1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2004, 2005 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched.h> 24 #include <linux/jiffies.h> 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/bio.h> 28 #include <linux/blkdev.h> 29 #include <linux/delay.h> 30 #include <linux/file.h> 31 #include <linux/kthread.h> 32 #include <linux/configfs.h> 33 #include <linux/random.h> 34 #include <linux/crc32.h> 35 #include <linux/time.h> 36 #include <linux/debugfs.h> 37 #include <linux/slab.h> 38 39 #include "heartbeat.h" 40 #include "tcp.h" 41 #include "nodemanager.h" 42 #include "quorum.h" 43 44 #include "masklog.h" 45 46 47 /* 48 * The first heartbeat pass had one global thread that would serialize all hb 49 * callback calls. This global serializing sem should only be removed once 50 * we've made sure that all callees can deal with being called concurrently 51 * from multiple hb region threads. 52 */ 53 static DECLARE_RWSEM(o2hb_callback_sem); 54 55 /* 56 * multiple hb threads are watching multiple regions. A node is live 57 * whenever any of the threads sees activity from the node in its region. 58 */ 59 static DEFINE_SPINLOCK(o2hb_live_lock); 60 static struct list_head o2hb_live_slots[O2NM_MAX_NODES]; 61 static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)]; 62 static LIST_HEAD(o2hb_node_events); 63 static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue); 64 65 /* 66 * In global heartbeat, we maintain a series of region bitmaps. 67 * - o2hb_region_bitmap allows us to limit the region number to max region. 68 * - o2hb_live_region_bitmap tracks live regions (seen steady iterations). 69 * - o2hb_quorum_region_bitmap tracks live regions that have seen all nodes 70 * heartbeat on it. 71 * - o2hb_failed_region_bitmap tracks the regions that have seen io timeouts. 72 */ 73 static unsigned long o2hb_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)]; 74 static unsigned long o2hb_live_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)]; 75 static unsigned long o2hb_quorum_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)]; 76 static unsigned long o2hb_failed_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)]; 77 78 #define O2HB_DB_TYPE_LIVENODES 0 79 #define O2HB_DB_TYPE_LIVEREGIONS 1 80 #define O2HB_DB_TYPE_QUORUMREGIONS 2 81 #define O2HB_DB_TYPE_FAILEDREGIONS 3 82 #define O2HB_DB_TYPE_REGION_LIVENODES 4 83 #define O2HB_DB_TYPE_REGION_NUMBER 5 84 #define O2HB_DB_TYPE_REGION_ELAPSED_TIME 6 85 #define O2HB_DB_TYPE_REGION_PINNED 7 86 struct o2hb_debug_buf { 87 int db_type; 88 int db_size; 89 int db_len; 90 void *db_data; 91 }; 92 93 static struct o2hb_debug_buf *o2hb_db_livenodes; 94 static struct o2hb_debug_buf *o2hb_db_liveregions; 95 static struct o2hb_debug_buf *o2hb_db_quorumregions; 96 static struct o2hb_debug_buf *o2hb_db_failedregions; 97 98 #define O2HB_DEBUG_DIR "o2hb" 99 #define O2HB_DEBUG_LIVENODES "livenodes" 100 #define O2HB_DEBUG_LIVEREGIONS "live_regions" 101 #define O2HB_DEBUG_QUORUMREGIONS "quorum_regions" 102 #define O2HB_DEBUG_FAILEDREGIONS "failed_regions" 103 #define O2HB_DEBUG_REGION_NUMBER "num" 104 #define O2HB_DEBUG_REGION_ELAPSED_TIME "elapsed_time_in_ms" 105 #define O2HB_DEBUG_REGION_PINNED "pinned" 106 107 static struct dentry *o2hb_debug_dir; 108 static struct dentry *o2hb_debug_livenodes; 109 static struct dentry *o2hb_debug_liveregions; 110 static struct dentry *o2hb_debug_quorumregions; 111 static struct dentry *o2hb_debug_failedregions; 112 113 static LIST_HEAD(o2hb_all_regions); 114 115 static struct o2hb_callback { 116 struct list_head list; 117 } o2hb_callbacks[O2HB_NUM_CB]; 118 119 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type); 120 121 #define O2HB_DEFAULT_BLOCK_BITS 9 122 123 enum o2hb_heartbeat_modes { 124 O2HB_HEARTBEAT_LOCAL = 0, 125 O2HB_HEARTBEAT_GLOBAL, 126 O2HB_HEARTBEAT_NUM_MODES, 127 }; 128 129 char *o2hb_heartbeat_mode_desc[O2HB_HEARTBEAT_NUM_MODES] = { 130 "local", /* O2HB_HEARTBEAT_LOCAL */ 131 "global", /* O2HB_HEARTBEAT_GLOBAL */ 132 }; 133 134 unsigned int o2hb_dead_threshold = O2HB_DEFAULT_DEAD_THRESHOLD; 135 unsigned int o2hb_heartbeat_mode = O2HB_HEARTBEAT_LOCAL; 136 137 /* 138 * o2hb_dependent_users tracks the number of registered callbacks that depend 139 * on heartbeat. o2net and o2dlm are two entities that register this callback. 140 * However only o2dlm depends on the heartbeat. It does not want the heartbeat 141 * to stop while a dlm domain is still active. 142 */ 143 unsigned int o2hb_dependent_users; 144 145 /* 146 * In global heartbeat mode, all regions are pinned if there are one or more 147 * dependent users and the quorum region count is <= O2HB_PIN_CUT_OFF. All 148 * regions are unpinned if the region count exceeds the cut off or the number 149 * of dependent users falls to zero. 150 */ 151 #define O2HB_PIN_CUT_OFF 3 152 153 /* 154 * In local heartbeat mode, we assume the dlm domain name to be the same as 155 * region uuid. This is true for domains created for the file system but not 156 * necessarily true for userdlm domains. This is a known limitation. 157 * 158 * In global heartbeat mode, we pin/unpin all o2hb regions. This solution 159 * works for both file system and userdlm domains. 160 */ 161 static int o2hb_region_pin(const char *region_uuid); 162 static void o2hb_region_unpin(const char *region_uuid); 163 164 /* Only sets a new threshold if there are no active regions. 165 * 166 * No locking or otherwise interesting code is required for reading 167 * o2hb_dead_threshold as it can't change once regions are active and 168 * it's not interesting to anyone until then anyway. */ 169 static void o2hb_dead_threshold_set(unsigned int threshold) 170 { 171 if (threshold > O2HB_MIN_DEAD_THRESHOLD) { 172 spin_lock(&o2hb_live_lock); 173 if (list_empty(&o2hb_all_regions)) 174 o2hb_dead_threshold = threshold; 175 spin_unlock(&o2hb_live_lock); 176 } 177 } 178 179 static int o2hb_global_hearbeat_mode_set(unsigned int hb_mode) 180 { 181 int ret = -1; 182 183 if (hb_mode < O2HB_HEARTBEAT_NUM_MODES) { 184 spin_lock(&o2hb_live_lock); 185 if (list_empty(&o2hb_all_regions)) { 186 o2hb_heartbeat_mode = hb_mode; 187 ret = 0; 188 } 189 spin_unlock(&o2hb_live_lock); 190 } 191 192 return ret; 193 } 194 195 struct o2hb_node_event { 196 struct list_head hn_item; 197 enum o2hb_callback_type hn_event_type; 198 struct o2nm_node *hn_node; 199 int hn_node_num; 200 }; 201 202 struct o2hb_disk_slot { 203 struct o2hb_disk_heartbeat_block *ds_raw_block; 204 u8 ds_node_num; 205 u64 ds_last_time; 206 u64 ds_last_generation; 207 u16 ds_equal_samples; 208 u16 ds_changed_samples; 209 struct list_head ds_live_item; 210 }; 211 212 /* each thread owns a region.. when we're asked to tear down the region 213 * we ask the thread to stop, who cleans up the region */ 214 struct o2hb_region { 215 struct config_item hr_item; 216 217 struct list_head hr_all_item; 218 unsigned hr_unclean_stop:1, 219 hr_item_pinned:1, 220 hr_item_dropped:1; 221 222 /* protected by the hr_callback_sem */ 223 struct task_struct *hr_task; 224 225 unsigned int hr_blocks; 226 unsigned long long hr_start_block; 227 228 unsigned int hr_block_bits; 229 unsigned int hr_block_bytes; 230 231 unsigned int hr_slots_per_page; 232 unsigned int hr_num_pages; 233 234 struct page **hr_slot_data; 235 struct block_device *hr_bdev; 236 struct o2hb_disk_slot *hr_slots; 237 238 /* live node map of this region */ 239 unsigned long hr_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)]; 240 unsigned int hr_region_num; 241 242 struct dentry *hr_debug_dir; 243 struct dentry *hr_debug_livenodes; 244 struct dentry *hr_debug_regnum; 245 struct dentry *hr_debug_elapsed_time; 246 struct dentry *hr_debug_pinned; 247 struct o2hb_debug_buf *hr_db_livenodes; 248 struct o2hb_debug_buf *hr_db_regnum; 249 struct o2hb_debug_buf *hr_db_elapsed_time; 250 struct o2hb_debug_buf *hr_db_pinned; 251 252 /* let the person setting up hb wait for it to return until it 253 * has reached a 'steady' state. This will be fixed when we have 254 * a more complete api that doesn't lead to this sort of fragility. */ 255 atomic_t hr_steady_iterations; 256 257 char hr_dev_name[BDEVNAME_SIZE]; 258 259 unsigned int hr_timeout_ms; 260 261 /* randomized as the region goes up and down so that a node 262 * recognizes a node going up and down in one iteration */ 263 u64 hr_generation; 264 265 struct delayed_work hr_write_timeout_work; 266 unsigned long hr_last_timeout_start; 267 268 /* Used during o2hb_check_slot to hold a copy of the block 269 * being checked because we temporarily have to zero out the 270 * crc field. */ 271 struct o2hb_disk_heartbeat_block *hr_tmp_block; 272 }; 273 274 struct o2hb_bio_wait_ctxt { 275 atomic_t wc_num_reqs; 276 struct completion wc_io_complete; 277 int wc_error; 278 }; 279 280 static int o2hb_pop_count(void *map, int count) 281 { 282 int i = -1, pop = 0; 283 284 while ((i = find_next_bit(map, count, i + 1)) < count) 285 pop++; 286 return pop; 287 } 288 289 static void o2hb_write_timeout(struct work_struct *work) 290 { 291 int failed, quorum; 292 unsigned long flags; 293 struct o2hb_region *reg = 294 container_of(work, struct o2hb_region, 295 hr_write_timeout_work.work); 296 297 mlog(ML_ERROR, "Heartbeat write timeout to device %s after %u " 298 "milliseconds\n", reg->hr_dev_name, 299 jiffies_to_msecs(jiffies - reg->hr_last_timeout_start)); 300 301 if (o2hb_global_heartbeat_active()) { 302 spin_lock_irqsave(&o2hb_live_lock, flags); 303 if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap)) 304 set_bit(reg->hr_region_num, o2hb_failed_region_bitmap); 305 failed = o2hb_pop_count(&o2hb_failed_region_bitmap, 306 O2NM_MAX_REGIONS); 307 quorum = o2hb_pop_count(&o2hb_quorum_region_bitmap, 308 O2NM_MAX_REGIONS); 309 spin_unlock_irqrestore(&o2hb_live_lock, flags); 310 311 mlog(ML_HEARTBEAT, "Number of regions %d, failed regions %d\n", 312 quorum, failed); 313 314 /* 315 * Fence if the number of failed regions >= half the number 316 * of quorum regions 317 */ 318 if ((failed << 1) < quorum) 319 return; 320 } 321 322 o2quo_disk_timeout(); 323 } 324 325 static void o2hb_arm_write_timeout(struct o2hb_region *reg) 326 { 327 mlog(ML_HEARTBEAT, "Queue write timeout for %u ms\n", 328 O2HB_MAX_WRITE_TIMEOUT_MS); 329 330 if (o2hb_global_heartbeat_active()) { 331 spin_lock(&o2hb_live_lock); 332 clear_bit(reg->hr_region_num, o2hb_failed_region_bitmap); 333 spin_unlock(&o2hb_live_lock); 334 } 335 cancel_delayed_work(®->hr_write_timeout_work); 336 reg->hr_last_timeout_start = jiffies; 337 schedule_delayed_work(®->hr_write_timeout_work, 338 msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS)); 339 } 340 341 static void o2hb_disarm_write_timeout(struct o2hb_region *reg) 342 { 343 cancel_delayed_work_sync(®->hr_write_timeout_work); 344 } 345 346 static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc) 347 { 348 atomic_set(&wc->wc_num_reqs, 1); 349 init_completion(&wc->wc_io_complete); 350 wc->wc_error = 0; 351 } 352 353 /* Used in error paths too */ 354 static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc, 355 unsigned int num) 356 { 357 /* sadly atomic_sub_and_test() isn't available on all platforms. The 358 * good news is that the fast path only completes one at a time */ 359 while(num--) { 360 if (atomic_dec_and_test(&wc->wc_num_reqs)) { 361 BUG_ON(num > 0); 362 complete(&wc->wc_io_complete); 363 } 364 } 365 } 366 367 static void o2hb_wait_on_io(struct o2hb_region *reg, 368 struct o2hb_bio_wait_ctxt *wc) 369 { 370 struct address_space *mapping = reg->hr_bdev->bd_inode->i_mapping; 371 372 blk_run_address_space(mapping); 373 o2hb_bio_wait_dec(wc, 1); 374 375 wait_for_completion(&wc->wc_io_complete); 376 } 377 378 static void o2hb_bio_end_io(struct bio *bio, 379 int error) 380 { 381 struct o2hb_bio_wait_ctxt *wc = bio->bi_private; 382 383 if (error) { 384 mlog(ML_ERROR, "IO Error %d\n", error); 385 wc->wc_error = error; 386 } 387 388 o2hb_bio_wait_dec(wc, 1); 389 bio_put(bio); 390 } 391 392 /* Setup a Bio to cover I/O against num_slots slots starting at 393 * start_slot. */ 394 static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg, 395 struct o2hb_bio_wait_ctxt *wc, 396 unsigned int *current_slot, 397 unsigned int max_slots) 398 { 399 int len, current_page; 400 unsigned int vec_len, vec_start; 401 unsigned int bits = reg->hr_block_bits; 402 unsigned int spp = reg->hr_slots_per_page; 403 unsigned int cs = *current_slot; 404 struct bio *bio; 405 struct page *page; 406 407 /* Testing has shown this allocation to take long enough under 408 * GFP_KERNEL that the local node can get fenced. It would be 409 * nicest if we could pre-allocate these bios and avoid this 410 * all together. */ 411 bio = bio_alloc(GFP_ATOMIC, 16); 412 if (!bio) { 413 mlog(ML_ERROR, "Could not alloc slots BIO!\n"); 414 bio = ERR_PTR(-ENOMEM); 415 goto bail; 416 } 417 418 /* Must put everything in 512 byte sectors for the bio... */ 419 bio->bi_sector = (reg->hr_start_block + cs) << (bits - 9); 420 bio->bi_bdev = reg->hr_bdev; 421 bio->bi_private = wc; 422 bio->bi_end_io = o2hb_bio_end_io; 423 424 vec_start = (cs << bits) % PAGE_CACHE_SIZE; 425 while(cs < max_slots) { 426 current_page = cs / spp; 427 page = reg->hr_slot_data[current_page]; 428 429 vec_len = min(PAGE_CACHE_SIZE - vec_start, 430 (max_slots-cs) * (PAGE_CACHE_SIZE/spp) ); 431 432 mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n", 433 current_page, vec_len, vec_start); 434 435 len = bio_add_page(bio, page, vec_len, vec_start); 436 if (len != vec_len) break; 437 438 cs += vec_len / (PAGE_CACHE_SIZE/spp); 439 vec_start = 0; 440 } 441 442 bail: 443 *current_slot = cs; 444 return bio; 445 } 446 447 static int o2hb_read_slots(struct o2hb_region *reg, 448 unsigned int max_slots) 449 { 450 unsigned int current_slot=0; 451 int status; 452 struct o2hb_bio_wait_ctxt wc; 453 struct bio *bio; 454 455 o2hb_bio_wait_init(&wc); 456 457 while(current_slot < max_slots) { 458 bio = o2hb_setup_one_bio(reg, &wc, ¤t_slot, max_slots); 459 if (IS_ERR(bio)) { 460 status = PTR_ERR(bio); 461 mlog_errno(status); 462 goto bail_and_wait; 463 } 464 465 atomic_inc(&wc.wc_num_reqs); 466 submit_bio(READ, bio); 467 } 468 469 status = 0; 470 471 bail_and_wait: 472 o2hb_wait_on_io(reg, &wc); 473 if (wc.wc_error && !status) 474 status = wc.wc_error; 475 476 return status; 477 } 478 479 static int o2hb_issue_node_write(struct o2hb_region *reg, 480 struct o2hb_bio_wait_ctxt *write_wc) 481 { 482 int status; 483 unsigned int slot; 484 struct bio *bio; 485 486 o2hb_bio_wait_init(write_wc); 487 488 slot = o2nm_this_node(); 489 490 bio = o2hb_setup_one_bio(reg, write_wc, &slot, slot+1); 491 if (IS_ERR(bio)) { 492 status = PTR_ERR(bio); 493 mlog_errno(status); 494 goto bail; 495 } 496 497 atomic_inc(&write_wc->wc_num_reqs); 498 submit_bio(WRITE, bio); 499 500 status = 0; 501 bail: 502 return status; 503 } 504 505 static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg, 506 struct o2hb_disk_heartbeat_block *hb_block) 507 { 508 __le32 old_cksum; 509 u32 ret; 510 511 /* We want to compute the block crc with a 0 value in the 512 * hb_cksum field. Save it off here and replace after the 513 * crc. */ 514 old_cksum = hb_block->hb_cksum; 515 hb_block->hb_cksum = 0; 516 517 ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes); 518 519 hb_block->hb_cksum = old_cksum; 520 521 return ret; 522 } 523 524 static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block) 525 { 526 mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, " 527 "cksum = 0x%x, generation 0x%llx\n", 528 (long long)le64_to_cpu(hb_block->hb_seq), 529 hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum), 530 (long long)le64_to_cpu(hb_block->hb_generation)); 531 } 532 533 static int o2hb_verify_crc(struct o2hb_region *reg, 534 struct o2hb_disk_heartbeat_block *hb_block) 535 { 536 u32 read, computed; 537 538 read = le32_to_cpu(hb_block->hb_cksum); 539 computed = o2hb_compute_block_crc_le(reg, hb_block); 540 541 return read == computed; 542 } 543 544 /* We want to make sure that nobody is heartbeating on top of us -- 545 * this will help detect an invalid configuration. */ 546 static int o2hb_check_last_timestamp(struct o2hb_region *reg) 547 { 548 int node_num, ret; 549 struct o2hb_disk_slot *slot; 550 struct o2hb_disk_heartbeat_block *hb_block; 551 552 node_num = o2nm_this_node(); 553 554 ret = 1; 555 slot = ®->hr_slots[node_num]; 556 /* Don't check on our 1st timestamp */ 557 if (slot->ds_last_time) { 558 hb_block = slot->ds_raw_block; 559 560 if (le64_to_cpu(hb_block->hb_seq) != slot->ds_last_time) 561 ret = 0; 562 } 563 564 return ret; 565 } 566 567 static inline void o2hb_prepare_block(struct o2hb_region *reg, 568 u64 generation) 569 { 570 int node_num; 571 u64 cputime; 572 struct o2hb_disk_slot *slot; 573 struct o2hb_disk_heartbeat_block *hb_block; 574 575 node_num = o2nm_this_node(); 576 slot = ®->hr_slots[node_num]; 577 578 hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block; 579 memset(hb_block, 0, reg->hr_block_bytes); 580 /* TODO: time stuff */ 581 cputime = CURRENT_TIME.tv_sec; 582 if (!cputime) 583 cputime = 1; 584 585 hb_block->hb_seq = cpu_to_le64(cputime); 586 hb_block->hb_node = node_num; 587 hb_block->hb_generation = cpu_to_le64(generation); 588 hb_block->hb_dead_ms = cpu_to_le32(o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS); 589 590 /* This step must always happen last! */ 591 hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg, 592 hb_block)); 593 594 mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n", 595 (long long)generation, 596 le32_to_cpu(hb_block->hb_cksum)); 597 } 598 599 static void o2hb_fire_callbacks(struct o2hb_callback *hbcall, 600 struct o2nm_node *node, 601 int idx) 602 { 603 struct list_head *iter; 604 struct o2hb_callback_func *f; 605 606 list_for_each(iter, &hbcall->list) { 607 f = list_entry(iter, struct o2hb_callback_func, hc_item); 608 mlog(ML_HEARTBEAT, "calling funcs %p\n", f); 609 (f->hc_func)(node, idx, f->hc_data); 610 } 611 } 612 613 /* Will run the list in order until we process the passed event */ 614 static void o2hb_run_event_list(struct o2hb_node_event *queued_event) 615 { 616 int empty; 617 struct o2hb_callback *hbcall; 618 struct o2hb_node_event *event; 619 620 spin_lock(&o2hb_live_lock); 621 empty = list_empty(&queued_event->hn_item); 622 spin_unlock(&o2hb_live_lock); 623 if (empty) 624 return; 625 626 /* Holding callback sem assures we don't alter the callback 627 * lists when doing this, and serializes ourselves with other 628 * processes wanting callbacks. */ 629 down_write(&o2hb_callback_sem); 630 631 spin_lock(&o2hb_live_lock); 632 while (!list_empty(&o2hb_node_events) 633 && !list_empty(&queued_event->hn_item)) { 634 event = list_entry(o2hb_node_events.next, 635 struct o2hb_node_event, 636 hn_item); 637 list_del_init(&event->hn_item); 638 spin_unlock(&o2hb_live_lock); 639 640 mlog(ML_HEARTBEAT, "Node %s event for %d\n", 641 event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN", 642 event->hn_node_num); 643 644 hbcall = hbcall_from_type(event->hn_event_type); 645 646 /* We should *never* have gotten on to the list with a 647 * bad type... This isn't something that we should try 648 * to recover from. */ 649 BUG_ON(IS_ERR(hbcall)); 650 651 o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num); 652 653 spin_lock(&o2hb_live_lock); 654 } 655 spin_unlock(&o2hb_live_lock); 656 657 up_write(&o2hb_callback_sem); 658 } 659 660 static void o2hb_queue_node_event(struct o2hb_node_event *event, 661 enum o2hb_callback_type type, 662 struct o2nm_node *node, 663 int node_num) 664 { 665 assert_spin_locked(&o2hb_live_lock); 666 667 BUG_ON((!node) && (type != O2HB_NODE_DOWN_CB)); 668 669 event->hn_event_type = type; 670 event->hn_node = node; 671 event->hn_node_num = node_num; 672 673 mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n", 674 type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num); 675 676 list_add_tail(&event->hn_item, &o2hb_node_events); 677 } 678 679 static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot) 680 { 681 struct o2hb_node_event event = 682 { .hn_item = LIST_HEAD_INIT(event.hn_item), }; 683 struct o2nm_node *node; 684 685 node = o2nm_get_node_by_num(slot->ds_node_num); 686 if (!node) 687 return; 688 689 spin_lock(&o2hb_live_lock); 690 if (!list_empty(&slot->ds_live_item)) { 691 mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n", 692 slot->ds_node_num); 693 694 list_del_init(&slot->ds_live_item); 695 696 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) { 697 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap); 698 699 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node, 700 slot->ds_node_num); 701 } 702 } 703 spin_unlock(&o2hb_live_lock); 704 705 o2hb_run_event_list(&event); 706 707 o2nm_node_put(node); 708 } 709 710 static void o2hb_set_quorum_device(struct o2hb_region *reg, 711 struct o2hb_disk_slot *slot) 712 { 713 assert_spin_locked(&o2hb_live_lock); 714 715 if (!o2hb_global_heartbeat_active()) 716 return; 717 718 if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap)) 719 return; 720 721 /* 722 * A region can be added to the quorum only when it sees all 723 * live nodes heartbeat on it. In other words, the region has been 724 * added to all nodes. 725 */ 726 if (memcmp(reg->hr_live_node_bitmap, o2hb_live_node_bitmap, 727 sizeof(o2hb_live_node_bitmap))) 728 return; 729 730 if (slot->ds_changed_samples < O2HB_LIVE_THRESHOLD) 731 return; 732 733 printk(KERN_NOTICE "o2hb: Region %s is now a quorum device\n", 734 config_item_name(®->hr_item)); 735 736 set_bit(reg->hr_region_num, o2hb_quorum_region_bitmap); 737 738 /* 739 * If global heartbeat active, unpin all regions if the 740 * region count > CUT_OFF 741 */ 742 if (o2hb_pop_count(&o2hb_quorum_region_bitmap, 743 O2NM_MAX_REGIONS) > O2HB_PIN_CUT_OFF) 744 o2hb_region_unpin(NULL); 745 } 746 747 static int o2hb_check_slot(struct o2hb_region *reg, 748 struct o2hb_disk_slot *slot) 749 { 750 int changed = 0, gen_changed = 0; 751 struct o2hb_node_event event = 752 { .hn_item = LIST_HEAD_INIT(event.hn_item), }; 753 struct o2nm_node *node; 754 struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block; 755 u64 cputime; 756 unsigned int dead_ms = o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS; 757 unsigned int slot_dead_ms; 758 int tmp; 759 760 memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes); 761 762 /* 763 * If a node is no longer configured but is still in the livemap, we 764 * may need to clear that bit from the livemap. 765 */ 766 node = o2nm_get_node_by_num(slot->ds_node_num); 767 if (!node) { 768 spin_lock(&o2hb_live_lock); 769 tmp = test_bit(slot->ds_node_num, o2hb_live_node_bitmap); 770 spin_unlock(&o2hb_live_lock); 771 if (!tmp) 772 return 0; 773 } 774 775 if (!o2hb_verify_crc(reg, hb_block)) { 776 /* all paths from here will drop o2hb_live_lock for 777 * us. */ 778 spin_lock(&o2hb_live_lock); 779 780 /* Don't print an error on the console in this case - 781 * a freshly formatted heartbeat area will not have a 782 * crc set on it. */ 783 if (list_empty(&slot->ds_live_item)) 784 goto out; 785 786 /* The node is live but pushed out a bad crc. We 787 * consider it a transient miss but don't populate any 788 * other values as they may be junk. */ 789 mlog(ML_ERROR, "Node %d has written a bad crc to %s\n", 790 slot->ds_node_num, reg->hr_dev_name); 791 o2hb_dump_slot(hb_block); 792 793 slot->ds_equal_samples++; 794 goto fire_callbacks; 795 } 796 797 /* we don't care if these wrap.. the state transitions below 798 * clear at the right places */ 799 cputime = le64_to_cpu(hb_block->hb_seq); 800 if (slot->ds_last_time != cputime) 801 slot->ds_changed_samples++; 802 else 803 slot->ds_equal_samples++; 804 slot->ds_last_time = cputime; 805 806 /* The node changed heartbeat generations. We assume this to 807 * mean it dropped off but came back before we timed out. We 808 * want to consider it down for the time being but don't want 809 * to lose any changed_samples state we might build up to 810 * considering it live again. */ 811 if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) { 812 gen_changed = 1; 813 slot->ds_equal_samples = 0; 814 mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx " 815 "to 0x%llx)\n", slot->ds_node_num, 816 (long long)slot->ds_last_generation, 817 (long long)le64_to_cpu(hb_block->hb_generation)); 818 } 819 820 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation); 821 822 mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x " 823 "seq %llu last %llu changed %u equal %u\n", 824 slot->ds_node_num, (long long)slot->ds_last_generation, 825 le32_to_cpu(hb_block->hb_cksum), 826 (unsigned long long)le64_to_cpu(hb_block->hb_seq), 827 (unsigned long long)slot->ds_last_time, slot->ds_changed_samples, 828 slot->ds_equal_samples); 829 830 spin_lock(&o2hb_live_lock); 831 832 fire_callbacks: 833 /* dead nodes only come to life after some number of 834 * changes at any time during their dead time */ 835 if (list_empty(&slot->ds_live_item) && 836 slot->ds_changed_samples >= O2HB_LIVE_THRESHOLD) { 837 mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n", 838 slot->ds_node_num, (long long)slot->ds_last_generation); 839 840 set_bit(slot->ds_node_num, reg->hr_live_node_bitmap); 841 842 /* first on the list generates a callback */ 843 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) { 844 mlog(ML_HEARTBEAT, "o2hb: Add node %d to live nodes " 845 "bitmap\n", slot->ds_node_num); 846 set_bit(slot->ds_node_num, o2hb_live_node_bitmap); 847 848 o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node, 849 slot->ds_node_num); 850 851 changed = 1; 852 } 853 854 list_add_tail(&slot->ds_live_item, 855 &o2hb_live_slots[slot->ds_node_num]); 856 857 slot->ds_equal_samples = 0; 858 859 /* We want to be sure that all nodes agree on the 860 * number of milliseconds before a node will be 861 * considered dead. The self-fencing timeout is 862 * computed from this value, and a discrepancy might 863 * result in heartbeat calling a node dead when it 864 * hasn't self-fenced yet. */ 865 slot_dead_ms = le32_to_cpu(hb_block->hb_dead_ms); 866 if (slot_dead_ms && slot_dead_ms != dead_ms) { 867 /* TODO: Perhaps we can fail the region here. */ 868 mlog(ML_ERROR, "Node %d on device %s has a dead count " 869 "of %u ms, but our count is %u ms.\n" 870 "Please double check your configuration values " 871 "for 'O2CB_HEARTBEAT_THRESHOLD'\n", 872 slot->ds_node_num, reg->hr_dev_name, slot_dead_ms, 873 dead_ms); 874 } 875 goto out; 876 } 877 878 /* if the list is dead, we're done.. */ 879 if (list_empty(&slot->ds_live_item)) 880 goto out; 881 882 /* live nodes only go dead after enough consequtive missed 883 * samples.. reset the missed counter whenever we see 884 * activity */ 885 if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) { 886 mlog(ML_HEARTBEAT, "Node %d left my region\n", 887 slot->ds_node_num); 888 889 clear_bit(slot->ds_node_num, reg->hr_live_node_bitmap); 890 891 /* last off the live_slot generates a callback */ 892 list_del_init(&slot->ds_live_item); 893 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) { 894 mlog(ML_HEARTBEAT, "o2hb: Remove node %d from live " 895 "nodes bitmap\n", slot->ds_node_num); 896 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap); 897 898 /* node can be null */ 899 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, 900 node, slot->ds_node_num); 901 902 changed = 1; 903 } 904 905 /* We don't clear this because the node is still 906 * actually writing new blocks. */ 907 if (!gen_changed) 908 slot->ds_changed_samples = 0; 909 goto out; 910 } 911 if (slot->ds_changed_samples) { 912 slot->ds_changed_samples = 0; 913 slot->ds_equal_samples = 0; 914 } 915 out: 916 o2hb_set_quorum_device(reg, slot); 917 918 spin_unlock(&o2hb_live_lock); 919 920 o2hb_run_event_list(&event); 921 922 if (node) 923 o2nm_node_put(node); 924 return changed; 925 } 926 927 /* This could be faster if we just implmented a find_last_bit, but I 928 * don't think the circumstances warrant it. */ 929 static int o2hb_highest_node(unsigned long *nodes, 930 int numbits) 931 { 932 int highest, node; 933 934 highest = numbits; 935 node = -1; 936 while ((node = find_next_bit(nodes, numbits, node + 1)) != -1) { 937 if (node >= numbits) 938 break; 939 940 highest = node; 941 } 942 943 return highest; 944 } 945 946 static int o2hb_do_disk_heartbeat(struct o2hb_region *reg) 947 { 948 int i, ret, highest_node, change = 0; 949 unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)]; 950 unsigned long live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)]; 951 struct o2hb_bio_wait_ctxt write_wc; 952 953 ret = o2nm_configured_node_map(configured_nodes, 954 sizeof(configured_nodes)); 955 if (ret) { 956 mlog_errno(ret); 957 return ret; 958 } 959 960 /* 961 * If a node is not configured but is in the livemap, we still need 962 * to read the slot so as to be able to remove it from the livemap. 963 */ 964 o2hb_fill_node_map(live_node_bitmap, sizeof(live_node_bitmap)); 965 i = -1; 966 while ((i = find_next_bit(live_node_bitmap, 967 O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) { 968 set_bit(i, configured_nodes); 969 } 970 971 highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES); 972 if (highest_node >= O2NM_MAX_NODES) { 973 mlog(ML_NOTICE, "ocfs2_heartbeat: no configured nodes found!\n"); 974 return -EINVAL; 975 } 976 977 /* No sense in reading the slots of nodes that don't exist 978 * yet. Of course, if the node definitions have holes in them 979 * then we're reading an empty slot anyway... Consider this 980 * best-effort. */ 981 ret = o2hb_read_slots(reg, highest_node + 1); 982 if (ret < 0) { 983 mlog_errno(ret); 984 return ret; 985 } 986 987 /* With an up to date view of the slots, we can check that no 988 * other node has been improperly configured to heartbeat in 989 * our slot. */ 990 if (!o2hb_check_last_timestamp(reg)) 991 mlog(ML_ERROR, "Device \"%s\": another node is heartbeating " 992 "in our slot!\n", reg->hr_dev_name); 993 994 /* fill in the proper info for our next heartbeat */ 995 o2hb_prepare_block(reg, reg->hr_generation); 996 997 /* And fire off the write. Note that we don't wait on this I/O 998 * until later. */ 999 ret = o2hb_issue_node_write(reg, &write_wc); 1000 if (ret < 0) { 1001 mlog_errno(ret); 1002 return ret; 1003 } 1004 1005 i = -1; 1006 while((i = find_next_bit(configured_nodes, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) { 1007 1008 change |= o2hb_check_slot(reg, ®->hr_slots[i]); 1009 } 1010 1011 /* 1012 * We have to be sure we've advertised ourselves on disk 1013 * before we can go to steady state. This ensures that 1014 * people we find in our steady state have seen us. 1015 */ 1016 o2hb_wait_on_io(reg, &write_wc); 1017 if (write_wc.wc_error) { 1018 /* Do not re-arm the write timeout on I/O error - we 1019 * can't be sure that the new block ever made it to 1020 * disk */ 1021 mlog(ML_ERROR, "Write error %d on device \"%s\"\n", 1022 write_wc.wc_error, reg->hr_dev_name); 1023 return write_wc.wc_error; 1024 } 1025 1026 o2hb_arm_write_timeout(reg); 1027 1028 /* let the person who launched us know when things are steady */ 1029 if (!change && (atomic_read(®->hr_steady_iterations) != 0)) { 1030 if (atomic_dec_and_test(®->hr_steady_iterations)) 1031 wake_up(&o2hb_steady_queue); 1032 } 1033 1034 return 0; 1035 } 1036 1037 /* Subtract b from a, storing the result in a. a *must* have a larger 1038 * value than b. */ 1039 static void o2hb_tv_subtract(struct timeval *a, 1040 struct timeval *b) 1041 { 1042 /* just return 0 when a is after b */ 1043 if (a->tv_sec < b->tv_sec || 1044 (a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec)) { 1045 a->tv_sec = 0; 1046 a->tv_usec = 0; 1047 return; 1048 } 1049 1050 a->tv_sec -= b->tv_sec; 1051 a->tv_usec -= b->tv_usec; 1052 while ( a->tv_usec < 0 ) { 1053 a->tv_sec--; 1054 a->tv_usec += 1000000; 1055 } 1056 } 1057 1058 static unsigned int o2hb_elapsed_msecs(struct timeval *start, 1059 struct timeval *end) 1060 { 1061 struct timeval res = *end; 1062 1063 o2hb_tv_subtract(&res, start); 1064 1065 return res.tv_sec * 1000 + res.tv_usec / 1000; 1066 } 1067 1068 /* 1069 * we ride the region ref that the region dir holds. before the region 1070 * dir is removed and drops it ref it will wait to tear down this 1071 * thread. 1072 */ 1073 static int o2hb_thread(void *data) 1074 { 1075 int i, ret; 1076 struct o2hb_region *reg = data; 1077 struct o2hb_bio_wait_ctxt write_wc; 1078 struct timeval before_hb, after_hb; 1079 unsigned int elapsed_msec; 1080 1081 mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n"); 1082 1083 set_user_nice(current, -20); 1084 1085 /* Pin node */ 1086 o2nm_depend_this_node(); 1087 1088 while (!kthread_should_stop() && !reg->hr_unclean_stop) { 1089 /* We track the time spent inside 1090 * o2hb_do_disk_heartbeat so that we avoid more than 1091 * hr_timeout_ms between disk writes. On busy systems 1092 * this should result in a heartbeat which is less 1093 * likely to time itself out. */ 1094 do_gettimeofday(&before_hb); 1095 1096 i = 0; 1097 do { 1098 ret = o2hb_do_disk_heartbeat(reg); 1099 } while (ret && ++i < 2); 1100 1101 do_gettimeofday(&after_hb); 1102 elapsed_msec = o2hb_elapsed_msecs(&before_hb, &after_hb); 1103 1104 mlog(ML_HEARTBEAT, 1105 "start = %lu.%lu, end = %lu.%lu, msec = %u\n", 1106 before_hb.tv_sec, (unsigned long) before_hb.tv_usec, 1107 after_hb.tv_sec, (unsigned long) after_hb.tv_usec, 1108 elapsed_msec); 1109 1110 if (elapsed_msec < reg->hr_timeout_ms) { 1111 /* the kthread api has blocked signals for us so no 1112 * need to record the return value. */ 1113 msleep_interruptible(reg->hr_timeout_ms - elapsed_msec); 1114 } 1115 } 1116 1117 o2hb_disarm_write_timeout(reg); 1118 1119 /* unclean stop is only used in very bad situation */ 1120 for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++) 1121 o2hb_shutdown_slot(®->hr_slots[i]); 1122 1123 /* Explicit down notification - avoid forcing the other nodes 1124 * to timeout on this region when we could just as easily 1125 * write a clear generation - thus indicating to them that 1126 * this node has left this region. 1127 * 1128 * XXX: Should we skip this on unclean_stop? */ 1129 o2hb_prepare_block(reg, 0); 1130 ret = o2hb_issue_node_write(reg, &write_wc); 1131 if (ret == 0) { 1132 o2hb_wait_on_io(reg, &write_wc); 1133 } else { 1134 mlog_errno(ret); 1135 } 1136 1137 /* Unpin node */ 1138 o2nm_undepend_this_node(); 1139 1140 mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread exiting\n"); 1141 1142 return 0; 1143 } 1144 1145 #ifdef CONFIG_DEBUG_FS 1146 static int o2hb_debug_open(struct inode *inode, struct file *file) 1147 { 1148 struct o2hb_debug_buf *db = inode->i_private; 1149 struct o2hb_region *reg; 1150 unsigned long map[BITS_TO_LONGS(O2NM_MAX_NODES)]; 1151 char *buf = NULL; 1152 int i = -1; 1153 int out = 0; 1154 1155 /* max_nodes should be the largest bitmap we pass here */ 1156 BUG_ON(sizeof(map) < db->db_size); 1157 1158 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1159 if (!buf) 1160 goto bail; 1161 1162 switch (db->db_type) { 1163 case O2HB_DB_TYPE_LIVENODES: 1164 case O2HB_DB_TYPE_LIVEREGIONS: 1165 case O2HB_DB_TYPE_QUORUMREGIONS: 1166 case O2HB_DB_TYPE_FAILEDREGIONS: 1167 spin_lock(&o2hb_live_lock); 1168 memcpy(map, db->db_data, db->db_size); 1169 spin_unlock(&o2hb_live_lock); 1170 break; 1171 1172 case O2HB_DB_TYPE_REGION_LIVENODES: 1173 spin_lock(&o2hb_live_lock); 1174 reg = (struct o2hb_region *)db->db_data; 1175 memcpy(map, reg->hr_live_node_bitmap, db->db_size); 1176 spin_unlock(&o2hb_live_lock); 1177 break; 1178 1179 case O2HB_DB_TYPE_REGION_NUMBER: 1180 reg = (struct o2hb_region *)db->db_data; 1181 out += snprintf(buf + out, PAGE_SIZE - out, "%d\n", 1182 reg->hr_region_num); 1183 goto done; 1184 1185 case O2HB_DB_TYPE_REGION_ELAPSED_TIME: 1186 reg = (struct o2hb_region *)db->db_data; 1187 out += snprintf(buf + out, PAGE_SIZE - out, "%u\n", 1188 jiffies_to_msecs(jiffies - 1189 reg->hr_last_timeout_start)); 1190 goto done; 1191 1192 case O2HB_DB_TYPE_REGION_PINNED: 1193 reg = (struct o2hb_region *)db->db_data; 1194 out += snprintf(buf + out, PAGE_SIZE - out, "%u\n", 1195 !!reg->hr_item_pinned); 1196 goto done; 1197 1198 default: 1199 goto done; 1200 } 1201 1202 while ((i = find_next_bit(map, db->db_len, i + 1)) < db->db_len) 1203 out += snprintf(buf + out, PAGE_SIZE - out, "%d ", i); 1204 out += snprintf(buf + out, PAGE_SIZE - out, "\n"); 1205 1206 done: 1207 i_size_write(inode, out); 1208 1209 file->private_data = buf; 1210 1211 return 0; 1212 bail: 1213 return -ENOMEM; 1214 } 1215 1216 static int o2hb_debug_release(struct inode *inode, struct file *file) 1217 { 1218 kfree(file->private_data); 1219 return 0; 1220 } 1221 1222 static ssize_t o2hb_debug_read(struct file *file, char __user *buf, 1223 size_t nbytes, loff_t *ppos) 1224 { 1225 return simple_read_from_buffer(buf, nbytes, ppos, file->private_data, 1226 i_size_read(file->f_mapping->host)); 1227 } 1228 #else 1229 static int o2hb_debug_open(struct inode *inode, struct file *file) 1230 { 1231 return 0; 1232 } 1233 static int o2hb_debug_release(struct inode *inode, struct file *file) 1234 { 1235 return 0; 1236 } 1237 static ssize_t o2hb_debug_read(struct file *file, char __user *buf, 1238 size_t nbytes, loff_t *ppos) 1239 { 1240 return 0; 1241 } 1242 #endif /* CONFIG_DEBUG_FS */ 1243 1244 static const struct file_operations o2hb_debug_fops = { 1245 .open = o2hb_debug_open, 1246 .release = o2hb_debug_release, 1247 .read = o2hb_debug_read, 1248 .llseek = generic_file_llseek, 1249 }; 1250 1251 void o2hb_exit(void) 1252 { 1253 kfree(o2hb_db_livenodes); 1254 kfree(o2hb_db_liveregions); 1255 kfree(o2hb_db_quorumregions); 1256 kfree(o2hb_db_failedregions); 1257 debugfs_remove(o2hb_debug_failedregions); 1258 debugfs_remove(o2hb_debug_quorumregions); 1259 debugfs_remove(o2hb_debug_liveregions); 1260 debugfs_remove(o2hb_debug_livenodes); 1261 debugfs_remove(o2hb_debug_dir); 1262 } 1263 1264 static struct dentry *o2hb_debug_create(const char *name, struct dentry *dir, 1265 struct o2hb_debug_buf **db, int db_len, 1266 int type, int size, int len, void *data) 1267 { 1268 *db = kmalloc(db_len, GFP_KERNEL); 1269 if (!*db) 1270 return NULL; 1271 1272 (*db)->db_type = type; 1273 (*db)->db_size = size; 1274 (*db)->db_len = len; 1275 (*db)->db_data = data; 1276 1277 return debugfs_create_file(name, S_IFREG|S_IRUSR, dir, *db, 1278 &o2hb_debug_fops); 1279 } 1280 1281 static int o2hb_debug_init(void) 1282 { 1283 int ret = -ENOMEM; 1284 1285 o2hb_debug_dir = debugfs_create_dir(O2HB_DEBUG_DIR, NULL); 1286 if (!o2hb_debug_dir) { 1287 mlog_errno(ret); 1288 goto bail; 1289 } 1290 1291 o2hb_debug_livenodes = o2hb_debug_create(O2HB_DEBUG_LIVENODES, 1292 o2hb_debug_dir, 1293 &o2hb_db_livenodes, 1294 sizeof(*o2hb_db_livenodes), 1295 O2HB_DB_TYPE_LIVENODES, 1296 sizeof(o2hb_live_node_bitmap), 1297 O2NM_MAX_NODES, 1298 o2hb_live_node_bitmap); 1299 if (!o2hb_debug_livenodes) { 1300 mlog_errno(ret); 1301 goto bail; 1302 } 1303 1304 o2hb_debug_liveregions = o2hb_debug_create(O2HB_DEBUG_LIVEREGIONS, 1305 o2hb_debug_dir, 1306 &o2hb_db_liveregions, 1307 sizeof(*o2hb_db_liveregions), 1308 O2HB_DB_TYPE_LIVEREGIONS, 1309 sizeof(o2hb_live_region_bitmap), 1310 O2NM_MAX_REGIONS, 1311 o2hb_live_region_bitmap); 1312 if (!o2hb_debug_liveregions) { 1313 mlog_errno(ret); 1314 goto bail; 1315 } 1316 1317 o2hb_debug_quorumregions = 1318 o2hb_debug_create(O2HB_DEBUG_QUORUMREGIONS, 1319 o2hb_debug_dir, 1320 &o2hb_db_quorumregions, 1321 sizeof(*o2hb_db_quorumregions), 1322 O2HB_DB_TYPE_QUORUMREGIONS, 1323 sizeof(o2hb_quorum_region_bitmap), 1324 O2NM_MAX_REGIONS, 1325 o2hb_quorum_region_bitmap); 1326 if (!o2hb_debug_quorumregions) { 1327 mlog_errno(ret); 1328 goto bail; 1329 } 1330 1331 o2hb_debug_failedregions = 1332 o2hb_debug_create(O2HB_DEBUG_FAILEDREGIONS, 1333 o2hb_debug_dir, 1334 &o2hb_db_failedregions, 1335 sizeof(*o2hb_db_failedregions), 1336 O2HB_DB_TYPE_FAILEDREGIONS, 1337 sizeof(o2hb_failed_region_bitmap), 1338 O2NM_MAX_REGIONS, 1339 o2hb_failed_region_bitmap); 1340 if (!o2hb_debug_failedregions) { 1341 mlog_errno(ret); 1342 goto bail; 1343 } 1344 1345 ret = 0; 1346 bail: 1347 if (ret) 1348 o2hb_exit(); 1349 1350 return ret; 1351 } 1352 1353 int o2hb_init(void) 1354 { 1355 int i; 1356 1357 for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++) 1358 INIT_LIST_HEAD(&o2hb_callbacks[i].list); 1359 1360 for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++) 1361 INIT_LIST_HEAD(&o2hb_live_slots[i]); 1362 1363 INIT_LIST_HEAD(&o2hb_node_events); 1364 1365 memset(o2hb_live_node_bitmap, 0, sizeof(o2hb_live_node_bitmap)); 1366 memset(o2hb_region_bitmap, 0, sizeof(o2hb_region_bitmap)); 1367 memset(o2hb_live_region_bitmap, 0, sizeof(o2hb_live_region_bitmap)); 1368 memset(o2hb_quorum_region_bitmap, 0, sizeof(o2hb_quorum_region_bitmap)); 1369 memset(o2hb_failed_region_bitmap, 0, sizeof(o2hb_failed_region_bitmap)); 1370 1371 o2hb_dependent_users = 0; 1372 1373 return o2hb_debug_init(); 1374 } 1375 1376 /* if we're already in a callback then we're already serialized by the sem */ 1377 static void o2hb_fill_node_map_from_callback(unsigned long *map, 1378 unsigned bytes) 1379 { 1380 BUG_ON(bytes < (BITS_TO_LONGS(O2NM_MAX_NODES) * sizeof(unsigned long))); 1381 1382 memcpy(map, &o2hb_live_node_bitmap, bytes); 1383 } 1384 1385 /* 1386 * get a map of all nodes that are heartbeating in any regions 1387 */ 1388 void o2hb_fill_node_map(unsigned long *map, unsigned bytes) 1389 { 1390 /* callers want to serialize this map and callbacks so that they 1391 * can trust that they don't miss nodes coming to the party */ 1392 down_read(&o2hb_callback_sem); 1393 spin_lock(&o2hb_live_lock); 1394 o2hb_fill_node_map_from_callback(map, bytes); 1395 spin_unlock(&o2hb_live_lock); 1396 up_read(&o2hb_callback_sem); 1397 } 1398 EXPORT_SYMBOL_GPL(o2hb_fill_node_map); 1399 1400 /* 1401 * heartbeat configfs bits. The heartbeat set is a default set under 1402 * the cluster set in nodemanager.c. 1403 */ 1404 1405 static struct o2hb_region *to_o2hb_region(struct config_item *item) 1406 { 1407 return item ? container_of(item, struct o2hb_region, hr_item) : NULL; 1408 } 1409 1410 /* drop_item only drops its ref after killing the thread, nothing should 1411 * be using the region anymore. this has to clean up any state that 1412 * attributes might have built up. */ 1413 static void o2hb_region_release(struct config_item *item) 1414 { 1415 int i; 1416 struct page *page; 1417 struct o2hb_region *reg = to_o2hb_region(item); 1418 1419 if (reg->hr_tmp_block) 1420 kfree(reg->hr_tmp_block); 1421 1422 if (reg->hr_slot_data) { 1423 for (i = 0; i < reg->hr_num_pages; i++) { 1424 page = reg->hr_slot_data[i]; 1425 if (page) 1426 __free_page(page); 1427 } 1428 kfree(reg->hr_slot_data); 1429 } 1430 1431 if (reg->hr_bdev) 1432 blkdev_put(reg->hr_bdev, FMODE_READ|FMODE_WRITE); 1433 1434 if (reg->hr_slots) 1435 kfree(reg->hr_slots); 1436 1437 kfree(reg->hr_db_regnum); 1438 kfree(reg->hr_db_livenodes); 1439 debugfs_remove(reg->hr_debug_livenodes); 1440 debugfs_remove(reg->hr_debug_regnum); 1441 debugfs_remove(reg->hr_debug_elapsed_time); 1442 debugfs_remove(reg->hr_debug_pinned); 1443 debugfs_remove(reg->hr_debug_dir); 1444 1445 spin_lock(&o2hb_live_lock); 1446 list_del(®->hr_all_item); 1447 spin_unlock(&o2hb_live_lock); 1448 1449 kfree(reg); 1450 } 1451 1452 static int o2hb_read_block_input(struct o2hb_region *reg, 1453 const char *page, 1454 size_t count, 1455 unsigned long *ret_bytes, 1456 unsigned int *ret_bits) 1457 { 1458 unsigned long bytes; 1459 char *p = (char *)page; 1460 1461 bytes = simple_strtoul(p, &p, 0); 1462 if (!p || (*p && (*p != '\n'))) 1463 return -EINVAL; 1464 1465 /* Heartbeat and fs min / max block sizes are the same. */ 1466 if (bytes > 4096 || bytes < 512) 1467 return -ERANGE; 1468 if (hweight16(bytes) != 1) 1469 return -EINVAL; 1470 1471 if (ret_bytes) 1472 *ret_bytes = bytes; 1473 if (ret_bits) 1474 *ret_bits = ffs(bytes) - 1; 1475 1476 return 0; 1477 } 1478 1479 static ssize_t o2hb_region_block_bytes_read(struct o2hb_region *reg, 1480 char *page) 1481 { 1482 return sprintf(page, "%u\n", reg->hr_block_bytes); 1483 } 1484 1485 static ssize_t o2hb_region_block_bytes_write(struct o2hb_region *reg, 1486 const char *page, 1487 size_t count) 1488 { 1489 int status; 1490 unsigned long block_bytes; 1491 unsigned int block_bits; 1492 1493 if (reg->hr_bdev) 1494 return -EINVAL; 1495 1496 status = o2hb_read_block_input(reg, page, count, 1497 &block_bytes, &block_bits); 1498 if (status) 1499 return status; 1500 1501 reg->hr_block_bytes = (unsigned int)block_bytes; 1502 reg->hr_block_bits = block_bits; 1503 1504 return count; 1505 } 1506 1507 static ssize_t o2hb_region_start_block_read(struct o2hb_region *reg, 1508 char *page) 1509 { 1510 return sprintf(page, "%llu\n", reg->hr_start_block); 1511 } 1512 1513 static ssize_t o2hb_region_start_block_write(struct o2hb_region *reg, 1514 const char *page, 1515 size_t count) 1516 { 1517 unsigned long long tmp; 1518 char *p = (char *)page; 1519 1520 if (reg->hr_bdev) 1521 return -EINVAL; 1522 1523 tmp = simple_strtoull(p, &p, 0); 1524 if (!p || (*p && (*p != '\n'))) 1525 return -EINVAL; 1526 1527 reg->hr_start_block = tmp; 1528 1529 return count; 1530 } 1531 1532 static ssize_t o2hb_region_blocks_read(struct o2hb_region *reg, 1533 char *page) 1534 { 1535 return sprintf(page, "%d\n", reg->hr_blocks); 1536 } 1537 1538 static ssize_t o2hb_region_blocks_write(struct o2hb_region *reg, 1539 const char *page, 1540 size_t count) 1541 { 1542 unsigned long tmp; 1543 char *p = (char *)page; 1544 1545 if (reg->hr_bdev) 1546 return -EINVAL; 1547 1548 tmp = simple_strtoul(p, &p, 0); 1549 if (!p || (*p && (*p != '\n'))) 1550 return -EINVAL; 1551 1552 if (tmp > O2NM_MAX_NODES || tmp == 0) 1553 return -ERANGE; 1554 1555 reg->hr_blocks = (unsigned int)tmp; 1556 1557 return count; 1558 } 1559 1560 static ssize_t o2hb_region_dev_read(struct o2hb_region *reg, 1561 char *page) 1562 { 1563 unsigned int ret = 0; 1564 1565 if (reg->hr_bdev) 1566 ret = sprintf(page, "%s\n", reg->hr_dev_name); 1567 1568 return ret; 1569 } 1570 1571 static void o2hb_init_region_params(struct o2hb_region *reg) 1572 { 1573 reg->hr_slots_per_page = PAGE_CACHE_SIZE >> reg->hr_block_bits; 1574 reg->hr_timeout_ms = O2HB_REGION_TIMEOUT_MS; 1575 1576 mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n", 1577 reg->hr_start_block, reg->hr_blocks); 1578 mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n", 1579 reg->hr_block_bytes, reg->hr_block_bits); 1580 mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms); 1581 mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold); 1582 } 1583 1584 static int o2hb_map_slot_data(struct o2hb_region *reg) 1585 { 1586 int i, j; 1587 unsigned int last_slot; 1588 unsigned int spp = reg->hr_slots_per_page; 1589 struct page *page; 1590 char *raw; 1591 struct o2hb_disk_slot *slot; 1592 1593 reg->hr_tmp_block = kmalloc(reg->hr_block_bytes, GFP_KERNEL); 1594 if (reg->hr_tmp_block == NULL) { 1595 mlog_errno(-ENOMEM); 1596 return -ENOMEM; 1597 } 1598 1599 reg->hr_slots = kcalloc(reg->hr_blocks, 1600 sizeof(struct o2hb_disk_slot), GFP_KERNEL); 1601 if (reg->hr_slots == NULL) { 1602 mlog_errno(-ENOMEM); 1603 return -ENOMEM; 1604 } 1605 1606 for(i = 0; i < reg->hr_blocks; i++) { 1607 slot = ®->hr_slots[i]; 1608 slot->ds_node_num = i; 1609 INIT_LIST_HEAD(&slot->ds_live_item); 1610 slot->ds_raw_block = NULL; 1611 } 1612 1613 reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp; 1614 mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks " 1615 "at %u blocks per page\n", 1616 reg->hr_num_pages, reg->hr_blocks, spp); 1617 1618 reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *), 1619 GFP_KERNEL); 1620 if (!reg->hr_slot_data) { 1621 mlog_errno(-ENOMEM); 1622 return -ENOMEM; 1623 } 1624 1625 for(i = 0; i < reg->hr_num_pages; i++) { 1626 page = alloc_page(GFP_KERNEL); 1627 if (!page) { 1628 mlog_errno(-ENOMEM); 1629 return -ENOMEM; 1630 } 1631 1632 reg->hr_slot_data[i] = page; 1633 1634 last_slot = i * spp; 1635 raw = page_address(page); 1636 for (j = 0; 1637 (j < spp) && ((j + last_slot) < reg->hr_blocks); 1638 j++) { 1639 BUG_ON((j + last_slot) >= reg->hr_blocks); 1640 1641 slot = ®->hr_slots[j + last_slot]; 1642 slot->ds_raw_block = 1643 (struct o2hb_disk_heartbeat_block *) raw; 1644 1645 raw += reg->hr_block_bytes; 1646 } 1647 } 1648 1649 return 0; 1650 } 1651 1652 /* Read in all the slots available and populate the tracking 1653 * structures so that we can start with a baseline idea of what's 1654 * there. */ 1655 static int o2hb_populate_slot_data(struct o2hb_region *reg) 1656 { 1657 int ret, i; 1658 struct o2hb_disk_slot *slot; 1659 struct o2hb_disk_heartbeat_block *hb_block; 1660 1661 mlog_entry_void(); 1662 1663 ret = o2hb_read_slots(reg, reg->hr_blocks); 1664 if (ret) { 1665 mlog_errno(ret); 1666 goto out; 1667 } 1668 1669 /* We only want to get an idea of the values initially in each 1670 * slot, so we do no verification - o2hb_check_slot will 1671 * actually determine if each configured slot is valid and 1672 * whether any values have changed. */ 1673 for(i = 0; i < reg->hr_blocks; i++) { 1674 slot = ®->hr_slots[i]; 1675 hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block; 1676 1677 /* Only fill the values that o2hb_check_slot uses to 1678 * determine changing slots */ 1679 slot->ds_last_time = le64_to_cpu(hb_block->hb_seq); 1680 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation); 1681 } 1682 1683 out: 1684 mlog_exit(ret); 1685 return ret; 1686 } 1687 1688 /* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */ 1689 static ssize_t o2hb_region_dev_write(struct o2hb_region *reg, 1690 const char *page, 1691 size_t count) 1692 { 1693 struct task_struct *hb_task; 1694 long fd; 1695 int sectsize; 1696 char *p = (char *)page; 1697 struct file *filp = NULL; 1698 struct inode *inode = NULL; 1699 ssize_t ret = -EINVAL; 1700 1701 if (reg->hr_bdev) 1702 goto out; 1703 1704 /* We can't heartbeat without having had our node number 1705 * configured yet. */ 1706 if (o2nm_this_node() == O2NM_MAX_NODES) 1707 goto out; 1708 1709 fd = simple_strtol(p, &p, 0); 1710 if (!p || (*p && (*p != '\n'))) 1711 goto out; 1712 1713 if (fd < 0 || fd >= INT_MAX) 1714 goto out; 1715 1716 filp = fget(fd); 1717 if (filp == NULL) 1718 goto out; 1719 1720 if (reg->hr_blocks == 0 || reg->hr_start_block == 0 || 1721 reg->hr_block_bytes == 0) 1722 goto out; 1723 1724 inode = igrab(filp->f_mapping->host); 1725 if (inode == NULL) 1726 goto out; 1727 1728 if (!S_ISBLK(inode->i_mode)) 1729 goto out; 1730 1731 reg->hr_bdev = I_BDEV(filp->f_mapping->host); 1732 ret = blkdev_get(reg->hr_bdev, FMODE_WRITE | FMODE_READ, NULL); 1733 if (ret) { 1734 reg->hr_bdev = NULL; 1735 goto out; 1736 } 1737 inode = NULL; 1738 1739 bdevname(reg->hr_bdev, reg->hr_dev_name); 1740 1741 sectsize = bdev_logical_block_size(reg->hr_bdev); 1742 if (sectsize != reg->hr_block_bytes) { 1743 mlog(ML_ERROR, 1744 "blocksize %u incorrect for device, expected %d", 1745 reg->hr_block_bytes, sectsize); 1746 ret = -EINVAL; 1747 goto out; 1748 } 1749 1750 o2hb_init_region_params(reg); 1751 1752 /* Generation of zero is invalid */ 1753 do { 1754 get_random_bytes(®->hr_generation, 1755 sizeof(reg->hr_generation)); 1756 } while (reg->hr_generation == 0); 1757 1758 ret = o2hb_map_slot_data(reg); 1759 if (ret) { 1760 mlog_errno(ret); 1761 goto out; 1762 } 1763 1764 ret = o2hb_populate_slot_data(reg); 1765 if (ret) { 1766 mlog_errno(ret); 1767 goto out; 1768 } 1769 1770 INIT_DELAYED_WORK(®->hr_write_timeout_work, o2hb_write_timeout); 1771 1772 /* 1773 * A node is considered live after it has beat LIVE_THRESHOLD 1774 * times. We're not steady until we've given them a chance 1775 * _after_ our first read. 1776 */ 1777 atomic_set(®->hr_steady_iterations, O2HB_LIVE_THRESHOLD + 1); 1778 1779 hb_task = kthread_run(o2hb_thread, reg, "o2hb-%s", 1780 reg->hr_item.ci_name); 1781 if (IS_ERR(hb_task)) { 1782 ret = PTR_ERR(hb_task); 1783 mlog_errno(ret); 1784 goto out; 1785 } 1786 1787 spin_lock(&o2hb_live_lock); 1788 reg->hr_task = hb_task; 1789 spin_unlock(&o2hb_live_lock); 1790 1791 ret = wait_event_interruptible(o2hb_steady_queue, 1792 atomic_read(®->hr_steady_iterations) == 0); 1793 if (ret) { 1794 /* We got interrupted (hello ptrace!). Clean up */ 1795 spin_lock(&o2hb_live_lock); 1796 hb_task = reg->hr_task; 1797 reg->hr_task = NULL; 1798 spin_unlock(&o2hb_live_lock); 1799 1800 if (hb_task) 1801 kthread_stop(hb_task); 1802 goto out; 1803 } 1804 1805 /* Ok, we were woken. Make sure it wasn't by drop_item() */ 1806 spin_lock(&o2hb_live_lock); 1807 hb_task = reg->hr_task; 1808 if (o2hb_global_heartbeat_active()) 1809 set_bit(reg->hr_region_num, o2hb_live_region_bitmap); 1810 spin_unlock(&o2hb_live_lock); 1811 1812 if (hb_task) 1813 ret = count; 1814 else 1815 ret = -EIO; 1816 1817 if (hb_task && o2hb_global_heartbeat_active()) 1818 printk(KERN_NOTICE "o2hb: Heartbeat started on region %s\n", 1819 config_item_name(®->hr_item)); 1820 1821 out: 1822 if (filp) 1823 fput(filp); 1824 if (inode) 1825 iput(inode); 1826 if (ret < 0) { 1827 if (reg->hr_bdev) { 1828 blkdev_put(reg->hr_bdev, FMODE_READ|FMODE_WRITE); 1829 reg->hr_bdev = NULL; 1830 } 1831 } 1832 return ret; 1833 } 1834 1835 static ssize_t o2hb_region_pid_read(struct o2hb_region *reg, 1836 char *page) 1837 { 1838 pid_t pid = 0; 1839 1840 spin_lock(&o2hb_live_lock); 1841 if (reg->hr_task) 1842 pid = task_pid_nr(reg->hr_task); 1843 spin_unlock(&o2hb_live_lock); 1844 1845 if (!pid) 1846 return 0; 1847 1848 return sprintf(page, "%u\n", pid); 1849 } 1850 1851 struct o2hb_region_attribute { 1852 struct configfs_attribute attr; 1853 ssize_t (*show)(struct o2hb_region *, char *); 1854 ssize_t (*store)(struct o2hb_region *, const char *, size_t); 1855 }; 1856 1857 static struct o2hb_region_attribute o2hb_region_attr_block_bytes = { 1858 .attr = { .ca_owner = THIS_MODULE, 1859 .ca_name = "block_bytes", 1860 .ca_mode = S_IRUGO | S_IWUSR }, 1861 .show = o2hb_region_block_bytes_read, 1862 .store = o2hb_region_block_bytes_write, 1863 }; 1864 1865 static struct o2hb_region_attribute o2hb_region_attr_start_block = { 1866 .attr = { .ca_owner = THIS_MODULE, 1867 .ca_name = "start_block", 1868 .ca_mode = S_IRUGO | S_IWUSR }, 1869 .show = o2hb_region_start_block_read, 1870 .store = o2hb_region_start_block_write, 1871 }; 1872 1873 static struct o2hb_region_attribute o2hb_region_attr_blocks = { 1874 .attr = { .ca_owner = THIS_MODULE, 1875 .ca_name = "blocks", 1876 .ca_mode = S_IRUGO | S_IWUSR }, 1877 .show = o2hb_region_blocks_read, 1878 .store = o2hb_region_blocks_write, 1879 }; 1880 1881 static struct o2hb_region_attribute o2hb_region_attr_dev = { 1882 .attr = { .ca_owner = THIS_MODULE, 1883 .ca_name = "dev", 1884 .ca_mode = S_IRUGO | S_IWUSR }, 1885 .show = o2hb_region_dev_read, 1886 .store = o2hb_region_dev_write, 1887 }; 1888 1889 static struct o2hb_region_attribute o2hb_region_attr_pid = { 1890 .attr = { .ca_owner = THIS_MODULE, 1891 .ca_name = "pid", 1892 .ca_mode = S_IRUGO | S_IRUSR }, 1893 .show = o2hb_region_pid_read, 1894 }; 1895 1896 static struct configfs_attribute *o2hb_region_attrs[] = { 1897 &o2hb_region_attr_block_bytes.attr, 1898 &o2hb_region_attr_start_block.attr, 1899 &o2hb_region_attr_blocks.attr, 1900 &o2hb_region_attr_dev.attr, 1901 &o2hb_region_attr_pid.attr, 1902 NULL, 1903 }; 1904 1905 static ssize_t o2hb_region_show(struct config_item *item, 1906 struct configfs_attribute *attr, 1907 char *page) 1908 { 1909 struct o2hb_region *reg = to_o2hb_region(item); 1910 struct o2hb_region_attribute *o2hb_region_attr = 1911 container_of(attr, struct o2hb_region_attribute, attr); 1912 ssize_t ret = 0; 1913 1914 if (o2hb_region_attr->show) 1915 ret = o2hb_region_attr->show(reg, page); 1916 return ret; 1917 } 1918 1919 static ssize_t o2hb_region_store(struct config_item *item, 1920 struct configfs_attribute *attr, 1921 const char *page, size_t count) 1922 { 1923 struct o2hb_region *reg = to_o2hb_region(item); 1924 struct o2hb_region_attribute *o2hb_region_attr = 1925 container_of(attr, struct o2hb_region_attribute, attr); 1926 ssize_t ret = -EINVAL; 1927 1928 if (o2hb_region_attr->store) 1929 ret = o2hb_region_attr->store(reg, page, count); 1930 return ret; 1931 } 1932 1933 static struct configfs_item_operations o2hb_region_item_ops = { 1934 .release = o2hb_region_release, 1935 .show_attribute = o2hb_region_show, 1936 .store_attribute = o2hb_region_store, 1937 }; 1938 1939 static struct config_item_type o2hb_region_type = { 1940 .ct_item_ops = &o2hb_region_item_ops, 1941 .ct_attrs = o2hb_region_attrs, 1942 .ct_owner = THIS_MODULE, 1943 }; 1944 1945 /* heartbeat set */ 1946 1947 struct o2hb_heartbeat_group { 1948 struct config_group hs_group; 1949 /* some stuff? */ 1950 }; 1951 1952 static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group) 1953 { 1954 return group ? 1955 container_of(group, struct o2hb_heartbeat_group, hs_group) 1956 : NULL; 1957 } 1958 1959 static int o2hb_debug_region_init(struct o2hb_region *reg, struct dentry *dir) 1960 { 1961 int ret = -ENOMEM; 1962 1963 reg->hr_debug_dir = 1964 debugfs_create_dir(config_item_name(®->hr_item), dir); 1965 if (!reg->hr_debug_dir) { 1966 mlog_errno(ret); 1967 goto bail; 1968 } 1969 1970 reg->hr_debug_livenodes = 1971 o2hb_debug_create(O2HB_DEBUG_LIVENODES, 1972 reg->hr_debug_dir, 1973 &(reg->hr_db_livenodes), 1974 sizeof(*(reg->hr_db_livenodes)), 1975 O2HB_DB_TYPE_REGION_LIVENODES, 1976 sizeof(reg->hr_live_node_bitmap), 1977 O2NM_MAX_NODES, reg); 1978 if (!reg->hr_debug_livenodes) { 1979 mlog_errno(ret); 1980 goto bail; 1981 } 1982 1983 reg->hr_debug_regnum = 1984 o2hb_debug_create(O2HB_DEBUG_REGION_NUMBER, 1985 reg->hr_debug_dir, 1986 &(reg->hr_db_regnum), 1987 sizeof(*(reg->hr_db_regnum)), 1988 O2HB_DB_TYPE_REGION_NUMBER, 1989 0, O2NM_MAX_NODES, reg); 1990 if (!reg->hr_debug_regnum) { 1991 mlog_errno(ret); 1992 goto bail; 1993 } 1994 1995 reg->hr_debug_elapsed_time = 1996 o2hb_debug_create(O2HB_DEBUG_REGION_ELAPSED_TIME, 1997 reg->hr_debug_dir, 1998 &(reg->hr_db_elapsed_time), 1999 sizeof(*(reg->hr_db_elapsed_time)), 2000 O2HB_DB_TYPE_REGION_ELAPSED_TIME, 2001 0, 0, reg); 2002 if (!reg->hr_debug_elapsed_time) { 2003 mlog_errno(ret); 2004 goto bail; 2005 } 2006 2007 reg->hr_debug_pinned = 2008 o2hb_debug_create(O2HB_DEBUG_REGION_PINNED, 2009 reg->hr_debug_dir, 2010 &(reg->hr_db_pinned), 2011 sizeof(*(reg->hr_db_pinned)), 2012 O2HB_DB_TYPE_REGION_PINNED, 2013 0, 0, reg); 2014 if (!reg->hr_debug_pinned) { 2015 mlog_errno(ret); 2016 goto bail; 2017 } 2018 2019 ret = 0; 2020 bail: 2021 return ret; 2022 } 2023 2024 static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group, 2025 const char *name) 2026 { 2027 struct o2hb_region *reg = NULL; 2028 int ret; 2029 2030 reg = kzalloc(sizeof(struct o2hb_region), GFP_KERNEL); 2031 if (reg == NULL) 2032 return ERR_PTR(-ENOMEM); 2033 2034 if (strlen(name) > O2HB_MAX_REGION_NAME_LEN) { 2035 ret = -ENAMETOOLONG; 2036 goto free; 2037 } 2038 2039 spin_lock(&o2hb_live_lock); 2040 reg->hr_region_num = 0; 2041 if (o2hb_global_heartbeat_active()) { 2042 reg->hr_region_num = find_first_zero_bit(o2hb_region_bitmap, 2043 O2NM_MAX_REGIONS); 2044 if (reg->hr_region_num >= O2NM_MAX_REGIONS) { 2045 spin_unlock(&o2hb_live_lock); 2046 ret = -EFBIG; 2047 goto free; 2048 } 2049 set_bit(reg->hr_region_num, o2hb_region_bitmap); 2050 } 2051 list_add_tail(®->hr_all_item, &o2hb_all_regions); 2052 spin_unlock(&o2hb_live_lock); 2053 2054 config_item_init_type_name(®->hr_item, name, &o2hb_region_type); 2055 2056 ret = o2hb_debug_region_init(reg, o2hb_debug_dir); 2057 if (ret) { 2058 config_item_put(®->hr_item); 2059 goto free; 2060 } 2061 2062 return ®->hr_item; 2063 free: 2064 kfree(reg); 2065 return ERR_PTR(ret); 2066 } 2067 2068 static void o2hb_heartbeat_group_drop_item(struct config_group *group, 2069 struct config_item *item) 2070 { 2071 struct task_struct *hb_task; 2072 struct o2hb_region *reg = to_o2hb_region(item); 2073 int quorum_region = 0; 2074 2075 /* stop the thread when the user removes the region dir */ 2076 spin_lock(&o2hb_live_lock); 2077 if (o2hb_global_heartbeat_active()) { 2078 clear_bit(reg->hr_region_num, o2hb_region_bitmap); 2079 clear_bit(reg->hr_region_num, o2hb_live_region_bitmap); 2080 if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap)) 2081 quorum_region = 1; 2082 clear_bit(reg->hr_region_num, o2hb_quorum_region_bitmap); 2083 } 2084 hb_task = reg->hr_task; 2085 reg->hr_task = NULL; 2086 reg->hr_item_dropped = 1; 2087 spin_unlock(&o2hb_live_lock); 2088 2089 if (hb_task) 2090 kthread_stop(hb_task); 2091 2092 /* 2093 * If we're racing a dev_write(), we need to wake them. They will 2094 * check reg->hr_task 2095 */ 2096 if (atomic_read(®->hr_steady_iterations) != 0) { 2097 atomic_set(®->hr_steady_iterations, 0); 2098 wake_up(&o2hb_steady_queue); 2099 } 2100 2101 if (o2hb_global_heartbeat_active()) 2102 printk(KERN_NOTICE "o2hb: Heartbeat stopped on region %s\n", 2103 config_item_name(®->hr_item)); 2104 2105 config_item_put(item); 2106 2107 if (!o2hb_global_heartbeat_active() || !quorum_region) 2108 return; 2109 2110 /* 2111 * If global heartbeat active and there are dependent users, 2112 * pin all regions if quorum region count <= CUT_OFF 2113 */ 2114 spin_lock(&o2hb_live_lock); 2115 2116 if (!o2hb_dependent_users) 2117 goto unlock; 2118 2119 if (o2hb_pop_count(&o2hb_quorum_region_bitmap, 2120 O2NM_MAX_REGIONS) <= O2HB_PIN_CUT_OFF) 2121 o2hb_region_pin(NULL); 2122 2123 unlock: 2124 spin_unlock(&o2hb_live_lock); 2125 } 2126 2127 struct o2hb_heartbeat_group_attribute { 2128 struct configfs_attribute attr; 2129 ssize_t (*show)(struct o2hb_heartbeat_group *, char *); 2130 ssize_t (*store)(struct o2hb_heartbeat_group *, const char *, size_t); 2131 }; 2132 2133 static ssize_t o2hb_heartbeat_group_show(struct config_item *item, 2134 struct configfs_attribute *attr, 2135 char *page) 2136 { 2137 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item)); 2138 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr = 2139 container_of(attr, struct o2hb_heartbeat_group_attribute, attr); 2140 ssize_t ret = 0; 2141 2142 if (o2hb_heartbeat_group_attr->show) 2143 ret = o2hb_heartbeat_group_attr->show(reg, page); 2144 return ret; 2145 } 2146 2147 static ssize_t o2hb_heartbeat_group_store(struct config_item *item, 2148 struct configfs_attribute *attr, 2149 const char *page, size_t count) 2150 { 2151 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item)); 2152 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr = 2153 container_of(attr, struct o2hb_heartbeat_group_attribute, attr); 2154 ssize_t ret = -EINVAL; 2155 2156 if (o2hb_heartbeat_group_attr->store) 2157 ret = o2hb_heartbeat_group_attr->store(reg, page, count); 2158 return ret; 2159 } 2160 2161 static ssize_t o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group *group, 2162 char *page) 2163 { 2164 return sprintf(page, "%u\n", o2hb_dead_threshold); 2165 } 2166 2167 static ssize_t o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group *group, 2168 const char *page, 2169 size_t count) 2170 { 2171 unsigned long tmp; 2172 char *p = (char *)page; 2173 2174 tmp = simple_strtoul(p, &p, 10); 2175 if (!p || (*p && (*p != '\n'))) 2176 return -EINVAL; 2177 2178 /* this will validate ranges for us. */ 2179 o2hb_dead_threshold_set((unsigned int) tmp); 2180 2181 return count; 2182 } 2183 2184 static 2185 ssize_t o2hb_heartbeat_group_mode_show(struct o2hb_heartbeat_group *group, 2186 char *page) 2187 { 2188 return sprintf(page, "%s\n", 2189 o2hb_heartbeat_mode_desc[o2hb_heartbeat_mode]); 2190 } 2191 2192 static 2193 ssize_t o2hb_heartbeat_group_mode_store(struct o2hb_heartbeat_group *group, 2194 const char *page, size_t count) 2195 { 2196 unsigned int i; 2197 int ret; 2198 size_t len; 2199 2200 len = (page[count - 1] == '\n') ? count - 1 : count; 2201 if (!len) 2202 return -EINVAL; 2203 2204 for (i = 0; i < O2HB_HEARTBEAT_NUM_MODES; ++i) { 2205 if (strnicmp(page, o2hb_heartbeat_mode_desc[i], len)) 2206 continue; 2207 2208 ret = o2hb_global_hearbeat_mode_set(i); 2209 if (!ret) 2210 printk(KERN_NOTICE "o2hb: Heartbeat mode set to %s\n", 2211 o2hb_heartbeat_mode_desc[i]); 2212 return count; 2213 } 2214 2215 return -EINVAL; 2216 2217 } 2218 2219 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold = { 2220 .attr = { .ca_owner = THIS_MODULE, 2221 .ca_name = "dead_threshold", 2222 .ca_mode = S_IRUGO | S_IWUSR }, 2223 .show = o2hb_heartbeat_group_threshold_show, 2224 .store = o2hb_heartbeat_group_threshold_store, 2225 }; 2226 2227 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_mode = { 2228 .attr = { .ca_owner = THIS_MODULE, 2229 .ca_name = "mode", 2230 .ca_mode = S_IRUGO | S_IWUSR }, 2231 .show = o2hb_heartbeat_group_mode_show, 2232 .store = o2hb_heartbeat_group_mode_store, 2233 }; 2234 2235 static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = { 2236 &o2hb_heartbeat_group_attr_threshold.attr, 2237 &o2hb_heartbeat_group_attr_mode.attr, 2238 NULL, 2239 }; 2240 2241 static struct configfs_item_operations o2hb_hearbeat_group_item_ops = { 2242 .show_attribute = o2hb_heartbeat_group_show, 2243 .store_attribute = o2hb_heartbeat_group_store, 2244 }; 2245 2246 static struct configfs_group_operations o2hb_heartbeat_group_group_ops = { 2247 .make_item = o2hb_heartbeat_group_make_item, 2248 .drop_item = o2hb_heartbeat_group_drop_item, 2249 }; 2250 2251 static struct config_item_type o2hb_heartbeat_group_type = { 2252 .ct_group_ops = &o2hb_heartbeat_group_group_ops, 2253 .ct_item_ops = &o2hb_hearbeat_group_item_ops, 2254 .ct_attrs = o2hb_heartbeat_group_attrs, 2255 .ct_owner = THIS_MODULE, 2256 }; 2257 2258 /* this is just here to avoid touching group in heartbeat.h which the 2259 * entire damn world #includes */ 2260 struct config_group *o2hb_alloc_hb_set(void) 2261 { 2262 struct o2hb_heartbeat_group *hs = NULL; 2263 struct config_group *ret = NULL; 2264 2265 hs = kzalloc(sizeof(struct o2hb_heartbeat_group), GFP_KERNEL); 2266 if (hs == NULL) 2267 goto out; 2268 2269 config_group_init_type_name(&hs->hs_group, "heartbeat", 2270 &o2hb_heartbeat_group_type); 2271 2272 ret = &hs->hs_group; 2273 out: 2274 if (ret == NULL) 2275 kfree(hs); 2276 return ret; 2277 } 2278 2279 void o2hb_free_hb_set(struct config_group *group) 2280 { 2281 struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group); 2282 kfree(hs); 2283 } 2284 2285 /* hb callback registration and issueing */ 2286 2287 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type) 2288 { 2289 if (type == O2HB_NUM_CB) 2290 return ERR_PTR(-EINVAL); 2291 2292 return &o2hb_callbacks[type]; 2293 } 2294 2295 void o2hb_setup_callback(struct o2hb_callback_func *hc, 2296 enum o2hb_callback_type type, 2297 o2hb_cb_func *func, 2298 void *data, 2299 int priority) 2300 { 2301 INIT_LIST_HEAD(&hc->hc_item); 2302 hc->hc_func = func; 2303 hc->hc_data = data; 2304 hc->hc_priority = priority; 2305 hc->hc_type = type; 2306 hc->hc_magic = O2HB_CB_MAGIC; 2307 } 2308 EXPORT_SYMBOL_GPL(o2hb_setup_callback); 2309 2310 /* 2311 * In local heartbeat mode, region_uuid passed matches the dlm domain name. 2312 * In global heartbeat mode, region_uuid passed is NULL. 2313 * 2314 * In local, we only pin the matching region. In global we pin all the active 2315 * regions. 2316 */ 2317 static int o2hb_region_pin(const char *region_uuid) 2318 { 2319 int ret = 0, found = 0; 2320 struct o2hb_region *reg; 2321 char *uuid; 2322 2323 assert_spin_locked(&o2hb_live_lock); 2324 2325 list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) { 2326 uuid = config_item_name(®->hr_item); 2327 2328 /* local heartbeat */ 2329 if (region_uuid) { 2330 if (strcmp(region_uuid, uuid)) 2331 continue; 2332 found = 1; 2333 } 2334 2335 if (reg->hr_item_pinned || reg->hr_item_dropped) 2336 goto skip_pin; 2337 2338 /* Ignore ENOENT only for local hb (userdlm domain) */ 2339 ret = o2nm_depend_item(®->hr_item); 2340 if (!ret) { 2341 mlog(ML_CLUSTER, "Pin region %s\n", uuid); 2342 reg->hr_item_pinned = 1; 2343 } else { 2344 if (ret == -ENOENT && found) 2345 ret = 0; 2346 else { 2347 mlog(ML_ERROR, "Pin region %s fails with %d\n", 2348 uuid, ret); 2349 break; 2350 } 2351 } 2352 skip_pin: 2353 if (found) 2354 break; 2355 } 2356 2357 return ret; 2358 } 2359 2360 /* 2361 * In local heartbeat mode, region_uuid passed matches the dlm domain name. 2362 * In global heartbeat mode, region_uuid passed is NULL. 2363 * 2364 * In local, we only unpin the matching region. In global we unpin all the 2365 * active regions. 2366 */ 2367 static void o2hb_region_unpin(const char *region_uuid) 2368 { 2369 struct o2hb_region *reg; 2370 char *uuid; 2371 int found = 0; 2372 2373 assert_spin_locked(&o2hb_live_lock); 2374 2375 list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) { 2376 uuid = config_item_name(®->hr_item); 2377 if (region_uuid) { 2378 if (strcmp(region_uuid, uuid)) 2379 continue; 2380 found = 1; 2381 } 2382 2383 if (reg->hr_item_pinned) { 2384 mlog(ML_CLUSTER, "Unpin region %s\n", uuid); 2385 o2nm_undepend_item(®->hr_item); 2386 reg->hr_item_pinned = 0; 2387 } 2388 if (found) 2389 break; 2390 } 2391 } 2392 2393 static int o2hb_region_inc_user(const char *region_uuid) 2394 { 2395 int ret = 0; 2396 2397 spin_lock(&o2hb_live_lock); 2398 2399 /* local heartbeat */ 2400 if (!o2hb_global_heartbeat_active()) { 2401 ret = o2hb_region_pin(region_uuid); 2402 goto unlock; 2403 } 2404 2405 /* 2406 * if global heartbeat active and this is the first dependent user, 2407 * pin all regions if quorum region count <= CUT_OFF 2408 */ 2409 o2hb_dependent_users++; 2410 if (o2hb_dependent_users > 1) 2411 goto unlock; 2412 2413 if (o2hb_pop_count(&o2hb_quorum_region_bitmap, 2414 O2NM_MAX_REGIONS) <= O2HB_PIN_CUT_OFF) 2415 ret = o2hb_region_pin(NULL); 2416 2417 unlock: 2418 spin_unlock(&o2hb_live_lock); 2419 return ret; 2420 } 2421 2422 void o2hb_region_dec_user(const char *region_uuid) 2423 { 2424 spin_lock(&o2hb_live_lock); 2425 2426 /* local heartbeat */ 2427 if (!o2hb_global_heartbeat_active()) { 2428 o2hb_region_unpin(region_uuid); 2429 goto unlock; 2430 } 2431 2432 /* 2433 * if global heartbeat active and there are no dependent users, 2434 * unpin all quorum regions 2435 */ 2436 o2hb_dependent_users--; 2437 if (!o2hb_dependent_users) 2438 o2hb_region_unpin(NULL); 2439 2440 unlock: 2441 spin_unlock(&o2hb_live_lock); 2442 } 2443 2444 int o2hb_register_callback(const char *region_uuid, 2445 struct o2hb_callback_func *hc) 2446 { 2447 struct o2hb_callback_func *tmp; 2448 struct list_head *iter; 2449 struct o2hb_callback *hbcall; 2450 int ret; 2451 2452 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC); 2453 BUG_ON(!list_empty(&hc->hc_item)); 2454 2455 hbcall = hbcall_from_type(hc->hc_type); 2456 if (IS_ERR(hbcall)) { 2457 ret = PTR_ERR(hbcall); 2458 goto out; 2459 } 2460 2461 if (region_uuid) { 2462 ret = o2hb_region_inc_user(region_uuid); 2463 if (ret) { 2464 mlog_errno(ret); 2465 goto out; 2466 } 2467 } 2468 2469 down_write(&o2hb_callback_sem); 2470 2471 list_for_each(iter, &hbcall->list) { 2472 tmp = list_entry(iter, struct o2hb_callback_func, hc_item); 2473 if (hc->hc_priority < tmp->hc_priority) { 2474 list_add_tail(&hc->hc_item, iter); 2475 break; 2476 } 2477 } 2478 if (list_empty(&hc->hc_item)) 2479 list_add_tail(&hc->hc_item, &hbcall->list); 2480 2481 up_write(&o2hb_callback_sem); 2482 ret = 0; 2483 out: 2484 mlog(ML_CLUSTER, "returning %d on behalf of %p for funcs %p\n", 2485 ret, __builtin_return_address(0), hc); 2486 return ret; 2487 } 2488 EXPORT_SYMBOL_GPL(o2hb_register_callback); 2489 2490 void o2hb_unregister_callback(const char *region_uuid, 2491 struct o2hb_callback_func *hc) 2492 { 2493 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC); 2494 2495 mlog(ML_CLUSTER, "on behalf of %p for funcs %p\n", 2496 __builtin_return_address(0), hc); 2497 2498 /* XXX Can this happen _with_ a region reference? */ 2499 if (list_empty(&hc->hc_item)) 2500 return; 2501 2502 if (region_uuid) 2503 o2hb_region_dec_user(region_uuid); 2504 2505 down_write(&o2hb_callback_sem); 2506 2507 list_del_init(&hc->hc_item); 2508 2509 up_write(&o2hb_callback_sem); 2510 } 2511 EXPORT_SYMBOL_GPL(o2hb_unregister_callback); 2512 2513 int o2hb_check_node_heartbeating(u8 node_num) 2514 { 2515 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)]; 2516 2517 o2hb_fill_node_map(testing_map, sizeof(testing_map)); 2518 if (!test_bit(node_num, testing_map)) { 2519 mlog(ML_HEARTBEAT, 2520 "node (%u) does not have heartbeating enabled.\n", 2521 node_num); 2522 return 0; 2523 } 2524 2525 return 1; 2526 } 2527 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating); 2528 2529 int o2hb_check_node_heartbeating_from_callback(u8 node_num) 2530 { 2531 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)]; 2532 2533 o2hb_fill_node_map_from_callback(testing_map, sizeof(testing_map)); 2534 if (!test_bit(node_num, testing_map)) { 2535 mlog(ML_HEARTBEAT, 2536 "node (%u) does not have heartbeating enabled.\n", 2537 node_num); 2538 return 0; 2539 } 2540 2541 return 1; 2542 } 2543 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback); 2544 2545 /* Makes sure our local node is configured with a node number, and is 2546 * heartbeating. */ 2547 int o2hb_check_local_node_heartbeating(void) 2548 { 2549 u8 node_num; 2550 2551 /* if this node was set then we have networking */ 2552 node_num = o2nm_this_node(); 2553 if (node_num == O2NM_MAX_NODES) { 2554 mlog(ML_HEARTBEAT, "this node has not been configured.\n"); 2555 return 0; 2556 } 2557 2558 return o2hb_check_node_heartbeating(node_num); 2559 } 2560 EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating); 2561 2562 /* 2563 * this is just a hack until we get the plumbing which flips file systems 2564 * read only and drops the hb ref instead of killing the node dead. 2565 */ 2566 void o2hb_stop_all_regions(void) 2567 { 2568 struct o2hb_region *reg; 2569 2570 mlog(ML_ERROR, "stopping heartbeat on all active regions.\n"); 2571 2572 spin_lock(&o2hb_live_lock); 2573 2574 list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) 2575 reg->hr_unclean_stop = 1; 2576 2577 spin_unlock(&o2hb_live_lock); 2578 } 2579 EXPORT_SYMBOL_GPL(o2hb_stop_all_regions); 2580 2581 int o2hb_get_all_regions(char *region_uuids, u8 max_regions) 2582 { 2583 struct o2hb_region *reg; 2584 int numregs = 0; 2585 char *p; 2586 2587 spin_lock(&o2hb_live_lock); 2588 2589 p = region_uuids; 2590 list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) { 2591 mlog(0, "Region: %s\n", config_item_name(®->hr_item)); 2592 if (numregs < max_regions) { 2593 memcpy(p, config_item_name(®->hr_item), 2594 O2HB_MAX_REGION_NAME_LEN); 2595 p += O2HB_MAX_REGION_NAME_LEN; 2596 } 2597 numregs++; 2598 } 2599 2600 spin_unlock(&o2hb_live_lock); 2601 2602 return numregs; 2603 } 2604 EXPORT_SYMBOL_GPL(o2hb_get_all_regions); 2605 2606 int o2hb_global_heartbeat_active(void) 2607 { 2608 return (o2hb_heartbeat_mode == O2HB_HEARTBEAT_GLOBAL); 2609 } 2610 EXPORT_SYMBOL(o2hb_global_heartbeat_active); 2611