1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * file.c 4 * 5 * File open, close, extend, truncate 6 * 7 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/capability.h> 11 #include <linux/fs.h> 12 #include <linux/types.h> 13 #include <linux/slab.h> 14 #include <linux/highmem.h> 15 #include <linux/pagemap.h> 16 #include <linux/uio.h> 17 #include <linux/sched.h> 18 #include <linux/splice.h> 19 #include <linux/mount.h> 20 #include <linux/writeback.h> 21 #include <linux/falloc.h> 22 #include <linux/quotaops.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 26 #include <cluster/masklog.h> 27 28 #include "ocfs2.h" 29 30 #include "alloc.h" 31 #include "aops.h" 32 #include "dir.h" 33 #include "dlmglue.h" 34 #include "extent_map.h" 35 #include "file.h" 36 #include "sysfile.h" 37 #include "inode.h" 38 #include "ioctl.h" 39 #include "journal.h" 40 #include "locks.h" 41 #include "mmap.h" 42 #include "suballoc.h" 43 #include "super.h" 44 #include "xattr.h" 45 #include "acl.h" 46 #include "quota.h" 47 #include "refcounttree.h" 48 #include "ocfs2_trace.h" 49 50 #include "buffer_head_io.h" 51 52 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 53 { 54 struct ocfs2_file_private *fp; 55 56 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 57 if (!fp) 58 return -ENOMEM; 59 60 fp->fp_file = file; 61 mutex_init(&fp->fp_mutex); 62 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 63 file->private_data = fp; 64 65 return 0; 66 } 67 68 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 69 { 70 struct ocfs2_file_private *fp = file->private_data; 71 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 72 73 if (fp) { 74 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 75 ocfs2_lock_res_free(&fp->fp_flock); 76 kfree(fp); 77 file->private_data = NULL; 78 } 79 } 80 81 static int ocfs2_file_open(struct inode *inode, struct file *file) 82 { 83 int status; 84 int mode = file->f_flags; 85 struct ocfs2_inode_info *oi = OCFS2_I(inode); 86 87 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 88 (unsigned long long)oi->ip_blkno, 89 file->f_path.dentry->d_name.len, 90 file->f_path.dentry->d_name.name, mode); 91 92 if (file->f_mode & FMODE_WRITE) { 93 status = dquot_initialize(inode); 94 if (status) 95 goto leave; 96 } 97 98 spin_lock(&oi->ip_lock); 99 100 /* Check that the inode hasn't been wiped from disk by another 101 * node. If it hasn't then we're safe as long as we hold the 102 * spin lock until our increment of open count. */ 103 if (oi->ip_flags & OCFS2_INODE_DELETED) { 104 spin_unlock(&oi->ip_lock); 105 106 status = -ENOENT; 107 goto leave; 108 } 109 110 if (mode & O_DIRECT) 111 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 112 113 oi->ip_open_count++; 114 spin_unlock(&oi->ip_lock); 115 116 status = ocfs2_init_file_private(inode, file); 117 if (status) { 118 /* 119 * We want to set open count back if we're failing the 120 * open. 121 */ 122 spin_lock(&oi->ip_lock); 123 oi->ip_open_count--; 124 spin_unlock(&oi->ip_lock); 125 } 126 127 file->f_mode |= FMODE_NOWAIT; 128 129 leave: 130 return status; 131 } 132 133 static int ocfs2_file_release(struct inode *inode, struct file *file) 134 { 135 struct ocfs2_inode_info *oi = OCFS2_I(inode); 136 137 spin_lock(&oi->ip_lock); 138 if (!--oi->ip_open_count) 139 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 140 141 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 142 oi->ip_blkno, 143 file->f_path.dentry->d_name.len, 144 file->f_path.dentry->d_name.name, 145 oi->ip_open_count); 146 spin_unlock(&oi->ip_lock); 147 148 ocfs2_free_file_private(inode, file); 149 150 return 0; 151 } 152 153 static int ocfs2_dir_open(struct inode *inode, struct file *file) 154 { 155 return ocfs2_init_file_private(inode, file); 156 } 157 158 static int ocfs2_dir_release(struct inode *inode, struct file *file) 159 { 160 ocfs2_free_file_private(inode, file); 161 return 0; 162 } 163 164 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 165 int datasync) 166 { 167 int err = 0; 168 struct inode *inode = file->f_mapping->host; 169 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 170 struct ocfs2_inode_info *oi = OCFS2_I(inode); 171 journal_t *journal = osb->journal->j_journal; 172 int ret; 173 tid_t commit_tid; 174 bool needs_barrier = false; 175 176 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 177 oi->ip_blkno, 178 file->f_path.dentry->d_name.len, 179 file->f_path.dentry->d_name.name, 180 (unsigned long long)datasync); 181 182 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 183 return -EROFS; 184 185 err = file_write_and_wait_range(file, start, end); 186 if (err) 187 return err; 188 189 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid; 190 if (journal->j_flags & JBD2_BARRIER && 191 !jbd2_trans_will_send_data_barrier(journal, commit_tid)) 192 needs_barrier = true; 193 err = jbd2_complete_transaction(journal, commit_tid); 194 if (needs_barrier) { 195 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 196 if (!err) 197 err = ret; 198 } 199 200 if (err) 201 mlog_errno(err); 202 203 return (err < 0) ? -EIO : 0; 204 } 205 206 int ocfs2_should_update_atime(struct inode *inode, 207 struct vfsmount *vfsmnt) 208 { 209 struct timespec64 now; 210 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 211 212 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 213 return 0; 214 215 if ((inode->i_flags & S_NOATIME) || 216 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))) 217 return 0; 218 219 /* 220 * We can be called with no vfsmnt structure - NFSD will 221 * sometimes do this. 222 * 223 * Note that our action here is different than touch_atime() - 224 * if we can't tell whether this is a noatime mount, then we 225 * don't know whether to trust the value of s_atime_quantum. 226 */ 227 if (vfsmnt == NULL) 228 return 0; 229 230 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 231 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 232 return 0; 233 234 if (vfsmnt->mnt_flags & MNT_RELATIME) { 235 struct timespec64 ctime = inode_get_ctime(inode); 236 struct timespec64 atime = inode_get_atime(inode); 237 struct timespec64 mtime = inode_get_mtime(inode); 238 239 if ((timespec64_compare(&atime, &mtime) <= 0) || 240 (timespec64_compare(&atime, &ctime) <= 0)) 241 return 1; 242 243 return 0; 244 } 245 246 now = current_time(inode); 247 if ((now.tv_sec - inode_get_atime_sec(inode) <= osb->s_atime_quantum)) 248 return 0; 249 else 250 return 1; 251 } 252 253 int ocfs2_update_inode_atime(struct inode *inode, 254 struct buffer_head *bh) 255 { 256 int ret; 257 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 258 handle_t *handle; 259 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 260 261 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 262 if (IS_ERR(handle)) { 263 ret = PTR_ERR(handle); 264 mlog_errno(ret); 265 goto out; 266 } 267 268 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 269 OCFS2_JOURNAL_ACCESS_WRITE); 270 if (ret) { 271 mlog_errno(ret); 272 goto out_commit; 273 } 274 275 /* 276 * Don't use ocfs2_mark_inode_dirty() here as we don't always 277 * have i_rwsem to guard against concurrent changes to other 278 * inode fields. 279 */ 280 inode_set_atime_to_ts(inode, current_time(inode)); 281 di->i_atime = cpu_to_le64(inode_get_atime_sec(inode)); 282 di->i_atime_nsec = cpu_to_le32(inode_get_atime_nsec(inode)); 283 ocfs2_update_inode_fsync_trans(handle, inode, 0); 284 ocfs2_journal_dirty(handle, bh); 285 286 out_commit: 287 ocfs2_commit_trans(osb, handle); 288 out: 289 return ret; 290 } 291 292 int ocfs2_set_inode_size(handle_t *handle, 293 struct inode *inode, 294 struct buffer_head *fe_bh, 295 u64 new_i_size) 296 { 297 int status; 298 299 i_size_write(inode, new_i_size); 300 inode->i_blocks = ocfs2_inode_sector_count(inode); 301 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 302 303 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 304 if (status < 0) { 305 mlog_errno(status); 306 goto bail; 307 } 308 309 bail: 310 return status; 311 } 312 313 int ocfs2_simple_size_update(struct inode *inode, 314 struct buffer_head *di_bh, 315 u64 new_i_size) 316 { 317 int ret; 318 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 319 handle_t *handle = NULL; 320 321 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 322 if (IS_ERR(handle)) { 323 ret = PTR_ERR(handle); 324 mlog_errno(ret); 325 goto out; 326 } 327 328 ret = ocfs2_set_inode_size(handle, inode, di_bh, 329 new_i_size); 330 if (ret < 0) 331 mlog_errno(ret); 332 333 ocfs2_update_inode_fsync_trans(handle, inode, 0); 334 ocfs2_commit_trans(osb, handle); 335 out: 336 return ret; 337 } 338 339 static int ocfs2_cow_file_pos(struct inode *inode, 340 struct buffer_head *fe_bh, 341 u64 offset) 342 { 343 int status; 344 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 345 unsigned int num_clusters = 0; 346 unsigned int ext_flags = 0; 347 348 /* 349 * If the new offset is aligned to the range of the cluster, there is 350 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 351 * CoW either. 352 */ 353 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 354 return 0; 355 356 status = ocfs2_get_clusters(inode, cpos, &phys, 357 &num_clusters, &ext_flags); 358 if (status) { 359 mlog_errno(status); 360 goto out; 361 } 362 363 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 364 goto out; 365 366 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 367 368 out: 369 return status; 370 } 371 372 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 373 struct inode *inode, 374 struct buffer_head *fe_bh, 375 u64 new_i_size) 376 { 377 int status; 378 handle_t *handle; 379 struct ocfs2_dinode *di; 380 u64 cluster_bytes; 381 382 /* 383 * We need to CoW the cluster contains the offset if it is reflinked 384 * since we will call ocfs2_zero_range_for_truncate later which will 385 * write "0" from offset to the end of the cluster. 386 */ 387 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 388 if (status) { 389 mlog_errno(status); 390 return status; 391 } 392 393 /* TODO: This needs to actually orphan the inode in this 394 * transaction. */ 395 396 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 397 if (IS_ERR(handle)) { 398 status = PTR_ERR(handle); 399 mlog_errno(status); 400 goto out; 401 } 402 403 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 404 OCFS2_JOURNAL_ACCESS_WRITE); 405 if (status < 0) { 406 mlog_errno(status); 407 goto out_commit; 408 } 409 410 /* 411 * Do this before setting i_size. 412 */ 413 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 414 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 415 cluster_bytes); 416 if (status) { 417 mlog_errno(status); 418 goto out_commit; 419 } 420 421 i_size_write(inode, new_i_size); 422 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 423 424 di = (struct ocfs2_dinode *) fe_bh->b_data; 425 di->i_size = cpu_to_le64(new_i_size); 426 di->i_ctime = di->i_mtime = cpu_to_le64(inode_get_ctime_sec(inode)); 427 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode)); 428 ocfs2_update_inode_fsync_trans(handle, inode, 0); 429 430 ocfs2_journal_dirty(handle, fe_bh); 431 432 out_commit: 433 ocfs2_commit_trans(osb, handle); 434 out: 435 return status; 436 } 437 438 int ocfs2_truncate_file(struct inode *inode, 439 struct buffer_head *di_bh, 440 u64 new_i_size) 441 { 442 int status = 0; 443 struct ocfs2_dinode *fe = NULL; 444 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 445 446 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 447 * already validated it */ 448 fe = (struct ocfs2_dinode *) di_bh->b_data; 449 450 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 451 (unsigned long long)le64_to_cpu(fe->i_size), 452 (unsigned long long)new_i_size); 453 454 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 455 "Inode %llu, inode i_size = %lld != di " 456 "i_size = %llu, i_flags = 0x%x\n", 457 (unsigned long long)OCFS2_I(inode)->ip_blkno, 458 i_size_read(inode), 459 (unsigned long long)le64_to_cpu(fe->i_size), 460 le32_to_cpu(fe->i_flags)); 461 462 if (new_i_size > le64_to_cpu(fe->i_size)) { 463 trace_ocfs2_truncate_file_error( 464 (unsigned long long)le64_to_cpu(fe->i_size), 465 (unsigned long long)new_i_size); 466 status = -EINVAL; 467 mlog_errno(status); 468 goto bail; 469 } 470 471 down_write(&OCFS2_I(inode)->ip_alloc_sem); 472 473 ocfs2_resv_discard(&osb->osb_la_resmap, 474 &OCFS2_I(inode)->ip_la_data_resv); 475 476 /* 477 * The inode lock forced other nodes to sync and drop their 478 * pages, which (correctly) happens even if we have a truncate 479 * without allocation change - ocfs2 cluster sizes can be much 480 * greater than page size, so we have to truncate them 481 * anyway. 482 */ 483 484 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 485 unmap_mapping_range(inode->i_mapping, 486 new_i_size + PAGE_SIZE - 1, 0, 1); 487 truncate_inode_pages(inode->i_mapping, new_i_size); 488 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 489 i_size_read(inode), 1); 490 if (status) 491 mlog_errno(status); 492 493 goto bail_unlock_sem; 494 } 495 496 /* alright, we're going to need to do a full blown alloc size 497 * change. Orphan the inode so that recovery can complete the 498 * truncate if necessary. This does the task of marking 499 * i_size. */ 500 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 501 if (status < 0) { 502 mlog_errno(status); 503 goto bail_unlock_sem; 504 } 505 506 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 507 truncate_inode_pages(inode->i_mapping, new_i_size); 508 509 status = ocfs2_commit_truncate(osb, inode, di_bh); 510 if (status < 0) { 511 mlog_errno(status); 512 goto bail_unlock_sem; 513 } 514 515 /* TODO: orphan dir cleanup here. */ 516 bail_unlock_sem: 517 up_write(&OCFS2_I(inode)->ip_alloc_sem); 518 519 bail: 520 if (!status && OCFS2_I(inode)->ip_clusters == 0) 521 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 522 523 return status; 524 } 525 526 /* 527 * extend file allocation only here. 528 * we'll update all the disk stuff, and oip->alloc_size 529 * 530 * expect stuff to be locked, a transaction started and enough data / 531 * metadata reservations in the contexts. 532 * 533 * Will return -EAGAIN, and a reason if a restart is needed. 534 * If passed in, *reason will always be set, even in error. 535 */ 536 int ocfs2_add_inode_data(struct ocfs2_super *osb, 537 struct inode *inode, 538 u32 *logical_offset, 539 u32 clusters_to_add, 540 int mark_unwritten, 541 struct buffer_head *fe_bh, 542 handle_t *handle, 543 struct ocfs2_alloc_context *data_ac, 544 struct ocfs2_alloc_context *meta_ac, 545 enum ocfs2_alloc_restarted *reason_ret) 546 { 547 struct ocfs2_extent_tree et; 548 549 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 550 return ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 551 clusters_to_add, mark_unwritten, 552 data_ac, meta_ac, reason_ret); 553 } 554 555 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 556 u32 clusters_to_add, int mark_unwritten) 557 { 558 int status = 0; 559 int restart_func = 0; 560 int credits; 561 u32 prev_clusters; 562 struct buffer_head *bh = NULL; 563 struct ocfs2_dinode *fe = NULL; 564 handle_t *handle = NULL; 565 struct ocfs2_alloc_context *data_ac = NULL; 566 struct ocfs2_alloc_context *meta_ac = NULL; 567 enum ocfs2_alloc_restarted why = RESTART_NONE; 568 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 569 struct ocfs2_extent_tree et; 570 int did_quota = 0; 571 572 /* 573 * Unwritten extent only exists for file systems which 574 * support holes. 575 */ 576 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 577 578 status = ocfs2_read_inode_block(inode, &bh); 579 if (status < 0) { 580 mlog_errno(status); 581 goto leave; 582 } 583 fe = (struct ocfs2_dinode *) bh->b_data; 584 585 restart_all: 586 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 587 588 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 589 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 590 &data_ac, &meta_ac); 591 if (status) { 592 mlog_errno(status); 593 goto leave; 594 } 595 596 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); 597 handle = ocfs2_start_trans(osb, credits); 598 if (IS_ERR(handle)) { 599 status = PTR_ERR(handle); 600 handle = NULL; 601 mlog_errno(status); 602 goto leave; 603 } 604 605 restarted_transaction: 606 trace_ocfs2_extend_allocation( 607 (unsigned long long)OCFS2_I(inode)->ip_blkno, 608 (unsigned long long)i_size_read(inode), 609 le32_to_cpu(fe->i_clusters), clusters_to_add, 610 why, restart_func); 611 612 status = dquot_alloc_space_nodirty(inode, 613 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 614 if (status) 615 goto leave; 616 did_quota = 1; 617 618 /* reserve a write to the file entry early on - that we if we 619 * run out of credits in the allocation path, we can still 620 * update i_size. */ 621 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 622 OCFS2_JOURNAL_ACCESS_WRITE); 623 if (status < 0) { 624 mlog_errno(status); 625 goto leave; 626 } 627 628 prev_clusters = OCFS2_I(inode)->ip_clusters; 629 630 status = ocfs2_add_inode_data(osb, 631 inode, 632 &logical_start, 633 clusters_to_add, 634 mark_unwritten, 635 bh, 636 handle, 637 data_ac, 638 meta_ac, 639 &why); 640 if ((status < 0) && (status != -EAGAIN)) { 641 if (status != -ENOSPC) 642 mlog_errno(status); 643 goto leave; 644 } 645 ocfs2_update_inode_fsync_trans(handle, inode, 1); 646 ocfs2_journal_dirty(handle, bh); 647 648 spin_lock(&OCFS2_I(inode)->ip_lock); 649 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 650 spin_unlock(&OCFS2_I(inode)->ip_lock); 651 /* Release unused quota reservation */ 652 dquot_free_space(inode, 653 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 654 did_quota = 0; 655 656 if (why != RESTART_NONE && clusters_to_add) { 657 if (why == RESTART_META) { 658 restart_func = 1; 659 status = 0; 660 } else { 661 BUG_ON(why != RESTART_TRANS); 662 663 status = ocfs2_allocate_extend_trans(handle, 1); 664 if (status < 0) { 665 /* handle still has to be committed at 666 * this point. */ 667 status = -ENOMEM; 668 mlog_errno(status); 669 goto leave; 670 } 671 goto restarted_transaction; 672 } 673 } 674 675 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 676 le32_to_cpu(fe->i_clusters), 677 (unsigned long long)le64_to_cpu(fe->i_size), 678 OCFS2_I(inode)->ip_clusters, 679 (unsigned long long)i_size_read(inode)); 680 681 leave: 682 if (status < 0 && did_quota) 683 dquot_free_space(inode, 684 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 685 if (handle) { 686 ocfs2_commit_trans(osb, handle); 687 handle = NULL; 688 } 689 if (data_ac) { 690 ocfs2_free_alloc_context(data_ac); 691 data_ac = NULL; 692 } 693 if (meta_ac) { 694 ocfs2_free_alloc_context(meta_ac); 695 meta_ac = NULL; 696 } 697 if ((!status) && restart_func) { 698 restart_func = 0; 699 goto restart_all; 700 } 701 brelse(bh); 702 bh = NULL; 703 704 return status; 705 } 706 707 /* 708 * While a write will already be ordering the data, a truncate will not. 709 * Thus, we need to explicitly order the zeroed pages. 710 */ 711 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, 712 struct buffer_head *di_bh, 713 loff_t start_byte, 714 loff_t length) 715 { 716 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 717 handle_t *handle = NULL; 718 int ret = 0; 719 720 if (!ocfs2_should_order_data(inode)) 721 goto out; 722 723 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 724 if (IS_ERR(handle)) { 725 ret = -ENOMEM; 726 mlog_errno(ret); 727 goto out; 728 } 729 730 ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length); 731 if (ret < 0) { 732 mlog_errno(ret); 733 goto out; 734 } 735 736 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 737 OCFS2_JOURNAL_ACCESS_WRITE); 738 if (ret) 739 mlog_errno(ret); 740 ocfs2_update_inode_fsync_trans(handle, inode, 1); 741 742 out: 743 if (ret) { 744 if (!IS_ERR(handle)) 745 ocfs2_commit_trans(osb, handle); 746 handle = ERR_PTR(ret); 747 } 748 return handle; 749 } 750 751 /* Some parts of this taken from generic_cont_expand, which turned out 752 * to be too fragile to do exactly what we need without us having to 753 * worry about recursive locking in ->write_begin() and ->write_end(). */ 754 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 755 u64 abs_to, struct buffer_head *di_bh) 756 { 757 struct address_space *mapping = inode->i_mapping; 758 struct page *page; 759 unsigned long index = abs_from >> PAGE_SHIFT; 760 handle_t *handle; 761 int ret = 0; 762 unsigned zero_from, zero_to, block_start, block_end; 763 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 764 765 BUG_ON(abs_from >= abs_to); 766 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT)); 767 BUG_ON(abs_from & (inode->i_blkbits - 1)); 768 769 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh, 770 abs_from, 771 abs_to - abs_from); 772 if (IS_ERR(handle)) { 773 ret = PTR_ERR(handle); 774 goto out; 775 } 776 777 page = find_or_create_page(mapping, index, GFP_NOFS); 778 if (!page) { 779 ret = -ENOMEM; 780 mlog_errno(ret); 781 goto out_commit_trans; 782 } 783 784 /* Get the offsets within the page that we want to zero */ 785 zero_from = abs_from & (PAGE_SIZE - 1); 786 zero_to = abs_to & (PAGE_SIZE - 1); 787 if (!zero_to) 788 zero_to = PAGE_SIZE; 789 790 trace_ocfs2_write_zero_page( 791 (unsigned long long)OCFS2_I(inode)->ip_blkno, 792 (unsigned long long)abs_from, 793 (unsigned long long)abs_to, 794 index, zero_from, zero_to); 795 796 /* We know that zero_from is block aligned */ 797 for (block_start = zero_from; block_start < zero_to; 798 block_start = block_end) { 799 block_end = block_start + i_blocksize(inode); 800 801 /* 802 * block_start is block-aligned. Bump it by one to force 803 * __block_write_begin and block_commit_write to zero the 804 * whole block. 805 */ 806 ret = __block_write_begin(page, block_start + 1, 0, 807 ocfs2_get_block); 808 if (ret < 0) { 809 mlog_errno(ret); 810 goto out_unlock; 811 } 812 813 814 /* must not update i_size! */ 815 block_commit_write(page, block_start + 1, block_start + 1); 816 } 817 818 /* 819 * fs-writeback will release the dirty pages without page lock 820 * whose offset are over inode size, the release happens at 821 * block_write_full_page(). 822 */ 823 i_size_write(inode, abs_to); 824 inode->i_blocks = ocfs2_inode_sector_count(inode); 825 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 826 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 827 di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode)); 828 di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode)); 829 di->i_mtime_nsec = di->i_ctime_nsec; 830 if (handle) { 831 ocfs2_journal_dirty(handle, di_bh); 832 ocfs2_update_inode_fsync_trans(handle, inode, 1); 833 } 834 835 out_unlock: 836 unlock_page(page); 837 put_page(page); 838 out_commit_trans: 839 if (handle) 840 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 841 out: 842 return ret; 843 } 844 845 /* 846 * Find the next range to zero. We do this in terms of bytes because 847 * that's what ocfs2_zero_extend() wants, and it is dealing with the 848 * pagecache. We may return multiple extents. 849 * 850 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 851 * needs to be zeroed. range_start and range_end return the next zeroing 852 * range. A subsequent call should pass the previous range_end as its 853 * zero_start. If range_end is 0, there's nothing to do. 854 * 855 * Unwritten extents are skipped over. Refcounted extents are CoWd. 856 */ 857 static int ocfs2_zero_extend_get_range(struct inode *inode, 858 struct buffer_head *di_bh, 859 u64 zero_start, u64 zero_end, 860 u64 *range_start, u64 *range_end) 861 { 862 int rc = 0, needs_cow = 0; 863 u32 p_cpos, zero_clusters = 0; 864 u32 zero_cpos = 865 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 866 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 867 unsigned int num_clusters = 0; 868 unsigned int ext_flags = 0; 869 870 while (zero_cpos < last_cpos) { 871 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 872 &num_clusters, &ext_flags); 873 if (rc) { 874 mlog_errno(rc); 875 goto out; 876 } 877 878 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 879 zero_clusters = num_clusters; 880 if (ext_flags & OCFS2_EXT_REFCOUNTED) 881 needs_cow = 1; 882 break; 883 } 884 885 zero_cpos += num_clusters; 886 } 887 if (!zero_clusters) { 888 *range_end = 0; 889 goto out; 890 } 891 892 while ((zero_cpos + zero_clusters) < last_cpos) { 893 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 894 &p_cpos, &num_clusters, 895 &ext_flags); 896 if (rc) { 897 mlog_errno(rc); 898 goto out; 899 } 900 901 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 902 break; 903 if (ext_flags & OCFS2_EXT_REFCOUNTED) 904 needs_cow = 1; 905 zero_clusters += num_clusters; 906 } 907 if ((zero_cpos + zero_clusters) > last_cpos) 908 zero_clusters = last_cpos - zero_cpos; 909 910 if (needs_cow) { 911 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, 912 zero_clusters, UINT_MAX); 913 if (rc) { 914 mlog_errno(rc); 915 goto out; 916 } 917 } 918 919 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 920 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 921 zero_cpos + zero_clusters); 922 923 out: 924 return rc; 925 } 926 927 /* 928 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 929 * has made sure that the entire range needs zeroing. 930 */ 931 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 932 u64 range_end, struct buffer_head *di_bh) 933 { 934 int rc = 0; 935 u64 next_pos; 936 u64 zero_pos = range_start; 937 938 trace_ocfs2_zero_extend_range( 939 (unsigned long long)OCFS2_I(inode)->ip_blkno, 940 (unsigned long long)range_start, 941 (unsigned long long)range_end); 942 BUG_ON(range_start >= range_end); 943 944 while (zero_pos < range_end) { 945 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE; 946 if (next_pos > range_end) 947 next_pos = range_end; 948 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); 949 if (rc < 0) { 950 mlog_errno(rc); 951 break; 952 } 953 zero_pos = next_pos; 954 955 /* 956 * Very large extends have the potential to lock up 957 * the cpu for extended periods of time. 958 */ 959 cond_resched(); 960 } 961 962 return rc; 963 } 964 965 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 966 loff_t zero_to_size) 967 { 968 int ret = 0; 969 u64 zero_start, range_start = 0, range_end = 0; 970 struct super_block *sb = inode->i_sb; 971 972 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 973 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 974 (unsigned long long)zero_start, 975 (unsigned long long)i_size_read(inode)); 976 while (zero_start < zero_to_size) { 977 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 978 zero_to_size, 979 &range_start, 980 &range_end); 981 if (ret) { 982 mlog_errno(ret); 983 break; 984 } 985 if (!range_end) 986 break; 987 /* Trim the ends */ 988 if (range_start < zero_start) 989 range_start = zero_start; 990 if (range_end > zero_to_size) 991 range_end = zero_to_size; 992 993 ret = ocfs2_zero_extend_range(inode, range_start, 994 range_end, di_bh); 995 if (ret) { 996 mlog_errno(ret); 997 break; 998 } 999 zero_start = range_end; 1000 } 1001 1002 return ret; 1003 } 1004 1005 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 1006 u64 new_i_size, u64 zero_to) 1007 { 1008 int ret; 1009 u32 clusters_to_add; 1010 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1011 1012 /* 1013 * Only quota files call this without a bh, and they can't be 1014 * refcounted. 1015 */ 1016 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode)); 1017 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1018 1019 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1020 if (clusters_to_add < oi->ip_clusters) 1021 clusters_to_add = 0; 1022 else 1023 clusters_to_add -= oi->ip_clusters; 1024 1025 if (clusters_to_add) { 1026 ret = ocfs2_extend_allocation(inode, oi->ip_clusters, 1027 clusters_to_add, 0); 1028 if (ret) { 1029 mlog_errno(ret); 1030 goto out; 1031 } 1032 } 1033 1034 /* 1035 * Call this even if we don't add any clusters to the tree. We 1036 * still need to zero the area between the old i_size and the 1037 * new i_size. 1038 */ 1039 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1040 if (ret < 0) 1041 mlog_errno(ret); 1042 1043 out: 1044 return ret; 1045 } 1046 1047 static int ocfs2_extend_file(struct inode *inode, 1048 struct buffer_head *di_bh, 1049 u64 new_i_size) 1050 { 1051 int ret = 0; 1052 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1053 1054 BUG_ON(!di_bh); 1055 1056 /* setattr sometimes calls us like this. */ 1057 if (new_i_size == 0) 1058 goto out; 1059 1060 if (i_size_read(inode) == new_i_size) 1061 goto out; 1062 BUG_ON(new_i_size < i_size_read(inode)); 1063 1064 /* 1065 * The alloc sem blocks people in read/write from reading our 1066 * allocation until we're done changing it. We depend on 1067 * i_rwsem to block other extend/truncate calls while we're 1068 * here. We even have to hold it for sparse files because there 1069 * might be some tail zeroing. 1070 */ 1071 down_write(&oi->ip_alloc_sem); 1072 1073 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1074 /* 1075 * We can optimize small extends by keeping the inodes 1076 * inline data. 1077 */ 1078 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1079 up_write(&oi->ip_alloc_sem); 1080 goto out_update_size; 1081 } 1082 1083 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1084 if (ret) { 1085 up_write(&oi->ip_alloc_sem); 1086 mlog_errno(ret); 1087 goto out; 1088 } 1089 } 1090 1091 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1092 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1093 else 1094 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1095 new_i_size); 1096 1097 up_write(&oi->ip_alloc_sem); 1098 1099 if (ret < 0) { 1100 mlog_errno(ret); 1101 goto out; 1102 } 1103 1104 out_update_size: 1105 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1106 if (ret < 0) 1107 mlog_errno(ret); 1108 1109 out: 1110 return ret; 1111 } 1112 1113 int ocfs2_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 1114 struct iattr *attr) 1115 { 1116 int status = 0, size_change; 1117 int inode_locked = 0; 1118 struct inode *inode = d_inode(dentry); 1119 struct super_block *sb = inode->i_sb; 1120 struct ocfs2_super *osb = OCFS2_SB(sb); 1121 struct buffer_head *bh = NULL; 1122 handle_t *handle = NULL; 1123 struct dquot *transfer_to[MAXQUOTAS] = { }; 1124 int qtype; 1125 int had_lock; 1126 struct ocfs2_lock_holder oh; 1127 1128 trace_ocfs2_setattr(inode, dentry, 1129 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1130 dentry->d_name.len, dentry->d_name.name, 1131 attr->ia_valid, attr->ia_mode, 1132 from_kuid(&init_user_ns, attr->ia_uid), 1133 from_kgid(&init_user_ns, attr->ia_gid)); 1134 1135 /* ensuring we don't even attempt to truncate a symlink */ 1136 if (S_ISLNK(inode->i_mode)) 1137 attr->ia_valid &= ~ATTR_SIZE; 1138 1139 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1140 | ATTR_GID | ATTR_UID | ATTR_MODE) 1141 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1142 return 0; 1143 1144 status = setattr_prepare(&nop_mnt_idmap, dentry, attr); 1145 if (status) 1146 return status; 1147 1148 if (is_quota_modification(&nop_mnt_idmap, inode, attr)) { 1149 status = dquot_initialize(inode); 1150 if (status) 1151 return status; 1152 } 1153 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1154 if (size_change) { 1155 /* 1156 * Here we should wait dio to finish before inode lock 1157 * to avoid a deadlock between ocfs2_setattr() and 1158 * ocfs2_dio_end_io_write() 1159 */ 1160 inode_dio_wait(inode); 1161 1162 status = ocfs2_rw_lock(inode, 1); 1163 if (status < 0) { 1164 mlog_errno(status); 1165 goto bail; 1166 } 1167 } 1168 1169 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh); 1170 if (had_lock < 0) { 1171 status = had_lock; 1172 goto bail_unlock_rw; 1173 } else if (had_lock) { 1174 /* 1175 * As far as we know, ocfs2_setattr() could only be the first 1176 * VFS entry point in the call chain of recursive cluster 1177 * locking issue. 1178 * 1179 * For instance: 1180 * chmod_common() 1181 * notify_change() 1182 * ocfs2_setattr() 1183 * posix_acl_chmod() 1184 * ocfs2_iop_get_acl() 1185 * 1186 * But, we're not 100% sure if it's always true, because the 1187 * ordering of the VFS entry points in the call chain is out 1188 * of our control. So, we'd better dump the stack here to 1189 * catch the other cases of recursive locking. 1190 */ 1191 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1192 dump_stack(); 1193 } 1194 inode_locked = 1; 1195 1196 if (size_change) { 1197 status = inode_newsize_ok(inode, attr->ia_size); 1198 if (status) 1199 goto bail_unlock; 1200 1201 if (i_size_read(inode) >= attr->ia_size) { 1202 if (ocfs2_should_order_data(inode)) { 1203 status = ocfs2_begin_ordered_truncate(inode, 1204 attr->ia_size); 1205 if (status) 1206 goto bail_unlock; 1207 } 1208 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1209 } else 1210 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1211 if (status < 0) { 1212 if (status != -ENOSPC) 1213 mlog_errno(status); 1214 status = -ENOSPC; 1215 goto bail_unlock; 1216 } 1217 } 1218 1219 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1220 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1221 /* 1222 * Gather pointers to quota structures so that allocation / 1223 * freeing of quota structures happens here and not inside 1224 * dquot_transfer() where we have problems with lock ordering 1225 */ 1226 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1227 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1228 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1229 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1230 if (IS_ERR(transfer_to[USRQUOTA])) { 1231 status = PTR_ERR(transfer_to[USRQUOTA]); 1232 transfer_to[USRQUOTA] = NULL; 1233 goto bail_unlock; 1234 } 1235 } 1236 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1237 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1238 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1239 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1240 if (IS_ERR(transfer_to[GRPQUOTA])) { 1241 status = PTR_ERR(transfer_to[GRPQUOTA]); 1242 transfer_to[GRPQUOTA] = NULL; 1243 goto bail_unlock; 1244 } 1245 } 1246 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1247 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1248 2 * ocfs2_quota_trans_credits(sb)); 1249 if (IS_ERR(handle)) { 1250 status = PTR_ERR(handle); 1251 mlog_errno(status); 1252 goto bail_unlock_alloc; 1253 } 1254 status = __dquot_transfer(inode, transfer_to); 1255 if (status < 0) 1256 goto bail_commit; 1257 } else { 1258 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1259 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1260 if (IS_ERR(handle)) { 1261 status = PTR_ERR(handle); 1262 mlog_errno(status); 1263 goto bail_unlock_alloc; 1264 } 1265 } 1266 1267 setattr_copy(&nop_mnt_idmap, inode, attr); 1268 mark_inode_dirty(inode); 1269 1270 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1271 if (status < 0) 1272 mlog_errno(status); 1273 1274 bail_commit: 1275 ocfs2_commit_trans(osb, handle); 1276 bail_unlock_alloc: 1277 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1278 bail_unlock: 1279 if (status && inode_locked) { 1280 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1281 inode_locked = 0; 1282 } 1283 bail_unlock_rw: 1284 if (size_change) 1285 ocfs2_rw_unlock(inode, 1); 1286 bail: 1287 1288 /* Release quota pointers in case we acquired them */ 1289 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) 1290 dqput(transfer_to[qtype]); 1291 1292 if (!status && attr->ia_valid & ATTR_MODE) { 1293 status = ocfs2_acl_chmod(inode, bh); 1294 if (status < 0) 1295 mlog_errno(status); 1296 } 1297 if (inode_locked) 1298 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1299 1300 brelse(bh); 1301 return status; 1302 } 1303 1304 int ocfs2_getattr(struct mnt_idmap *idmap, const struct path *path, 1305 struct kstat *stat, u32 request_mask, unsigned int flags) 1306 { 1307 struct inode *inode = d_inode(path->dentry); 1308 struct super_block *sb = path->dentry->d_sb; 1309 struct ocfs2_super *osb = sb->s_fs_info; 1310 int err; 1311 1312 err = ocfs2_inode_revalidate(path->dentry); 1313 if (err) { 1314 if (err != -ENOENT) 1315 mlog_errno(err); 1316 goto bail; 1317 } 1318 1319 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 1320 /* 1321 * If there is inline data in the inode, the inode will normally not 1322 * have data blocks allocated (it may have an external xattr block). 1323 * Report at least one sector for such files, so tools like tar, rsync, 1324 * others don't incorrectly think the file is completely sparse. 1325 */ 1326 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1327 stat->blocks += (stat->size + 511)>>9; 1328 1329 /* We set the blksize from the cluster size for performance */ 1330 stat->blksize = osb->s_clustersize; 1331 1332 bail: 1333 return err; 1334 } 1335 1336 int ocfs2_permission(struct mnt_idmap *idmap, struct inode *inode, 1337 int mask) 1338 { 1339 int ret, had_lock; 1340 struct ocfs2_lock_holder oh; 1341 1342 if (mask & MAY_NOT_BLOCK) 1343 return -ECHILD; 1344 1345 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh); 1346 if (had_lock < 0) { 1347 ret = had_lock; 1348 goto out; 1349 } else if (had_lock) { 1350 /* See comments in ocfs2_setattr() for details. 1351 * The call chain of this case could be: 1352 * do_sys_open() 1353 * may_open() 1354 * inode_permission() 1355 * ocfs2_permission() 1356 * ocfs2_iop_get_acl() 1357 */ 1358 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1359 dump_stack(); 1360 } 1361 1362 ret = generic_permission(&nop_mnt_idmap, inode, mask); 1363 1364 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock); 1365 out: 1366 return ret; 1367 } 1368 1369 static int __ocfs2_write_remove_suid(struct inode *inode, 1370 struct buffer_head *bh) 1371 { 1372 int ret; 1373 handle_t *handle; 1374 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1375 struct ocfs2_dinode *di; 1376 1377 trace_ocfs2_write_remove_suid( 1378 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1379 inode->i_mode); 1380 1381 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1382 if (IS_ERR(handle)) { 1383 ret = PTR_ERR(handle); 1384 mlog_errno(ret); 1385 goto out; 1386 } 1387 1388 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1389 OCFS2_JOURNAL_ACCESS_WRITE); 1390 if (ret < 0) { 1391 mlog_errno(ret); 1392 goto out_trans; 1393 } 1394 1395 inode->i_mode &= ~S_ISUID; 1396 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1397 inode->i_mode &= ~S_ISGID; 1398 1399 di = (struct ocfs2_dinode *) bh->b_data; 1400 di->i_mode = cpu_to_le16(inode->i_mode); 1401 ocfs2_update_inode_fsync_trans(handle, inode, 0); 1402 1403 ocfs2_journal_dirty(handle, bh); 1404 1405 out_trans: 1406 ocfs2_commit_trans(osb, handle); 1407 out: 1408 return ret; 1409 } 1410 1411 static int ocfs2_write_remove_suid(struct inode *inode) 1412 { 1413 int ret; 1414 struct buffer_head *bh = NULL; 1415 1416 ret = ocfs2_read_inode_block(inode, &bh); 1417 if (ret < 0) { 1418 mlog_errno(ret); 1419 goto out; 1420 } 1421 1422 ret = __ocfs2_write_remove_suid(inode, bh); 1423 out: 1424 brelse(bh); 1425 return ret; 1426 } 1427 1428 /* 1429 * Allocate enough extents to cover the region starting at byte offset 1430 * start for len bytes. Existing extents are skipped, any extents 1431 * added are marked as "unwritten". 1432 */ 1433 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1434 u64 start, u64 len) 1435 { 1436 int ret; 1437 u32 cpos, phys_cpos, clusters, alloc_size; 1438 u64 end = start + len; 1439 struct buffer_head *di_bh = NULL; 1440 1441 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1442 ret = ocfs2_read_inode_block(inode, &di_bh); 1443 if (ret) { 1444 mlog_errno(ret); 1445 goto out; 1446 } 1447 1448 /* 1449 * Nothing to do if the requested reservation range 1450 * fits within the inode. 1451 */ 1452 if (ocfs2_size_fits_inline_data(di_bh, end)) 1453 goto out; 1454 1455 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1456 if (ret) { 1457 mlog_errno(ret); 1458 goto out; 1459 } 1460 } 1461 1462 /* 1463 * We consider both start and len to be inclusive. 1464 */ 1465 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1466 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1467 clusters -= cpos; 1468 1469 while (clusters) { 1470 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1471 &alloc_size, NULL); 1472 if (ret) { 1473 mlog_errno(ret); 1474 goto out; 1475 } 1476 1477 /* 1478 * Hole or existing extent len can be arbitrary, so 1479 * cap it to our own allocation request. 1480 */ 1481 if (alloc_size > clusters) 1482 alloc_size = clusters; 1483 1484 if (phys_cpos) { 1485 /* 1486 * We already have an allocation at this 1487 * region so we can safely skip it. 1488 */ 1489 goto next; 1490 } 1491 1492 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1493 if (ret) { 1494 if (ret != -ENOSPC) 1495 mlog_errno(ret); 1496 goto out; 1497 } 1498 1499 next: 1500 cpos += alloc_size; 1501 clusters -= alloc_size; 1502 } 1503 1504 ret = 0; 1505 out: 1506 1507 brelse(di_bh); 1508 return ret; 1509 } 1510 1511 /* 1512 * Truncate a byte range, avoiding pages within partial clusters. This 1513 * preserves those pages for the zeroing code to write to. 1514 */ 1515 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1516 u64 byte_len) 1517 { 1518 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1519 loff_t start, end; 1520 struct address_space *mapping = inode->i_mapping; 1521 1522 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1523 end = byte_start + byte_len; 1524 end = end & ~(osb->s_clustersize - 1); 1525 1526 if (start < end) { 1527 unmap_mapping_range(mapping, start, end - start, 0); 1528 truncate_inode_pages_range(mapping, start, end - 1); 1529 } 1530 } 1531 1532 /* 1533 * zero out partial blocks of one cluster. 1534 * 1535 * start: file offset where zero starts, will be made upper block aligned. 1536 * len: it will be trimmed to the end of current cluster if "start + len" 1537 * is bigger than it. 1538 */ 1539 static int ocfs2_zeroout_partial_cluster(struct inode *inode, 1540 u64 start, u64 len) 1541 { 1542 int ret; 1543 u64 start_block, end_block, nr_blocks; 1544 u64 p_block, offset; 1545 u32 cluster, p_cluster, nr_clusters; 1546 struct super_block *sb = inode->i_sb; 1547 u64 end = ocfs2_align_bytes_to_clusters(sb, start); 1548 1549 if (start + len < end) 1550 end = start + len; 1551 1552 start_block = ocfs2_blocks_for_bytes(sb, start); 1553 end_block = ocfs2_blocks_for_bytes(sb, end); 1554 nr_blocks = end_block - start_block; 1555 if (!nr_blocks) 1556 return 0; 1557 1558 cluster = ocfs2_bytes_to_clusters(sb, start); 1559 ret = ocfs2_get_clusters(inode, cluster, &p_cluster, 1560 &nr_clusters, NULL); 1561 if (ret) 1562 return ret; 1563 if (!p_cluster) 1564 return 0; 1565 1566 offset = start_block - ocfs2_clusters_to_blocks(sb, cluster); 1567 p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset; 1568 return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS); 1569 } 1570 1571 static int ocfs2_zero_partial_clusters(struct inode *inode, 1572 u64 start, u64 len) 1573 { 1574 int ret = 0; 1575 u64 tmpend = 0; 1576 u64 end = start + len; 1577 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1578 unsigned int csize = osb->s_clustersize; 1579 handle_t *handle; 1580 loff_t isize = i_size_read(inode); 1581 1582 /* 1583 * The "start" and "end" values are NOT necessarily part of 1584 * the range whose allocation is being deleted. Rather, this 1585 * is what the user passed in with the request. We must zero 1586 * partial clusters here. There's no need to worry about 1587 * physical allocation - the zeroing code knows to skip holes. 1588 */ 1589 trace_ocfs2_zero_partial_clusters( 1590 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1591 (unsigned long long)start, (unsigned long long)end); 1592 1593 /* 1594 * If both edges are on a cluster boundary then there's no 1595 * zeroing required as the region is part of the allocation to 1596 * be truncated. 1597 */ 1598 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1599 goto out; 1600 1601 /* No page cache for EOF blocks, issue zero out to disk. */ 1602 if (end > isize) { 1603 /* 1604 * zeroout eof blocks in last cluster starting from 1605 * "isize" even "start" > "isize" because it is 1606 * complicated to zeroout just at "start" as "start" 1607 * may be not aligned with block size, buffer write 1608 * would be required to do that, but out of eof buffer 1609 * write is not supported. 1610 */ 1611 ret = ocfs2_zeroout_partial_cluster(inode, isize, 1612 end - isize); 1613 if (ret) { 1614 mlog_errno(ret); 1615 goto out; 1616 } 1617 if (start >= isize) 1618 goto out; 1619 end = isize; 1620 } 1621 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1622 if (IS_ERR(handle)) { 1623 ret = PTR_ERR(handle); 1624 mlog_errno(ret); 1625 goto out; 1626 } 1627 1628 /* 1629 * If start is on a cluster boundary and end is somewhere in another 1630 * cluster, we have not COWed the cluster starting at start, unless 1631 * end is also within the same cluster. So, in this case, we skip this 1632 * first call to ocfs2_zero_range_for_truncate() truncate and move on 1633 * to the next one. 1634 */ 1635 if ((start & (csize - 1)) != 0) { 1636 /* 1637 * We want to get the byte offset of the end of the 1st 1638 * cluster. 1639 */ 1640 tmpend = (u64)osb->s_clustersize + 1641 (start & ~(osb->s_clustersize - 1)); 1642 if (tmpend > end) 1643 tmpend = end; 1644 1645 trace_ocfs2_zero_partial_clusters_range1( 1646 (unsigned long long)start, 1647 (unsigned long long)tmpend); 1648 1649 ret = ocfs2_zero_range_for_truncate(inode, handle, start, 1650 tmpend); 1651 if (ret) 1652 mlog_errno(ret); 1653 } 1654 1655 if (tmpend < end) { 1656 /* 1657 * This may make start and end equal, but the zeroing 1658 * code will skip any work in that case so there's no 1659 * need to catch it up here. 1660 */ 1661 start = end & ~(osb->s_clustersize - 1); 1662 1663 trace_ocfs2_zero_partial_clusters_range2( 1664 (unsigned long long)start, (unsigned long long)end); 1665 1666 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1667 if (ret) 1668 mlog_errno(ret); 1669 } 1670 ocfs2_update_inode_fsync_trans(handle, inode, 1); 1671 1672 ocfs2_commit_trans(osb, handle); 1673 out: 1674 return ret; 1675 } 1676 1677 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1678 { 1679 int i; 1680 struct ocfs2_extent_rec *rec = NULL; 1681 1682 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1683 1684 rec = &el->l_recs[i]; 1685 1686 if (le32_to_cpu(rec->e_cpos) < pos) 1687 break; 1688 } 1689 1690 return i; 1691 } 1692 1693 /* 1694 * Helper to calculate the punching pos and length in one run, we handle the 1695 * following three cases in order: 1696 * 1697 * - remove the entire record 1698 * - remove a partial record 1699 * - no record needs to be removed (hole-punching completed) 1700 */ 1701 static void ocfs2_calc_trunc_pos(struct inode *inode, 1702 struct ocfs2_extent_list *el, 1703 struct ocfs2_extent_rec *rec, 1704 u32 trunc_start, u32 *trunc_cpos, 1705 u32 *trunc_len, u32 *trunc_end, 1706 u64 *blkno, int *done) 1707 { 1708 int ret = 0; 1709 u32 coff, range; 1710 1711 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1712 1713 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1714 /* 1715 * remove an entire extent record. 1716 */ 1717 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1718 /* 1719 * Skip holes if any. 1720 */ 1721 if (range < *trunc_end) 1722 *trunc_end = range; 1723 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1724 *blkno = le64_to_cpu(rec->e_blkno); 1725 *trunc_end = le32_to_cpu(rec->e_cpos); 1726 } else if (range > trunc_start) { 1727 /* 1728 * remove a partial extent record, which means we're 1729 * removing the last extent record. 1730 */ 1731 *trunc_cpos = trunc_start; 1732 /* 1733 * skip hole if any. 1734 */ 1735 if (range < *trunc_end) 1736 *trunc_end = range; 1737 *trunc_len = *trunc_end - trunc_start; 1738 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1739 *blkno = le64_to_cpu(rec->e_blkno) + 1740 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1741 *trunc_end = trunc_start; 1742 } else { 1743 /* 1744 * It may have two following possibilities: 1745 * 1746 * - last record has been removed 1747 * - trunc_start was within a hole 1748 * 1749 * both two cases mean the completion of hole punching. 1750 */ 1751 ret = 1; 1752 } 1753 1754 *done = ret; 1755 } 1756 1757 int ocfs2_remove_inode_range(struct inode *inode, 1758 struct buffer_head *di_bh, u64 byte_start, 1759 u64 byte_len) 1760 { 1761 int ret = 0, flags = 0, done = 0, i; 1762 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1763 u32 cluster_in_el; 1764 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1765 struct ocfs2_cached_dealloc_ctxt dealloc; 1766 struct address_space *mapping = inode->i_mapping; 1767 struct ocfs2_extent_tree et; 1768 struct ocfs2_path *path = NULL; 1769 struct ocfs2_extent_list *el = NULL; 1770 struct ocfs2_extent_rec *rec = NULL; 1771 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1772 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1773 1774 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1775 ocfs2_init_dealloc_ctxt(&dealloc); 1776 1777 trace_ocfs2_remove_inode_range( 1778 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1779 (unsigned long long)byte_start, 1780 (unsigned long long)byte_len); 1781 1782 if (byte_len == 0) 1783 return 0; 1784 1785 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1786 int id_count = ocfs2_max_inline_data_with_xattr(inode->i_sb, di); 1787 1788 if (byte_start > id_count || byte_start + byte_len > id_count) { 1789 ret = -EINVAL; 1790 mlog_errno(ret); 1791 goto out; 1792 } 1793 1794 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1795 byte_start + byte_len, 0); 1796 if (ret) { 1797 mlog_errno(ret); 1798 goto out; 1799 } 1800 /* 1801 * There's no need to get fancy with the page cache 1802 * truncate of an inline-data inode. We're talking 1803 * about less than a page here, which will be cached 1804 * in the dinode buffer anyway. 1805 */ 1806 unmap_mapping_range(mapping, 0, 0, 0); 1807 truncate_inode_pages(mapping, 0); 1808 goto out; 1809 } 1810 1811 /* 1812 * For reflinks, we may need to CoW 2 clusters which might be 1813 * partially zero'd later, if hole's start and end offset were 1814 * within one cluster(means is not exactly aligned to clustersize). 1815 */ 1816 1817 if (ocfs2_is_refcount_inode(inode)) { 1818 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1819 if (ret) { 1820 mlog_errno(ret); 1821 goto out; 1822 } 1823 1824 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1825 if (ret) { 1826 mlog_errno(ret); 1827 goto out; 1828 } 1829 } 1830 1831 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1832 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1833 cluster_in_el = trunc_end; 1834 1835 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1836 if (ret) { 1837 mlog_errno(ret); 1838 goto out; 1839 } 1840 1841 path = ocfs2_new_path_from_et(&et); 1842 if (!path) { 1843 ret = -ENOMEM; 1844 mlog_errno(ret); 1845 goto out; 1846 } 1847 1848 while (trunc_end > trunc_start) { 1849 1850 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1851 cluster_in_el); 1852 if (ret) { 1853 mlog_errno(ret); 1854 goto out; 1855 } 1856 1857 el = path_leaf_el(path); 1858 1859 i = ocfs2_find_rec(el, trunc_end); 1860 /* 1861 * Need to go to previous extent block. 1862 */ 1863 if (i < 0) { 1864 if (path->p_tree_depth == 0) 1865 break; 1866 1867 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1868 path, 1869 &cluster_in_el); 1870 if (ret) { 1871 mlog_errno(ret); 1872 goto out; 1873 } 1874 1875 /* 1876 * We've reached the leftmost extent block, 1877 * it's safe to leave. 1878 */ 1879 if (cluster_in_el == 0) 1880 break; 1881 1882 /* 1883 * The 'pos' searched for previous extent block is 1884 * always one cluster less than actual trunc_end. 1885 */ 1886 trunc_end = cluster_in_el + 1; 1887 1888 ocfs2_reinit_path(path, 1); 1889 1890 continue; 1891 1892 } else 1893 rec = &el->l_recs[i]; 1894 1895 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1896 &trunc_len, &trunc_end, &blkno, &done); 1897 if (done) 1898 break; 1899 1900 flags = rec->e_flags; 1901 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1902 1903 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1904 phys_cpos, trunc_len, flags, 1905 &dealloc, refcount_loc, false); 1906 if (ret < 0) { 1907 mlog_errno(ret); 1908 goto out; 1909 } 1910 1911 cluster_in_el = trunc_end; 1912 1913 ocfs2_reinit_path(path, 1); 1914 } 1915 1916 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1917 1918 out: 1919 ocfs2_free_path(path); 1920 ocfs2_schedule_truncate_log_flush(osb, 1); 1921 ocfs2_run_deallocs(osb, &dealloc); 1922 1923 return ret; 1924 } 1925 1926 /* 1927 * Parts of this function taken from xfs_change_file_space() 1928 */ 1929 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1930 loff_t f_pos, unsigned int cmd, 1931 struct ocfs2_space_resv *sr, 1932 int change_size) 1933 { 1934 int ret; 1935 s64 llen; 1936 loff_t size, orig_isize; 1937 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1938 struct buffer_head *di_bh = NULL; 1939 handle_t *handle; 1940 unsigned long long max_off = inode->i_sb->s_maxbytes; 1941 1942 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1943 return -EROFS; 1944 1945 inode_lock(inode); 1946 1947 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 1948 inode_dio_wait(inode); 1949 /* 1950 * This prevents concurrent writes on other nodes 1951 */ 1952 ret = ocfs2_rw_lock(inode, 1); 1953 if (ret) { 1954 mlog_errno(ret); 1955 goto out; 1956 } 1957 1958 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1959 if (ret) { 1960 mlog_errno(ret); 1961 goto out_rw_unlock; 1962 } 1963 1964 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1965 ret = -EPERM; 1966 goto out_inode_unlock; 1967 } 1968 1969 switch (sr->l_whence) { 1970 case 0: /*SEEK_SET*/ 1971 break; 1972 case 1: /*SEEK_CUR*/ 1973 sr->l_start += f_pos; 1974 break; 1975 case 2: /*SEEK_END*/ 1976 sr->l_start += i_size_read(inode); 1977 break; 1978 default: 1979 ret = -EINVAL; 1980 goto out_inode_unlock; 1981 } 1982 sr->l_whence = 0; 1983 1984 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1985 1986 if (sr->l_start < 0 1987 || sr->l_start > max_off 1988 || (sr->l_start + llen) < 0 1989 || (sr->l_start + llen) > max_off) { 1990 ret = -EINVAL; 1991 goto out_inode_unlock; 1992 } 1993 size = sr->l_start + sr->l_len; 1994 1995 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || 1996 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { 1997 if (sr->l_len <= 0) { 1998 ret = -EINVAL; 1999 goto out_inode_unlock; 2000 } 2001 } 2002 2003 if (file && setattr_should_drop_suidgid(&nop_mnt_idmap, file_inode(file))) { 2004 ret = __ocfs2_write_remove_suid(inode, di_bh); 2005 if (ret) { 2006 mlog_errno(ret); 2007 goto out_inode_unlock; 2008 } 2009 } 2010 2011 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2012 switch (cmd) { 2013 case OCFS2_IOC_RESVSP: 2014 case OCFS2_IOC_RESVSP64: 2015 /* 2016 * This takes unsigned offsets, but the signed ones we 2017 * pass have been checked against overflow above. 2018 */ 2019 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 2020 sr->l_len); 2021 break; 2022 case OCFS2_IOC_UNRESVSP: 2023 case OCFS2_IOC_UNRESVSP64: 2024 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 2025 sr->l_len); 2026 break; 2027 default: 2028 ret = -EINVAL; 2029 } 2030 2031 orig_isize = i_size_read(inode); 2032 /* zeroout eof blocks in the cluster. */ 2033 if (!ret && change_size && orig_isize < size) { 2034 ret = ocfs2_zeroout_partial_cluster(inode, orig_isize, 2035 size - orig_isize); 2036 if (!ret) 2037 i_size_write(inode, size); 2038 } 2039 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2040 if (ret) { 2041 mlog_errno(ret); 2042 goto out_inode_unlock; 2043 } 2044 2045 /* 2046 * We update c/mtime for these changes 2047 */ 2048 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 2049 if (IS_ERR(handle)) { 2050 ret = PTR_ERR(handle); 2051 mlog_errno(ret); 2052 goto out_inode_unlock; 2053 } 2054 2055 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2056 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 2057 if (ret < 0) 2058 mlog_errno(ret); 2059 2060 if (file && (file->f_flags & O_SYNC)) 2061 handle->h_sync = 1; 2062 2063 ocfs2_commit_trans(osb, handle); 2064 2065 out_inode_unlock: 2066 brelse(di_bh); 2067 ocfs2_inode_unlock(inode, 1); 2068 out_rw_unlock: 2069 ocfs2_rw_unlock(inode, 1); 2070 2071 out: 2072 inode_unlock(inode); 2073 return ret; 2074 } 2075 2076 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 2077 struct ocfs2_space_resv *sr) 2078 { 2079 struct inode *inode = file_inode(file); 2080 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2081 int ret; 2082 2083 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 2084 !ocfs2_writes_unwritten_extents(osb)) 2085 return -ENOTTY; 2086 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 2087 !ocfs2_sparse_alloc(osb)) 2088 return -ENOTTY; 2089 2090 if (!S_ISREG(inode->i_mode)) 2091 return -EINVAL; 2092 2093 if (!(file->f_mode & FMODE_WRITE)) 2094 return -EBADF; 2095 2096 ret = mnt_want_write_file(file); 2097 if (ret) 2098 return ret; 2099 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 2100 mnt_drop_write_file(file); 2101 return ret; 2102 } 2103 2104 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 2105 loff_t len) 2106 { 2107 struct inode *inode = file_inode(file); 2108 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2109 struct ocfs2_space_resv sr; 2110 int change_size = 1; 2111 int cmd = OCFS2_IOC_RESVSP64; 2112 int ret = 0; 2113 2114 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2115 return -EOPNOTSUPP; 2116 if (!ocfs2_writes_unwritten_extents(osb)) 2117 return -EOPNOTSUPP; 2118 2119 if (mode & FALLOC_FL_KEEP_SIZE) { 2120 change_size = 0; 2121 } else { 2122 ret = inode_newsize_ok(inode, offset + len); 2123 if (ret) 2124 return ret; 2125 } 2126 2127 if (mode & FALLOC_FL_PUNCH_HOLE) 2128 cmd = OCFS2_IOC_UNRESVSP64; 2129 2130 sr.l_whence = 0; 2131 sr.l_start = (s64)offset; 2132 sr.l_len = (s64)len; 2133 2134 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 2135 change_size); 2136 } 2137 2138 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2139 size_t count) 2140 { 2141 int ret = 0; 2142 unsigned int extent_flags; 2143 u32 cpos, clusters, extent_len, phys_cpos; 2144 struct super_block *sb = inode->i_sb; 2145 2146 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2147 !ocfs2_is_refcount_inode(inode) || 2148 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2149 return 0; 2150 2151 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2152 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2153 2154 while (clusters) { 2155 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2156 &extent_flags); 2157 if (ret < 0) { 2158 mlog_errno(ret); 2159 goto out; 2160 } 2161 2162 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2163 ret = 1; 2164 break; 2165 } 2166 2167 if (extent_len > clusters) 2168 extent_len = clusters; 2169 2170 clusters -= extent_len; 2171 cpos += extent_len; 2172 } 2173 out: 2174 return ret; 2175 } 2176 2177 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2178 { 2179 int blockmask = inode->i_sb->s_blocksize - 1; 2180 loff_t final_size = pos + count; 2181 2182 if ((pos & blockmask) || (final_size & blockmask)) 2183 return 1; 2184 return 0; 2185 } 2186 2187 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode, 2188 struct buffer_head **di_bh, 2189 int meta_level, 2190 int write_sem, 2191 int wait) 2192 { 2193 int ret = 0; 2194 2195 if (wait) 2196 ret = ocfs2_inode_lock(inode, di_bh, meta_level); 2197 else 2198 ret = ocfs2_try_inode_lock(inode, di_bh, meta_level); 2199 if (ret < 0) 2200 goto out; 2201 2202 if (wait) { 2203 if (write_sem) 2204 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2205 else 2206 down_read(&OCFS2_I(inode)->ip_alloc_sem); 2207 } else { 2208 if (write_sem) 2209 ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2210 else 2211 ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2212 2213 if (!ret) { 2214 ret = -EAGAIN; 2215 goto out_unlock; 2216 } 2217 } 2218 2219 return ret; 2220 2221 out_unlock: 2222 brelse(*di_bh); 2223 *di_bh = NULL; 2224 ocfs2_inode_unlock(inode, meta_level); 2225 out: 2226 return ret; 2227 } 2228 2229 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode, 2230 struct buffer_head **di_bh, 2231 int meta_level, 2232 int write_sem) 2233 { 2234 if (write_sem) 2235 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2236 else 2237 up_read(&OCFS2_I(inode)->ip_alloc_sem); 2238 2239 brelse(*di_bh); 2240 *di_bh = NULL; 2241 2242 if (meta_level >= 0) 2243 ocfs2_inode_unlock(inode, meta_level); 2244 } 2245 2246 static int ocfs2_prepare_inode_for_write(struct file *file, 2247 loff_t pos, size_t count, int wait) 2248 { 2249 int ret = 0, meta_level = 0, overwrite_io = 0; 2250 int write_sem = 0; 2251 struct dentry *dentry = file->f_path.dentry; 2252 struct inode *inode = d_inode(dentry); 2253 struct buffer_head *di_bh = NULL; 2254 u32 cpos; 2255 u32 clusters; 2256 2257 /* 2258 * We start with a read level meta lock and only jump to an ex 2259 * if we need to make modifications here. 2260 */ 2261 for(;;) { 2262 ret = ocfs2_inode_lock_for_extent_tree(inode, 2263 &di_bh, 2264 meta_level, 2265 write_sem, 2266 wait); 2267 if (ret < 0) { 2268 if (ret != -EAGAIN) 2269 mlog_errno(ret); 2270 goto out; 2271 } 2272 2273 /* 2274 * Check if IO will overwrite allocated blocks in case 2275 * IOCB_NOWAIT flag is set. 2276 */ 2277 if (!wait && !overwrite_io) { 2278 overwrite_io = 1; 2279 2280 ret = ocfs2_overwrite_io(inode, di_bh, pos, count); 2281 if (ret < 0) { 2282 if (ret != -EAGAIN) 2283 mlog_errno(ret); 2284 goto out_unlock; 2285 } 2286 } 2287 2288 /* Clear suid / sgid if necessary. We do this here 2289 * instead of later in the write path because 2290 * remove_suid() calls ->setattr without any hint that 2291 * we may have already done our cluster locking. Since 2292 * ocfs2_setattr() *must* take cluster locks to 2293 * proceed, this will lead us to recursively lock the 2294 * inode. There's also the dinode i_size state which 2295 * can be lost via setattr during extending writes (we 2296 * set inode->i_size at the end of a write. */ 2297 if (setattr_should_drop_suidgid(&nop_mnt_idmap, inode)) { 2298 if (meta_level == 0) { 2299 ocfs2_inode_unlock_for_extent_tree(inode, 2300 &di_bh, 2301 meta_level, 2302 write_sem); 2303 meta_level = 1; 2304 continue; 2305 } 2306 2307 ret = ocfs2_write_remove_suid(inode); 2308 if (ret < 0) { 2309 mlog_errno(ret); 2310 goto out_unlock; 2311 } 2312 } 2313 2314 ret = ocfs2_check_range_for_refcount(inode, pos, count); 2315 if (ret == 1) { 2316 ocfs2_inode_unlock_for_extent_tree(inode, 2317 &di_bh, 2318 meta_level, 2319 write_sem); 2320 meta_level = 1; 2321 write_sem = 1; 2322 ret = ocfs2_inode_lock_for_extent_tree(inode, 2323 &di_bh, 2324 meta_level, 2325 write_sem, 2326 wait); 2327 if (ret < 0) { 2328 if (ret != -EAGAIN) 2329 mlog_errno(ret); 2330 goto out; 2331 } 2332 2333 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2334 clusters = 2335 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2336 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2337 } 2338 2339 if (ret < 0) { 2340 if (ret != -EAGAIN) 2341 mlog_errno(ret); 2342 goto out_unlock; 2343 } 2344 2345 break; 2346 } 2347 2348 out_unlock: 2349 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2350 pos, count, wait); 2351 2352 ocfs2_inode_unlock_for_extent_tree(inode, 2353 &di_bh, 2354 meta_level, 2355 write_sem); 2356 2357 out: 2358 return ret; 2359 } 2360 2361 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb, 2362 struct iov_iter *from) 2363 { 2364 int rw_level; 2365 ssize_t written = 0; 2366 ssize_t ret; 2367 size_t count = iov_iter_count(from); 2368 struct file *file = iocb->ki_filp; 2369 struct inode *inode = file_inode(file); 2370 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2371 int full_coherency = !(osb->s_mount_opt & 2372 OCFS2_MOUNT_COHERENCY_BUFFERED); 2373 void *saved_ki_complete = NULL; 2374 int append_write = ((iocb->ki_pos + count) >= 2375 i_size_read(inode) ? 1 : 0); 2376 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2377 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2378 2379 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry, 2380 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2381 file->f_path.dentry->d_name.len, 2382 file->f_path.dentry->d_name.name, 2383 (unsigned int)from->nr_segs); /* GRRRRR */ 2384 2385 if (!direct_io && nowait) 2386 return -EOPNOTSUPP; 2387 2388 if (count == 0) 2389 return 0; 2390 2391 if (nowait) { 2392 if (!inode_trylock(inode)) 2393 return -EAGAIN; 2394 } else 2395 inode_lock(inode); 2396 2397 /* 2398 * Concurrent O_DIRECT writes are allowed with 2399 * mount_option "coherency=buffered". 2400 * For append write, we must take rw EX. 2401 */ 2402 rw_level = (!direct_io || full_coherency || append_write); 2403 2404 if (nowait) 2405 ret = ocfs2_try_rw_lock(inode, rw_level); 2406 else 2407 ret = ocfs2_rw_lock(inode, rw_level); 2408 if (ret < 0) { 2409 if (ret != -EAGAIN) 2410 mlog_errno(ret); 2411 goto out_mutex; 2412 } 2413 2414 /* 2415 * O_DIRECT writes with "coherency=full" need to take EX cluster 2416 * inode_lock to guarantee coherency. 2417 */ 2418 if (direct_io && full_coherency) { 2419 /* 2420 * We need to take and drop the inode lock to force 2421 * other nodes to drop their caches. Buffered I/O 2422 * already does this in write_begin(). 2423 */ 2424 if (nowait) 2425 ret = ocfs2_try_inode_lock(inode, NULL, 1); 2426 else 2427 ret = ocfs2_inode_lock(inode, NULL, 1); 2428 if (ret < 0) { 2429 if (ret != -EAGAIN) 2430 mlog_errno(ret); 2431 goto out; 2432 } 2433 2434 ocfs2_inode_unlock(inode, 1); 2435 } 2436 2437 ret = generic_write_checks(iocb, from); 2438 if (ret <= 0) { 2439 if (ret) 2440 mlog_errno(ret); 2441 goto out; 2442 } 2443 count = ret; 2444 2445 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait); 2446 if (ret < 0) { 2447 if (ret != -EAGAIN) 2448 mlog_errno(ret); 2449 goto out; 2450 } 2451 2452 if (direct_io && !is_sync_kiocb(iocb) && 2453 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) { 2454 /* 2455 * Make it a sync io if it's an unaligned aio. 2456 */ 2457 saved_ki_complete = xchg(&iocb->ki_complete, NULL); 2458 } 2459 2460 /* communicate with ocfs2_dio_end_io */ 2461 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2462 2463 written = __generic_file_write_iter(iocb, from); 2464 /* buffered aio wouldn't have proper lock coverage today */ 2465 BUG_ON(written == -EIOCBQUEUED && !direct_io); 2466 2467 /* 2468 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2469 * function pointer which is called when o_direct io completes so that 2470 * it can unlock our rw lock. 2471 * Unfortunately there are error cases which call end_io and others 2472 * that don't. so we don't have to unlock the rw_lock if either an 2473 * async dio is going to do it in the future or an end_io after an 2474 * error has already done it. 2475 */ 2476 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2477 rw_level = -1; 2478 } 2479 2480 if (unlikely(written <= 0)) 2481 goto out; 2482 2483 if (((file->f_flags & O_DSYNC) && !direct_io) || 2484 IS_SYNC(inode)) { 2485 ret = filemap_fdatawrite_range(file->f_mapping, 2486 iocb->ki_pos - written, 2487 iocb->ki_pos - 1); 2488 if (ret < 0) 2489 written = ret; 2490 2491 if (!ret) { 2492 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2493 if (ret < 0) 2494 written = ret; 2495 } 2496 2497 if (!ret) 2498 ret = filemap_fdatawait_range(file->f_mapping, 2499 iocb->ki_pos - written, 2500 iocb->ki_pos - 1); 2501 } 2502 2503 out: 2504 if (saved_ki_complete) 2505 xchg(&iocb->ki_complete, saved_ki_complete); 2506 2507 if (rw_level != -1) 2508 ocfs2_rw_unlock(inode, rw_level); 2509 2510 out_mutex: 2511 inode_unlock(inode); 2512 2513 if (written) 2514 ret = written; 2515 return ret; 2516 } 2517 2518 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb, 2519 struct iov_iter *to) 2520 { 2521 int ret = 0, rw_level = -1, lock_level = 0; 2522 struct file *filp = iocb->ki_filp; 2523 struct inode *inode = file_inode(filp); 2524 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2525 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2526 2527 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry, 2528 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2529 filp->f_path.dentry->d_name.len, 2530 filp->f_path.dentry->d_name.name, 2531 to->nr_segs); /* GRRRRR */ 2532 2533 2534 if (!inode) { 2535 ret = -EINVAL; 2536 mlog_errno(ret); 2537 goto bail; 2538 } 2539 2540 if (!direct_io && nowait) 2541 return -EOPNOTSUPP; 2542 2543 /* 2544 * buffered reads protect themselves in ->read_folio(). O_DIRECT reads 2545 * need locks to protect pending reads from racing with truncate. 2546 */ 2547 if (direct_io) { 2548 if (nowait) 2549 ret = ocfs2_try_rw_lock(inode, 0); 2550 else 2551 ret = ocfs2_rw_lock(inode, 0); 2552 2553 if (ret < 0) { 2554 if (ret != -EAGAIN) 2555 mlog_errno(ret); 2556 goto bail; 2557 } 2558 rw_level = 0; 2559 /* communicate with ocfs2_dio_end_io */ 2560 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2561 } 2562 2563 /* 2564 * We're fine letting folks race truncates and extending 2565 * writes with read across the cluster, just like they can 2566 * locally. Hence no rw_lock during read. 2567 * 2568 * Take and drop the meta data lock to update inode fields 2569 * like i_size. This allows the checks down below 2570 * copy_splice_read() a chance of actually working. 2571 */ 2572 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level, 2573 !nowait); 2574 if (ret < 0) { 2575 if (ret != -EAGAIN) 2576 mlog_errno(ret); 2577 goto bail; 2578 } 2579 ocfs2_inode_unlock(inode, lock_level); 2580 2581 ret = generic_file_read_iter(iocb, to); 2582 trace_generic_file_read_iter_ret(ret); 2583 2584 /* buffered aio wouldn't have proper lock coverage today */ 2585 BUG_ON(ret == -EIOCBQUEUED && !direct_io); 2586 2587 /* see ocfs2_file_write_iter */ 2588 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2589 rw_level = -1; 2590 } 2591 2592 bail: 2593 if (rw_level != -1) 2594 ocfs2_rw_unlock(inode, rw_level); 2595 2596 return ret; 2597 } 2598 2599 static ssize_t ocfs2_file_splice_read(struct file *in, loff_t *ppos, 2600 struct pipe_inode_info *pipe, 2601 size_t len, unsigned int flags) 2602 { 2603 struct inode *inode = file_inode(in); 2604 ssize_t ret = 0; 2605 int lock_level = 0; 2606 2607 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry, 2608 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2609 in->f_path.dentry->d_name.len, 2610 in->f_path.dentry->d_name.name, 2611 flags); 2612 2613 /* 2614 * We're fine letting folks race truncates and extending writes with 2615 * read across the cluster, just like they can locally. Hence no 2616 * rw_lock during read. 2617 * 2618 * Take and drop the meta data lock to update inode fields like i_size. 2619 * This allows the checks down below filemap_splice_read() a chance of 2620 * actually working. 2621 */ 2622 ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level, 1); 2623 if (ret < 0) { 2624 if (ret != -EAGAIN) 2625 mlog_errno(ret); 2626 goto bail; 2627 } 2628 ocfs2_inode_unlock(inode, lock_level); 2629 2630 ret = filemap_splice_read(in, ppos, pipe, len, flags); 2631 trace_filemap_splice_read_ret(ret); 2632 bail: 2633 return ret; 2634 } 2635 2636 /* Refer generic_file_llseek_unlocked() */ 2637 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2638 { 2639 struct inode *inode = file->f_mapping->host; 2640 int ret = 0; 2641 2642 inode_lock(inode); 2643 2644 switch (whence) { 2645 case SEEK_SET: 2646 break; 2647 case SEEK_END: 2648 /* SEEK_END requires the OCFS2 inode lock for the file 2649 * because it references the file's size. 2650 */ 2651 ret = ocfs2_inode_lock(inode, NULL, 0); 2652 if (ret < 0) { 2653 mlog_errno(ret); 2654 goto out; 2655 } 2656 offset += i_size_read(inode); 2657 ocfs2_inode_unlock(inode, 0); 2658 break; 2659 case SEEK_CUR: 2660 if (offset == 0) { 2661 offset = file->f_pos; 2662 goto out; 2663 } 2664 offset += file->f_pos; 2665 break; 2666 case SEEK_DATA: 2667 case SEEK_HOLE: 2668 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2669 if (ret) 2670 goto out; 2671 break; 2672 default: 2673 ret = -EINVAL; 2674 goto out; 2675 } 2676 2677 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2678 2679 out: 2680 inode_unlock(inode); 2681 if (ret) 2682 return ret; 2683 return offset; 2684 } 2685 2686 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in, 2687 struct file *file_out, loff_t pos_out, 2688 loff_t len, unsigned int remap_flags) 2689 { 2690 struct inode *inode_in = file_inode(file_in); 2691 struct inode *inode_out = file_inode(file_out); 2692 struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb); 2693 struct buffer_head *in_bh = NULL, *out_bh = NULL; 2694 bool same_inode = (inode_in == inode_out); 2695 loff_t remapped = 0; 2696 ssize_t ret; 2697 2698 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 2699 return -EINVAL; 2700 if (!ocfs2_refcount_tree(osb)) 2701 return -EOPNOTSUPP; 2702 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 2703 return -EROFS; 2704 2705 /* Lock both files against IO */ 2706 ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh); 2707 if (ret) 2708 return ret; 2709 2710 /* Check file eligibility and prepare for block sharing. */ 2711 ret = -EINVAL; 2712 if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) || 2713 (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE)) 2714 goto out_unlock; 2715 2716 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 2717 &len, remap_flags); 2718 if (ret < 0 || len == 0) 2719 goto out_unlock; 2720 2721 /* Lock out changes to the allocation maps and remap. */ 2722 down_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2723 if (!same_inode) 2724 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem, 2725 SINGLE_DEPTH_NESTING); 2726 2727 /* Zap any page cache for the destination file's range. */ 2728 truncate_inode_pages_range(&inode_out->i_data, 2729 round_down(pos_out, PAGE_SIZE), 2730 round_up(pos_out + len, PAGE_SIZE) - 1); 2731 2732 remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in, 2733 inode_out, out_bh, pos_out, len); 2734 up_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2735 if (!same_inode) 2736 up_write(&OCFS2_I(inode_out)->ip_alloc_sem); 2737 if (remapped < 0) { 2738 ret = remapped; 2739 mlog_errno(ret); 2740 goto out_unlock; 2741 } 2742 2743 /* 2744 * Empty the extent map so that we may get the right extent 2745 * record from the disk. 2746 */ 2747 ocfs2_extent_map_trunc(inode_in, 0); 2748 ocfs2_extent_map_trunc(inode_out, 0); 2749 2750 ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len); 2751 if (ret) { 2752 mlog_errno(ret); 2753 goto out_unlock; 2754 } 2755 2756 out_unlock: 2757 ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh); 2758 return remapped > 0 ? remapped : ret; 2759 } 2760 2761 const struct inode_operations ocfs2_file_iops = { 2762 .setattr = ocfs2_setattr, 2763 .getattr = ocfs2_getattr, 2764 .permission = ocfs2_permission, 2765 .listxattr = ocfs2_listxattr, 2766 .fiemap = ocfs2_fiemap, 2767 .get_inode_acl = ocfs2_iop_get_acl, 2768 .set_acl = ocfs2_iop_set_acl, 2769 .fileattr_get = ocfs2_fileattr_get, 2770 .fileattr_set = ocfs2_fileattr_set, 2771 }; 2772 2773 const struct inode_operations ocfs2_special_file_iops = { 2774 .setattr = ocfs2_setattr, 2775 .getattr = ocfs2_getattr, 2776 .permission = ocfs2_permission, 2777 .get_inode_acl = ocfs2_iop_get_acl, 2778 .set_acl = ocfs2_iop_set_acl, 2779 }; 2780 2781 /* 2782 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2783 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2784 */ 2785 const struct file_operations ocfs2_fops = { 2786 .llseek = ocfs2_file_llseek, 2787 .mmap = ocfs2_mmap, 2788 .fsync = ocfs2_sync_file, 2789 .release = ocfs2_file_release, 2790 .open = ocfs2_file_open, 2791 .read_iter = ocfs2_file_read_iter, 2792 .write_iter = ocfs2_file_write_iter, 2793 .unlocked_ioctl = ocfs2_ioctl, 2794 #ifdef CONFIG_COMPAT 2795 .compat_ioctl = ocfs2_compat_ioctl, 2796 #endif 2797 .lock = ocfs2_lock, 2798 .flock = ocfs2_flock, 2799 .splice_read = ocfs2_file_splice_read, 2800 .splice_write = iter_file_splice_write, 2801 .fallocate = ocfs2_fallocate, 2802 .remap_file_range = ocfs2_remap_file_range, 2803 }; 2804 2805 WRAP_DIR_ITER(ocfs2_readdir) // FIXME! 2806 const struct file_operations ocfs2_dops = { 2807 .llseek = generic_file_llseek, 2808 .read = generic_read_dir, 2809 .iterate_shared = shared_ocfs2_readdir, 2810 .fsync = ocfs2_sync_file, 2811 .release = ocfs2_dir_release, 2812 .open = ocfs2_dir_open, 2813 .unlocked_ioctl = ocfs2_ioctl, 2814 #ifdef CONFIG_COMPAT 2815 .compat_ioctl = ocfs2_compat_ioctl, 2816 #endif 2817 .lock = ocfs2_lock, 2818 .flock = ocfs2_flock, 2819 }; 2820 2821 /* 2822 * POSIX-lockless variants of our file_operations. 2823 * 2824 * These will be used if the underlying cluster stack does not support 2825 * posix file locking, if the user passes the "localflocks" mount 2826 * option, or if we have a local-only fs. 2827 * 2828 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2829 * so we still want it in the case of no stack support for 2830 * plocks. Internally, it will do the right thing when asked to ignore 2831 * the cluster. 2832 */ 2833 const struct file_operations ocfs2_fops_no_plocks = { 2834 .llseek = ocfs2_file_llseek, 2835 .mmap = ocfs2_mmap, 2836 .fsync = ocfs2_sync_file, 2837 .release = ocfs2_file_release, 2838 .open = ocfs2_file_open, 2839 .read_iter = ocfs2_file_read_iter, 2840 .write_iter = ocfs2_file_write_iter, 2841 .unlocked_ioctl = ocfs2_ioctl, 2842 #ifdef CONFIG_COMPAT 2843 .compat_ioctl = ocfs2_compat_ioctl, 2844 #endif 2845 .flock = ocfs2_flock, 2846 .splice_read = filemap_splice_read, 2847 .splice_write = iter_file_splice_write, 2848 .fallocate = ocfs2_fallocate, 2849 .remap_file_range = ocfs2_remap_file_range, 2850 }; 2851 2852 const struct file_operations ocfs2_dops_no_plocks = { 2853 .llseek = generic_file_llseek, 2854 .read = generic_read_dir, 2855 .iterate_shared = shared_ocfs2_readdir, 2856 .fsync = ocfs2_sync_file, 2857 .release = ocfs2_dir_release, 2858 .open = ocfs2_dir_open, 2859 .unlocked_ioctl = ocfs2_ioctl, 2860 #ifdef CONFIG_COMPAT 2861 .compat_ioctl = ocfs2_compat_ioctl, 2862 #endif 2863 .flock = ocfs2_flock, 2864 }; 2865