xref: /openbmc/linux/fs/ocfs2/file.c (revision 110e6f26)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * file.c
5  *
6  * File open, close, extend, truncate
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 #include <linux/backing-dev.h>
41 
42 #include <cluster/masklog.h>
43 
44 #include "ocfs2.h"
45 
46 #include "alloc.h"
47 #include "aops.h"
48 #include "dir.h"
49 #include "dlmglue.h"
50 #include "extent_map.h"
51 #include "file.h"
52 #include "sysfile.h"
53 #include "inode.h"
54 #include "ioctl.h"
55 #include "journal.h"
56 #include "locks.h"
57 #include "mmap.h"
58 #include "suballoc.h"
59 #include "super.h"
60 #include "xattr.h"
61 #include "acl.h"
62 #include "quota.h"
63 #include "refcounttree.h"
64 #include "ocfs2_trace.h"
65 
66 #include "buffer_head_io.h"
67 
68 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
69 {
70 	struct ocfs2_file_private *fp;
71 
72 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
73 	if (!fp)
74 		return -ENOMEM;
75 
76 	fp->fp_file = file;
77 	mutex_init(&fp->fp_mutex);
78 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
79 	file->private_data = fp;
80 
81 	return 0;
82 }
83 
84 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
85 {
86 	struct ocfs2_file_private *fp = file->private_data;
87 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
88 
89 	if (fp) {
90 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
91 		ocfs2_lock_res_free(&fp->fp_flock);
92 		kfree(fp);
93 		file->private_data = NULL;
94 	}
95 }
96 
97 static int ocfs2_file_open(struct inode *inode, struct file *file)
98 {
99 	int status;
100 	int mode = file->f_flags;
101 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
102 
103 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
104 			      (unsigned long long)OCFS2_I(inode)->ip_blkno,
105 			      file->f_path.dentry->d_name.len,
106 			      file->f_path.dentry->d_name.name, mode);
107 
108 	if (file->f_mode & FMODE_WRITE) {
109 		status = dquot_initialize(inode);
110 		if (status)
111 			goto leave;
112 	}
113 
114 	spin_lock(&oi->ip_lock);
115 
116 	/* Check that the inode hasn't been wiped from disk by another
117 	 * node. If it hasn't then we're safe as long as we hold the
118 	 * spin lock until our increment of open count. */
119 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
120 		spin_unlock(&oi->ip_lock);
121 
122 		status = -ENOENT;
123 		goto leave;
124 	}
125 
126 	if (mode & O_DIRECT)
127 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
128 
129 	oi->ip_open_count++;
130 	spin_unlock(&oi->ip_lock);
131 
132 	status = ocfs2_init_file_private(inode, file);
133 	if (status) {
134 		/*
135 		 * We want to set open count back if we're failing the
136 		 * open.
137 		 */
138 		spin_lock(&oi->ip_lock);
139 		oi->ip_open_count--;
140 		spin_unlock(&oi->ip_lock);
141 	}
142 
143 leave:
144 	return status;
145 }
146 
147 static int ocfs2_file_release(struct inode *inode, struct file *file)
148 {
149 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
150 
151 	spin_lock(&oi->ip_lock);
152 	if (!--oi->ip_open_count)
153 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
154 
155 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
156 				 oi->ip_blkno,
157 				 file->f_path.dentry->d_name.len,
158 				 file->f_path.dentry->d_name.name,
159 				 oi->ip_open_count);
160 	spin_unlock(&oi->ip_lock);
161 
162 	ocfs2_free_file_private(inode, file);
163 
164 	return 0;
165 }
166 
167 static int ocfs2_dir_open(struct inode *inode, struct file *file)
168 {
169 	return ocfs2_init_file_private(inode, file);
170 }
171 
172 static int ocfs2_dir_release(struct inode *inode, struct file *file)
173 {
174 	ocfs2_free_file_private(inode, file);
175 	return 0;
176 }
177 
178 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
179 			   int datasync)
180 {
181 	int err = 0;
182 	struct inode *inode = file->f_mapping->host;
183 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
184 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
185 	journal_t *journal = osb->journal->j_journal;
186 	int ret;
187 	tid_t commit_tid;
188 	bool needs_barrier = false;
189 
190 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
191 			      OCFS2_I(inode)->ip_blkno,
192 			      file->f_path.dentry->d_name.len,
193 			      file->f_path.dentry->d_name.name,
194 			      (unsigned long long)datasync);
195 
196 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
197 		return -EROFS;
198 
199 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
200 	if (err)
201 		return err;
202 
203 	commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
204 	if (journal->j_flags & JBD2_BARRIER &&
205 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
206 		needs_barrier = true;
207 	err = jbd2_complete_transaction(journal, commit_tid);
208 	if (needs_barrier) {
209 		ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
210 		if (!err)
211 			err = ret;
212 	}
213 
214 	if (err)
215 		mlog_errno(err);
216 
217 	return (err < 0) ? -EIO : 0;
218 }
219 
220 int ocfs2_should_update_atime(struct inode *inode,
221 			      struct vfsmount *vfsmnt)
222 {
223 	struct timespec now;
224 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
225 
226 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
227 		return 0;
228 
229 	if ((inode->i_flags & S_NOATIME) ||
230 	    ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
231 		return 0;
232 
233 	/*
234 	 * We can be called with no vfsmnt structure - NFSD will
235 	 * sometimes do this.
236 	 *
237 	 * Note that our action here is different than touch_atime() -
238 	 * if we can't tell whether this is a noatime mount, then we
239 	 * don't know whether to trust the value of s_atime_quantum.
240 	 */
241 	if (vfsmnt == NULL)
242 		return 0;
243 
244 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
245 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
246 		return 0;
247 
248 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
249 		if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
250 		    (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
251 			return 1;
252 
253 		return 0;
254 	}
255 
256 	now = CURRENT_TIME;
257 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
258 		return 0;
259 	else
260 		return 1;
261 }
262 
263 int ocfs2_update_inode_atime(struct inode *inode,
264 			     struct buffer_head *bh)
265 {
266 	int ret;
267 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
268 	handle_t *handle;
269 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
270 
271 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
272 	if (IS_ERR(handle)) {
273 		ret = PTR_ERR(handle);
274 		mlog_errno(ret);
275 		goto out;
276 	}
277 
278 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
279 				      OCFS2_JOURNAL_ACCESS_WRITE);
280 	if (ret) {
281 		mlog_errno(ret);
282 		goto out_commit;
283 	}
284 
285 	/*
286 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
287 	 * have i_mutex to guard against concurrent changes to other
288 	 * inode fields.
289 	 */
290 	inode->i_atime = CURRENT_TIME;
291 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
292 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
293 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
294 	ocfs2_journal_dirty(handle, bh);
295 
296 out_commit:
297 	ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
298 out:
299 	return ret;
300 }
301 
302 int ocfs2_set_inode_size(handle_t *handle,
303 				struct inode *inode,
304 				struct buffer_head *fe_bh,
305 				u64 new_i_size)
306 {
307 	int status;
308 
309 	i_size_write(inode, new_i_size);
310 	inode->i_blocks = ocfs2_inode_sector_count(inode);
311 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
312 
313 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
314 	if (status < 0) {
315 		mlog_errno(status);
316 		goto bail;
317 	}
318 
319 bail:
320 	return status;
321 }
322 
323 int ocfs2_simple_size_update(struct inode *inode,
324 			     struct buffer_head *di_bh,
325 			     u64 new_i_size)
326 {
327 	int ret;
328 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
329 	handle_t *handle = NULL;
330 
331 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
332 	if (IS_ERR(handle)) {
333 		ret = PTR_ERR(handle);
334 		mlog_errno(ret);
335 		goto out;
336 	}
337 
338 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
339 				   new_i_size);
340 	if (ret < 0)
341 		mlog_errno(ret);
342 
343 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
344 	ocfs2_commit_trans(osb, handle);
345 out:
346 	return ret;
347 }
348 
349 static int ocfs2_cow_file_pos(struct inode *inode,
350 			      struct buffer_head *fe_bh,
351 			      u64 offset)
352 {
353 	int status;
354 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
355 	unsigned int num_clusters = 0;
356 	unsigned int ext_flags = 0;
357 
358 	/*
359 	 * If the new offset is aligned to the range of the cluster, there is
360 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
361 	 * CoW either.
362 	 */
363 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
364 		return 0;
365 
366 	status = ocfs2_get_clusters(inode, cpos, &phys,
367 				    &num_clusters, &ext_flags);
368 	if (status) {
369 		mlog_errno(status);
370 		goto out;
371 	}
372 
373 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
374 		goto out;
375 
376 	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
377 
378 out:
379 	return status;
380 }
381 
382 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
383 				     struct inode *inode,
384 				     struct buffer_head *fe_bh,
385 				     u64 new_i_size)
386 {
387 	int status;
388 	handle_t *handle;
389 	struct ocfs2_dinode *di;
390 	u64 cluster_bytes;
391 
392 	/*
393 	 * We need to CoW the cluster contains the offset if it is reflinked
394 	 * since we will call ocfs2_zero_range_for_truncate later which will
395 	 * write "0" from offset to the end of the cluster.
396 	 */
397 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
398 	if (status) {
399 		mlog_errno(status);
400 		return status;
401 	}
402 
403 	/* TODO: This needs to actually orphan the inode in this
404 	 * transaction. */
405 
406 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
407 	if (IS_ERR(handle)) {
408 		status = PTR_ERR(handle);
409 		mlog_errno(status);
410 		goto out;
411 	}
412 
413 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
414 					 OCFS2_JOURNAL_ACCESS_WRITE);
415 	if (status < 0) {
416 		mlog_errno(status);
417 		goto out_commit;
418 	}
419 
420 	/*
421 	 * Do this before setting i_size.
422 	 */
423 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
424 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
425 					       cluster_bytes);
426 	if (status) {
427 		mlog_errno(status);
428 		goto out_commit;
429 	}
430 
431 	i_size_write(inode, new_i_size);
432 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
433 
434 	di = (struct ocfs2_dinode *) fe_bh->b_data;
435 	di->i_size = cpu_to_le64(new_i_size);
436 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
437 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
438 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
439 
440 	ocfs2_journal_dirty(handle, fe_bh);
441 
442 out_commit:
443 	ocfs2_commit_trans(osb, handle);
444 out:
445 	return status;
446 }
447 
448 int ocfs2_truncate_file(struct inode *inode,
449 			       struct buffer_head *di_bh,
450 			       u64 new_i_size)
451 {
452 	int status = 0;
453 	struct ocfs2_dinode *fe = NULL;
454 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
455 
456 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
457 	 * already validated it */
458 	fe = (struct ocfs2_dinode *) di_bh->b_data;
459 
460 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
461 				  (unsigned long long)le64_to_cpu(fe->i_size),
462 				  (unsigned long long)new_i_size);
463 
464 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
465 			"Inode %llu, inode i_size = %lld != di "
466 			"i_size = %llu, i_flags = 0x%x\n",
467 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
468 			i_size_read(inode),
469 			(unsigned long long)le64_to_cpu(fe->i_size),
470 			le32_to_cpu(fe->i_flags));
471 
472 	if (new_i_size > le64_to_cpu(fe->i_size)) {
473 		trace_ocfs2_truncate_file_error(
474 			(unsigned long long)le64_to_cpu(fe->i_size),
475 			(unsigned long long)new_i_size);
476 		status = -EINVAL;
477 		mlog_errno(status);
478 		goto bail;
479 	}
480 
481 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
482 
483 	ocfs2_resv_discard(&osb->osb_la_resmap,
484 			   &OCFS2_I(inode)->ip_la_data_resv);
485 
486 	/*
487 	 * The inode lock forced other nodes to sync and drop their
488 	 * pages, which (correctly) happens even if we have a truncate
489 	 * without allocation change - ocfs2 cluster sizes can be much
490 	 * greater than page size, so we have to truncate them
491 	 * anyway.
492 	 */
493 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
494 	truncate_inode_pages(inode->i_mapping, new_i_size);
495 
496 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
497 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
498 					       i_size_read(inode), 1);
499 		if (status)
500 			mlog_errno(status);
501 
502 		goto bail_unlock_sem;
503 	}
504 
505 	/* alright, we're going to need to do a full blown alloc size
506 	 * change. Orphan the inode so that recovery can complete the
507 	 * truncate if necessary. This does the task of marking
508 	 * i_size. */
509 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
510 	if (status < 0) {
511 		mlog_errno(status);
512 		goto bail_unlock_sem;
513 	}
514 
515 	status = ocfs2_commit_truncate(osb, inode, di_bh);
516 	if (status < 0) {
517 		mlog_errno(status);
518 		goto bail_unlock_sem;
519 	}
520 
521 	/* TODO: orphan dir cleanup here. */
522 bail_unlock_sem:
523 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
524 
525 bail:
526 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
527 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
528 
529 	return status;
530 }
531 
532 /*
533  * extend file allocation only here.
534  * we'll update all the disk stuff, and oip->alloc_size
535  *
536  * expect stuff to be locked, a transaction started and enough data /
537  * metadata reservations in the contexts.
538  *
539  * Will return -EAGAIN, and a reason if a restart is needed.
540  * If passed in, *reason will always be set, even in error.
541  */
542 int ocfs2_add_inode_data(struct ocfs2_super *osb,
543 			 struct inode *inode,
544 			 u32 *logical_offset,
545 			 u32 clusters_to_add,
546 			 int mark_unwritten,
547 			 struct buffer_head *fe_bh,
548 			 handle_t *handle,
549 			 struct ocfs2_alloc_context *data_ac,
550 			 struct ocfs2_alloc_context *meta_ac,
551 			 enum ocfs2_alloc_restarted *reason_ret)
552 {
553 	int ret;
554 	struct ocfs2_extent_tree et;
555 
556 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
557 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
558 					  clusters_to_add, mark_unwritten,
559 					  data_ac, meta_ac, reason_ret);
560 
561 	return ret;
562 }
563 
564 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
565 				     u32 clusters_to_add, int mark_unwritten)
566 {
567 	int status = 0;
568 	int restart_func = 0;
569 	int credits;
570 	u32 prev_clusters;
571 	struct buffer_head *bh = NULL;
572 	struct ocfs2_dinode *fe = NULL;
573 	handle_t *handle = NULL;
574 	struct ocfs2_alloc_context *data_ac = NULL;
575 	struct ocfs2_alloc_context *meta_ac = NULL;
576 	enum ocfs2_alloc_restarted why = RESTART_NONE;
577 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
578 	struct ocfs2_extent_tree et;
579 	int did_quota = 0;
580 
581 	/*
582 	 * Unwritten extent only exists for file systems which
583 	 * support holes.
584 	 */
585 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
586 
587 	status = ocfs2_read_inode_block(inode, &bh);
588 	if (status < 0) {
589 		mlog_errno(status);
590 		goto leave;
591 	}
592 	fe = (struct ocfs2_dinode *) bh->b_data;
593 
594 restart_all:
595 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
596 
597 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
598 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
599 				       &data_ac, &meta_ac);
600 	if (status) {
601 		mlog_errno(status);
602 		goto leave;
603 	}
604 
605 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
606 	handle = ocfs2_start_trans(osb, credits);
607 	if (IS_ERR(handle)) {
608 		status = PTR_ERR(handle);
609 		handle = NULL;
610 		mlog_errno(status);
611 		goto leave;
612 	}
613 
614 restarted_transaction:
615 	trace_ocfs2_extend_allocation(
616 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
617 		(unsigned long long)i_size_read(inode),
618 		le32_to_cpu(fe->i_clusters), clusters_to_add,
619 		why, restart_func);
620 
621 	status = dquot_alloc_space_nodirty(inode,
622 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
623 	if (status)
624 		goto leave;
625 	did_quota = 1;
626 
627 	/* reserve a write to the file entry early on - that we if we
628 	 * run out of credits in the allocation path, we can still
629 	 * update i_size. */
630 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
631 					 OCFS2_JOURNAL_ACCESS_WRITE);
632 	if (status < 0) {
633 		mlog_errno(status);
634 		goto leave;
635 	}
636 
637 	prev_clusters = OCFS2_I(inode)->ip_clusters;
638 
639 	status = ocfs2_add_inode_data(osb,
640 				      inode,
641 				      &logical_start,
642 				      clusters_to_add,
643 				      mark_unwritten,
644 				      bh,
645 				      handle,
646 				      data_ac,
647 				      meta_ac,
648 				      &why);
649 	if ((status < 0) && (status != -EAGAIN)) {
650 		if (status != -ENOSPC)
651 			mlog_errno(status);
652 		goto leave;
653 	}
654 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
655 	ocfs2_journal_dirty(handle, bh);
656 
657 	spin_lock(&OCFS2_I(inode)->ip_lock);
658 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
659 	spin_unlock(&OCFS2_I(inode)->ip_lock);
660 	/* Release unused quota reservation */
661 	dquot_free_space(inode,
662 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
663 	did_quota = 0;
664 
665 	if (why != RESTART_NONE && clusters_to_add) {
666 		if (why == RESTART_META) {
667 			restart_func = 1;
668 			status = 0;
669 		} else {
670 			BUG_ON(why != RESTART_TRANS);
671 
672 			status = ocfs2_allocate_extend_trans(handle, 1);
673 			if (status < 0) {
674 				/* handle still has to be committed at
675 				 * this point. */
676 				status = -ENOMEM;
677 				mlog_errno(status);
678 				goto leave;
679 			}
680 			goto restarted_transaction;
681 		}
682 	}
683 
684 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
685 	     le32_to_cpu(fe->i_clusters),
686 	     (unsigned long long)le64_to_cpu(fe->i_size),
687 	     OCFS2_I(inode)->ip_clusters,
688 	     (unsigned long long)i_size_read(inode));
689 
690 leave:
691 	if (status < 0 && did_quota)
692 		dquot_free_space(inode,
693 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
694 	if (handle) {
695 		ocfs2_commit_trans(osb, handle);
696 		handle = NULL;
697 	}
698 	if (data_ac) {
699 		ocfs2_free_alloc_context(data_ac);
700 		data_ac = NULL;
701 	}
702 	if (meta_ac) {
703 		ocfs2_free_alloc_context(meta_ac);
704 		meta_ac = NULL;
705 	}
706 	if ((!status) && restart_func) {
707 		restart_func = 0;
708 		goto restart_all;
709 	}
710 	brelse(bh);
711 	bh = NULL;
712 
713 	return status;
714 }
715 
716 int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
717 		u32 clusters_to_add, int mark_unwritten)
718 {
719 	return __ocfs2_extend_allocation(inode, logical_start,
720 			clusters_to_add, mark_unwritten);
721 }
722 
723 /*
724  * While a write will already be ordering the data, a truncate will not.
725  * Thus, we need to explicitly order the zeroed pages.
726  */
727 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
728 						struct buffer_head *di_bh)
729 {
730 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
731 	handle_t *handle = NULL;
732 	int ret = 0;
733 
734 	if (!ocfs2_should_order_data(inode))
735 		goto out;
736 
737 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
738 	if (IS_ERR(handle)) {
739 		ret = -ENOMEM;
740 		mlog_errno(ret);
741 		goto out;
742 	}
743 
744 	ret = ocfs2_jbd2_file_inode(handle, inode);
745 	if (ret < 0) {
746 		mlog_errno(ret);
747 		goto out;
748 	}
749 
750 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
751 				      OCFS2_JOURNAL_ACCESS_WRITE);
752 	if (ret)
753 		mlog_errno(ret);
754 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
755 
756 out:
757 	if (ret) {
758 		if (!IS_ERR(handle))
759 			ocfs2_commit_trans(osb, handle);
760 		handle = ERR_PTR(ret);
761 	}
762 	return handle;
763 }
764 
765 /* Some parts of this taken from generic_cont_expand, which turned out
766  * to be too fragile to do exactly what we need without us having to
767  * worry about recursive locking in ->write_begin() and ->write_end(). */
768 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
769 				 u64 abs_to, struct buffer_head *di_bh)
770 {
771 	struct address_space *mapping = inode->i_mapping;
772 	struct page *page;
773 	unsigned long index = abs_from >> PAGE_SHIFT;
774 	handle_t *handle;
775 	int ret = 0;
776 	unsigned zero_from, zero_to, block_start, block_end;
777 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
778 
779 	BUG_ON(abs_from >= abs_to);
780 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
781 	BUG_ON(abs_from & (inode->i_blkbits - 1));
782 
783 	handle = ocfs2_zero_start_ordered_transaction(inode, di_bh);
784 	if (IS_ERR(handle)) {
785 		ret = PTR_ERR(handle);
786 		goto out;
787 	}
788 
789 	page = find_or_create_page(mapping, index, GFP_NOFS);
790 	if (!page) {
791 		ret = -ENOMEM;
792 		mlog_errno(ret);
793 		goto out_commit_trans;
794 	}
795 
796 	/* Get the offsets within the page that we want to zero */
797 	zero_from = abs_from & (PAGE_SIZE - 1);
798 	zero_to = abs_to & (PAGE_SIZE - 1);
799 	if (!zero_to)
800 		zero_to = PAGE_SIZE;
801 
802 	trace_ocfs2_write_zero_page(
803 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
804 			(unsigned long long)abs_from,
805 			(unsigned long long)abs_to,
806 			index, zero_from, zero_to);
807 
808 	/* We know that zero_from is block aligned */
809 	for (block_start = zero_from; block_start < zero_to;
810 	     block_start = block_end) {
811 		block_end = block_start + (1 << inode->i_blkbits);
812 
813 		/*
814 		 * block_start is block-aligned.  Bump it by one to force
815 		 * __block_write_begin and block_commit_write to zero the
816 		 * whole block.
817 		 */
818 		ret = __block_write_begin(page, block_start + 1, 0,
819 					  ocfs2_get_block);
820 		if (ret < 0) {
821 			mlog_errno(ret);
822 			goto out_unlock;
823 		}
824 
825 
826 		/* must not update i_size! */
827 		ret = block_commit_write(page, block_start + 1,
828 					 block_start + 1);
829 		if (ret < 0)
830 			mlog_errno(ret);
831 		else
832 			ret = 0;
833 	}
834 
835 	/*
836 	 * fs-writeback will release the dirty pages without page lock
837 	 * whose offset are over inode size, the release happens at
838 	 * block_write_full_page().
839 	 */
840 	i_size_write(inode, abs_to);
841 	inode->i_blocks = ocfs2_inode_sector_count(inode);
842 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
843 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
844 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
845 	di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
846 	di->i_mtime_nsec = di->i_ctime_nsec;
847 	if (handle) {
848 		ocfs2_journal_dirty(handle, di_bh);
849 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
850 	}
851 
852 out_unlock:
853 	unlock_page(page);
854 	put_page(page);
855 out_commit_trans:
856 	if (handle)
857 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
858 out:
859 	return ret;
860 }
861 
862 /*
863  * Find the next range to zero.  We do this in terms of bytes because
864  * that's what ocfs2_zero_extend() wants, and it is dealing with the
865  * pagecache.  We may return multiple extents.
866  *
867  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
868  * needs to be zeroed.  range_start and range_end return the next zeroing
869  * range.  A subsequent call should pass the previous range_end as its
870  * zero_start.  If range_end is 0, there's nothing to do.
871  *
872  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
873  */
874 static int ocfs2_zero_extend_get_range(struct inode *inode,
875 				       struct buffer_head *di_bh,
876 				       u64 zero_start, u64 zero_end,
877 				       u64 *range_start, u64 *range_end)
878 {
879 	int rc = 0, needs_cow = 0;
880 	u32 p_cpos, zero_clusters = 0;
881 	u32 zero_cpos =
882 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
883 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
884 	unsigned int num_clusters = 0;
885 	unsigned int ext_flags = 0;
886 
887 	while (zero_cpos < last_cpos) {
888 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
889 					&num_clusters, &ext_flags);
890 		if (rc) {
891 			mlog_errno(rc);
892 			goto out;
893 		}
894 
895 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
896 			zero_clusters = num_clusters;
897 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
898 				needs_cow = 1;
899 			break;
900 		}
901 
902 		zero_cpos += num_clusters;
903 	}
904 	if (!zero_clusters) {
905 		*range_end = 0;
906 		goto out;
907 	}
908 
909 	while ((zero_cpos + zero_clusters) < last_cpos) {
910 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
911 					&p_cpos, &num_clusters,
912 					&ext_flags);
913 		if (rc) {
914 			mlog_errno(rc);
915 			goto out;
916 		}
917 
918 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
919 			break;
920 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
921 			needs_cow = 1;
922 		zero_clusters += num_clusters;
923 	}
924 	if ((zero_cpos + zero_clusters) > last_cpos)
925 		zero_clusters = last_cpos - zero_cpos;
926 
927 	if (needs_cow) {
928 		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
929 					zero_clusters, UINT_MAX);
930 		if (rc) {
931 			mlog_errno(rc);
932 			goto out;
933 		}
934 	}
935 
936 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
937 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
938 					     zero_cpos + zero_clusters);
939 
940 out:
941 	return rc;
942 }
943 
944 /*
945  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
946  * has made sure that the entire range needs zeroing.
947  */
948 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
949 				   u64 range_end, struct buffer_head *di_bh)
950 {
951 	int rc = 0;
952 	u64 next_pos;
953 	u64 zero_pos = range_start;
954 
955 	trace_ocfs2_zero_extend_range(
956 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
957 			(unsigned long long)range_start,
958 			(unsigned long long)range_end);
959 	BUG_ON(range_start >= range_end);
960 
961 	while (zero_pos < range_end) {
962 		next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
963 		if (next_pos > range_end)
964 			next_pos = range_end;
965 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
966 		if (rc < 0) {
967 			mlog_errno(rc);
968 			break;
969 		}
970 		zero_pos = next_pos;
971 
972 		/*
973 		 * Very large extends have the potential to lock up
974 		 * the cpu for extended periods of time.
975 		 */
976 		cond_resched();
977 	}
978 
979 	return rc;
980 }
981 
982 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
983 		      loff_t zero_to_size)
984 {
985 	int ret = 0;
986 	u64 zero_start, range_start = 0, range_end = 0;
987 	struct super_block *sb = inode->i_sb;
988 
989 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
990 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
991 				(unsigned long long)zero_start,
992 				(unsigned long long)i_size_read(inode));
993 	while (zero_start < zero_to_size) {
994 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
995 						  zero_to_size,
996 						  &range_start,
997 						  &range_end);
998 		if (ret) {
999 			mlog_errno(ret);
1000 			break;
1001 		}
1002 		if (!range_end)
1003 			break;
1004 		/* Trim the ends */
1005 		if (range_start < zero_start)
1006 			range_start = zero_start;
1007 		if (range_end > zero_to_size)
1008 			range_end = zero_to_size;
1009 
1010 		ret = ocfs2_zero_extend_range(inode, range_start,
1011 					      range_end, di_bh);
1012 		if (ret) {
1013 			mlog_errno(ret);
1014 			break;
1015 		}
1016 		zero_start = range_end;
1017 	}
1018 
1019 	return ret;
1020 }
1021 
1022 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1023 			  u64 new_i_size, u64 zero_to)
1024 {
1025 	int ret;
1026 	u32 clusters_to_add;
1027 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1028 
1029 	/*
1030 	 * Only quota files call this without a bh, and they can't be
1031 	 * refcounted.
1032 	 */
1033 	BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1034 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1035 
1036 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1037 	if (clusters_to_add < oi->ip_clusters)
1038 		clusters_to_add = 0;
1039 	else
1040 		clusters_to_add -= oi->ip_clusters;
1041 
1042 	if (clusters_to_add) {
1043 		ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1044 						clusters_to_add, 0);
1045 		if (ret) {
1046 			mlog_errno(ret);
1047 			goto out;
1048 		}
1049 	}
1050 
1051 	/*
1052 	 * Call this even if we don't add any clusters to the tree. We
1053 	 * still need to zero the area between the old i_size and the
1054 	 * new i_size.
1055 	 */
1056 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1057 	if (ret < 0)
1058 		mlog_errno(ret);
1059 
1060 out:
1061 	return ret;
1062 }
1063 
1064 static int ocfs2_extend_file(struct inode *inode,
1065 			     struct buffer_head *di_bh,
1066 			     u64 new_i_size)
1067 {
1068 	int ret = 0;
1069 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1070 
1071 	BUG_ON(!di_bh);
1072 
1073 	/* setattr sometimes calls us like this. */
1074 	if (new_i_size == 0)
1075 		goto out;
1076 
1077 	if (i_size_read(inode) == new_i_size)
1078 		goto out;
1079 	BUG_ON(new_i_size < i_size_read(inode));
1080 
1081 	/*
1082 	 * The alloc sem blocks people in read/write from reading our
1083 	 * allocation until we're done changing it. We depend on
1084 	 * i_mutex to block other extend/truncate calls while we're
1085 	 * here.  We even have to hold it for sparse files because there
1086 	 * might be some tail zeroing.
1087 	 */
1088 	down_write(&oi->ip_alloc_sem);
1089 
1090 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1091 		/*
1092 		 * We can optimize small extends by keeping the inodes
1093 		 * inline data.
1094 		 */
1095 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1096 			up_write(&oi->ip_alloc_sem);
1097 			goto out_update_size;
1098 		}
1099 
1100 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1101 		if (ret) {
1102 			up_write(&oi->ip_alloc_sem);
1103 			mlog_errno(ret);
1104 			goto out;
1105 		}
1106 	}
1107 
1108 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1109 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1110 	else
1111 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1112 					    new_i_size);
1113 
1114 	up_write(&oi->ip_alloc_sem);
1115 
1116 	if (ret < 0) {
1117 		mlog_errno(ret);
1118 		goto out;
1119 	}
1120 
1121 out_update_size:
1122 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1123 	if (ret < 0)
1124 		mlog_errno(ret);
1125 
1126 out:
1127 	return ret;
1128 }
1129 
1130 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1131 {
1132 	int status = 0, size_change;
1133 	int inode_locked = 0;
1134 	struct inode *inode = d_inode(dentry);
1135 	struct super_block *sb = inode->i_sb;
1136 	struct ocfs2_super *osb = OCFS2_SB(sb);
1137 	struct buffer_head *bh = NULL;
1138 	handle_t *handle = NULL;
1139 	struct dquot *transfer_to[MAXQUOTAS] = { };
1140 	int qtype;
1141 
1142 	trace_ocfs2_setattr(inode, dentry,
1143 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1144 			    dentry->d_name.len, dentry->d_name.name,
1145 			    attr->ia_valid, attr->ia_mode,
1146 			    from_kuid(&init_user_ns, attr->ia_uid),
1147 			    from_kgid(&init_user_ns, attr->ia_gid));
1148 
1149 	/* ensuring we don't even attempt to truncate a symlink */
1150 	if (S_ISLNK(inode->i_mode))
1151 		attr->ia_valid &= ~ATTR_SIZE;
1152 
1153 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1154 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1155 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1156 		return 0;
1157 
1158 	status = inode_change_ok(inode, attr);
1159 	if (status)
1160 		return status;
1161 
1162 	if (is_quota_modification(inode, attr)) {
1163 		status = dquot_initialize(inode);
1164 		if (status)
1165 			return status;
1166 	}
1167 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1168 	if (size_change) {
1169 		status = ocfs2_rw_lock(inode, 1);
1170 		if (status < 0) {
1171 			mlog_errno(status);
1172 			goto bail;
1173 		}
1174 	}
1175 
1176 	status = ocfs2_inode_lock(inode, &bh, 1);
1177 	if (status < 0) {
1178 		if (status != -ENOENT)
1179 			mlog_errno(status);
1180 		goto bail_unlock_rw;
1181 	}
1182 	inode_locked = 1;
1183 
1184 	if (size_change) {
1185 		status = inode_newsize_ok(inode, attr->ia_size);
1186 		if (status)
1187 			goto bail_unlock;
1188 
1189 		inode_dio_wait(inode);
1190 
1191 		if (i_size_read(inode) >= attr->ia_size) {
1192 			if (ocfs2_should_order_data(inode)) {
1193 				status = ocfs2_begin_ordered_truncate(inode,
1194 								      attr->ia_size);
1195 				if (status)
1196 					goto bail_unlock;
1197 			}
1198 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1199 		} else
1200 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1201 		if (status < 0) {
1202 			if (status != -ENOSPC)
1203 				mlog_errno(status);
1204 			status = -ENOSPC;
1205 			goto bail_unlock;
1206 		}
1207 	}
1208 
1209 	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1210 	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1211 		/*
1212 		 * Gather pointers to quota structures so that allocation /
1213 		 * freeing of quota structures happens here and not inside
1214 		 * dquot_transfer() where we have problems with lock ordering
1215 		 */
1216 		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1217 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1218 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1219 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1220 			if (IS_ERR(transfer_to[USRQUOTA])) {
1221 				status = PTR_ERR(transfer_to[USRQUOTA]);
1222 				goto bail_unlock;
1223 			}
1224 		}
1225 		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1226 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1227 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1228 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1229 			if (IS_ERR(transfer_to[GRPQUOTA])) {
1230 				status = PTR_ERR(transfer_to[GRPQUOTA]);
1231 				goto bail_unlock;
1232 			}
1233 		}
1234 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1235 					   2 * ocfs2_quota_trans_credits(sb));
1236 		if (IS_ERR(handle)) {
1237 			status = PTR_ERR(handle);
1238 			mlog_errno(status);
1239 			goto bail_unlock;
1240 		}
1241 		status = __dquot_transfer(inode, transfer_to);
1242 		if (status < 0)
1243 			goto bail_commit;
1244 	} else {
1245 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1246 		if (IS_ERR(handle)) {
1247 			status = PTR_ERR(handle);
1248 			mlog_errno(status);
1249 			goto bail_unlock;
1250 		}
1251 	}
1252 
1253 	setattr_copy(inode, attr);
1254 	mark_inode_dirty(inode);
1255 
1256 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1257 	if (status < 0)
1258 		mlog_errno(status);
1259 
1260 bail_commit:
1261 	ocfs2_commit_trans(osb, handle);
1262 bail_unlock:
1263 	if (status) {
1264 		ocfs2_inode_unlock(inode, 1);
1265 		inode_locked = 0;
1266 	}
1267 bail_unlock_rw:
1268 	if (size_change)
1269 		ocfs2_rw_unlock(inode, 1);
1270 bail:
1271 	brelse(bh);
1272 
1273 	/* Release quota pointers in case we acquired them */
1274 	for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1275 		dqput(transfer_to[qtype]);
1276 
1277 	if (!status && attr->ia_valid & ATTR_MODE) {
1278 		status = posix_acl_chmod(inode, inode->i_mode);
1279 		if (status < 0)
1280 			mlog_errno(status);
1281 	}
1282 	if (inode_locked)
1283 		ocfs2_inode_unlock(inode, 1);
1284 
1285 	return status;
1286 }
1287 
1288 int ocfs2_getattr(struct vfsmount *mnt,
1289 		  struct dentry *dentry,
1290 		  struct kstat *stat)
1291 {
1292 	struct inode *inode = d_inode(dentry);
1293 	struct super_block *sb = d_inode(dentry)->i_sb;
1294 	struct ocfs2_super *osb = sb->s_fs_info;
1295 	int err;
1296 
1297 	err = ocfs2_inode_revalidate(dentry);
1298 	if (err) {
1299 		if (err != -ENOENT)
1300 			mlog_errno(err);
1301 		goto bail;
1302 	}
1303 
1304 	generic_fillattr(inode, stat);
1305 	/*
1306 	 * If there is inline data in the inode, the inode will normally not
1307 	 * have data blocks allocated (it may have an external xattr block).
1308 	 * Report at least one sector for such files, so tools like tar, rsync,
1309 	 * others don't incorrectly think the file is completely sparse.
1310 	 */
1311 	if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1312 		stat->blocks += (stat->size + 511)>>9;
1313 
1314 	/* We set the blksize from the cluster size for performance */
1315 	stat->blksize = osb->s_clustersize;
1316 
1317 bail:
1318 	return err;
1319 }
1320 
1321 int ocfs2_permission(struct inode *inode, int mask)
1322 {
1323 	int ret;
1324 
1325 	if (mask & MAY_NOT_BLOCK)
1326 		return -ECHILD;
1327 
1328 	ret = ocfs2_inode_lock(inode, NULL, 0);
1329 	if (ret) {
1330 		if (ret != -ENOENT)
1331 			mlog_errno(ret);
1332 		goto out;
1333 	}
1334 
1335 	ret = generic_permission(inode, mask);
1336 
1337 	ocfs2_inode_unlock(inode, 0);
1338 out:
1339 	return ret;
1340 }
1341 
1342 static int __ocfs2_write_remove_suid(struct inode *inode,
1343 				     struct buffer_head *bh)
1344 {
1345 	int ret;
1346 	handle_t *handle;
1347 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1348 	struct ocfs2_dinode *di;
1349 
1350 	trace_ocfs2_write_remove_suid(
1351 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1352 			inode->i_mode);
1353 
1354 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1355 	if (IS_ERR(handle)) {
1356 		ret = PTR_ERR(handle);
1357 		mlog_errno(ret);
1358 		goto out;
1359 	}
1360 
1361 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1362 				      OCFS2_JOURNAL_ACCESS_WRITE);
1363 	if (ret < 0) {
1364 		mlog_errno(ret);
1365 		goto out_trans;
1366 	}
1367 
1368 	inode->i_mode &= ~S_ISUID;
1369 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1370 		inode->i_mode &= ~S_ISGID;
1371 
1372 	di = (struct ocfs2_dinode *) bh->b_data;
1373 	di->i_mode = cpu_to_le16(inode->i_mode);
1374 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
1375 
1376 	ocfs2_journal_dirty(handle, bh);
1377 
1378 out_trans:
1379 	ocfs2_commit_trans(osb, handle);
1380 out:
1381 	return ret;
1382 }
1383 
1384 static int ocfs2_write_remove_suid(struct inode *inode)
1385 {
1386 	int ret;
1387 	struct buffer_head *bh = NULL;
1388 
1389 	ret = ocfs2_read_inode_block(inode, &bh);
1390 	if (ret < 0) {
1391 		mlog_errno(ret);
1392 		goto out;
1393 	}
1394 
1395 	ret =  __ocfs2_write_remove_suid(inode, bh);
1396 out:
1397 	brelse(bh);
1398 	return ret;
1399 }
1400 
1401 /*
1402  * Allocate enough extents to cover the region starting at byte offset
1403  * start for len bytes. Existing extents are skipped, any extents
1404  * added are marked as "unwritten".
1405  */
1406 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1407 					    u64 start, u64 len)
1408 {
1409 	int ret;
1410 	u32 cpos, phys_cpos, clusters, alloc_size;
1411 	u64 end = start + len;
1412 	struct buffer_head *di_bh = NULL;
1413 
1414 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1415 		ret = ocfs2_read_inode_block(inode, &di_bh);
1416 		if (ret) {
1417 			mlog_errno(ret);
1418 			goto out;
1419 		}
1420 
1421 		/*
1422 		 * Nothing to do if the requested reservation range
1423 		 * fits within the inode.
1424 		 */
1425 		if (ocfs2_size_fits_inline_data(di_bh, end))
1426 			goto out;
1427 
1428 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1429 		if (ret) {
1430 			mlog_errno(ret);
1431 			goto out;
1432 		}
1433 	}
1434 
1435 	/*
1436 	 * We consider both start and len to be inclusive.
1437 	 */
1438 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1439 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1440 	clusters -= cpos;
1441 
1442 	while (clusters) {
1443 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1444 					 &alloc_size, NULL);
1445 		if (ret) {
1446 			mlog_errno(ret);
1447 			goto out;
1448 		}
1449 
1450 		/*
1451 		 * Hole or existing extent len can be arbitrary, so
1452 		 * cap it to our own allocation request.
1453 		 */
1454 		if (alloc_size > clusters)
1455 			alloc_size = clusters;
1456 
1457 		if (phys_cpos) {
1458 			/*
1459 			 * We already have an allocation at this
1460 			 * region so we can safely skip it.
1461 			 */
1462 			goto next;
1463 		}
1464 
1465 		ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1466 		if (ret) {
1467 			if (ret != -ENOSPC)
1468 				mlog_errno(ret);
1469 			goto out;
1470 		}
1471 
1472 next:
1473 		cpos += alloc_size;
1474 		clusters -= alloc_size;
1475 	}
1476 
1477 	ret = 0;
1478 out:
1479 
1480 	brelse(di_bh);
1481 	return ret;
1482 }
1483 
1484 /*
1485  * Truncate a byte range, avoiding pages within partial clusters. This
1486  * preserves those pages for the zeroing code to write to.
1487  */
1488 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1489 					 u64 byte_len)
1490 {
1491 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1492 	loff_t start, end;
1493 	struct address_space *mapping = inode->i_mapping;
1494 
1495 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1496 	end = byte_start + byte_len;
1497 	end = end & ~(osb->s_clustersize - 1);
1498 
1499 	if (start < end) {
1500 		unmap_mapping_range(mapping, start, end - start, 0);
1501 		truncate_inode_pages_range(mapping, start, end - 1);
1502 	}
1503 }
1504 
1505 static int ocfs2_zero_partial_clusters(struct inode *inode,
1506 				       u64 start, u64 len)
1507 {
1508 	int ret = 0;
1509 	u64 tmpend, end = start + len;
1510 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1511 	unsigned int csize = osb->s_clustersize;
1512 	handle_t *handle;
1513 
1514 	/*
1515 	 * The "start" and "end" values are NOT necessarily part of
1516 	 * the range whose allocation is being deleted. Rather, this
1517 	 * is what the user passed in with the request. We must zero
1518 	 * partial clusters here. There's no need to worry about
1519 	 * physical allocation - the zeroing code knows to skip holes.
1520 	 */
1521 	trace_ocfs2_zero_partial_clusters(
1522 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1523 		(unsigned long long)start, (unsigned long long)end);
1524 
1525 	/*
1526 	 * If both edges are on a cluster boundary then there's no
1527 	 * zeroing required as the region is part of the allocation to
1528 	 * be truncated.
1529 	 */
1530 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1531 		goto out;
1532 
1533 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1534 	if (IS_ERR(handle)) {
1535 		ret = PTR_ERR(handle);
1536 		mlog_errno(ret);
1537 		goto out;
1538 	}
1539 
1540 	/*
1541 	 * We want to get the byte offset of the end of the 1st cluster.
1542 	 */
1543 	tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1544 	if (tmpend > end)
1545 		tmpend = end;
1546 
1547 	trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start,
1548 						 (unsigned long long)tmpend);
1549 
1550 	ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1551 	if (ret)
1552 		mlog_errno(ret);
1553 
1554 	if (tmpend < end) {
1555 		/*
1556 		 * This may make start and end equal, but the zeroing
1557 		 * code will skip any work in that case so there's no
1558 		 * need to catch it up here.
1559 		 */
1560 		start = end & ~(osb->s_clustersize - 1);
1561 
1562 		trace_ocfs2_zero_partial_clusters_range2(
1563 			(unsigned long long)start, (unsigned long long)end);
1564 
1565 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1566 		if (ret)
1567 			mlog_errno(ret);
1568 	}
1569 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
1570 
1571 	ocfs2_commit_trans(osb, handle);
1572 out:
1573 	return ret;
1574 }
1575 
1576 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1577 {
1578 	int i;
1579 	struct ocfs2_extent_rec *rec = NULL;
1580 
1581 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1582 
1583 		rec = &el->l_recs[i];
1584 
1585 		if (le32_to_cpu(rec->e_cpos) < pos)
1586 			break;
1587 	}
1588 
1589 	return i;
1590 }
1591 
1592 /*
1593  * Helper to calculate the punching pos and length in one run, we handle the
1594  * following three cases in order:
1595  *
1596  * - remove the entire record
1597  * - remove a partial record
1598  * - no record needs to be removed (hole-punching completed)
1599 */
1600 static void ocfs2_calc_trunc_pos(struct inode *inode,
1601 				 struct ocfs2_extent_list *el,
1602 				 struct ocfs2_extent_rec *rec,
1603 				 u32 trunc_start, u32 *trunc_cpos,
1604 				 u32 *trunc_len, u32 *trunc_end,
1605 				 u64 *blkno, int *done)
1606 {
1607 	int ret = 0;
1608 	u32 coff, range;
1609 
1610 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1611 
1612 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1613 		/*
1614 		 * remove an entire extent record.
1615 		 */
1616 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1617 		/*
1618 		 * Skip holes if any.
1619 		 */
1620 		if (range < *trunc_end)
1621 			*trunc_end = range;
1622 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1623 		*blkno = le64_to_cpu(rec->e_blkno);
1624 		*trunc_end = le32_to_cpu(rec->e_cpos);
1625 	} else if (range > trunc_start) {
1626 		/*
1627 		 * remove a partial extent record, which means we're
1628 		 * removing the last extent record.
1629 		 */
1630 		*trunc_cpos = trunc_start;
1631 		/*
1632 		 * skip hole if any.
1633 		 */
1634 		if (range < *trunc_end)
1635 			*trunc_end = range;
1636 		*trunc_len = *trunc_end - trunc_start;
1637 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1638 		*blkno = le64_to_cpu(rec->e_blkno) +
1639 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1640 		*trunc_end = trunc_start;
1641 	} else {
1642 		/*
1643 		 * It may have two following possibilities:
1644 		 *
1645 		 * - last record has been removed
1646 		 * - trunc_start was within a hole
1647 		 *
1648 		 * both two cases mean the completion of hole punching.
1649 		 */
1650 		ret = 1;
1651 	}
1652 
1653 	*done = ret;
1654 }
1655 
1656 static int ocfs2_remove_inode_range(struct inode *inode,
1657 				    struct buffer_head *di_bh, u64 byte_start,
1658 				    u64 byte_len)
1659 {
1660 	int ret = 0, flags = 0, done = 0, i;
1661 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1662 	u32 cluster_in_el;
1663 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1664 	struct ocfs2_cached_dealloc_ctxt dealloc;
1665 	struct address_space *mapping = inode->i_mapping;
1666 	struct ocfs2_extent_tree et;
1667 	struct ocfs2_path *path = NULL;
1668 	struct ocfs2_extent_list *el = NULL;
1669 	struct ocfs2_extent_rec *rec = NULL;
1670 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1671 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1672 
1673 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1674 	ocfs2_init_dealloc_ctxt(&dealloc);
1675 
1676 	trace_ocfs2_remove_inode_range(
1677 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1678 			(unsigned long long)byte_start,
1679 			(unsigned long long)byte_len);
1680 
1681 	if (byte_len == 0)
1682 		return 0;
1683 
1684 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1685 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1686 					    byte_start + byte_len, 0);
1687 		if (ret) {
1688 			mlog_errno(ret);
1689 			goto out;
1690 		}
1691 		/*
1692 		 * There's no need to get fancy with the page cache
1693 		 * truncate of an inline-data inode. We're talking
1694 		 * about less than a page here, which will be cached
1695 		 * in the dinode buffer anyway.
1696 		 */
1697 		unmap_mapping_range(mapping, 0, 0, 0);
1698 		truncate_inode_pages(mapping, 0);
1699 		goto out;
1700 	}
1701 
1702 	/*
1703 	 * For reflinks, we may need to CoW 2 clusters which might be
1704 	 * partially zero'd later, if hole's start and end offset were
1705 	 * within one cluster(means is not exactly aligned to clustersize).
1706 	 */
1707 
1708 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1709 
1710 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1711 		if (ret) {
1712 			mlog_errno(ret);
1713 			goto out;
1714 		}
1715 
1716 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1717 		if (ret) {
1718 			mlog_errno(ret);
1719 			goto out;
1720 		}
1721 	}
1722 
1723 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1724 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1725 	cluster_in_el = trunc_end;
1726 
1727 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1728 	if (ret) {
1729 		mlog_errno(ret);
1730 		goto out;
1731 	}
1732 
1733 	path = ocfs2_new_path_from_et(&et);
1734 	if (!path) {
1735 		ret = -ENOMEM;
1736 		mlog_errno(ret);
1737 		goto out;
1738 	}
1739 
1740 	while (trunc_end > trunc_start) {
1741 
1742 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1743 				      cluster_in_el);
1744 		if (ret) {
1745 			mlog_errno(ret);
1746 			goto out;
1747 		}
1748 
1749 		el = path_leaf_el(path);
1750 
1751 		i = ocfs2_find_rec(el, trunc_end);
1752 		/*
1753 		 * Need to go to previous extent block.
1754 		 */
1755 		if (i < 0) {
1756 			if (path->p_tree_depth == 0)
1757 				break;
1758 
1759 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1760 							    path,
1761 							    &cluster_in_el);
1762 			if (ret) {
1763 				mlog_errno(ret);
1764 				goto out;
1765 			}
1766 
1767 			/*
1768 			 * We've reached the leftmost extent block,
1769 			 * it's safe to leave.
1770 			 */
1771 			if (cluster_in_el == 0)
1772 				break;
1773 
1774 			/*
1775 			 * The 'pos' searched for previous extent block is
1776 			 * always one cluster less than actual trunc_end.
1777 			 */
1778 			trunc_end = cluster_in_el + 1;
1779 
1780 			ocfs2_reinit_path(path, 1);
1781 
1782 			continue;
1783 
1784 		} else
1785 			rec = &el->l_recs[i];
1786 
1787 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1788 				     &trunc_len, &trunc_end, &blkno, &done);
1789 		if (done)
1790 			break;
1791 
1792 		flags = rec->e_flags;
1793 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1794 
1795 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1796 					       phys_cpos, trunc_len, flags,
1797 					       &dealloc, refcount_loc, false);
1798 		if (ret < 0) {
1799 			mlog_errno(ret);
1800 			goto out;
1801 		}
1802 
1803 		cluster_in_el = trunc_end;
1804 
1805 		ocfs2_reinit_path(path, 1);
1806 	}
1807 
1808 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1809 
1810 out:
1811 	ocfs2_free_path(path);
1812 	ocfs2_schedule_truncate_log_flush(osb, 1);
1813 	ocfs2_run_deallocs(osb, &dealloc);
1814 
1815 	return ret;
1816 }
1817 
1818 /*
1819  * Parts of this function taken from xfs_change_file_space()
1820  */
1821 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1822 				     loff_t f_pos, unsigned int cmd,
1823 				     struct ocfs2_space_resv *sr,
1824 				     int change_size)
1825 {
1826 	int ret;
1827 	s64 llen;
1828 	loff_t size;
1829 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1830 	struct buffer_head *di_bh = NULL;
1831 	handle_t *handle;
1832 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1833 
1834 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1835 		return -EROFS;
1836 
1837 	inode_lock(inode);
1838 
1839 	/*
1840 	 * This prevents concurrent writes on other nodes
1841 	 */
1842 	ret = ocfs2_rw_lock(inode, 1);
1843 	if (ret) {
1844 		mlog_errno(ret);
1845 		goto out;
1846 	}
1847 
1848 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1849 	if (ret) {
1850 		mlog_errno(ret);
1851 		goto out_rw_unlock;
1852 	}
1853 
1854 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1855 		ret = -EPERM;
1856 		goto out_inode_unlock;
1857 	}
1858 
1859 	switch (sr->l_whence) {
1860 	case 0: /*SEEK_SET*/
1861 		break;
1862 	case 1: /*SEEK_CUR*/
1863 		sr->l_start += f_pos;
1864 		break;
1865 	case 2: /*SEEK_END*/
1866 		sr->l_start += i_size_read(inode);
1867 		break;
1868 	default:
1869 		ret = -EINVAL;
1870 		goto out_inode_unlock;
1871 	}
1872 	sr->l_whence = 0;
1873 
1874 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1875 
1876 	if (sr->l_start < 0
1877 	    || sr->l_start > max_off
1878 	    || (sr->l_start + llen) < 0
1879 	    || (sr->l_start + llen) > max_off) {
1880 		ret = -EINVAL;
1881 		goto out_inode_unlock;
1882 	}
1883 	size = sr->l_start + sr->l_len;
1884 
1885 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1886 	    cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1887 		if (sr->l_len <= 0) {
1888 			ret = -EINVAL;
1889 			goto out_inode_unlock;
1890 		}
1891 	}
1892 
1893 	if (file && should_remove_suid(file->f_path.dentry)) {
1894 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1895 		if (ret) {
1896 			mlog_errno(ret);
1897 			goto out_inode_unlock;
1898 		}
1899 	}
1900 
1901 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1902 	switch (cmd) {
1903 	case OCFS2_IOC_RESVSP:
1904 	case OCFS2_IOC_RESVSP64:
1905 		/*
1906 		 * This takes unsigned offsets, but the signed ones we
1907 		 * pass have been checked against overflow above.
1908 		 */
1909 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1910 						       sr->l_len);
1911 		break;
1912 	case OCFS2_IOC_UNRESVSP:
1913 	case OCFS2_IOC_UNRESVSP64:
1914 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1915 					       sr->l_len);
1916 		break;
1917 	default:
1918 		ret = -EINVAL;
1919 	}
1920 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1921 	if (ret) {
1922 		mlog_errno(ret);
1923 		goto out_inode_unlock;
1924 	}
1925 
1926 	/*
1927 	 * We update c/mtime for these changes
1928 	 */
1929 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1930 	if (IS_ERR(handle)) {
1931 		ret = PTR_ERR(handle);
1932 		mlog_errno(ret);
1933 		goto out_inode_unlock;
1934 	}
1935 
1936 	if (change_size && i_size_read(inode) < size)
1937 		i_size_write(inode, size);
1938 
1939 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1940 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1941 	if (ret < 0)
1942 		mlog_errno(ret);
1943 
1944 	if (file && (file->f_flags & O_SYNC))
1945 		handle->h_sync = 1;
1946 
1947 	ocfs2_commit_trans(osb, handle);
1948 
1949 out_inode_unlock:
1950 	brelse(di_bh);
1951 	ocfs2_inode_unlock(inode, 1);
1952 out_rw_unlock:
1953 	ocfs2_rw_unlock(inode, 1);
1954 
1955 out:
1956 	inode_unlock(inode);
1957 	return ret;
1958 }
1959 
1960 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1961 			    struct ocfs2_space_resv *sr)
1962 {
1963 	struct inode *inode = file_inode(file);
1964 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1965 	int ret;
1966 
1967 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1968 	    !ocfs2_writes_unwritten_extents(osb))
1969 		return -ENOTTY;
1970 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1971 		 !ocfs2_sparse_alloc(osb))
1972 		return -ENOTTY;
1973 
1974 	if (!S_ISREG(inode->i_mode))
1975 		return -EINVAL;
1976 
1977 	if (!(file->f_mode & FMODE_WRITE))
1978 		return -EBADF;
1979 
1980 	ret = mnt_want_write_file(file);
1981 	if (ret)
1982 		return ret;
1983 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
1984 	mnt_drop_write_file(file);
1985 	return ret;
1986 }
1987 
1988 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
1989 			    loff_t len)
1990 {
1991 	struct inode *inode = file_inode(file);
1992 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1993 	struct ocfs2_space_resv sr;
1994 	int change_size = 1;
1995 	int cmd = OCFS2_IOC_RESVSP64;
1996 
1997 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1998 		return -EOPNOTSUPP;
1999 	if (!ocfs2_writes_unwritten_extents(osb))
2000 		return -EOPNOTSUPP;
2001 
2002 	if (mode & FALLOC_FL_KEEP_SIZE)
2003 		change_size = 0;
2004 
2005 	if (mode & FALLOC_FL_PUNCH_HOLE)
2006 		cmd = OCFS2_IOC_UNRESVSP64;
2007 
2008 	sr.l_whence = 0;
2009 	sr.l_start = (s64)offset;
2010 	sr.l_len = (s64)len;
2011 
2012 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2013 					 change_size);
2014 }
2015 
2016 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2017 				   size_t count)
2018 {
2019 	int ret = 0;
2020 	unsigned int extent_flags;
2021 	u32 cpos, clusters, extent_len, phys_cpos;
2022 	struct super_block *sb = inode->i_sb;
2023 
2024 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2025 	    !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2026 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2027 		return 0;
2028 
2029 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2030 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2031 
2032 	while (clusters) {
2033 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2034 					 &extent_flags);
2035 		if (ret < 0) {
2036 			mlog_errno(ret);
2037 			goto out;
2038 		}
2039 
2040 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2041 			ret = 1;
2042 			break;
2043 		}
2044 
2045 		if (extent_len > clusters)
2046 			extent_len = clusters;
2047 
2048 		clusters -= extent_len;
2049 		cpos += extent_len;
2050 	}
2051 out:
2052 	return ret;
2053 }
2054 
2055 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2056 {
2057 	int blockmask = inode->i_sb->s_blocksize - 1;
2058 	loff_t final_size = pos + count;
2059 
2060 	if ((pos & blockmask) || (final_size & blockmask))
2061 		return 1;
2062 	return 0;
2063 }
2064 
2065 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2066 					    struct file *file,
2067 					    loff_t pos, size_t count,
2068 					    int *meta_level)
2069 {
2070 	int ret;
2071 	struct buffer_head *di_bh = NULL;
2072 	u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2073 	u32 clusters =
2074 		ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2075 
2076 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2077 	if (ret) {
2078 		mlog_errno(ret);
2079 		goto out;
2080 	}
2081 
2082 	*meta_level = 1;
2083 
2084 	ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2085 	if (ret)
2086 		mlog_errno(ret);
2087 out:
2088 	brelse(di_bh);
2089 	return ret;
2090 }
2091 
2092 static int ocfs2_prepare_inode_for_write(struct file *file,
2093 					 loff_t pos,
2094 					 size_t count)
2095 {
2096 	int ret = 0, meta_level = 0;
2097 	struct dentry *dentry = file->f_path.dentry;
2098 	struct inode *inode = d_inode(dentry);
2099 	loff_t end;
2100 
2101 	/*
2102 	 * We start with a read level meta lock and only jump to an ex
2103 	 * if we need to make modifications here.
2104 	 */
2105 	for(;;) {
2106 		ret = ocfs2_inode_lock(inode, NULL, meta_level);
2107 		if (ret < 0) {
2108 			meta_level = -1;
2109 			mlog_errno(ret);
2110 			goto out;
2111 		}
2112 
2113 		/* Clear suid / sgid if necessary. We do this here
2114 		 * instead of later in the write path because
2115 		 * remove_suid() calls ->setattr without any hint that
2116 		 * we may have already done our cluster locking. Since
2117 		 * ocfs2_setattr() *must* take cluster locks to
2118 		 * proceed, this will lead us to recursively lock the
2119 		 * inode. There's also the dinode i_size state which
2120 		 * can be lost via setattr during extending writes (we
2121 		 * set inode->i_size at the end of a write. */
2122 		if (should_remove_suid(dentry)) {
2123 			if (meta_level == 0) {
2124 				ocfs2_inode_unlock(inode, meta_level);
2125 				meta_level = 1;
2126 				continue;
2127 			}
2128 
2129 			ret = ocfs2_write_remove_suid(inode);
2130 			if (ret < 0) {
2131 				mlog_errno(ret);
2132 				goto out_unlock;
2133 			}
2134 		}
2135 
2136 		end = pos + count;
2137 
2138 		ret = ocfs2_check_range_for_refcount(inode, pos, count);
2139 		if (ret == 1) {
2140 			ocfs2_inode_unlock(inode, meta_level);
2141 			meta_level = -1;
2142 
2143 			ret = ocfs2_prepare_inode_for_refcount(inode,
2144 							       file,
2145 							       pos,
2146 							       count,
2147 							       &meta_level);
2148 		}
2149 
2150 		if (ret < 0) {
2151 			mlog_errno(ret);
2152 			goto out_unlock;
2153 		}
2154 
2155 		break;
2156 	}
2157 
2158 out_unlock:
2159 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2160 					    pos, count);
2161 
2162 	if (meta_level >= 0)
2163 		ocfs2_inode_unlock(inode, meta_level);
2164 
2165 out:
2166 	return ret;
2167 }
2168 
2169 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2170 				    struct iov_iter *from)
2171 {
2172 	int direct_io, rw_level;
2173 	ssize_t written = 0;
2174 	ssize_t ret;
2175 	size_t count = iov_iter_count(from);
2176 	struct file *file = iocb->ki_filp;
2177 	struct inode *inode = file_inode(file);
2178 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2179 	int full_coherency = !(osb->s_mount_opt &
2180 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2181 	void *saved_ki_complete = NULL;
2182 	int append_write = ((iocb->ki_pos + count) >=
2183 			i_size_read(inode) ? 1 : 0);
2184 
2185 	trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2186 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2187 		file->f_path.dentry->d_name.len,
2188 		file->f_path.dentry->d_name.name,
2189 		(unsigned int)from->nr_segs);	/* GRRRRR */
2190 
2191 	if (count == 0)
2192 		return 0;
2193 
2194 	direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2195 
2196 	inode_lock(inode);
2197 
2198 	/*
2199 	 * Concurrent O_DIRECT writes are allowed with
2200 	 * mount_option "coherency=buffered".
2201 	 * For append write, we must take rw EX.
2202 	 */
2203 	rw_level = (!direct_io || full_coherency || append_write);
2204 
2205 	ret = ocfs2_rw_lock(inode, rw_level);
2206 	if (ret < 0) {
2207 		mlog_errno(ret);
2208 		goto out_mutex;
2209 	}
2210 
2211 	/*
2212 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2213 	 * inode_lock to guarantee coherency.
2214 	 */
2215 	if (direct_io && full_coherency) {
2216 		/*
2217 		 * We need to take and drop the inode lock to force
2218 		 * other nodes to drop their caches.  Buffered I/O
2219 		 * already does this in write_begin().
2220 		 */
2221 		ret = ocfs2_inode_lock(inode, NULL, 1);
2222 		if (ret < 0) {
2223 			mlog_errno(ret);
2224 			goto out;
2225 		}
2226 
2227 		ocfs2_inode_unlock(inode, 1);
2228 	}
2229 
2230 	ret = generic_write_checks(iocb, from);
2231 	if (ret <= 0) {
2232 		if (ret)
2233 			mlog_errno(ret);
2234 		goto out;
2235 	}
2236 	count = ret;
2237 
2238 	ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count);
2239 	if (ret < 0) {
2240 		mlog_errno(ret);
2241 		goto out;
2242 	}
2243 
2244 	if (direct_io && !is_sync_kiocb(iocb) &&
2245 	    ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2246 		/*
2247 		 * Make it a sync io if it's an unaligned aio.
2248 		 */
2249 		saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2250 	}
2251 
2252 	/* communicate with ocfs2_dio_end_io */
2253 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2254 
2255 	written = __generic_file_write_iter(iocb, from);
2256 	/* buffered aio wouldn't have proper lock coverage today */
2257 	BUG_ON(written == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2258 
2259 	/*
2260 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2261 	 * function pointer which is called when o_direct io completes so that
2262 	 * it can unlock our rw lock.
2263 	 * Unfortunately there are error cases which call end_io and others
2264 	 * that don't.  so we don't have to unlock the rw_lock if either an
2265 	 * async dio is going to do it in the future or an end_io after an
2266 	 * error has already done it.
2267 	 */
2268 	if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2269 		rw_level = -1;
2270 	}
2271 
2272 	if (unlikely(written <= 0))
2273 		goto out;
2274 
2275 	if (((file->f_flags & O_DSYNC) && !direct_io) ||
2276 	    IS_SYNC(inode)) {
2277 		ret = filemap_fdatawrite_range(file->f_mapping,
2278 					       iocb->ki_pos - written,
2279 					       iocb->ki_pos - 1);
2280 		if (ret < 0)
2281 			written = ret;
2282 
2283 		if (!ret) {
2284 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2285 			if (ret < 0)
2286 				written = ret;
2287 		}
2288 
2289 		if (!ret)
2290 			ret = filemap_fdatawait_range(file->f_mapping,
2291 						      iocb->ki_pos - written,
2292 						      iocb->ki_pos - 1);
2293 	}
2294 
2295 out:
2296 	if (saved_ki_complete)
2297 		xchg(&iocb->ki_complete, saved_ki_complete);
2298 
2299 	if (rw_level != -1)
2300 		ocfs2_rw_unlock(inode, rw_level);
2301 
2302 out_mutex:
2303 	inode_unlock(inode);
2304 
2305 	if (written)
2306 		ret = written;
2307 	return ret;
2308 }
2309 
2310 static ssize_t ocfs2_file_splice_read(struct file *in,
2311 				      loff_t *ppos,
2312 				      struct pipe_inode_info *pipe,
2313 				      size_t len,
2314 				      unsigned int flags)
2315 {
2316 	int ret = 0, lock_level = 0;
2317 	struct inode *inode = file_inode(in);
2318 
2319 	trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2320 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2321 			in->f_path.dentry->d_name.len,
2322 			in->f_path.dentry->d_name.name, len);
2323 
2324 	/*
2325 	 * See the comment in ocfs2_file_read_iter()
2326 	 */
2327 	ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level);
2328 	if (ret < 0) {
2329 		mlog_errno(ret);
2330 		goto bail;
2331 	}
2332 	ocfs2_inode_unlock(inode, lock_level);
2333 
2334 	ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2335 
2336 bail:
2337 	return ret;
2338 }
2339 
2340 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2341 				   struct iov_iter *to)
2342 {
2343 	int ret = 0, rw_level = -1, lock_level = 0;
2344 	struct file *filp = iocb->ki_filp;
2345 	struct inode *inode = file_inode(filp);
2346 
2347 	trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2348 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2349 			filp->f_path.dentry->d_name.len,
2350 			filp->f_path.dentry->d_name.name,
2351 			to->nr_segs);	/* GRRRRR */
2352 
2353 
2354 	if (!inode) {
2355 		ret = -EINVAL;
2356 		mlog_errno(ret);
2357 		goto bail;
2358 	}
2359 
2360 	/*
2361 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2362 	 * need locks to protect pending reads from racing with truncate.
2363 	 */
2364 	if (iocb->ki_flags & IOCB_DIRECT) {
2365 		ret = ocfs2_rw_lock(inode, 0);
2366 		if (ret < 0) {
2367 			mlog_errno(ret);
2368 			goto bail;
2369 		}
2370 		rw_level = 0;
2371 		/* communicate with ocfs2_dio_end_io */
2372 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2373 	}
2374 
2375 	/*
2376 	 * We're fine letting folks race truncates and extending
2377 	 * writes with read across the cluster, just like they can
2378 	 * locally. Hence no rw_lock during read.
2379 	 *
2380 	 * Take and drop the meta data lock to update inode fields
2381 	 * like i_size. This allows the checks down below
2382 	 * generic_file_aio_read() a chance of actually working.
2383 	 */
2384 	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level);
2385 	if (ret < 0) {
2386 		mlog_errno(ret);
2387 		goto bail;
2388 	}
2389 	ocfs2_inode_unlock(inode, lock_level);
2390 
2391 	ret = generic_file_read_iter(iocb, to);
2392 	trace_generic_file_aio_read_ret(ret);
2393 
2394 	/* buffered aio wouldn't have proper lock coverage today */
2395 	BUG_ON(ret == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2396 
2397 	/* see ocfs2_file_write_iter */
2398 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2399 		rw_level = -1;
2400 	}
2401 
2402 bail:
2403 	if (rw_level != -1)
2404 		ocfs2_rw_unlock(inode, rw_level);
2405 
2406 	return ret;
2407 }
2408 
2409 /* Refer generic_file_llseek_unlocked() */
2410 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2411 {
2412 	struct inode *inode = file->f_mapping->host;
2413 	int ret = 0;
2414 
2415 	inode_lock(inode);
2416 
2417 	switch (whence) {
2418 	case SEEK_SET:
2419 		break;
2420 	case SEEK_END:
2421 		/* SEEK_END requires the OCFS2 inode lock for the file
2422 		 * because it references the file's size.
2423 		 */
2424 		ret = ocfs2_inode_lock(inode, NULL, 0);
2425 		if (ret < 0) {
2426 			mlog_errno(ret);
2427 			goto out;
2428 		}
2429 		offset += i_size_read(inode);
2430 		ocfs2_inode_unlock(inode, 0);
2431 		break;
2432 	case SEEK_CUR:
2433 		if (offset == 0) {
2434 			offset = file->f_pos;
2435 			goto out;
2436 		}
2437 		offset += file->f_pos;
2438 		break;
2439 	case SEEK_DATA:
2440 	case SEEK_HOLE:
2441 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2442 		if (ret)
2443 			goto out;
2444 		break;
2445 	default:
2446 		ret = -EINVAL;
2447 		goto out;
2448 	}
2449 
2450 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2451 
2452 out:
2453 	inode_unlock(inode);
2454 	if (ret)
2455 		return ret;
2456 	return offset;
2457 }
2458 
2459 const struct inode_operations ocfs2_file_iops = {
2460 	.setattr	= ocfs2_setattr,
2461 	.getattr	= ocfs2_getattr,
2462 	.permission	= ocfs2_permission,
2463 	.setxattr	= generic_setxattr,
2464 	.getxattr	= generic_getxattr,
2465 	.listxattr	= ocfs2_listxattr,
2466 	.removexattr	= generic_removexattr,
2467 	.fiemap		= ocfs2_fiemap,
2468 	.get_acl	= ocfs2_iop_get_acl,
2469 	.set_acl	= ocfs2_iop_set_acl,
2470 };
2471 
2472 const struct inode_operations ocfs2_special_file_iops = {
2473 	.setattr	= ocfs2_setattr,
2474 	.getattr	= ocfs2_getattr,
2475 	.permission	= ocfs2_permission,
2476 	.get_acl	= ocfs2_iop_get_acl,
2477 	.set_acl	= ocfs2_iop_set_acl,
2478 };
2479 
2480 /*
2481  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2482  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2483  */
2484 const struct file_operations ocfs2_fops = {
2485 	.llseek		= ocfs2_file_llseek,
2486 	.mmap		= ocfs2_mmap,
2487 	.fsync		= ocfs2_sync_file,
2488 	.release	= ocfs2_file_release,
2489 	.open		= ocfs2_file_open,
2490 	.read_iter	= ocfs2_file_read_iter,
2491 	.write_iter	= ocfs2_file_write_iter,
2492 	.unlocked_ioctl	= ocfs2_ioctl,
2493 #ifdef CONFIG_COMPAT
2494 	.compat_ioctl   = ocfs2_compat_ioctl,
2495 #endif
2496 	.lock		= ocfs2_lock,
2497 	.flock		= ocfs2_flock,
2498 	.splice_read	= ocfs2_file_splice_read,
2499 	.splice_write	= iter_file_splice_write,
2500 	.fallocate	= ocfs2_fallocate,
2501 };
2502 
2503 const struct file_operations ocfs2_dops = {
2504 	.llseek		= generic_file_llseek,
2505 	.read		= generic_read_dir,
2506 	.iterate	= ocfs2_readdir,
2507 	.fsync		= ocfs2_sync_file,
2508 	.release	= ocfs2_dir_release,
2509 	.open		= ocfs2_dir_open,
2510 	.unlocked_ioctl	= ocfs2_ioctl,
2511 #ifdef CONFIG_COMPAT
2512 	.compat_ioctl   = ocfs2_compat_ioctl,
2513 #endif
2514 	.lock		= ocfs2_lock,
2515 	.flock		= ocfs2_flock,
2516 };
2517 
2518 /*
2519  * POSIX-lockless variants of our file_operations.
2520  *
2521  * These will be used if the underlying cluster stack does not support
2522  * posix file locking, if the user passes the "localflocks" mount
2523  * option, or if we have a local-only fs.
2524  *
2525  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2526  * so we still want it in the case of no stack support for
2527  * plocks. Internally, it will do the right thing when asked to ignore
2528  * the cluster.
2529  */
2530 const struct file_operations ocfs2_fops_no_plocks = {
2531 	.llseek		= ocfs2_file_llseek,
2532 	.mmap		= ocfs2_mmap,
2533 	.fsync		= ocfs2_sync_file,
2534 	.release	= ocfs2_file_release,
2535 	.open		= ocfs2_file_open,
2536 	.read_iter	= ocfs2_file_read_iter,
2537 	.write_iter	= ocfs2_file_write_iter,
2538 	.unlocked_ioctl	= ocfs2_ioctl,
2539 #ifdef CONFIG_COMPAT
2540 	.compat_ioctl   = ocfs2_compat_ioctl,
2541 #endif
2542 	.flock		= ocfs2_flock,
2543 	.splice_read	= ocfs2_file_splice_read,
2544 	.splice_write	= iter_file_splice_write,
2545 	.fallocate	= ocfs2_fallocate,
2546 };
2547 
2548 const struct file_operations ocfs2_dops_no_plocks = {
2549 	.llseek		= generic_file_llseek,
2550 	.read		= generic_read_dir,
2551 	.iterate	= ocfs2_readdir,
2552 	.fsync		= ocfs2_sync_file,
2553 	.release	= ocfs2_dir_release,
2554 	.open		= ocfs2_dir_open,
2555 	.unlocked_ioctl	= ocfs2_ioctl,
2556 #ifdef CONFIG_COMPAT
2557 	.compat_ioctl   = ocfs2_compat_ioctl,
2558 #endif
2559 	.flock		= ocfs2_flock,
2560 };
2561