xref: /openbmc/linux/fs/ocfs2/cluster/heartbeat.c (revision f7777dcc)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2004, 2005 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/jiffies.h>
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/bio.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/file.h>
31 #include <linux/kthread.h>
32 #include <linux/configfs.h>
33 #include <linux/random.h>
34 #include <linux/crc32.h>
35 #include <linux/time.h>
36 #include <linux/debugfs.h>
37 #include <linux/slab.h>
38 
39 #include "heartbeat.h"
40 #include "tcp.h"
41 #include "nodemanager.h"
42 #include "quorum.h"
43 
44 #include "masklog.h"
45 
46 
47 /*
48  * The first heartbeat pass had one global thread that would serialize all hb
49  * callback calls.  This global serializing sem should only be removed once
50  * we've made sure that all callees can deal with being called concurrently
51  * from multiple hb region threads.
52  */
53 static DECLARE_RWSEM(o2hb_callback_sem);
54 
55 /*
56  * multiple hb threads are watching multiple regions.  A node is live
57  * whenever any of the threads sees activity from the node in its region.
58  */
59 static DEFINE_SPINLOCK(o2hb_live_lock);
60 static struct list_head o2hb_live_slots[O2NM_MAX_NODES];
61 static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
62 static LIST_HEAD(o2hb_node_events);
63 static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue);
64 
65 /*
66  * In global heartbeat, we maintain a series of region bitmaps.
67  * 	- o2hb_region_bitmap allows us to limit the region number to max region.
68  * 	- o2hb_live_region_bitmap tracks live regions (seen steady iterations).
69  * 	- o2hb_quorum_region_bitmap tracks live regions that have seen all nodes
70  * 		heartbeat on it.
71  * 	- o2hb_failed_region_bitmap tracks the regions that have seen io timeouts.
72  */
73 static unsigned long o2hb_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];
74 static unsigned long o2hb_live_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];
75 static unsigned long o2hb_quorum_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];
76 static unsigned long o2hb_failed_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];
77 
78 #define O2HB_DB_TYPE_LIVENODES		0
79 #define O2HB_DB_TYPE_LIVEREGIONS	1
80 #define O2HB_DB_TYPE_QUORUMREGIONS	2
81 #define O2HB_DB_TYPE_FAILEDREGIONS	3
82 #define O2HB_DB_TYPE_REGION_LIVENODES	4
83 #define O2HB_DB_TYPE_REGION_NUMBER	5
84 #define O2HB_DB_TYPE_REGION_ELAPSED_TIME	6
85 #define O2HB_DB_TYPE_REGION_PINNED	7
86 struct o2hb_debug_buf {
87 	int db_type;
88 	int db_size;
89 	int db_len;
90 	void *db_data;
91 };
92 
93 static struct o2hb_debug_buf *o2hb_db_livenodes;
94 static struct o2hb_debug_buf *o2hb_db_liveregions;
95 static struct o2hb_debug_buf *o2hb_db_quorumregions;
96 static struct o2hb_debug_buf *o2hb_db_failedregions;
97 
98 #define O2HB_DEBUG_DIR			"o2hb"
99 #define O2HB_DEBUG_LIVENODES		"livenodes"
100 #define O2HB_DEBUG_LIVEREGIONS		"live_regions"
101 #define O2HB_DEBUG_QUORUMREGIONS	"quorum_regions"
102 #define O2HB_DEBUG_FAILEDREGIONS	"failed_regions"
103 #define O2HB_DEBUG_REGION_NUMBER	"num"
104 #define O2HB_DEBUG_REGION_ELAPSED_TIME	"elapsed_time_in_ms"
105 #define O2HB_DEBUG_REGION_PINNED	"pinned"
106 
107 static struct dentry *o2hb_debug_dir;
108 static struct dentry *o2hb_debug_livenodes;
109 static struct dentry *o2hb_debug_liveregions;
110 static struct dentry *o2hb_debug_quorumregions;
111 static struct dentry *o2hb_debug_failedregions;
112 
113 static LIST_HEAD(o2hb_all_regions);
114 
115 static struct o2hb_callback {
116 	struct list_head list;
117 } o2hb_callbacks[O2HB_NUM_CB];
118 
119 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type);
120 
121 #define O2HB_DEFAULT_BLOCK_BITS       9
122 
123 enum o2hb_heartbeat_modes {
124 	O2HB_HEARTBEAT_LOCAL		= 0,
125 	O2HB_HEARTBEAT_GLOBAL,
126 	O2HB_HEARTBEAT_NUM_MODES,
127 };
128 
129 char *o2hb_heartbeat_mode_desc[O2HB_HEARTBEAT_NUM_MODES] = {
130 		"local",	/* O2HB_HEARTBEAT_LOCAL */
131 		"global",	/* O2HB_HEARTBEAT_GLOBAL */
132 };
133 
134 unsigned int o2hb_dead_threshold = O2HB_DEFAULT_DEAD_THRESHOLD;
135 unsigned int o2hb_heartbeat_mode = O2HB_HEARTBEAT_LOCAL;
136 
137 /*
138  * o2hb_dependent_users tracks the number of registered callbacks that depend
139  * on heartbeat. o2net and o2dlm are two entities that register this callback.
140  * However only o2dlm depends on the heartbeat. It does not want the heartbeat
141  * to stop while a dlm domain is still active.
142  */
143 unsigned int o2hb_dependent_users;
144 
145 /*
146  * In global heartbeat mode, all regions are pinned if there are one or more
147  * dependent users and the quorum region count is <= O2HB_PIN_CUT_OFF. All
148  * regions are unpinned if the region count exceeds the cut off or the number
149  * of dependent users falls to zero.
150  */
151 #define O2HB_PIN_CUT_OFF		3
152 
153 /*
154  * In local heartbeat mode, we assume the dlm domain name to be the same as
155  * region uuid. This is true for domains created for the file system but not
156  * necessarily true for userdlm domains. This is a known limitation.
157  *
158  * In global heartbeat mode, we pin/unpin all o2hb regions. This solution
159  * works for both file system and userdlm domains.
160  */
161 static int o2hb_region_pin(const char *region_uuid);
162 static void o2hb_region_unpin(const char *region_uuid);
163 
164 /* Only sets a new threshold if there are no active regions.
165  *
166  * No locking or otherwise interesting code is required for reading
167  * o2hb_dead_threshold as it can't change once regions are active and
168  * it's not interesting to anyone until then anyway. */
169 static void o2hb_dead_threshold_set(unsigned int threshold)
170 {
171 	if (threshold > O2HB_MIN_DEAD_THRESHOLD) {
172 		spin_lock(&o2hb_live_lock);
173 		if (list_empty(&o2hb_all_regions))
174 			o2hb_dead_threshold = threshold;
175 		spin_unlock(&o2hb_live_lock);
176 	}
177 }
178 
179 static int o2hb_global_heartbeat_mode_set(unsigned int hb_mode)
180 {
181 	int ret = -1;
182 
183 	if (hb_mode < O2HB_HEARTBEAT_NUM_MODES) {
184 		spin_lock(&o2hb_live_lock);
185 		if (list_empty(&o2hb_all_regions)) {
186 			o2hb_heartbeat_mode = hb_mode;
187 			ret = 0;
188 		}
189 		spin_unlock(&o2hb_live_lock);
190 	}
191 
192 	return ret;
193 }
194 
195 struct o2hb_node_event {
196 	struct list_head        hn_item;
197 	enum o2hb_callback_type hn_event_type;
198 	struct o2nm_node        *hn_node;
199 	int                     hn_node_num;
200 };
201 
202 struct o2hb_disk_slot {
203 	struct o2hb_disk_heartbeat_block *ds_raw_block;
204 	u8			ds_node_num;
205 	u64			ds_last_time;
206 	u64			ds_last_generation;
207 	u16			ds_equal_samples;
208 	u16			ds_changed_samples;
209 	struct list_head	ds_live_item;
210 };
211 
212 /* each thread owns a region.. when we're asked to tear down the region
213  * we ask the thread to stop, who cleans up the region */
214 struct o2hb_region {
215 	struct config_item	hr_item;
216 
217 	struct list_head	hr_all_item;
218 	unsigned		hr_unclean_stop:1,
219 				hr_aborted_start:1,
220 				hr_item_pinned:1,
221 				hr_item_dropped:1;
222 
223 	/* protected by the hr_callback_sem */
224 	struct task_struct 	*hr_task;
225 
226 	unsigned int		hr_blocks;
227 	unsigned long long	hr_start_block;
228 
229 	unsigned int		hr_block_bits;
230 	unsigned int		hr_block_bytes;
231 
232 	unsigned int		hr_slots_per_page;
233 	unsigned int		hr_num_pages;
234 
235 	struct page             **hr_slot_data;
236 	struct block_device	*hr_bdev;
237 	struct o2hb_disk_slot	*hr_slots;
238 
239 	/* live node map of this region */
240 	unsigned long		hr_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
241 	unsigned int		hr_region_num;
242 
243 	struct dentry		*hr_debug_dir;
244 	struct dentry		*hr_debug_livenodes;
245 	struct dentry		*hr_debug_regnum;
246 	struct dentry		*hr_debug_elapsed_time;
247 	struct dentry		*hr_debug_pinned;
248 	struct o2hb_debug_buf	*hr_db_livenodes;
249 	struct o2hb_debug_buf	*hr_db_regnum;
250 	struct o2hb_debug_buf	*hr_db_elapsed_time;
251 	struct o2hb_debug_buf	*hr_db_pinned;
252 
253 	/* let the person setting up hb wait for it to return until it
254 	 * has reached a 'steady' state.  This will be fixed when we have
255 	 * a more complete api that doesn't lead to this sort of fragility. */
256 	atomic_t		hr_steady_iterations;
257 
258 	/* terminate o2hb thread if it does not reach steady state
259 	 * (hr_steady_iterations == 0) within hr_unsteady_iterations */
260 	atomic_t		hr_unsteady_iterations;
261 
262 	char			hr_dev_name[BDEVNAME_SIZE];
263 
264 	unsigned int		hr_timeout_ms;
265 
266 	/* randomized as the region goes up and down so that a node
267 	 * recognizes a node going up and down in one iteration */
268 	u64			hr_generation;
269 
270 	struct delayed_work	hr_write_timeout_work;
271 	unsigned long		hr_last_timeout_start;
272 
273 	/* Used during o2hb_check_slot to hold a copy of the block
274 	 * being checked because we temporarily have to zero out the
275 	 * crc field. */
276 	struct o2hb_disk_heartbeat_block *hr_tmp_block;
277 };
278 
279 struct o2hb_bio_wait_ctxt {
280 	atomic_t          wc_num_reqs;
281 	struct completion wc_io_complete;
282 	int               wc_error;
283 };
284 
285 static int o2hb_pop_count(void *map, int count)
286 {
287 	int i = -1, pop = 0;
288 
289 	while ((i = find_next_bit(map, count, i + 1)) < count)
290 		pop++;
291 	return pop;
292 }
293 
294 static void o2hb_write_timeout(struct work_struct *work)
295 {
296 	int failed, quorum;
297 	unsigned long flags;
298 	struct o2hb_region *reg =
299 		container_of(work, struct o2hb_region,
300 			     hr_write_timeout_work.work);
301 
302 	mlog(ML_ERROR, "Heartbeat write timeout to device %s after %u "
303 	     "milliseconds\n", reg->hr_dev_name,
304 	     jiffies_to_msecs(jiffies - reg->hr_last_timeout_start));
305 
306 	if (o2hb_global_heartbeat_active()) {
307 		spin_lock_irqsave(&o2hb_live_lock, flags);
308 		if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap))
309 			set_bit(reg->hr_region_num, o2hb_failed_region_bitmap);
310 		failed = o2hb_pop_count(&o2hb_failed_region_bitmap,
311 					O2NM_MAX_REGIONS);
312 		quorum = o2hb_pop_count(&o2hb_quorum_region_bitmap,
313 					O2NM_MAX_REGIONS);
314 		spin_unlock_irqrestore(&o2hb_live_lock, flags);
315 
316 		mlog(ML_HEARTBEAT, "Number of regions %d, failed regions %d\n",
317 		     quorum, failed);
318 
319 		/*
320 		 * Fence if the number of failed regions >= half the number
321 		 * of  quorum regions
322 		 */
323 		if ((failed << 1) < quorum)
324 			return;
325 	}
326 
327 	o2quo_disk_timeout();
328 }
329 
330 static void o2hb_arm_write_timeout(struct o2hb_region *reg)
331 {
332 	/* Arm writeout only after thread reaches steady state */
333 	if (atomic_read(&reg->hr_steady_iterations) != 0)
334 		return;
335 
336 	mlog(ML_HEARTBEAT, "Queue write timeout for %u ms\n",
337 	     O2HB_MAX_WRITE_TIMEOUT_MS);
338 
339 	if (o2hb_global_heartbeat_active()) {
340 		spin_lock(&o2hb_live_lock);
341 		clear_bit(reg->hr_region_num, o2hb_failed_region_bitmap);
342 		spin_unlock(&o2hb_live_lock);
343 	}
344 	cancel_delayed_work(&reg->hr_write_timeout_work);
345 	reg->hr_last_timeout_start = jiffies;
346 	schedule_delayed_work(&reg->hr_write_timeout_work,
347 			      msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS));
348 }
349 
350 static void o2hb_disarm_write_timeout(struct o2hb_region *reg)
351 {
352 	cancel_delayed_work_sync(&reg->hr_write_timeout_work);
353 }
354 
355 static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc)
356 {
357 	atomic_set(&wc->wc_num_reqs, 1);
358 	init_completion(&wc->wc_io_complete);
359 	wc->wc_error = 0;
360 }
361 
362 /* Used in error paths too */
363 static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc,
364 				     unsigned int num)
365 {
366 	/* sadly atomic_sub_and_test() isn't available on all platforms.  The
367 	 * good news is that the fast path only completes one at a time */
368 	while(num--) {
369 		if (atomic_dec_and_test(&wc->wc_num_reqs)) {
370 			BUG_ON(num > 0);
371 			complete(&wc->wc_io_complete);
372 		}
373 	}
374 }
375 
376 static void o2hb_wait_on_io(struct o2hb_region *reg,
377 			    struct o2hb_bio_wait_ctxt *wc)
378 {
379 	o2hb_bio_wait_dec(wc, 1);
380 	wait_for_completion(&wc->wc_io_complete);
381 }
382 
383 static void o2hb_bio_end_io(struct bio *bio,
384 			   int error)
385 {
386 	struct o2hb_bio_wait_ctxt *wc = bio->bi_private;
387 
388 	if (error) {
389 		mlog(ML_ERROR, "IO Error %d\n", error);
390 		wc->wc_error = error;
391 	}
392 
393 	o2hb_bio_wait_dec(wc, 1);
394 	bio_put(bio);
395 }
396 
397 /* Setup a Bio to cover I/O against num_slots slots starting at
398  * start_slot. */
399 static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg,
400 				      struct o2hb_bio_wait_ctxt *wc,
401 				      unsigned int *current_slot,
402 				      unsigned int max_slots)
403 {
404 	int len, current_page;
405 	unsigned int vec_len, vec_start;
406 	unsigned int bits = reg->hr_block_bits;
407 	unsigned int spp = reg->hr_slots_per_page;
408 	unsigned int cs = *current_slot;
409 	struct bio *bio;
410 	struct page *page;
411 
412 	/* Testing has shown this allocation to take long enough under
413 	 * GFP_KERNEL that the local node can get fenced. It would be
414 	 * nicest if we could pre-allocate these bios and avoid this
415 	 * all together. */
416 	bio = bio_alloc(GFP_ATOMIC, 16);
417 	if (!bio) {
418 		mlog(ML_ERROR, "Could not alloc slots BIO!\n");
419 		bio = ERR_PTR(-ENOMEM);
420 		goto bail;
421 	}
422 
423 	/* Must put everything in 512 byte sectors for the bio... */
424 	bio->bi_sector = (reg->hr_start_block + cs) << (bits - 9);
425 	bio->bi_bdev = reg->hr_bdev;
426 	bio->bi_private = wc;
427 	bio->bi_end_io = o2hb_bio_end_io;
428 
429 	vec_start = (cs << bits) % PAGE_CACHE_SIZE;
430 	while(cs < max_slots) {
431 		current_page = cs / spp;
432 		page = reg->hr_slot_data[current_page];
433 
434 		vec_len = min(PAGE_CACHE_SIZE - vec_start,
435 			      (max_slots-cs) * (PAGE_CACHE_SIZE/spp) );
436 
437 		mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n",
438 		     current_page, vec_len, vec_start);
439 
440 		len = bio_add_page(bio, page, vec_len, vec_start);
441 		if (len != vec_len) break;
442 
443 		cs += vec_len / (PAGE_CACHE_SIZE/spp);
444 		vec_start = 0;
445 	}
446 
447 bail:
448 	*current_slot = cs;
449 	return bio;
450 }
451 
452 static int o2hb_read_slots(struct o2hb_region *reg,
453 			   unsigned int max_slots)
454 {
455 	unsigned int current_slot=0;
456 	int status;
457 	struct o2hb_bio_wait_ctxt wc;
458 	struct bio *bio;
459 
460 	o2hb_bio_wait_init(&wc);
461 
462 	while(current_slot < max_slots) {
463 		bio = o2hb_setup_one_bio(reg, &wc, &current_slot, max_slots);
464 		if (IS_ERR(bio)) {
465 			status = PTR_ERR(bio);
466 			mlog_errno(status);
467 			goto bail_and_wait;
468 		}
469 
470 		atomic_inc(&wc.wc_num_reqs);
471 		submit_bio(READ, bio);
472 	}
473 
474 	status = 0;
475 
476 bail_and_wait:
477 	o2hb_wait_on_io(reg, &wc);
478 	if (wc.wc_error && !status)
479 		status = wc.wc_error;
480 
481 	return status;
482 }
483 
484 static int o2hb_issue_node_write(struct o2hb_region *reg,
485 				 struct o2hb_bio_wait_ctxt *write_wc)
486 {
487 	int status;
488 	unsigned int slot;
489 	struct bio *bio;
490 
491 	o2hb_bio_wait_init(write_wc);
492 
493 	slot = o2nm_this_node();
494 
495 	bio = o2hb_setup_one_bio(reg, write_wc, &slot, slot+1);
496 	if (IS_ERR(bio)) {
497 		status = PTR_ERR(bio);
498 		mlog_errno(status);
499 		goto bail;
500 	}
501 
502 	atomic_inc(&write_wc->wc_num_reqs);
503 	submit_bio(WRITE_SYNC, bio);
504 
505 	status = 0;
506 bail:
507 	return status;
508 }
509 
510 static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg,
511 				     struct o2hb_disk_heartbeat_block *hb_block)
512 {
513 	__le32 old_cksum;
514 	u32 ret;
515 
516 	/* We want to compute the block crc with a 0 value in the
517 	 * hb_cksum field. Save it off here and replace after the
518 	 * crc. */
519 	old_cksum = hb_block->hb_cksum;
520 	hb_block->hb_cksum = 0;
521 
522 	ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes);
523 
524 	hb_block->hb_cksum = old_cksum;
525 
526 	return ret;
527 }
528 
529 static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block)
530 {
531 	mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, "
532 	     "cksum = 0x%x, generation 0x%llx\n",
533 	     (long long)le64_to_cpu(hb_block->hb_seq),
534 	     hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum),
535 	     (long long)le64_to_cpu(hb_block->hb_generation));
536 }
537 
538 static int o2hb_verify_crc(struct o2hb_region *reg,
539 			   struct o2hb_disk_heartbeat_block *hb_block)
540 {
541 	u32 read, computed;
542 
543 	read = le32_to_cpu(hb_block->hb_cksum);
544 	computed = o2hb_compute_block_crc_le(reg, hb_block);
545 
546 	return read == computed;
547 }
548 
549 /*
550  * Compare the slot data with what we wrote in the last iteration.
551  * If the match fails, print an appropriate error message. This is to
552  * detect errors like... another node hearting on the same slot,
553  * flaky device that is losing writes, etc.
554  * Returns 1 if check succeeds, 0 otherwise.
555  */
556 static int o2hb_check_own_slot(struct o2hb_region *reg)
557 {
558 	struct o2hb_disk_slot *slot;
559 	struct o2hb_disk_heartbeat_block *hb_block;
560 	char *errstr;
561 
562 	slot = &reg->hr_slots[o2nm_this_node()];
563 	/* Don't check on our 1st timestamp */
564 	if (!slot->ds_last_time)
565 		return 0;
566 
567 	hb_block = slot->ds_raw_block;
568 	if (le64_to_cpu(hb_block->hb_seq) == slot->ds_last_time &&
569 	    le64_to_cpu(hb_block->hb_generation) == slot->ds_last_generation &&
570 	    hb_block->hb_node == slot->ds_node_num)
571 		return 1;
572 
573 #define ERRSTR1		"Another node is heartbeating on device"
574 #define ERRSTR2		"Heartbeat generation mismatch on device"
575 #define ERRSTR3		"Heartbeat sequence mismatch on device"
576 
577 	if (hb_block->hb_node != slot->ds_node_num)
578 		errstr = ERRSTR1;
579 	else if (le64_to_cpu(hb_block->hb_generation) !=
580 		 slot->ds_last_generation)
581 		errstr = ERRSTR2;
582 	else
583 		errstr = ERRSTR3;
584 
585 	mlog(ML_ERROR, "%s (%s): expected(%u:0x%llx, 0x%llx), "
586 	     "ondisk(%u:0x%llx, 0x%llx)\n", errstr, reg->hr_dev_name,
587 	     slot->ds_node_num, (unsigned long long)slot->ds_last_generation,
588 	     (unsigned long long)slot->ds_last_time, hb_block->hb_node,
589 	     (unsigned long long)le64_to_cpu(hb_block->hb_generation),
590 	     (unsigned long long)le64_to_cpu(hb_block->hb_seq));
591 
592 	return 0;
593 }
594 
595 static inline void o2hb_prepare_block(struct o2hb_region *reg,
596 				      u64 generation)
597 {
598 	int node_num;
599 	u64 cputime;
600 	struct o2hb_disk_slot *slot;
601 	struct o2hb_disk_heartbeat_block *hb_block;
602 
603 	node_num = o2nm_this_node();
604 	slot = &reg->hr_slots[node_num];
605 
606 	hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block;
607 	memset(hb_block, 0, reg->hr_block_bytes);
608 	/* TODO: time stuff */
609 	cputime = CURRENT_TIME.tv_sec;
610 	if (!cputime)
611 		cputime = 1;
612 
613 	hb_block->hb_seq = cpu_to_le64(cputime);
614 	hb_block->hb_node = node_num;
615 	hb_block->hb_generation = cpu_to_le64(generation);
616 	hb_block->hb_dead_ms = cpu_to_le32(o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS);
617 
618 	/* This step must always happen last! */
619 	hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg,
620 								   hb_block));
621 
622 	mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n",
623 	     (long long)generation,
624 	     le32_to_cpu(hb_block->hb_cksum));
625 }
626 
627 static void o2hb_fire_callbacks(struct o2hb_callback *hbcall,
628 				struct o2nm_node *node,
629 				int idx)
630 {
631 	struct o2hb_callback_func *f;
632 
633 	list_for_each_entry(f, &hbcall->list, hc_item) {
634 		mlog(ML_HEARTBEAT, "calling funcs %p\n", f);
635 		(f->hc_func)(node, idx, f->hc_data);
636 	}
637 }
638 
639 /* Will run the list in order until we process the passed event */
640 static void o2hb_run_event_list(struct o2hb_node_event *queued_event)
641 {
642 	struct o2hb_callback *hbcall;
643 	struct o2hb_node_event *event;
644 
645 	/* Holding callback sem assures we don't alter the callback
646 	 * lists when doing this, and serializes ourselves with other
647 	 * processes wanting callbacks. */
648 	down_write(&o2hb_callback_sem);
649 
650 	spin_lock(&o2hb_live_lock);
651 	while (!list_empty(&o2hb_node_events)
652 	       && !list_empty(&queued_event->hn_item)) {
653 		event = list_entry(o2hb_node_events.next,
654 				   struct o2hb_node_event,
655 				   hn_item);
656 		list_del_init(&event->hn_item);
657 		spin_unlock(&o2hb_live_lock);
658 
659 		mlog(ML_HEARTBEAT, "Node %s event for %d\n",
660 		     event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN",
661 		     event->hn_node_num);
662 
663 		hbcall = hbcall_from_type(event->hn_event_type);
664 
665 		/* We should *never* have gotten on to the list with a
666 		 * bad type... This isn't something that we should try
667 		 * to recover from. */
668 		BUG_ON(IS_ERR(hbcall));
669 
670 		o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num);
671 
672 		spin_lock(&o2hb_live_lock);
673 	}
674 	spin_unlock(&o2hb_live_lock);
675 
676 	up_write(&o2hb_callback_sem);
677 }
678 
679 static void o2hb_queue_node_event(struct o2hb_node_event *event,
680 				  enum o2hb_callback_type type,
681 				  struct o2nm_node *node,
682 				  int node_num)
683 {
684 	assert_spin_locked(&o2hb_live_lock);
685 
686 	BUG_ON((!node) && (type != O2HB_NODE_DOWN_CB));
687 
688 	event->hn_event_type = type;
689 	event->hn_node = node;
690 	event->hn_node_num = node_num;
691 
692 	mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n",
693 	     type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num);
694 
695 	list_add_tail(&event->hn_item, &o2hb_node_events);
696 }
697 
698 static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot)
699 {
700 	struct o2hb_node_event event =
701 		{ .hn_item = LIST_HEAD_INIT(event.hn_item), };
702 	struct o2nm_node *node;
703 	int queued = 0;
704 
705 	node = o2nm_get_node_by_num(slot->ds_node_num);
706 	if (!node)
707 		return;
708 
709 	spin_lock(&o2hb_live_lock);
710 	if (!list_empty(&slot->ds_live_item)) {
711 		mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n",
712 		     slot->ds_node_num);
713 
714 		list_del_init(&slot->ds_live_item);
715 
716 		if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
717 			clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
718 
719 			o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
720 					      slot->ds_node_num);
721 			queued = 1;
722 		}
723 	}
724 	spin_unlock(&o2hb_live_lock);
725 
726 	if (queued)
727 		o2hb_run_event_list(&event);
728 
729 	o2nm_node_put(node);
730 }
731 
732 static void o2hb_set_quorum_device(struct o2hb_region *reg)
733 {
734 	if (!o2hb_global_heartbeat_active())
735 		return;
736 
737 	/* Prevent race with o2hb_heartbeat_group_drop_item() */
738 	if (kthread_should_stop())
739 		return;
740 
741 	/* Tag region as quorum only after thread reaches steady state */
742 	if (atomic_read(&reg->hr_steady_iterations) != 0)
743 		return;
744 
745 	spin_lock(&o2hb_live_lock);
746 
747 	if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap))
748 		goto unlock;
749 
750 	/*
751 	 * A region can be added to the quorum only when it sees all
752 	 * live nodes heartbeat on it. In other words, the region has been
753 	 * added to all nodes.
754 	 */
755 	if (memcmp(reg->hr_live_node_bitmap, o2hb_live_node_bitmap,
756 		   sizeof(o2hb_live_node_bitmap)))
757 		goto unlock;
758 
759 	printk(KERN_NOTICE "o2hb: Region %s (%s) is now a quorum device\n",
760 	       config_item_name(&reg->hr_item), reg->hr_dev_name);
761 
762 	set_bit(reg->hr_region_num, o2hb_quorum_region_bitmap);
763 
764 	/*
765 	 * If global heartbeat active, unpin all regions if the
766 	 * region count > CUT_OFF
767 	 */
768 	if (o2hb_pop_count(&o2hb_quorum_region_bitmap,
769 			   O2NM_MAX_REGIONS) > O2HB_PIN_CUT_OFF)
770 		o2hb_region_unpin(NULL);
771 unlock:
772 	spin_unlock(&o2hb_live_lock);
773 }
774 
775 static int o2hb_check_slot(struct o2hb_region *reg,
776 			   struct o2hb_disk_slot *slot)
777 {
778 	int changed = 0, gen_changed = 0;
779 	struct o2hb_node_event event =
780 		{ .hn_item = LIST_HEAD_INIT(event.hn_item), };
781 	struct o2nm_node *node;
782 	struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block;
783 	u64 cputime;
784 	unsigned int dead_ms = o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS;
785 	unsigned int slot_dead_ms;
786 	int tmp;
787 	int queued = 0;
788 
789 	memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes);
790 
791 	/*
792 	 * If a node is no longer configured but is still in the livemap, we
793 	 * may need to clear that bit from the livemap.
794 	 */
795 	node = o2nm_get_node_by_num(slot->ds_node_num);
796 	if (!node) {
797 		spin_lock(&o2hb_live_lock);
798 		tmp = test_bit(slot->ds_node_num, o2hb_live_node_bitmap);
799 		spin_unlock(&o2hb_live_lock);
800 		if (!tmp)
801 			return 0;
802 	}
803 
804 	if (!o2hb_verify_crc(reg, hb_block)) {
805 		/* all paths from here will drop o2hb_live_lock for
806 		 * us. */
807 		spin_lock(&o2hb_live_lock);
808 
809 		/* Don't print an error on the console in this case -
810 		 * a freshly formatted heartbeat area will not have a
811 		 * crc set on it. */
812 		if (list_empty(&slot->ds_live_item))
813 			goto out;
814 
815 		/* The node is live but pushed out a bad crc. We
816 		 * consider it a transient miss but don't populate any
817 		 * other values as they may be junk. */
818 		mlog(ML_ERROR, "Node %d has written a bad crc to %s\n",
819 		     slot->ds_node_num, reg->hr_dev_name);
820 		o2hb_dump_slot(hb_block);
821 
822 		slot->ds_equal_samples++;
823 		goto fire_callbacks;
824 	}
825 
826 	/* we don't care if these wrap.. the state transitions below
827 	 * clear at the right places */
828 	cputime = le64_to_cpu(hb_block->hb_seq);
829 	if (slot->ds_last_time != cputime)
830 		slot->ds_changed_samples++;
831 	else
832 		slot->ds_equal_samples++;
833 	slot->ds_last_time = cputime;
834 
835 	/* The node changed heartbeat generations. We assume this to
836 	 * mean it dropped off but came back before we timed out. We
837 	 * want to consider it down for the time being but don't want
838 	 * to lose any changed_samples state we might build up to
839 	 * considering it live again. */
840 	if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) {
841 		gen_changed = 1;
842 		slot->ds_equal_samples = 0;
843 		mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx "
844 		     "to 0x%llx)\n", slot->ds_node_num,
845 		     (long long)slot->ds_last_generation,
846 		     (long long)le64_to_cpu(hb_block->hb_generation));
847 	}
848 
849 	slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
850 
851 	mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x "
852 	     "seq %llu last %llu changed %u equal %u\n",
853 	     slot->ds_node_num, (long long)slot->ds_last_generation,
854 	     le32_to_cpu(hb_block->hb_cksum),
855 	     (unsigned long long)le64_to_cpu(hb_block->hb_seq),
856 	     (unsigned long long)slot->ds_last_time, slot->ds_changed_samples,
857 	     slot->ds_equal_samples);
858 
859 	spin_lock(&o2hb_live_lock);
860 
861 fire_callbacks:
862 	/* dead nodes only come to life after some number of
863 	 * changes at any time during their dead time */
864 	if (list_empty(&slot->ds_live_item) &&
865 	    slot->ds_changed_samples >= O2HB_LIVE_THRESHOLD) {
866 		mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n",
867 		     slot->ds_node_num, (long long)slot->ds_last_generation);
868 
869 		set_bit(slot->ds_node_num, reg->hr_live_node_bitmap);
870 
871 		/* first on the list generates a callback */
872 		if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
873 			mlog(ML_HEARTBEAT, "o2hb: Add node %d to live nodes "
874 			     "bitmap\n", slot->ds_node_num);
875 			set_bit(slot->ds_node_num, o2hb_live_node_bitmap);
876 
877 			o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node,
878 					      slot->ds_node_num);
879 
880 			changed = 1;
881 			queued = 1;
882 		}
883 
884 		list_add_tail(&slot->ds_live_item,
885 			      &o2hb_live_slots[slot->ds_node_num]);
886 
887 		slot->ds_equal_samples = 0;
888 
889 		/* We want to be sure that all nodes agree on the
890 		 * number of milliseconds before a node will be
891 		 * considered dead. The self-fencing timeout is
892 		 * computed from this value, and a discrepancy might
893 		 * result in heartbeat calling a node dead when it
894 		 * hasn't self-fenced yet. */
895 		slot_dead_ms = le32_to_cpu(hb_block->hb_dead_ms);
896 		if (slot_dead_ms && slot_dead_ms != dead_ms) {
897 			/* TODO: Perhaps we can fail the region here. */
898 			mlog(ML_ERROR, "Node %d on device %s has a dead count "
899 			     "of %u ms, but our count is %u ms.\n"
900 			     "Please double check your configuration values "
901 			     "for 'O2CB_HEARTBEAT_THRESHOLD'\n",
902 			     slot->ds_node_num, reg->hr_dev_name, slot_dead_ms,
903 			     dead_ms);
904 		}
905 		goto out;
906 	}
907 
908 	/* if the list is dead, we're done.. */
909 	if (list_empty(&slot->ds_live_item))
910 		goto out;
911 
912 	/* live nodes only go dead after enough consequtive missed
913 	 * samples..  reset the missed counter whenever we see
914 	 * activity */
915 	if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) {
916 		mlog(ML_HEARTBEAT, "Node %d left my region\n",
917 		     slot->ds_node_num);
918 
919 		clear_bit(slot->ds_node_num, reg->hr_live_node_bitmap);
920 
921 		/* last off the live_slot generates a callback */
922 		list_del_init(&slot->ds_live_item);
923 		if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
924 			mlog(ML_HEARTBEAT, "o2hb: Remove node %d from live "
925 			     "nodes bitmap\n", slot->ds_node_num);
926 			clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
927 
928 			/* node can be null */
929 			o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB,
930 					      node, slot->ds_node_num);
931 
932 			changed = 1;
933 			queued = 1;
934 		}
935 
936 		/* We don't clear this because the node is still
937 		 * actually writing new blocks. */
938 		if (!gen_changed)
939 			slot->ds_changed_samples = 0;
940 		goto out;
941 	}
942 	if (slot->ds_changed_samples) {
943 		slot->ds_changed_samples = 0;
944 		slot->ds_equal_samples = 0;
945 	}
946 out:
947 	spin_unlock(&o2hb_live_lock);
948 
949 	if (queued)
950 		o2hb_run_event_list(&event);
951 
952 	if (node)
953 		o2nm_node_put(node);
954 	return changed;
955 }
956 
957 /* This could be faster if we just implmented a find_last_bit, but I
958  * don't think the circumstances warrant it. */
959 static int o2hb_highest_node(unsigned long *nodes,
960 			     int numbits)
961 {
962 	int highest, node;
963 
964 	highest = numbits;
965 	node = -1;
966 	while ((node = find_next_bit(nodes, numbits, node + 1)) != -1) {
967 		if (node >= numbits)
968 			break;
969 
970 		highest = node;
971 	}
972 
973 	return highest;
974 }
975 
976 static int o2hb_do_disk_heartbeat(struct o2hb_region *reg)
977 {
978 	int i, ret, highest_node;
979 	int membership_change = 0, own_slot_ok = 0;
980 	unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)];
981 	unsigned long live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
982 	struct o2hb_bio_wait_ctxt write_wc;
983 
984 	ret = o2nm_configured_node_map(configured_nodes,
985 				       sizeof(configured_nodes));
986 	if (ret) {
987 		mlog_errno(ret);
988 		goto bail;
989 	}
990 
991 	/*
992 	 * If a node is not configured but is in the livemap, we still need
993 	 * to read the slot so as to be able to remove it from the livemap.
994 	 */
995 	o2hb_fill_node_map(live_node_bitmap, sizeof(live_node_bitmap));
996 	i = -1;
997 	while ((i = find_next_bit(live_node_bitmap,
998 				  O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
999 		set_bit(i, configured_nodes);
1000 	}
1001 
1002 	highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES);
1003 	if (highest_node >= O2NM_MAX_NODES) {
1004 		mlog(ML_NOTICE, "o2hb: No configured nodes found!\n");
1005 		ret = -EINVAL;
1006 		goto bail;
1007 	}
1008 
1009 	/* No sense in reading the slots of nodes that don't exist
1010 	 * yet. Of course, if the node definitions have holes in them
1011 	 * then we're reading an empty slot anyway... Consider this
1012 	 * best-effort. */
1013 	ret = o2hb_read_slots(reg, highest_node + 1);
1014 	if (ret < 0) {
1015 		mlog_errno(ret);
1016 		goto bail;
1017 	}
1018 
1019 	/* With an up to date view of the slots, we can check that no
1020 	 * other node has been improperly configured to heartbeat in
1021 	 * our slot. */
1022 	own_slot_ok = o2hb_check_own_slot(reg);
1023 
1024 	/* fill in the proper info for our next heartbeat */
1025 	o2hb_prepare_block(reg, reg->hr_generation);
1026 
1027 	ret = o2hb_issue_node_write(reg, &write_wc);
1028 	if (ret < 0) {
1029 		mlog_errno(ret);
1030 		goto bail;
1031 	}
1032 
1033 	i = -1;
1034 	while((i = find_next_bit(configured_nodes,
1035 				 O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
1036 		membership_change |= o2hb_check_slot(reg, &reg->hr_slots[i]);
1037 	}
1038 
1039 	/*
1040 	 * We have to be sure we've advertised ourselves on disk
1041 	 * before we can go to steady state.  This ensures that
1042 	 * people we find in our steady state have seen us.
1043 	 */
1044 	o2hb_wait_on_io(reg, &write_wc);
1045 	if (write_wc.wc_error) {
1046 		/* Do not re-arm the write timeout on I/O error - we
1047 		 * can't be sure that the new block ever made it to
1048 		 * disk */
1049 		mlog(ML_ERROR, "Write error %d on device \"%s\"\n",
1050 		     write_wc.wc_error, reg->hr_dev_name);
1051 		ret = write_wc.wc_error;
1052 		goto bail;
1053 	}
1054 
1055 	/* Skip disarming the timeout if own slot has stale/bad data */
1056 	if (own_slot_ok) {
1057 		o2hb_set_quorum_device(reg);
1058 		o2hb_arm_write_timeout(reg);
1059 	}
1060 
1061 bail:
1062 	/* let the person who launched us know when things are steady */
1063 	if (atomic_read(&reg->hr_steady_iterations) != 0) {
1064 		if (!ret && own_slot_ok && !membership_change) {
1065 			if (atomic_dec_and_test(&reg->hr_steady_iterations))
1066 				wake_up(&o2hb_steady_queue);
1067 		}
1068 	}
1069 
1070 	if (atomic_read(&reg->hr_steady_iterations) != 0) {
1071 		if (atomic_dec_and_test(&reg->hr_unsteady_iterations)) {
1072 			printk(KERN_NOTICE "o2hb: Unable to stabilize "
1073 			       "heartbeart on region %s (%s)\n",
1074 			       config_item_name(&reg->hr_item),
1075 			       reg->hr_dev_name);
1076 			atomic_set(&reg->hr_steady_iterations, 0);
1077 			reg->hr_aborted_start = 1;
1078 			wake_up(&o2hb_steady_queue);
1079 			ret = -EIO;
1080 		}
1081 	}
1082 
1083 	return ret;
1084 }
1085 
1086 /* Subtract b from a, storing the result in a. a *must* have a larger
1087  * value than b. */
1088 static void o2hb_tv_subtract(struct timeval *a,
1089 			     struct timeval *b)
1090 {
1091 	/* just return 0 when a is after b */
1092 	if (a->tv_sec < b->tv_sec ||
1093 	    (a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec)) {
1094 		a->tv_sec = 0;
1095 		a->tv_usec = 0;
1096 		return;
1097 	}
1098 
1099 	a->tv_sec -= b->tv_sec;
1100 	a->tv_usec -= b->tv_usec;
1101 	while ( a->tv_usec < 0 ) {
1102 		a->tv_sec--;
1103 		a->tv_usec += 1000000;
1104 	}
1105 }
1106 
1107 static unsigned int o2hb_elapsed_msecs(struct timeval *start,
1108 				       struct timeval *end)
1109 {
1110 	struct timeval res = *end;
1111 
1112 	o2hb_tv_subtract(&res, start);
1113 
1114 	return res.tv_sec * 1000 + res.tv_usec / 1000;
1115 }
1116 
1117 /*
1118  * we ride the region ref that the region dir holds.  before the region
1119  * dir is removed and drops it ref it will wait to tear down this
1120  * thread.
1121  */
1122 static int o2hb_thread(void *data)
1123 {
1124 	int i, ret;
1125 	struct o2hb_region *reg = data;
1126 	struct o2hb_bio_wait_ctxt write_wc;
1127 	struct timeval before_hb, after_hb;
1128 	unsigned int elapsed_msec;
1129 
1130 	mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n");
1131 
1132 	set_user_nice(current, -20);
1133 
1134 	/* Pin node */
1135 	o2nm_depend_this_node();
1136 
1137 	while (!kthread_should_stop() &&
1138 	       !reg->hr_unclean_stop && !reg->hr_aborted_start) {
1139 		/* We track the time spent inside
1140 		 * o2hb_do_disk_heartbeat so that we avoid more than
1141 		 * hr_timeout_ms between disk writes. On busy systems
1142 		 * this should result in a heartbeat which is less
1143 		 * likely to time itself out. */
1144 		do_gettimeofday(&before_hb);
1145 
1146 		ret = o2hb_do_disk_heartbeat(reg);
1147 
1148 		do_gettimeofday(&after_hb);
1149 		elapsed_msec = o2hb_elapsed_msecs(&before_hb, &after_hb);
1150 
1151 		mlog(ML_HEARTBEAT,
1152 		     "start = %lu.%lu, end = %lu.%lu, msec = %u\n",
1153 		     before_hb.tv_sec, (unsigned long) before_hb.tv_usec,
1154 		     after_hb.tv_sec, (unsigned long) after_hb.tv_usec,
1155 		     elapsed_msec);
1156 
1157 		if (!kthread_should_stop() &&
1158 		    elapsed_msec < reg->hr_timeout_ms) {
1159 			/* the kthread api has blocked signals for us so no
1160 			 * need to record the return value. */
1161 			msleep_interruptible(reg->hr_timeout_ms - elapsed_msec);
1162 		}
1163 	}
1164 
1165 	o2hb_disarm_write_timeout(reg);
1166 
1167 	/* unclean stop is only used in very bad situation */
1168 	for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++)
1169 		o2hb_shutdown_slot(&reg->hr_slots[i]);
1170 
1171 	/* Explicit down notification - avoid forcing the other nodes
1172 	 * to timeout on this region when we could just as easily
1173 	 * write a clear generation - thus indicating to them that
1174 	 * this node has left this region.
1175 	 */
1176 	if (!reg->hr_unclean_stop && !reg->hr_aborted_start) {
1177 		o2hb_prepare_block(reg, 0);
1178 		ret = o2hb_issue_node_write(reg, &write_wc);
1179 		if (ret == 0)
1180 			o2hb_wait_on_io(reg, &write_wc);
1181 		else
1182 			mlog_errno(ret);
1183 	}
1184 
1185 	/* Unpin node */
1186 	o2nm_undepend_this_node();
1187 
1188 	mlog(ML_HEARTBEAT|ML_KTHREAD, "o2hb thread exiting\n");
1189 
1190 	return 0;
1191 }
1192 
1193 #ifdef CONFIG_DEBUG_FS
1194 static int o2hb_debug_open(struct inode *inode, struct file *file)
1195 {
1196 	struct o2hb_debug_buf *db = inode->i_private;
1197 	struct o2hb_region *reg;
1198 	unsigned long map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1199 	unsigned long lts;
1200 	char *buf = NULL;
1201 	int i = -1;
1202 	int out = 0;
1203 
1204 	/* max_nodes should be the largest bitmap we pass here */
1205 	BUG_ON(sizeof(map) < db->db_size);
1206 
1207 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1208 	if (!buf)
1209 		goto bail;
1210 
1211 	switch (db->db_type) {
1212 	case O2HB_DB_TYPE_LIVENODES:
1213 	case O2HB_DB_TYPE_LIVEREGIONS:
1214 	case O2HB_DB_TYPE_QUORUMREGIONS:
1215 	case O2HB_DB_TYPE_FAILEDREGIONS:
1216 		spin_lock(&o2hb_live_lock);
1217 		memcpy(map, db->db_data, db->db_size);
1218 		spin_unlock(&o2hb_live_lock);
1219 		break;
1220 
1221 	case O2HB_DB_TYPE_REGION_LIVENODES:
1222 		spin_lock(&o2hb_live_lock);
1223 		reg = (struct o2hb_region *)db->db_data;
1224 		memcpy(map, reg->hr_live_node_bitmap, db->db_size);
1225 		spin_unlock(&o2hb_live_lock);
1226 		break;
1227 
1228 	case O2HB_DB_TYPE_REGION_NUMBER:
1229 		reg = (struct o2hb_region *)db->db_data;
1230 		out += snprintf(buf + out, PAGE_SIZE - out, "%d\n",
1231 				reg->hr_region_num);
1232 		goto done;
1233 
1234 	case O2HB_DB_TYPE_REGION_ELAPSED_TIME:
1235 		reg = (struct o2hb_region *)db->db_data;
1236 		lts = reg->hr_last_timeout_start;
1237 		/* If 0, it has never been set before */
1238 		if (lts)
1239 			lts = jiffies_to_msecs(jiffies - lts);
1240 		out += snprintf(buf + out, PAGE_SIZE - out, "%lu\n", lts);
1241 		goto done;
1242 
1243 	case O2HB_DB_TYPE_REGION_PINNED:
1244 		reg = (struct o2hb_region *)db->db_data;
1245 		out += snprintf(buf + out, PAGE_SIZE - out, "%u\n",
1246 				!!reg->hr_item_pinned);
1247 		goto done;
1248 
1249 	default:
1250 		goto done;
1251 	}
1252 
1253 	while ((i = find_next_bit(map, db->db_len, i + 1)) < db->db_len)
1254 		out += snprintf(buf + out, PAGE_SIZE - out, "%d ", i);
1255 	out += snprintf(buf + out, PAGE_SIZE - out, "\n");
1256 
1257 done:
1258 	i_size_write(inode, out);
1259 
1260 	file->private_data = buf;
1261 
1262 	return 0;
1263 bail:
1264 	return -ENOMEM;
1265 }
1266 
1267 static int o2hb_debug_release(struct inode *inode, struct file *file)
1268 {
1269 	kfree(file->private_data);
1270 	return 0;
1271 }
1272 
1273 static ssize_t o2hb_debug_read(struct file *file, char __user *buf,
1274 				 size_t nbytes, loff_t *ppos)
1275 {
1276 	return simple_read_from_buffer(buf, nbytes, ppos, file->private_data,
1277 				       i_size_read(file->f_mapping->host));
1278 }
1279 #else
1280 static int o2hb_debug_open(struct inode *inode, struct file *file)
1281 {
1282 	return 0;
1283 }
1284 static int o2hb_debug_release(struct inode *inode, struct file *file)
1285 {
1286 	return 0;
1287 }
1288 static ssize_t o2hb_debug_read(struct file *file, char __user *buf,
1289 			       size_t nbytes, loff_t *ppos)
1290 {
1291 	return 0;
1292 }
1293 #endif  /* CONFIG_DEBUG_FS */
1294 
1295 static const struct file_operations o2hb_debug_fops = {
1296 	.open =		o2hb_debug_open,
1297 	.release =	o2hb_debug_release,
1298 	.read =		o2hb_debug_read,
1299 	.llseek =	generic_file_llseek,
1300 };
1301 
1302 void o2hb_exit(void)
1303 {
1304 	kfree(o2hb_db_livenodes);
1305 	kfree(o2hb_db_liveregions);
1306 	kfree(o2hb_db_quorumregions);
1307 	kfree(o2hb_db_failedregions);
1308 	debugfs_remove(o2hb_debug_failedregions);
1309 	debugfs_remove(o2hb_debug_quorumregions);
1310 	debugfs_remove(o2hb_debug_liveregions);
1311 	debugfs_remove(o2hb_debug_livenodes);
1312 	debugfs_remove(o2hb_debug_dir);
1313 }
1314 
1315 static struct dentry *o2hb_debug_create(const char *name, struct dentry *dir,
1316 					struct o2hb_debug_buf **db, int db_len,
1317 					int type, int size, int len, void *data)
1318 {
1319 	*db = kmalloc(db_len, GFP_KERNEL);
1320 	if (!*db)
1321 		return NULL;
1322 
1323 	(*db)->db_type = type;
1324 	(*db)->db_size = size;
1325 	(*db)->db_len = len;
1326 	(*db)->db_data = data;
1327 
1328 	return debugfs_create_file(name, S_IFREG|S_IRUSR, dir, *db,
1329 				   &o2hb_debug_fops);
1330 }
1331 
1332 static int o2hb_debug_init(void)
1333 {
1334 	int ret = -ENOMEM;
1335 
1336 	o2hb_debug_dir = debugfs_create_dir(O2HB_DEBUG_DIR, NULL);
1337 	if (!o2hb_debug_dir) {
1338 		mlog_errno(ret);
1339 		goto bail;
1340 	}
1341 
1342 	o2hb_debug_livenodes = o2hb_debug_create(O2HB_DEBUG_LIVENODES,
1343 						 o2hb_debug_dir,
1344 						 &o2hb_db_livenodes,
1345 						 sizeof(*o2hb_db_livenodes),
1346 						 O2HB_DB_TYPE_LIVENODES,
1347 						 sizeof(o2hb_live_node_bitmap),
1348 						 O2NM_MAX_NODES,
1349 						 o2hb_live_node_bitmap);
1350 	if (!o2hb_debug_livenodes) {
1351 		mlog_errno(ret);
1352 		goto bail;
1353 	}
1354 
1355 	o2hb_debug_liveregions = o2hb_debug_create(O2HB_DEBUG_LIVEREGIONS,
1356 						   o2hb_debug_dir,
1357 						   &o2hb_db_liveregions,
1358 						   sizeof(*o2hb_db_liveregions),
1359 						   O2HB_DB_TYPE_LIVEREGIONS,
1360 						   sizeof(o2hb_live_region_bitmap),
1361 						   O2NM_MAX_REGIONS,
1362 						   o2hb_live_region_bitmap);
1363 	if (!o2hb_debug_liveregions) {
1364 		mlog_errno(ret);
1365 		goto bail;
1366 	}
1367 
1368 	o2hb_debug_quorumregions =
1369 			o2hb_debug_create(O2HB_DEBUG_QUORUMREGIONS,
1370 					  o2hb_debug_dir,
1371 					  &o2hb_db_quorumregions,
1372 					  sizeof(*o2hb_db_quorumregions),
1373 					  O2HB_DB_TYPE_QUORUMREGIONS,
1374 					  sizeof(o2hb_quorum_region_bitmap),
1375 					  O2NM_MAX_REGIONS,
1376 					  o2hb_quorum_region_bitmap);
1377 	if (!o2hb_debug_quorumregions) {
1378 		mlog_errno(ret);
1379 		goto bail;
1380 	}
1381 
1382 	o2hb_debug_failedregions =
1383 			o2hb_debug_create(O2HB_DEBUG_FAILEDREGIONS,
1384 					  o2hb_debug_dir,
1385 					  &o2hb_db_failedregions,
1386 					  sizeof(*o2hb_db_failedregions),
1387 					  O2HB_DB_TYPE_FAILEDREGIONS,
1388 					  sizeof(o2hb_failed_region_bitmap),
1389 					  O2NM_MAX_REGIONS,
1390 					  o2hb_failed_region_bitmap);
1391 	if (!o2hb_debug_failedregions) {
1392 		mlog_errno(ret);
1393 		goto bail;
1394 	}
1395 
1396 	ret = 0;
1397 bail:
1398 	if (ret)
1399 		o2hb_exit();
1400 
1401 	return ret;
1402 }
1403 
1404 int o2hb_init(void)
1405 {
1406 	int i;
1407 
1408 	for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++)
1409 		INIT_LIST_HEAD(&o2hb_callbacks[i].list);
1410 
1411 	for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++)
1412 		INIT_LIST_HEAD(&o2hb_live_slots[i]);
1413 
1414 	INIT_LIST_HEAD(&o2hb_node_events);
1415 
1416 	memset(o2hb_live_node_bitmap, 0, sizeof(o2hb_live_node_bitmap));
1417 	memset(o2hb_region_bitmap, 0, sizeof(o2hb_region_bitmap));
1418 	memset(o2hb_live_region_bitmap, 0, sizeof(o2hb_live_region_bitmap));
1419 	memset(o2hb_quorum_region_bitmap, 0, sizeof(o2hb_quorum_region_bitmap));
1420 	memset(o2hb_failed_region_bitmap, 0, sizeof(o2hb_failed_region_bitmap));
1421 
1422 	o2hb_dependent_users = 0;
1423 
1424 	return o2hb_debug_init();
1425 }
1426 
1427 /* if we're already in a callback then we're already serialized by the sem */
1428 static void o2hb_fill_node_map_from_callback(unsigned long *map,
1429 					     unsigned bytes)
1430 {
1431 	BUG_ON(bytes < (BITS_TO_LONGS(O2NM_MAX_NODES) * sizeof(unsigned long)));
1432 
1433 	memcpy(map, &o2hb_live_node_bitmap, bytes);
1434 }
1435 
1436 /*
1437  * get a map of all nodes that are heartbeating in any regions
1438  */
1439 void o2hb_fill_node_map(unsigned long *map, unsigned bytes)
1440 {
1441 	/* callers want to serialize this map and callbacks so that they
1442 	 * can trust that they don't miss nodes coming to the party */
1443 	down_read(&o2hb_callback_sem);
1444 	spin_lock(&o2hb_live_lock);
1445 	o2hb_fill_node_map_from_callback(map, bytes);
1446 	spin_unlock(&o2hb_live_lock);
1447 	up_read(&o2hb_callback_sem);
1448 }
1449 EXPORT_SYMBOL_GPL(o2hb_fill_node_map);
1450 
1451 /*
1452  * heartbeat configfs bits.  The heartbeat set is a default set under
1453  * the cluster set in nodemanager.c.
1454  */
1455 
1456 static struct o2hb_region *to_o2hb_region(struct config_item *item)
1457 {
1458 	return item ? container_of(item, struct o2hb_region, hr_item) : NULL;
1459 }
1460 
1461 /* drop_item only drops its ref after killing the thread, nothing should
1462  * be using the region anymore.  this has to clean up any state that
1463  * attributes might have built up. */
1464 static void o2hb_region_release(struct config_item *item)
1465 {
1466 	int i;
1467 	struct page *page;
1468 	struct o2hb_region *reg = to_o2hb_region(item);
1469 
1470 	mlog(ML_HEARTBEAT, "hb region release (%s)\n", reg->hr_dev_name);
1471 
1472 	kfree(reg->hr_tmp_block);
1473 
1474 	if (reg->hr_slot_data) {
1475 		for (i = 0; i < reg->hr_num_pages; i++) {
1476 			page = reg->hr_slot_data[i];
1477 			if (page)
1478 				__free_page(page);
1479 		}
1480 		kfree(reg->hr_slot_data);
1481 	}
1482 
1483 	if (reg->hr_bdev)
1484 		blkdev_put(reg->hr_bdev, FMODE_READ|FMODE_WRITE);
1485 
1486 	kfree(reg->hr_slots);
1487 
1488 	kfree(reg->hr_db_regnum);
1489 	kfree(reg->hr_db_livenodes);
1490 	debugfs_remove(reg->hr_debug_livenodes);
1491 	debugfs_remove(reg->hr_debug_regnum);
1492 	debugfs_remove(reg->hr_debug_elapsed_time);
1493 	debugfs_remove(reg->hr_debug_pinned);
1494 	debugfs_remove(reg->hr_debug_dir);
1495 
1496 	spin_lock(&o2hb_live_lock);
1497 	list_del(&reg->hr_all_item);
1498 	spin_unlock(&o2hb_live_lock);
1499 
1500 	kfree(reg);
1501 }
1502 
1503 static int o2hb_read_block_input(struct o2hb_region *reg,
1504 				 const char *page,
1505 				 size_t count,
1506 				 unsigned long *ret_bytes,
1507 				 unsigned int *ret_bits)
1508 {
1509 	unsigned long bytes;
1510 	char *p = (char *)page;
1511 
1512 	bytes = simple_strtoul(p, &p, 0);
1513 	if (!p || (*p && (*p != '\n')))
1514 		return -EINVAL;
1515 
1516 	/* Heartbeat and fs min / max block sizes are the same. */
1517 	if (bytes > 4096 || bytes < 512)
1518 		return -ERANGE;
1519 	if (hweight16(bytes) != 1)
1520 		return -EINVAL;
1521 
1522 	if (ret_bytes)
1523 		*ret_bytes = bytes;
1524 	if (ret_bits)
1525 		*ret_bits = ffs(bytes) - 1;
1526 
1527 	return 0;
1528 }
1529 
1530 static ssize_t o2hb_region_block_bytes_read(struct o2hb_region *reg,
1531 					    char *page)
1532 {
1533 	return sprintf(page, "%u\n", reg->hr_block_bytes);
1534 }
1535 
1536 static ssize_t o2hb_region_block_bytes_write(struct o2hb_region *reg,
1537 					     const char *page,
1538 					     size_t count)
1539 {
1540 	int status;
1541 	unsigned long block_bytes;
1542 	unsigned int block_bits;
1543 
1544 	if (reg->hr_bdev)
1545 		return -EINVAL;
1546 
1547 	status = o2hb_read_block_input(reg, page, count,
1548 				       &block_bytes, &block_bits);
1549 	if (status)
1550 		return status;
1551 
1552 	reg->hr_block_bytes = (unsigned int)block_bytes;
1553 	reg->hr_block_bits = block_bits;
1554 
1555 	return count;
1556 }
1557 
1558 static ssize_t o2hb_region_start_block_read(struct o2hb_region *reg,
1559 					    char *page)
1560 {
1561 	return sprintf(page, "%llu\n", reg->hr_start_block);
1562 }
1563 
1564 static ssize_t o2hb_region_start_block_write(struct o2hb_region *reg,
1565 					     const char *page,
1566 					     size_t count)
1567 {
1568 	unsigned long long tmp;
1569 	char *p = (char *)page;
1570 
1571 	if (reg->hr_bdev)
1572 		return -EINVAL;
1573 
1574 	tmp = simple_strtoull(p, &p, 0);
1575 	if (!p || (*p && (*p != '\n')))
1576 		return -EINVAL;
1577 
1578 	reg->hr_start_block = tmp;
1579 
1580 	return count;
1581 }
1582 
1583 static ssize_t o2hb_region_blocks_read(struct o2hb_region *reg,
1584 				       char *page)
1585 {
1586 	return sprintf(page, "%d\n", reg->hr_blocks);
1587 }
1588 
1589 static ssize_t o2hb_region_blocks_write(struct o2hb_region *reg,
1590 					const char *page,
1591 					size_t count)
1592 {
1593 	unsigned long tmp;
1594 	char *p = (char *)page;
1595 
1596 	if (reg->hr_bdev)
1597 		return -EINVAL;
1598 
1599 	tmp = simple_strtoul(p, &p, 0);
1600 	if (!p || (*p && (*p != '\n')))
1601 		return -EINVAL;
1602 
1603 	if (tmp > O2NM_MAX_NODES || tmp == 0)
1604 		return -ERANGE;
1605 
1606 	reg->hr_blocks = (unsigned int)tmp;
1607 
1608 	return count;
1609 }
1610 
1611 static ssize_t o2hb_region_dev_read(struct o2hb_region *reg,
1612 				    char *page)
1613 {
1614 	unsigned int ret = 0;
1615 
1616 	if (reg->hr_bdev)
1617 		ret = sprintf(page, "%s\n", reg->hr_dev_name);
1618 
1619 	return ret;
1620 }
1621 
1622 static void o2hb_init_region_params(struct o2hb_region *reg)
1623 {
1624 	reg->hr_slots_per_page = PAGE_CACHE_SIZE >> reg->hr_block_bits;
1625 	reg->hr_timeout_ms = O2HB_REGION_TIMEOUT_MS;
1626 
1627 	mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n",
1628 	     reg->hr_start_block, reg->hr_blocks);
1629 	mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n",
1630 	     reg->hr_block_bytes, reg->hr_block_bits);
1631 	mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms);
1632 	mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold);
1633 }
1634 
1635 static int o2hb_map_slot_data(struct o2hb_region *reg)
1636 {
1637 	int i, j;
1638 	unsigned int last_slot;
1639 	unsigned int spp = reg->hr_slots_per_page;
1640 	struct page *page;
1641 	char *raw;
1642 	struct o2hb_disk_slot *slot;
1643 
1644 	reg->hr_tmp_block = kmalloc(reg->hr_block_bytes, GFP_KERNEL);
1645 	if (reg->hr_tmp_block == NULL) {
1646 		mlog_errno(-ENOMEM);
1647 		return -ENOMEM;
1648 	}
1649 
1650 	reg->hr_slots = kcalloc(reg->hr_blocks,
1651 				sizeof(struct o2hb_disk_slot), GFP_KERNEL);
1652 	if (reg->hr_slots == NULL) {
1653 		mlog_errno(-ENOMEM);
1654 		return -ENOMEM;
1655 	}
1656 
1657 	for(i = 0; i < reg->hr_blocks; i++) {
1658 		slot = &reg->hr_slots[i];
1659 		slot->ds_node_num = i;
1660 		INIT_LIST_HEAD(&slot->ds_live_item);
1661 		slot->ds_raw_block = NULL;
1662 	}
1663 
1664 	reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp;
1665 	mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks "
1666 			   "at %u blocks per page\n",
1667 	     reg->hr_num_pages, reg->hr_blocks, spp);
1668 
1669 	reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *),
1670 				    GFP_KERNEL);
1671 	if (!reg->hr_slot_data) {
1672 		mlog_errno(-ENOMEM);
1673 		return -ENOMEM;
1674 	}
1675 
1676 	for(i = 0; i < reg->hr_num_pages; i++) {
1677 		page = alloc_page(GFP_KERNEL);
1678 		if (!page) {
1679 			mlog_errno(-ENOMEM);
1680 			return -ENOMEM;
1681 		}
1682 
1683 		reg->hr_slot_data[i] = page;
1684 
1685 		last_slot = i * spp;
1686 		raw = page_address(page);
1687 		for (j = 0;
1688 		     (j < spp) && ((j + last_slot) < reg->hr_blocks);
1689 		     j++) {
1690 			BUG_ON((j + last_slot) >= reg->hr_blocks);
1691 
1692 			slot = &reg->hr_slots[j + last_slot];
1693 			slot->ds_raw_block =
1694 				(struct o2hb_disk_heartbeat_block *) raw;
1695 
1696 			raw += reg->hr_block_bytes;
1697 		}
1698 	}
1699 
1700 	return 0;
1701 }
1702 
1703 /* Read in all the slots available and populate the tracking
1704  * structures so that we can start with a baseline idea of what's
1705  * there. */
1706 static int o2hb_populate_slot_data(struct o2hb_region *reg)
1707 {
1708 	int ret, i;
1709 	struct o2hb_disk_slot *slot;
1710 	struct o2hb_disk_heartbeat_block *hb_block;
1711 
1712 	ret = o2hb_read_slots(reg, reg->hr_blocks);
1713 	if (ret) {
1714 		mlog_errno(ret);
1715 		goto out;
1716 	}
1717 
1718 	/* We only want to get an idea of the values initially in each
1719 	 * slot, so we do no verification - o2hb_check_slot will
1720 	 * actually determine if each configured slot is valid and
1721 	 * whether any values have changed. */
1722 	for(i = 0; i < reg->hr_blocks; i++) {
1723 		slot = &reg->hr_slots[i];
1724 		hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block;
1725 
1726 		/* Only fill the values that o2hb_check_slot uses to
1727 		 * determine changing slots */
1728 		slot->ds_last_time = le64_to_cpu(hb_block->hb_seq);
1729 		slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
1730 	}
1731 
1732 out:
1733 	return ret;
1734 }
1735 
1736 /* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */
1737 static ssize_t o2hb_region_dev_write(struct o2hb_region *reg,
1738 				     const char *page,
1739 				     size_t count)
1740 {
1741 	struct task_struct *hb_task;
1742 	long fd;
1743 	int sectsize;
1744 	char *p = (char *)page;
1745 	struct fd f;
1746 	struct inode *inode;
1747 	ssize_t ret = -EINVAL;
1748 	int live_threshold;
1749 
1750 	if (reg->hr_bdev)
1751 		goto out;
1752 
1753 	/* We can't heartbeat without having had our node number
1754 	 * configured yet. */
1755 	if (o2nm_this_node() == O2NM_MAX_NODES)
1756 		goto out;
1757 
1758 	fd = simple_strtol(p, &p, 0);
1759 	if (!p || (*p && (*p != '\n')))
1760 		goto out;
1761 
1762 	if (fd < 0 || fd >= INT_MAX)
1763 		goto out;
1764 
1765 	f = fdget(fd);
1766 	if (f.file == NULL)
1767 		goto out;
1768 
1769 	if (reg->hr_blocks == 0 || reg->hr_start_block == 0 ||
1770 	    reg->hr_block_bytes == 0)
1771 		goto out2;
1772 
1773 	inode = igrab(f.file->f_mapping->host);
1774 	if (inode == NULL)
1775 		goto out2;
1776 
1777 	if (!S_ISBLK(inode->i_mode))
1778 		goto out3;
1779 
1780 	reg->hr_bdev = I_BDEV(f.file->f_mapping->host);
1781 	ret = blkdev_get(reg->hr_bdev, FMODE_WRITE | FMODE_READ, NULL);
1782 	if (ret) {
1783 		reg->hr_bdev = NULL;
1784 		goto out3;
1785 	}
1786 	inode = NULL;
1787 
1788 	bdevname(reg->hr_bdev, reg->hr_dev_name);
1789 
1790 	sectsize = bdev_logical_block_size(reg->hr_bdev);
1791 	if (sectsize != reg->hr_block_bytes) {
1792 		mlog(ML_ERROR,
1793 		     "blocksize %u incorrect for device, expected %d",
1794 		     reg->hr_block_bytes, sectsize);
1795 		ret = -EINVAL;
1796 		goto out3;
1797 	}
1798 
1799 	o2hb_init_region_params(reg);
1800 
1801 	/* Generation of zero is invalid */
1802 	do {
1803 		get_random_bytes(&reg->hr_generation,
1804 				 sizeof(reg->hr_generation));
1805 	} while (reg->hr_generation == 0);
1806 
1807 	ret = o2hb_map_slot_data(reg);
1808 	if (ret) {
1809 		mlog_errno(ret);
1810 		goto out3;
1811 	}
1812 
1813 	ret = o2hb_populate_slot_data(reg);
1814 	if (ret) {
1815 		mlog_errno(ret);
1816 		goto out3;
1817 	}
1818 
1819 	INIT_DELAYED_WORK(&reg->hr_write_timeout_work, o2hb_write_timeout);
1820 
1821 	/*
1822 	 * A node is considered live after it has beat LIVE_THRESHOLD
1823 	 * times.  We're not steady until we've given them a chance
1824 	 * _after_ our first read.
1825 	 * The default threshold is bare minimum so as to limit the delay
1826 	 * during mounts. For global heartbeat, the threshold doubled for the
1827 	 * first region.
1828 	 */
1829 	live_threshold = O2HB_LIVE_THRESHOLD;
1830 	if (o2hb_global_heartbeat_active()) {
1831 		spin_lock(&o2hb_live_lock);
1832 		if (o2hb_pop_count(&o2hb_region_bitmap, O2NM_MAX_REGIONS) == 1)
1833 			live_threshold <<= 1;
1834 		spin_unlock(&o2hb_live_lock);
1835 	}
1836 	++live_threshold;
1837 	atomic_set(&reg->hr_steady_iterations, live_threshold);
1838 	/* unsteady_iterations is double the steady_iterations */
1839 	atomic_set(&reg->hr_unsteady_iterations, (live_threshold << 1));
1840 
1841 	hb_task = kthread_run(o2hb_thread, reg, "o2hb-%s",
1842 			      reg->hr_item.ci_name);
1843 	if (IS_ERR(hb_task)) {
1844 		ret = PTR_ERR(hb_task);
1845 		mlog_errno(ret);
1846 		goto out3;
1847 	}
1848 
1849 	spin_lock(&o2hb_live_lock);
1850 	reg->hr_task = hb_task;
1851 	spin_unlock(&o2hb_live_lock);
1852 
1853 	ret = wait_event_interruptible(o2hb_steady_queue,
1854 				atomic_read(&reg->hr_steady_iterations) == 0);
1855 	if (ret) {
1856 		atomic_set(&reg->hr_steady_iterations, 0);
1857 		reg->hr_aborted_start = 1;
1858 	}
1859 
1860 	if (reg->hr_aborted_start) {
1861 		ret = -EIO;
1862 		goto out3;
1863 	}
1864 
1865 	/* Ok, we were woken.  Make sure it wasn't by drop_item() */
1866 	spin_lock(&o2hb_live_lock);
1867 	hb_task = reg->hr_task;
1868 	if (o2hb_global_heartbeat_active())
1869 		set_bit(reg->hr_region_num, o2hb_live_region_bitmap);
1870 	spin_unlock(&o2hb_live_lock);
1871 
1872 	if (hb_task)
1873 		ret = count;
1874 	else
1875 		ret = -EIO;
1876 
1877 	if (hb_task && o2hb_global_heartbeat_active())
1878 		printk(KERN_NOTICE "o2hb: Heartbeat started on region %s (%s)\n",
1879 		       config_item_name(&reg->hr_item), reg->hr_dev_name);
1880 
1881 out3:
1882 	iput(inode);
1883 out2:
1884 	fdput(f);
1885 out:
1886 	if (ret < 0) {
1887 		if (reg->hr_bdev) {
1888 			blkdev_put(reg->hr_bdev, FMODE_READ|FMODE_WRITE);
1889 			reg->hr_bdev = NULL;
1890 		}
1891 	}
1892 	return ret;
1893 }
1894 
1895 static ssize_t o2hb_region_pid_read(struct o2hb_region *reg,
1896                                       char *page)
1897 {
1898 	pid_t pid = 0;
1899 
1900 	spin_lock(&o2hb_live_lock);
1901 	if (reg->hr_task)
1902 		pid = task_pid_nr(reg->hr_task);
1903 	spin_unlock(&o2hb_live_lock);
1904 
1905 	if (!pid)
1906 		return 0;
1907 
1908 	return sprintf(page, "%u\n", pid);
1909 }
1910 
1911 struct o2hb_region_attribute {
1912 	struct configfs_attribute attr;
1913 	ssize_t (*show)(struct o2hb_region *, char *);
1914 	ssize_t (*store)(struct o2hb_region *, const char *, size_t);
1915 };
1916 
1917 static struct o2hb_region_attribute o2hb_region_attr_block_bytes = {
1918 	.attr	= { .ca_owner = THIS_MODULE,
1919 		    .ca_name = "block_bytes",
1920 		    .ca_mode = S_IRUGO | S_IWUSR },
1921 	.show	= o2hb_region_block_bytes_read,
1922 	.store	= o2hb_region_block_bytes_write,
1923 };
1924 
1925 static struct o2hb_region_attribute o2hb_region_attr_start_block = {
1926 	.attr	= { .ca_owner = THIS_MODULE,
1927 		    .ca_name = "start_block",
1928 		    .ca_mode = S_IRUGO | S_IWUSR },
1929 	.show	= o2hb_region_start_block_read,
1930 	.store	= o2hb_region_start_block_write,
1931 };
1932 
1933 static struct o2hb_region_attribute o2hb_region_attr_blocks = {
1934 	.attr	= { .ca_owner = THIS_MODULE,
1935 		    .ca_name = "blocks",
1936 		    .ca_mode = S_IRUGO | S_IWUSR },
1937 	.show	= o2hb_region_blocks_read,
1938 	.store	= o2hb_region_blocks_write,
1939 };
1940 
1941 static struct o2hb_region_attribute o2hb_region_attr_dev = {
1942 	.attr	= { .ca_owner = THIS_MODULE,
1943 		    .ca_name = "dev",
1944 		    .ca_mode = S_IRUGO | S_IWUSR },
1945 	.show	= o2hb_region_dev_read,
1946 	.store	= o2hb_region_dev_write,
1947 };
1948 
1949 static struct o2hb_region_attribute o2hb_region_attr_pid = {
1950        .attr   = { .ca_owner = THIS_MODULE,
1951                    .ca_name = "pid",
1952                    .ca_mode = S_IRUGO | S_IRUSR },
1953        .show   = o2hb_region_pid_read,
1954 };
1955 
1956 static struct configfs_attribute *o2hb_region_attrs[] = {
1957 	&o2hb_region_attr_block_bytes.attr,
1958 	&o2hb_region_attr_start_block.attr,
1959 	&o2hb_region_attr_blocks.attr,
1960 	&o2hb_region_attr_dev.attr,
1961 	&o2hb_region_attr_pid.attr,
1962 	NULL,
1963 };
1964 
1965 static ssize_t o2hb_region_show(struct config_item *item,
1966 				struct configfs_attribute *attr,
1967 				char *page)
1968 {
1969 	struct o2hb_region *reg = to_o2hb_region(item);
1970 	struct o2hb_region_attribute *o2hb_region_attr =
1971 		container_of(attr, struct o2hb_region_attribute, attr);
1972 	ssize_t ret = 0;
1973 
1974 	if (o2hb_region_attr->show)
1975 		ret = o2hb_region_attr->show(reg, page);
1976 	return ret;
1977 }
1978 
1979 static ssize_t o2hb_region_store(struct config_item *item,
1980 				 struct configfs_attribute *attr,
1981 				 const char *page, size_t count)
1982 {
1983 	struct o2hb_region *reg = to_o2hb_region(item);
1984 	struct o2hb_region_attribute *o2hb_region_attr =
1985 		container_of(attr, struct o2hb_region_attribute, attr);
1986 	ssize_t ret = -EINVAL;
1987 
1988 	if (o2hb_region_attr->store)
1989 		ret = o2hb_region_attr->store(reg, page, count);
1990 	return ret;
1991 }
1992 
1993 static struct configfs_item_operations o2hb_region_item_ops = {
1994 	.release		= o2hb_region_release,
1995 	.show_attribute		= o2hb_region_show,
1996 	.store_attribute	= o2hb_region_store,
1997 };
1998 
1999 static struct config_item_type o2hb_region_type = {
2000 	.ct_item_ops	= &o2hb_region_item_ops,
2001 	.ct_attrs	= o2hb_region_attrs,
2002 	.ct_owner	= THIS_MODULE,
2003 };
2004 
2005 /* heartbeat set */
2006 
2007 struct o2hb_heartbeat_group {
2008 	struct config_group hs_group;
2009 	/* some stuff? */
2010 };
2011 
2012 static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group)
2013 {
2014 	return group ?
2015 		container_of(group, struct o2hb_heartbeat_group, hs_group)
2016 		: NULL;
2017 }
2018 
2019 static int o2hb_debug_region_init(struct o2hb_region *reg, struct dentry *dir)
2020 {
2021 	int ret = -ENOMEM;
2022 
2023 	reg->hr_debug_dir =
2024 		debugfs_create_dir(config_item_name(&reg->hr_item), dir);
2025 	if (!reg->hr_debug_dir) {
2026 		mlog_errno(ret);
2027 		goto bail;
2028 	}
2029 
2030 	reg->hr_debug_livenodes =
2031 			o2hb_debug_create(O2HB_DEBUG_LIVENODES,
2032 					  reg->hr_debug_dir,
2033 					  &(reg->hr_db_livenodes),
2034 					  sizeof(*(reg->hr_db_livenodes)),
2035 					  O2HB_DB_TYPE_REGION_LIVENODES,
2036 					  sizeof(reg->hr_live_node_bitmap),
2037 					  O2NM_MAX_NODES, reg);
2038 	if (!reg->hr_debug_livenodes) {
2039 		mlog_errno(ret);
2040 		goto bail;
2041 	}
2042 
2043 	reg->hr_debug_regnum =
2044 			o2hb_debug_create(O2HB_DEBUG_REGION_NUMBER,
2045 					  reg->hr_debug_dir,
2046 					  &(reg->hr_db_regnum),
2047 					  sizeof(*(reg->hr_db_regnum)),
2048 					  O2HB_DB_TYPE_REGION_NUMBER,
2049 					  0, O2NM_MAX_NODES, reg);
2050 	if (!reg->hr_debug_regnum) {
2051 		mlog_errno(ret);
2052 		goto bail;
2053 	}
2054 
2055 	reg->hr_debug_elapsed_time =
2056 			o2hb_debug_create(O2HB_DEBUG_REGION_ELAPSED_TIME,
2057 					  reg->hr_debug_dir,
2058 					  &(reg->hr_db_elapsed_time),
2059 					  sizeof(*(reg->hr_db_elapsed_time)),
2060 					  O2HB_DB_TYPE_REGION_ELAPSED_TIME,
2061 					  0, 0, reg);
2062 	if (!reg->hr_debug_elapsed_time) {
2063 		mlog_errno(ret);
2064 		goto bail;
2065 	}
2066 
2067 	reg->hr_debug_pinned =
2068 			o2hb_debug_create(O2HB_DEBUG_REGION_PINNED,
2069 					  reg->hr_debug_dir,
2070 					  &(reg->hr_db_pinned),
2071 					  sizeof(*(reg->hr_db_pinned)),
2072 					  O2HB_DB_TYPE_REGION_PINNED,
2073 					  0, 0, reg);
2074 	if (!reg->hr_debug_pinned) {
2075 		mlog_errno(ret);
2076 		goto bail;
2077 	}
2078 
2079 	ret = 0;
2080 bail:
2081 	return ret;
2082 }
2083 
2084 static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group,
2085 							  const char *name)
2086 {
2087 	struct o2hb_region *reg = NULL;
2088 	int ret;
2089 
2090 	reg = kzalloc(sizeof(struct o2hb_region), GFP_KERNEL);
2091 	if (reg == NULL)
2092 		return ERR_PTR(-ENOMEM);
2093 
2094 	if (strlen(name) > O2HB_MAX_REGION_NAME_LEN) {
2095 		ret = -ENAMETOOLONG;
2096 		goto free;
2097 	}
2098 
2099 	spin_lock(&o2hb_live_lock);
2100 	reg->hr_region_num = 0;
2101 	if (o2hb_global_heartbeat_active()) {
2102 		reg->hr_region_num = find_first_zero_bit(o2hb_region_bitmap,
2103 							 O2NM_MAX_REGIONS);
2104 		if (reg->hr_region_num >= O2NM_MAX_REGIONS) {
2105 			spin_unlock(&o2hb_live_lock);
2106 			ret = -EFBIG;
2107 			goto free;
2108 		}
2109 		set_bit(reg->hr_region_num, o2hb_region_bitmap);
2110 	}
2111 	list_add_tail(&reg->hr_all_item, &o2hb_all_regions);
2112 	spin_unlock(&o2hb_live_lock);
2113 
2114 	config_item_init_type_name(&reg->hr_item, name, &o2hb_region_type);
2115 
2116 	ret = o2hb_debug_region_init(reg, o2hb_debug_dir);
2117 	if (ret) {
2118 		config_item_put(&reg->hr_item);
2119 		goto free;
2120 	}
2121 
2122 	return &reg->hr_item;
2123 free:
2124 	kfree(reg);
2125 	return ERR_PTR(ret);
2126 }
2127 
2128 static void o2hb_heartbeat_group_drop_item(struct config_group *group,
2129 					   struct config_item *item)
2130 {
2131 	struct task_struct *hb_task;
2132 	struct o2hb_region *reg = to_o2hb_region(item);
2133 	int quorum_region = 0;
2134 
2135 	/* stop the thread when the user removes the region dir */
2136 	spin_lock(&o2hb_live_lock);
2137 	hb_task = reg->hr_task;
2138 	reg->hr_task = NULL;
2139 	reg->hr_item_dropped = 1;
2140 	spin_unlock(&o2hb_live_lock);
2141 
2142 	if (hb_task)
2143 		kthread_stop(hb_task);
2144 
2145 	if (o2hb_global_heartbeat_active()) {
2146 		spin_lock(&o2hb_live_lock);
2147 		clear_bit(reg->hr_region_num, o2hb_region_bitmap);
2148 		clear_bit(reg->hr_region_num, o2hb_live_region_bitmap);
2149 		if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap))
2150 			quorum_region = 1;
2151 		clear_bit(reg->hr_region_num, o2hb_quorum_region_bitmap);
2152 		spin_unlock(&o2hb_live_lock);
2153 		printk(KERN_NOTICE "o2hb: Heartbeat %s on region %s (%s)\n",
2154 		       ((atomic_read(&reg->hr_steady_iterations) == 0) ?
2155 			"stopped" : "start aborted"), config_item_name(item),
2156 		       reg->hr_dev_name);
2157 	}
2158 
2159 	/*
2160 	 * If we're racing a dev_write(), we need to wake them.  They will
2161 	 * check reg->hr_task
2162 	 */
2163 	if (atomic_read(&reg->hr_steady_iterations) != 0) {
2164 		reg->hr_aborted_start = 1;
2165 		atomic_set(&reg->hr_steady_iterations, 0);
2166 		wake_up(&o2hb_steady_queue);
2167 	}
2168 
2169 	config_item_put(item);
2170 
2171 	if (!o2hb_global_heartbeat_active() || !quorum_region)
2172 		return;
2173 
2174 	/*
2175 	 * If global heartbeat active and there are dependent users,
2176 	 * pin all regions if quorum region count <= CUT_OFF
2177 	 */
2178 	spin_lock(&o2hb_live_lock);
2179 
2180 	if (!o2hb_dependent_users)
2181 		goto unlock;
2182 
2183 	if (o2hb_pop_count(&o2hb_quorum_region_bitmap,
2184 			   O2NM_MAX_REGIONS) <= O2HB_PIN_CUT_OFF)
2185 		o2hb_region_pin(NULL);
2186 
2187 unlock:
2188 	spin_unlock(&o2hb_live_lock);
2189 }
2190 
2191 struct o2hb_heartbeat_group_attribute {
2192 	struct configfs_attribute attr;
2193 	ssize_t (*show)(struct o2hb_heartbeat_group *, char *);
2194 	ssize_t (*store)(struct o2hb_heartbeat_group *, const char *, size_t);
2195 };
2196 
2197 static ssize_t o2hb_heartbeat_group_show(struct config_item *item,
2198 					 struct configfs_attribute *attr,
2199 					 char *page)
2200 {
2201 	struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
2202 	struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
2203 		container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
2204 	ssize_t ret = 0;
2205 
2206 	if (o2hb_heartbeat_group_attr->show)
2207 		ret = o2hb_heartbeat_group_attr->show(reg, page);
2208 	return ret;
2209 }
2210 
2211 static ssize_t o2hb_heartbeat_group_store(struct config_item *item,
2212 					  struct configfs_attribute *attr,
2213 					  const char *page, size_t count)
2214 {
2215 	struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
2216 	struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
2217 		container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
2218 	ssize_t ret = -EINVAL;
2219 
2220 	if (o2hb_heartbeat_group_attr->store)
2221 		ret = o2hb_heartbeat_group_attr->store(reg, page, count);
2222 	return ret;
2223 }
2224 
2225 static ssize_t o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group *group,
2226 						     char *page)
2227 {
2228 	return sprintf(page, "%u\n", o2hb_dead_threshold);
2229 }
2230 
2231 static ssize_t o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group *group,
2232 						    const char *page,
2233 						    size_t count)
2234 {
2235 	unsigned long tmp;
2236 	char *p = (char *)page;
2237 
2238 	tmp = simple_strtoul(p, &p, 10);
2239 	if (!p || (*p && (*p != '\n')))
2240                 return -EINVAL;
2241 
2242 	/* this will validate ranges for us. */
2243 	o2hb_dead_threshold_set((unsigned int) tmp);
2244 
2245 	return count;
2246 }
2247 
2248 static
2249 ssize_t o2hb_heartbeat_group_mode_show(struct o2hb_heartbeat_group *group,
2250 				       char *page)
2251 {
2252 	return sprintf(page, "%s\n",
2253 		       o2hb_heartbeat_mode_desc[o2hb_heartbeat_mode]);
2254 }
2255 
2256 static
2257 ssize_t o2hb_heartbeat_group_mode_store(struct o2hb_heartbeat_group *group,
2258 					const char *page, size_t count)
2259 {
2260 	unsigned int i;
2261 	int ret;
2262 	size_t len;
2263 
2264 	len = (page[count - 1] == '\n') ? count - 1 : count;
2265 	if (!len)
2266 		return -EINVAL;
2267 
2268 	for (i = 0; i < O2HB_HEARTBEAT_NUM_MODES; ++i) {
2269 		if (strnicmp(page, o2hb_heartbeat_mode_desc[i], len))
2270 			continue;
2271 
2272 		ret = o2hb_global_heartbeat_mode_set(i);
2273 		if (!ret)
2274 			printk(KERN_NOTICE "o2hb: Heartbeat mode set to %s\n",
2275 			       o2hb_heartbeat_mode_desc[i]);
2276 		return count;
2277 	}
2278 
2279 	return -EINVAL;
2280 
2281 }
2282 
2283 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold = {
2284 	.attr	= { .ca_owner = THIS_MODULE,
2285 		    .ca_name = "dead_threshold",
2286 		    .ca_mode = S_IRUGO | S_IWUSR },
2287 	.show	= o2hb_heartbeat_group_threshold_show,
2288 	.store	= o2hb_heartbeat_group_threshold_store,
2289 };
2290 
2291 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_mode = {
2292 	.attr   = { .ca_owner = THIS_MODULE,
2293 		.ca_name = "mode",
2294 		.ca_mode = S_IRUGO | S_IWUSR },
2295 	.show   = o2hb_heartbeat_group_mode_show,
2296 	.store  = o2hb_heartbeat_group_mode_store,
2297 };
2298 
2299 static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = {
2300 	&o2hb_heartbeat_group_attr_threshold.attr,
2301 	&o2hb_heartbeat_group_attr_mode.attr,
2302 	NULL,
2303 };
2304 
2305 static struct configfs_item_operations o2hb_heartbeat_group_item_ops = {
2306 	.show_attribute		= o2hb_heartbeat_group_show,
2307 	.store_attribute	= o2hb_heartbeat_group_store,
2308 };
2309 
2310 static struct configfs_group_operations o2hb_heartbeat_group_group_ops = {
2311 	.make_item	= o2hb_heartbeat_group_make_item,
2312 	.drop_item	= o2hb_heartbeat_group_drop_item,
2313 };
2314 
2315 static struct config_item_type o2hb_heartbeat_group_type = {
2316 	.ct_group_ops	= &o2hb_heartbeat_group_group_ops,
2317 	.ct_item_ops	= &o2hb_heartbeat_group_item_ops,
2318 	.ct_attrs	= o2hb_heartbeat_group_attrs,
2319 	.ct_owner	= THIS_MODULE,
2320 };
2321 
2322 /* this is just here to avoid touching group in heartbeat.h which the
2323  * entire damn world #includes */
2324 struct config_group *o2hb_alloc_hb_set(void)
2325 {
2326 	struct o2hb_heartbeat_group *hs = NULL;
2327 	struct config_group *ret = NULL;
2328 
2329 	hs = kzalloc(sizeof(struct o2hb_heartbeat_group), GFP_KERNEL);
2330 	if (hs == NULL)
2331 		goto out;
2332 
2333 	config_group_init_type_name(&hs->hs_group, "heartbeat",
2334 				    &o2hb_heartbeat_group_type);
2335 
2336 	ret = &hs->hs_group;
2337 out:
2338 	if (ret == NULL)
2339 		kfree(hs);
2340 	return ret;
2341 }
2342 
2343 void o2hb_free_hb_set(struct config_group *group)
2344 {
2345 	struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group);
2346 	kfree(hs);
2347 }
2348 
2349 /* hb callback registration and issuing */
2350 
2351 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type)
2352 {
2353 	if (type == O2HB_NUM_CB)
2354 		return ERR_PTR(-EINVAL);
2355 
2356 	return &o2hb_callbacks[type];
2357 }
2358 
2359 void o2hb_setup_callback(struct o2hb_callback_func *hc,
2360 			 enum o2hb_callback_type type,
2361 			 o2hb_cb_func *func,
2362 			 void *data,
2363 			 int priority)
2364 {
2365 	INIT_LIST_HEAD(&hc->hc_item);
2366 	hc->hc_func = func;
2367 	hc->hc_data = data;
2368 	hc->hc_priority = priority;
2369 	hc->hc_type = type;
2370 	hc->hc_magic = O2HB_CB_MAGIC;
2371 }
2372 EXPORT_SYMBOL_GPL(o2hb_setup_callback);
2373 
2374 /*
2375  * In local heartbeat mode, region_uuid passed matches the dlm domain name.
2376  * In global heartbeat mode, region_uuid passed is NULL.
2377  *
2378  * In local, we only pin the matching region. In global we pin all the active
2379  * regions.
2380  */
2381 static int o2hb_region_pin(const char *region_uuid)
2382 {
2383 	int ret = 0, found = 0;
2384 	struct o2hb_region *reg;
2385 	char *uuid;
2386 
2387 	assert_spin_locked(&o2hb_live_lock);
2388 
2389 	list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) {
2390 		if (reg->hr_item_dropped)
2391 			continue;
2392 
2393 		uuid = config_item_name(&reg->hr_item);
2394 
2395 		/* local heartbeat */
2396 		if (region_uuid) {
2397 			if (strcmp(region_uuid, uuid))
2398 				continue;
2399 			found = 1;
2400 		}
2401 
2402 		if (reg->hr_item_pinned || reg->hr_item_dropped)
2403 			goto skip_pin;
2404 
2405 		/* Ignore ENOENT only for local hb (userdlm domain) */
2406 		ret = o2nm_depend_item(&reg->hr_item);
2407 		if (!ret) {
2408 			mlog(ML_CLUSTER, "Pin region %s\n", uuid);
2409 			reg->hr_item_pinned = 1;
2410 		} else {
2411 			if (ret == -ENOENT && found)
2412 				ret = 0;
2413 			else {
2414 				mlog(ML_ERROR, "Pin region %s fails with %d\n",
2415 				     uuid, ret);
2416 				break;
2417 			}
2418 		}
2419 skip_pin:
2420 		if (found)
2421 			break;
2422 	}
2423 
2424 	return ret;
2425 }
2426 
2427 /*
2428  * In local heartbeat mode, region_uuid passed matches the dlm domain name.
2429  * In global heartbeat mode, region_uuid passed is NULL.
2430  *
2431  * In local, we only unpin the matching region. In global we unpin all the
2432  * active regions.
2433  */
2434 static void o2hb_region_unpin(const char *region_uuid)
2435 {
2436 	struct o2hb_region *reg;
2437 	char *uuid;
2438 	int found = 0;
2439 
2440 	assert_spin_locked(&o2hb_live_lock);
2441 
2442 	list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) {
2443 		if (reg->hr_item_dropped)
2444 			continue;
2445 
2446 		uuid = config_item_name(&reg->hr_item);
2447 		if (region_uuid) {
2448 			if (strcmp(region_uuid, uuid))
2449 				continue;
2450 			found = 1;
2451 		}
2452 
2453 		if (reg->hr_item_pinned) {
2454 			mlog(ML_CLUSTER, "Unpin region %s\n", uuid);
2455 			o2nm_undepend_item(&reg->hr_item);
2456 			reg->hr_item_pinned = 0;
2457 		}
2458 		if (found)
2459 			break;
2460 	}
2461 }
2462 
2463 static int o2hb_region_inc_user(const char *region_uuid)
2464 {
2465 	int ret = 0;
2466 
2467 	spin_lock(&o2hb_live_lock);
2468 
2469 	/* local heartbeat */
2470 	if (!o2hb_global_heartbeat_active()) {
2471 	    ret = o2hb_region_pin(region_uuid);
2472 	    goto unlock;
2473 	}
2474 
2475 	/*
2476 	 * if global heartbeat active and this is the first dependent user,
2477 	 * pin all regions if quorum region count <= CUT_OFF
2478 	 */
2479 	o2hb_dependent_users++;
2480 	if (o2hb_dependent_users > 1)
2481 		goto unlock;
2482 
2483 	if (o2hb_pop_count(&o2hb_quorum_region_bitmap,
2484 			   O2NM_MAX_REGIONS) <= O2HB_PIN_CUT_OFF)
2485 		ret = o2hb_region_pin(NULL);
2486 
2487 unlock:
2488 	spin_unlock(&o2hb_live_lock);
2489 	return ret;
2490 }
2491 
2492 void o2hb_region_dec_user(const char *region_uuid)
2493 {
2494 	spin_lock(&o2hb_live_lock);
2495 
2496 	/* local heartbeat */
2497 	if (!o2hb_global_heartbeat_active()) {
2498 	    o2hb_region_unpin(region_uuid);
2499 	    goto unlock;
2500 	}
2501 
2502 	/*
2503 	 * if global heartbeat active and there are no dependent users,
2504 	 * unpin all quorum regions
2505 	 */
2506 	o2hb_dependent_users--;
2507 	if (!o2hb_dependent_users)
2508 		o2hb_region_unpin(NULL);
2509 
2510 unlock:
2511 	spin_unlock(&o2hb_live_lock);
2512 }
2513 
2514 int o2hb_register_callback(const char *region_uuid,
2515 			   struct o2hb_callback_func *hc)
2516 {
2517 	struct o2hb_callback_func *f;
2518 	struct o2hb_callback *hbcall;
2519 	int ret;
2520 
2521 	BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
2522 	BUG_ON(!list_empty(&hc->hc_item));
2523 
2524 	hbcall = hbcall_from_type(hc->hc_type);
2525 	if (IS_ERR(hbcall)) {
2526 		ret = PTR_ERR(hbcall);
2527 		goto out;
2528 	}
2529 
2530 	if (region_uuid) {
2531 		ret = o2hb_region_inc_user(region_uuid);
2532 		if (ret) {
2533 			mlog_errno(ret);
2534 			goto out;
2535 		}
2536 	}
2537 
2538 	down_write(&o2hb_callback_sem);
2539 
2540 	list_for_each_entry(f, &hbcall->list, hc_item) {
2541 		if (hc->hc_priority < f->hc_priority) {
2542 			list_add_tail(&hc->hc_item, &f->hc_item);
2543 			break;
2544 		}
2545 	}
2546 	if (list_empty(&hc->hc_item))
2547 		list_add_tail(&hc->hc_item, &hbcall->list);
2548 
2549 	up_write(&o2hb_callback_sem);
2550 	ret = 0;
2551 out:
2552 	mlog(ML_CLUSTER, "returning %d on behalf of %p for funcs %p\n",
2553 	     ret, __builtin_return_address(0), hc);
2554 	return ret;
2555 }
2556 EXPORT_SYMBOL_GPL(o2hb_register_callback);
2557 
2558 void o2hb_unregister_callback(const char *region_uuid,
2559 			      struct o2hb_callback_func *hc)
2560 {
2561 	BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
2562 
2563 	mlog(ML_CLUSTER, "on behalf of %p for funcs %p\n",
2564 	     __builtin_return_address(0), hc);
2565 
2566 	/* XXX Can this happen _with_ a region reference? */
2567 	if (list_empty(&hc->hc_item))
2568 		return;
2569 
2570 	if (region_uuid)
2571 		o2hb_region_dec_user(region_uuid);
2572 
2573 	down_write(&o2hb_callback_sem);
2574 
2575 	list_del_init(&hc->hc_item);
2576 
2577 	up_write(&o2hb_callback_sem);
2578 }
2579 EXPORT_SYMBOL_GPL(o2hb_unregister_callback);
2580 
2581 int o2hb_check_node_heartbeating(u8 node_num)
2582 {
2583 	unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
2584 
2585 	o2hb_fill_node_map(testing_map, sizeof(testing_map));
2586 	if (!test_bit(node_num, testing_map)) {
2587 		mlog(ML_HEARTBEAT,
2588 		     "node (%u) does not have heartbeating enabled.\n",
2589 		     node_num);
2590 		return 0;
2591 	}
2592 
2593 	return 1;
2594 }
2595 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating);
2596 
2597 int o2hb_check_node_heartbeating_from_callback(u8 node_num)
2598 {
2599 	unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
2600 
2601 	o2hb_fill_node_map_from_callback(testing_map, sizeof(testing_map));
2602 	if (!test_bit(node_num, testing_map)) {
2603 		mlog(ML_HEARTBEAT,
2604 		     "node (%u) does not have heartbeating enabled.\n",
2605 		     node_num);
2606 		return 0;
2607 	}
2608 
2609 	return 1;
2610 }
2611 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback);
2612 
2613 /* Makes sure our local node is configured with a node number, and is
2614  * heartbeating. */
2615 int o2hb_check_local_node_heartbeating(void)
2616 {
2617 	u8 node_num;
2618 
2619 	/* if this node was set then we have networking */
2620 	node_num = o2nm_this_node();
2621 	if (node_num == O2NM_MAX_NODES) {
2622 		mlog(ML_HEARTBEAT, "this node has not been configured.\n");
2623 		return 0;
2624 	}
2625 
2626 	return o2hb_check_node_heartbeating(node_num);
2627 }
2628 EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating);
2629 
2630 /*
2631  * this is just a hack until we get the plumbing which flips file systems
2632  * read only and drops the hb ref instead of killing the node dead.
2633  */
2634 void o2hb_stop_all_regions(void)
2635 {
2636 	struct o2hb_region *reg;
2637 
2638 	mlog(ML_ERROR, "stopping heartbeat on all active regions.\n");
2639 
2640 	spin_lock(&o2hb_live_lock);
2641 
2642 	list_for_each_entry(reg, &o2hb_all_regions, hr_all_item)
2643 		reg->hr_unclean_stop = 1;
2644 
2645 	spin_unlock(&o2hb_live_lock);
2646 }
2647 EXPORT_SYMBOL_GPL(o2hb_stop_all_regions);
2648 
2649 int o2hb_get_all_regions(char *region_uuids, u8 max_regions)
2650 {
2651 	struct o2hb_region *reg;
2652 	int numregs = 0;
2653 	char *p;
2654 
2655 	spin_lock(&o2hb_live_lock);
2656 
2657 	p = region_uuids;
2658 	list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) {
2659 		if (reg->hr_item_dropped)
2660 			continue;
2661 
2662 		mlog(0, "Region: %s\n", config_item_name(&reg->hr_item));
2663 		if (numregs < max_regions) {
2664 			memcpy(p, config_item_name(&reg->hr_item),
2665 			       O2HB_MAX_REGION_NAME_LEN);
2666 			p += O2HB_MAX_REGION_NAME_LEN;
2667 		}
2668 		numregs++;
2669 	}
2670 
2671 	spin_unlock(&o2hb_live_lock);
2672 
2673 	return numregs;
2674 }
2675 EXPORT_SYMBOL_GPL(o2hb_get_all_regions);
2676 
2677 int o2hb_global_heartbeat_active(void)
2678 {
2679 	return (o2hb_heartbeat_mode == O2HB_HEARTBEAT_GLOBAL);
2680 }
2681 EXPORT_SYMBOL(o2hb_global_heartbeat_active);
2682