1645 (start & ~(osb->s_clustersize - 1)); 1646 if (tmpend > end) 1647 tmpend = end; 1648 1649 trace_ocfs2_zero_partial_clusters_range1( 1650 (unsigned long long)start, 1651 (unsigned long long)tmpend); 1652 1653 ret = ocfs2_zero_range_for_truncate(inode, handle, start, 1654 tmpend); 1655 if (ret) 1656 mlog_errno(ret); 1657 } 1658 1659 if (tmpend < end) { 1660 /* 1661 * This may make start and end equal, but the zeroing 1662 * code will skip any work in that case so there's no 1663 * need to catch it up here. 1664 */ 1665 start = end & ~(osb->s_clustersize - 1); 1666 1667 trace_ocfs2_zero_partial_clusters_range2( 1668 (unsigned long long)start, (unsigned long long)end); 1669 1670 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1671 if (ret) 1672 mlog_errno(ret); 1673 } 1674 ocfs2_update_inode_fsync_trans(handle, inode, 1); 1675 1676 ocfs2_commit_trans(osb, handle); 1677 out: 1678 return ret; 1679 } 1680 1681 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1682 { 1683 int i; 1684 struct ocfs2_extent_rec *rec = NULL; 1685 1686 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1687 1688 rec = &el->l_recs[i]; 1689 1690 if (le32_to_cpu(rec->e_cpos) < pos) 1691 break; 1692 } 1693 1694 return i; 1695 } 1696 1697 /* 1698 * Helper to calculate the punching pos and length in one run, we handle the 1699 * following three cases in order: 1700 * 1701 * - remove the entire record 1702 * - remove a partial record 1703 * - no record needs to be removed (hole-punching completed) 1704 */ 1705 static void ocfs2_calc_trunc_pos(struct inode *inode, 1706 struct ocfs2_extent_list *el, 1707 struct ocfs2_extent_rec *rec, 1708 u32 trunc_start, u32 *trunc_cpos, 1709 u32 *trunc_len, u32 *trunc_end, 1710 u64 *blkno, int *done) 1711 { 1712 int ret = 0; 1713 u32 coff, range; 1714 1715 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1716 1717 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1718 /* 1719 * remove an entire extent record. 1720 */ 1721 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1722 /* 1723 * Skip holes if any. 1724 */ 1725 if (range < *trunc_end) 1726 *trunc_end = range; 1727 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1728 *blkno = le64_to_cpu(rec->e_blkno); 1729 *trunc_end = le32_to_cpu(rec->e_cpos); 1730 } else if (range > trunc_start) { 1731 /* 1732 * remove a partial extent record, which means we're 1733 * removing the last extent record. 1734 */ 1735 *trunc_cpos = trunc_start; 1736 /* 1737 * skip hole if any. 1738 */ 1739 if (range < *trunc_end) 1740 *trunc_end = range; 1741 *trunc_len = *trunc_end - trunc_start; 1742 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1743 *blkno = le64_to_cpu(rec->e_blkno) + 1744 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1745 *trunc_end = trunc_start; 1746 } else { 1747 /* 1748 * It may have two following possibilities: 1749 * 1750 * - last record has been removed 1751 * - trunc_start was within a hole 1752 * 1753 * both two cases mean the completion of hole punching. 1754 */ 1755 ret = 1; 1756 } 1757 1758 *done = ret; 1759 } 1760 1761 int ocfs2_remove_inode_range(struct inode *inode, 1762 struct buffer_head *di_bh, u64 byte_start, 1763 u64 byte_len) 1764 { 1765 int ret = 0, flags = 0, done = 0, i; 1766 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1767 u32 cluster_in_el; 1768 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1769 struct ocfs2_cached_dealloc_ctxt dealloc; 1770 struct address_space *mapping = inode->i_mapping; 1771 struct ocfs2_extent_tree et; 1772 struct ocfs2_path *path = NULL; 1773 struct ocfs2_extent_list *el = NULL; 1774 struct ocfs2_extent_rec *rec = NULL; 1775 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1776 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1777 1778 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1779 ocfs2_init_dealloc_ctxt(&dealloc); 1780 1781 trace_ocfs2_remove_inode_range( 1782 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1783 (unsigned long long)byte_start, 1784 (unsigned long long)byte_len); 1785 1786 if (byte_len == 0) 1787 return 0; 1788 1789 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1790 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1791 byte_start + byte_len, 0); 1792 if (ret) { 1793 mlog_errno(ret); 1794 goto out; 1795 } 1796 /* 1797 * There's no need to get fancy with the page cache 1798 * truncate of an inline-data inode. We're talking 1799 * about less than a page here, which will be cached 1800 * in the dinode buffer anyway. 1801 */ 1802 unmap_mapping_range(mapping, 0, 0, 0); 1803 truncate_inode_pages(mapping, 0); 1804 goto out; 1805 } 1806 1807 /* 1808 * For reflinks, we may need to CoW 2 clusters which might be 1809 * partially zero'd later, if hole's start and end offset were 1810 * within one cluster(means is not exactly aligned to clustersize). 1811 */ 1812 1813 if (ocfs2_is_refcount_inode(inode)) { 1814 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1815 if (ret) { 1816 mlog_errno(ret); 1817 goto out; 1818 } 1819 1820 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1821 if (ret) { 1822 mlog_errno(ret); 1823 goto out; 1824 } 1825 } 1826 1827 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1828 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1829 cluster_in_el = trunc_end; 1830 1831 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1832 if (ret) { 1833 mlog_errno(ret); 1834 goto out; 1835 } 1836 1837 path = ocfs2_new_path_from_et(&et); 1838 if (!path) { 1839 ret = -ENOMEM; 1840 mlog_errno(ret); 1841 goto out; 1842 } 1843 1844 while (trunc_end > trunc_start) { 1845 1846 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1847 cluster_in_el); 1848 if (ret) { 1849 mlog_errno(ret); 1850 goto out; 1851 } 1852 1853 el = path_leaf_el(path); 1854 1855 i = ocfs2_find_rec(el, trunc_end); 1856 /* 1857 * Need to go to previous extent block. 1858 */ 1859 if (i < 0) { 1860 if (path->p_tree_depth == 0) 1861 break; 1862 1863 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1864 path, 1865 &cluster_in_el); 1866 if (ret) { 1867 mlog_errno(ret); 1868 goto out; 1869 } 1870 1871 /* 1872 * We've reached the leftmost extent block, 1873 * it's safe to leave. 1874 */ 1875 if (cluster_in_el == 0) 1876 break; 1877 1878 /* 1879 * The 'pos' searched for previous extent block is 1880 * always one cluster less than actual trunc_end. 1881 */ 1882 trunc_end = cluster_in_el + 1; 1883 1884 ocfs2_reinit_path(path, 1); 1885 1886 continue; 1887 1888 } else 1889 rec = &el->l_recs[i]; 1890 1891 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1892 &trunc_len, &trunc_end, &blkno, &done); 1893 if (done) 1894 break; 1895 1896 flags = rec->e_flags; 1897 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1898 1899 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1900 phys_cpos, trunc_len, flags, 1901 &dealloc, refcount_loc, false); 1902 if (ret < 0) { 1903 mlog_errno(ret); 1904 goto out; 1905 } 1906 1907 cluster_in_el = trunc_end; 1908 1909 ocfs2_reinit_path(path, 1); 1910 } 1911 1912 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1913 1914 out: 1915 ocfs2_free_path(path); 1916 ocfs2_schedule_truncate_log_flush(osb, 1); 1917 ocfs2_run_deallocs(osb, &dealloc); 1918 1919 return ret; 1920 } 1921 1922 /* 1923 * Parts of this function taken from xfs_change_file_space() 1924 */ 1925 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1926 loff_t f_pos, unsigned int cmd, 1927 struct ocfs2_space_resv *sr, 1928 int change_size) 1929 { 1930 int ret; 1931 s64 llen; 1932 loff_t size, orig_isize; 1933 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1934 struct buffer_head *di_bh = NULL; 1935 handle_t *handle; 1936 unsigned long long max_off = inode->i_sb->s_maxbytes; 1937 1938 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1939 return -EROFS; 1940 1941 inode_lock(inode); 1942 1943 /* 1944 * This prevents concurrent writes on other nodes 1945 */ 1946 ret = ocfs2_rw_lock(inode, 1); 1947 if (ret) { 1948 mlog_errno(ret); 1949 goto out; 1950 } 1951 1952 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1953 if (ret) { 1954 mlog_errno(ret); 1955 goto out_rw_unlock; 1956 } 1957 1958 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1959 ret = -EPERM; 1960 goto out_inode_unlock; 1961 } 1962 1963 switch (sr->l_whence) { 1964 case 0: /*SEEK_SET*/ 1965 break; 1966 case 1: /*SEEK_CUR*/ 1967 sr->l_start += f_pos; 1968 break; 1969 case 2: /*SEEK_END*/ 1970 sr->l_start += i_size_read(inode); 1971 break; 1972 default: 1973 ret = -EINVAL; 1974 goto out_inode_unlock; 1975 } 1976 sr->l_whence = 0; 1977 1978 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1979 1980 if (sr->l_start < 0 1981 || sr->l_start > max_off 1982 || (sr->l_start + llen) < 0 1983 || (sr->l_start + llen) > max_off) { 1984 ret = -EINVAL; 1985 goto out_inode_unlock; 1986 } 1987 size = sr->l_start + sr->l_len; 1988 1989 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || 1990 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { 1991 if (sr->l_len <= 0) { 1992 ret = -EINVAL; 1993 goto out_inode_unlock; 1994 } 1995 } 1996 1997 if (file && should_remove_suid(file->f_path.dentry)) { 1998 ret = __ocfs2_write_remove_suid(inode, di_bh); 1999 if (ret) { 2000 mlog_errno(ret); 2001 goto out_inode_unlock; 2002 } 2003 } 2004 2005 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2006 switch (cmd) { 2007 case OCFS2_IOC_RESVSP: 2008 case OCFS2_IOC_RESVSP64: 2009 /* 2010 * This takes unsigned offsets, but the signed ones we 2011 * pass have been checked against overflow above. 2012 */ 2013 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 2014 sr->l_len); 2015 break; 2016 case OCFS2_IOC_UNRESVSP: 2017 case OCFS2_IOC_UNRESVSP64: 2018 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 2019 sr->l_len); 2020 break; 2021 default: 2022 ret = -EINVAL; 2023 } 2024 2025 orig_isize = i_size_read(inode); 2026 /* zeroout eof blocks in the cluster. */ 2027 if (!ret && change_size && orig_isize < size) { 2028 ret = ocfs2_zeroout_partial_cluster(inode, orig_isize, 2029 size - orig_isize); 2030 if (!ret) 2031 i_size_write(inode, size); 2032 } 2033 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2034 if (ret) { 2035 mlog_errno(ret); 2036 goto out_inode_unlock; 2037 } 2038 2039 /* 2040 * We update c/mtime for these changes 2041 */ 2042 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 2043 if (IS_ERR(handle)) { 2044 ret = PTR_ERR(handle); 2045 mlog_errno(ret); 2046 goto out_inode_unlock; 2047 } 2048 2049 inode->i_ctime = inode->i_mtime = current_time(inode); 2050 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 2051 if (ret < 0) 2052 mlog_errno(ret); 2053 2054 if (file && (file->f_flags & O_SYNC)) 2055 handle->h_sync = 1; 2056 2057 ocfs2_commit_trans(osb, handle); 2058 2059 out_inode_unlock: 2060 brelse(di_bh); 2061 ocfs2_inode_unlock(inode, 1); 2062 out_rw_unlock: 2063 ocfs2_rw_unlock(inode, 1); 2064 2065 out: 2066 inode_unlock(inode); 2067 return ret; 2068 } 2069 2070 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 2071 struct ocfs2_space_resv *sr) 2072 { 2073 struct inode *inode = file_inode(file); 2074 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2075 int ret; 2076 2077 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 2078 !ocfs2_writes_unwritten_extents(osb)) 2079 return -ENOTTY; 2080 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 2081 !ocfs2_sparse_alloc(osb)) 2082 return -ENOTTY; 2083 2084 if (!S_ISREG(inode->i_mode)) 2085 return -EINVAL; 2086 2087 if (!(file->f_mode & FMODE_WRITE)) 2088 return -EBADF; 2089 2090 ret = mnt_want_write_file(file); 2091 if (ret) 2092 return ret; 2093 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 2094 mnt_drop_write_file(file); 2095 return ret; 2096 } 2097 2098 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 2099 loff_t len) 2100 { 2101 struct inode *inode = file_inode(file); 2102 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2103 struct ocfs2_space_resv sr; 2104 int change_size = 1; 2105 int cmd = OCFS2_IOC_RESVSP64; 2106 2107 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2108 return -EOPNOTSUPP; 2109 if (!ocfs2_writes_unwritten_extents(osb)) 2110 return -EOPNOTSUPP; 2111 2112 if (mode & FALLOC_FL_KEEP_SIZE) 2113 change_size = 0; 2114 2115 if (mode & FALLOC_FL_PUNCH_HOLE) 2116 cmd = OCFS2_IOC_UNRESVSP64; 2117 2118 sr.l_whence = 0; 2119 sr.l_start = (s64)offset; 2120 sr.l_len = (s64)len; 2121 2122 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 2123 change_size); 2124 } 2125 2126 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2127 size_t count) 2128 { 2129 int ret = 0; 2130 unsigned int extent_flags; 2131 u32 cpos, clusters, extent_len, phys_cpos; 2132 struct super_block *sb = inode->i_sb; 2133 2134 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2135 !ocfs2_is_refcount_inode(inode) || 2136 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2137 return 0; 2138 2139 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2140 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2141 2142 while (clusters) { 2143 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2144 &extent_flags); 2145 if (ret < 0) { 2146 mlog_errno(ret); 2147 goto out; 2148 } 2149 2150 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2151 ret = 1; 2152 break; 2153 } 2154 2155 if (extent_len > clusters) 2156 extent_len = clusters; 2157 2158 clusters -= extent_len; 2159 cpos += extent_len; 2160 } 2161 out: 2162 return ret; 2163 } 2164 2165 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2166 { 2167 int blockmask = inode->i_sb->s_blocksize - 1; 2168 loff_t final_size = pos + count; 2169 2170 if ((pos & blockmask) || (final_size & blockmask)) 2171 return 1; 2172 return 0; 2173 } 2174 2175 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode, 2176 struct buffer_head **di_bh, 2177 int meta_level, 2178 int write_sem, 2179 int wait) 2180 { 2181 int ret = 0; 2182 2183 if (wait) 2184 ret = ocfs2_inode_lock(inode, di_bh, meta_level); 2185 else 2186 ret = ocfs2_try_inode_lock(inode, di_bh, meta_level); 2187 if (ret < 0) 2188 goto out; 2189 2190 if (wait) { 2191 if (write_sem) 2192 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2193 else 2194 down_read(&OCFS2_I(inode)->ip_alloc_sem); 2195 } else { 2196 if (write_sem) 2197 ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2198 else 2199 ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2200 2201 if (!ret) { 2202 ret = -EAGAIN; 2203 goto out_unlock; 2204 } 2205 } 2206 2207 return ret; 2208 2209 out_unlock: 2210 brelse(*di_bh); 2211 *di_bh = NULL; 2212 ocfs2_inode_unlock(inode, meta_level); 2213 out: 2214 return ret; 2215 } 2216 2217 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode, 2218 struct buffer_head **di_bh, 2219 int meta_level, 2220 int write_sem) 2221 { 2222 if (write_sem) 2223 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2224 else 2225 up_read(&OCFS2_I(inode)->ip_alloc_sem); 2226 2227 brelse(*di_bh); 2228 *di_bh = NULL; 2229 2230 if (meta_level >= 0) 2231 ocfs2_inode_unlock(inode, meta_level); 2232 } 2233 2234 static int ocfs2_prepare_inode_for_write(struct file *file, 2235 loff_t pos, size_t count, int wait) 2236 { 2237 int ret = 0, meta_level = 0, overwrite_io = 0; 2238 int write_sem = 0; 2239 struct dentry *dentry = file->f_path.dentry; 2240 struct inode *inode = d_inode(dentry); 2241 struct buffer_head *di_bh = NULL; 2242 u32 cpos; 2243 u32 clusters; 2244 2245 /* 2246 * We start with a read level meta lock and only jump to an ex 2247 * if we need to make modifications here. 2248 */ 2249 for(;;) { 2250 ret = ocfs2_inode_lock_for_extent_tree(inode, 2251 &di_bh, 2252 meta_level, 2253 write_sem, 2254 wait); 2255 if (ret < 0) { 2256 if (ret != -EAGAIN) 2257 mlog_errno(ret); 2258 goto out; 2259 } 2260 2261 /* 2262 * Check if IO will overwrite allocated blocks in case 2263 * IOCB_NOWAIT flag is set. 2264 */ 2265 if (!wait && !overwrite_io) { 2266 overwrite_io = 1; 2267 2268 ret = ocfs2_overwrite_io(inode, di_bh, pos, count); 2269 if (ret < 0) { 2270 if (ret != -EAGAIN) 2271 mlog_errno(ret); 2272 goto out_unlock; 2273 } 2274 } 2275 2276 /* Clear suid / sgid if necessary. We do this here 2277 * instead of later in the write path because 2278 * remove_suid() calls ->setattr without any hint that 2279 * we may have already done our cluster locking. Since 2280 * ocfs2_setattr() *must* take cluster locks to 2281 * proceed, this will lead us to recursively lock the 2282 * inode. There's also the dinode i_size state which 2283 * can be lost via setattr during extending writes (we 2284 * set inode->i_size at the end of a write. */ 2285 if (should_remove_suid(dentry)) { 2286 if (meta_level == 0) { 2287 ocfs2_inode_unlock_for_extent_tree(inode, 2288 &di_bh, 2289 meta_level, 2290 write_sem); 2291 meta_level = 1; 2292 continue; 2293 } 2294 2295 ret = ocfs2_write_remove_suid(inode); 2296 if (ret < 0) { 2297 mlog_errno(ret); 2298 goto out_unlock; 2299 } 2300 } 2301 2302 ret = ocfs2_check_range_for_refcount(inode, pos, count); 2303 if (ret == 1) { 2304 ocfs2_inode_unlock_for_extent_tree(inode, 2305 &di_bh, 2306 meta_level, 2307 write_sem); 2308 meta_level = 1; 2309 write_sem = 1; 2310 ret = ocfs2_inode_lock_for_extent_tree(inode, 2311 &di_bh, 2312 meta_level, 2313 write_sem, 2314 wait); 2315 if (ret < 0) { 2316 if (ret != -EAGAIN) 2317 mlog_errno(ret); 2318 goto out; 2319 } 2320 2321 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2322 clusters = 2323 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2324 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2325 } 2326 2327 if (ret < 0) { 2328 if (ret != -EAGAIN) 2329 mlog_errno(ret); 2330 goto out_unlock; 2331 } 2332 2333 break; 2334 } 2335 2336 out_unlock: 2337 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2338 pos, count, wait); 2339 2340 ocfs2_inode_unlock_for_extent_tree(inode, 2341 &di_bh, 2342 meta_level, 2343 write_sem); 2344 2345 out: 2346 return ret; 2347 } 2348 2349 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb, 2350 struct iov_iter *from) 2351 { 2352 int rw_level; 2353 ssize_t written = 0; 2354 ssize_t ret; 2355 size_t count = iov_iter_count(from); 2356 struct file *file = iocb->ki_filp; 2357 struct inode *inode = file_inode(file); 2358 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2359 int full_coherency = !(osb->s_mount_opt & 2360 OCFS2_MOUNT_COHERENCY_BUFFERED); 2361 void *saved_ki_complete = NULL; 2362 int append_write = ((iocb->ki_pos + count) >= 2363 i_size_read(inode) ? 1 : 0); 2364 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2365 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2366 2367 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry, 2368 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2369 file->f_path.dentry->d_name.len, 2370 file->f_path.dentry->d_name.name, 2371 (unsigned int)from->nr_segs); /* GRRRRR */ 2372 2373 if (!direct_io && nowait) 2374 return -EOPNOTSUPP; 2375 2376 if (count == 0) 2377 return 0; 2378 2379 if (nowait) { 2380 if (!inode_trylock(inode)) 2381 return -EAGAIN; 2382 } else 2383 inode_lock(inode); 2384 2385 /* 2386 * Concurrent O_DIRECT writes are allowed with 2387 * mount_option "coherency=buffered". 2388 * For append write, we must take rw EX. 2389 */ 2390 rw_level = (!direct_io || full_coherency || append_write); 2391 2392 if (nowait) 2393 ret = ocfs2_try_rw_lock(inode, rw_level); 2394 else 2395 ret = ocfs2_rw_lock(inode, rw_level); 2396 if (ret < 0) { 2397 if (ret != -EAGAIN) 2398 mlog_errno(ret); 2399 goto out_mutex; 2400 } 2401 2402 /* 2403 * O_DIRECT writes with "coherency=full" need to take EX cluster 2404 * inode_lock to guarantee coherency. 2405 */ 2406 if (direct_io && full_coherency) { 2407 /* 2408 * We need to take and drop the inode lock to force 2409 * other nodes to drop their caches. Buffered I/O 2410 * already does this in write_begin(). 2411 */ 2412 if (nowait) 2413 ret = ocfs2_try_inode_lock(inode, NULL, 1); 2414 else 2415 ret = ocfs2_inode_lock(inode, NULL, 1); 2416 if (ret < 0) { 2417 if (ret != -EAGAIN) 2418 mlog_errno(ret); 2419 goto out; 2420 } 2421 2422 ocfs2_inode_unlock(inode, 1); 2423 } 2424 2425 ret = generic_write_checks(iocb, from); 2426 if (ret <= 0) { 2427 if (ret) 2428 mlog_errno(ret); 2429 goto out; 2430 } 2431 count = ret; 2432 2433 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait); 2434 if (ret < 0) { 2435 if (ret != -EAGAIN) 2436 mlog_errno(ret); 2437 goto out; 2438 } 2439 2440 if (direct_io && !is_sync_kiocb(iocb) && 2441 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) { 2442 /* 2443 * Make it a sync io if it's an unaligned aio. 2444 */ 2445 saved_ki_complete = xchg(&iocb->ki_complete, NULL); 2446 } 2447 2448 /* communicate with ocfs2_dio_end_io */ 2449 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2450 2451 written = __generic_file_write_iter(iocb, from); 2452 /* buffered aio wouldn't have proper lock coverage today */ 2453 BUG_ON(written == -EIOCBQUEUED && !direct_io); 2454 2455 /* 2456 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2457 * function pointer which is called when o_direct io completes so that 2458 * it can unlock our rw lock. 2459 * Unfortunately there are error cases which call end_io and others 2460 * that don't. so we don't have to unlock the rw_lock if either an 2461 * async dio is going to do it in the future or an end_io after an 2462 * error has already done it. 2463 */ 2464 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2465 rw_level = -1; 2466 } 2467 2468 if (unlikely(written <= 0)) 2469 goto out; 2470 2471 if (((file->f_flags & O_DSYNC) && !direct_io) || 2472 IS_SYNC(inode)) { 2473 ret = filemap_fdatawrite_range(file->f_mapping, 2474 iocb->ki_pos - written, 2475 iocb->ki_pos - 1); 2476 if (ret < 0) 2477 written = ret; 2478 2479 if (!ret) { 2480 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2481 if (ret < 0) 2482 written = ret; 2483 } 2484 2485 if (!ret) 2486 ret = filemap_fdatawait_range(file->f_mapping, 2487 iocb->ki_pos - written, 2488 iocb->ki_pos - 1); 2489 } 2490 2491 out: 2492 if (saved_ki_complete) 2493 xchg(&iocb->ki_complete, saved_ki_complete); 2494 2495 if (rw_level != -1) 2496 ocfs2_rw_unlock(inode, rw_level); 2497 2498 out_mutex: 2499 inode_unlock(inode); 2500 2501 if (written) 2502 ret = written; 2503 return ret; 2504 } 2505 2506 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb, 2507 struct iov_iter *to) 2508 { 2509 int ret = 0, rw_level = -1, lock_level = 0; 2510 struct file *filp = iocb->ki_filp; 2511 struct inode *inode = file_inode(filp); 2512 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2513 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2514 2515 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry, 2516 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2517 filp->f_path.dentry->d_name.len, 2518 filp->f_path.dentry->d_name.name, 2519 to->nr_segs); /* GRRRRR */ 2520 2521 2522 if (!inode) { 2523 ret = -EINVAL; 2524 mlog_errno(ret); 2525 goto bail; 2526 } 2527 2528 if (!direct_io && nowait) 2529 return -EOPNOTSUPP; 2530 2531 /* 2532 * buffered reads protect themselves in ->readpage(). O_DIRECT reads 2533 * need locks to protect pending reads from racing with truncate. 2534 */ 2535 if (direct_io) { 2536 if (nowait) 2537 ret = ocfs2_try_rw_lock(inode, 0); 2538 else 2539 ret = ocfs2_rw_lock(inode, 0); 2540 2541 if (ret < 0) { 2542 if (ret != -EAGAIN) 2543 mlog_errno(ret); 2544 goto bail; 2545 } 2546 rw_level = 0; 2547 /* communicate with ocfs2_dio_end_io */ 2548 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2549 } 2550 2551 /* 2552 * We're fine letting folks race truncates and extending 2553 * writes with read across the cluster, just like they can 2554 * locally. Hence no rw_lock during read. 2555 * 2556 * Take and drop the meta data lock to update inode fields 2557 * like i_size. This allows the checks down below 2558 * generic_file_read_iter() a chance of actually working. 2559 */ 2560 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level, 2561 !nowait); 2562 if (ret < 0) { 2563 if (ret != -EAGAIN) 2564 mlog_errno(ret); 2565 goto bail; 2566 } 2567 ocfs2_inode_unlock(inode, lock_level); 2568 2569 ret = generic_file_read_iter(iocb, to); 2570 trace_generic_file_read_iter_ret(ret); 2571 2572 /* buffered aio wouldn't have proper lock coverage today */ 2573 BUG_ON(ret == -EIOCBQUEUED && !direct_io); 2574 2575 /* see ocfs2_file_write_iter */ 2576 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2577 rw_level = -1; 2578 } 2579 2580 bail: 2581 if (rw_level != -1) 2582 ocfs2_rw_unlock(inode, rw_level); 2583 2584 return ret; 2585 } 2586 2587 /* Refer generic_file_llseek_unlocked() */ 2588 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2589 { 2590 struct inode *inode = file->f_mapping->host; 2591 int ret = 0; 2592 2593 inode_lock(inode); 2594 2595 switch (whence) { 2596 case SEEK_SET: 2597 break; 2598 case SEEK_END: 2599 /* SEEK_END requires the OCFS2 inode lock for the file 2600 * because it references the file's size. 2601 */ 2602 ret = ocfs2_inode_lock(inode, NULL, 0); 2603 if (ret < 0) { 2604 mlog_errno(ret); 2605 goto out; 2606 } 2607 offset += i_size_read(inode); 2608 ocfs2_inode_unlock(inode, 0); 2609 break; 2610 case SEEK_CUR: 2611 if (offset == 0) { 2612 offset = file->f_pos; 2613 goto out; 2614 } 2615 offset += file->f_pos; 2616 break; 2617 case SEEK_DATA: 2618 case SEEK_HOLE: 2619 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2620 if (ret) 2621 goto out; 2622 break; 2623 default: 2624 ret = -EINVAL; 2625 goto out; 2626 } 2627 2628 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2629 2630 out: 2631 inode_unlock(inode); 2632 if (ret) 2633 return ret; 2634 return offset; 2635 } 2636 2637 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in, 2638 struct file *file_out, loff_t pos_out, 2639 loff_t len, unsigned int remap_flags) 2640 { 2641 struct inode *inode_in = file_inode(file_in); 2642 struct inode *inode_out = file_inode(file_out); 2643 struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb); 2644 struct buffer_head *in_bh = NULL, *out_bh = NULL; 2645 bool same_inode = (inode_in == inode_out); 2646 loff_t remapped = 0; 2647 ssize_t ret; 2648 2649 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 2650 return -EINVAL; 2651 if (!ocfs2_refcount_tree(osb)) 2652 return -EOPNOTSUPP; 2653 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 2654 return -EROFS; 2655 2656 /* Lock both files against IO */ 2657 ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh); 2658 if (ret) 2659 return ret; 2660 2661 /* Check file eligibility and prepare for block sharing. */ 2662 ret = -EINVAL; 2663 if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) || 2664 (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE)) 2665 goto out_unlock; 2666 2667 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 2668 &len, remap_flags); 2669 if (ret < 0 || len == 0) 2670 goto out_unlock; 2671 2672 /* Lock out changes to the allocation maps and remap. */ 2673 down_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2674 if (!same_inode) 2675 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem, 2676 SINGLE_DEPTH_NESTING); 2677 2678 /* Zap any page cache for the destination file's range. */ 2679 truncate_inode_pages_range(&inode_out->i_data, 2680 round_down(pos_out, PAGE_SIZE), 2681 round_up(pos_out + len, PAGE_SIZE) - 1); 2682 2683 remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in, 2684 inode_out, out_bh, pos_out, len); 2685 up_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2686 if (!same_inode) 2687 up_write(&OCFS2_I(inode_out)->ip_alloc_sem); 2688 if (remapped < 0) { 2689 ret = remapped; 2690 mlog_errno(ret); 2691 goto out_unlock; 2692 } 2693 2694 /* 2695 * Empty the extent map so that we may get the right extent 2696 * record from the disk. 2697 */ 2698 ocfs2_extent_map_trunc(inode_in, 0); 2699 ocfs2_extent_map_trunc(inode_out, 0); 2700 2701 ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len); 2702 if (ret) { 2703 mlog_errno(ret); 2704 goto out_unlock; 2705 } 2706 2707 out_unlock: 2708 ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh); 2709 return remapped > 0 ? remapped : ret; 2710 } 2711 2712 const struct inode_operations ocfs2_file_iops = { 2713 .setattr = ocfs2_setattr, 2714 .getattr = ocfs2_getattr, 2715 .permission = ocfs2_permission, 2716 .listxattr = ocfs2_listxattr, 2717 .fiemap = ocfs2_fiemap, 2718 .get_acl = ocfs2_iop_get_acl, 2719 .set_acl = ocfs2_iop_set_acl, 2720 .fileattr_get = ocfs2_fileattr_get, 2721 .fileattr_set = ocfs2_fileattr_set, 2722 }; 2723 2724 const struct inode_operations ocfs2_special_file_iops = { 2725 .setattr = ocfs2_setattr, 2726 .getattr = ocfs2_getattr, 2727 .permission = ocfs2_permission, 2728 .get_acl = ocfs2_iop_get_acl, 2729 .set_acl = ocfs2_iop_set_acl, 2730 }; 2731 2732 /* 2733 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2734 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2735 */ 2736 const struct file_operations ocfs2_fops = { 2737 .llseek = ocfs2_file_llseek, 2738 .mmap = ocfs2_mmap, 2739 .fsync = ocfs2_sync_file, 2740 .release = ocfs2_file_release, 2741 .open = ocfs2_file_open, 2742 .read_iter = ocfs2_file_read_iter, 2743 .write_iter = ocfs2_file_write_iter, 2744 .unlocked_ioctl = ocfs2_ioctl, 2745 #ifdef CONFIG_COMPAT 2746 .compat_ioctl = ocfs2_compat_ioctl, 2747 #endif 2748 .lock = ocfs2_lock, 2749 .flock = ocfs2_flock, 2750 .splice_read = generic_file_splice_read, 2751 .splice_write = iter_file_splice_write, 2752 .fallocate = ocfs2_fallocate, 2753 .remap_file_range = ocfs2_remap_file_range, 2754 }; 2755 2756 const struct file_operations ocfs2_dops = { 2757 .llseek = generic_file_llseek, 2758 .read = generic_read_dir, 2759 .iterate = ocfs2_readdir, 2760 .fsync = ocfs2_sync_file, 2761 .release = ocfs2_dir_release, 2762 .open = ocfs2_dir_open, 2763 .unlocked_ioctl = ocfs2_ioctl, 2764 #ifdef CONFIG_COMPAT 2765 .compat_ioctl = ocfs2_compat_ioctl, 2766 #endif 2767 .lock = ocfs2_lock, 2768 .flock = ocfs2_flock, 2769 }; 2770 2771 /* 2772 * POSIX-lockless variants of our file_operations. 2773 * 2774 * These will be used if the underlying cluster stack does not support 2775 * posix file locking, if the user passes the "localflocks" mount 2776 * option, or if we have a local-only fs. 2777 * 2778 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2779 * so we still want it in the case of no stack support for 2780 * plocks. Internally, it will do the right thing when asked to ignore 2781 * the cluster. 2782 */ 2783 const struct file_operations ocfs2_fops_no_plocks = { 2784 .llseek = ocfs2_file_llseek, 2785 .mmap = ocfs2_mmap, 2786 .fsync = ocfs2_sync_file, 2787 .release = ocfs2_file_release, 2788 .open = ocfs2_file_open, 2789 .read_iter = ocfs2_file_read_iter, 2790 .write_iter = ocfs2_file_write_iter, 2791 .unlocked_ioctl = ocfs2_ioctl, 2792 #ifdef CONFIG_COMPAT 2793 .compat_ioctl = ocfs2_compat_ioctl, 2794 #endif 2795 .flock = ocfs2_flock, 2796 .splice_read = generic_file_splice_read, 2797 .splice_write = iter_file_splice_write, 2798 .fallocate = ocfs2_fallocate, 2799 .remap_file_range = ocfs2_remap_file_range, 2800 }; 2801 2802 const struct file_operations ocfs2_dops_no_plocks = { 2803 .llseek = generic_file_llseek, 2804 .read = generic_read_dir, 2805 .iterate = ocfs2_readdir, 2806 .fsync = ocfs2_sync_file, 2807 .release = ocfs2_dir_release, 2808 .open = ocfs2_dir_open, 2809 .unlocked_ioctl = ocfs2_ioctl, 2810 #ifdef CONFIG_COMPAT 2811 .compat_ioctl = ocfs2_compat_ioctl, 2812 #endif 2813 .flock = ocfs2_flock, 2814 }; 2815