xref: /openbmc/linux/fs/ocfs2/cluster/heartbeat.c (revision a09d2831)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2004, 2005 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/jiffies.h>
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/bio.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/file.h>
31 #include <linux/kthread.h>
32 #include <linux/configfs.h>
33 #include <linux/random.h>
34 #include <linux/crc32.h>
35 #include <linux/time.h>
36 #include <linux/debugfs.h>
37 
38 #include "heartbeat.h"
39 #include "tcp.h"
40 #include "nodemanager.h"
41 #include "quorum.h"
42 
43 #include "masklog.h"
44 
45 
46 /*
47  * The first heartbeat pass had one global thread that would serialize all hb
48  * callback calls.  This global serializing sem should only be removed once
49  * we've made sure that all callees can deal with being called concurrently
50  * from multiple hb region threads.
51  */
52 static DECLARE_RWSEM(o2hb_callback_sem);
53 
54 /*
55  * multiple hb threads are watching multiple regions.  A node is live
56  * whenever any of the threads sees activity from the node in its region.
57  */
58 static DEFINE_SPINLOCK(o2hb_live_lock);
59 static struct list_head o2hb_live_slots[O2NM_MAX_NODES];
60 static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
61 static LIST_HEAD(o2hb_node_events);
62 static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue);
63 
64 #define O2HB_DEBUG_DIR			"o2hb"
65 #define O2HB_DEBUG_LIVENODES		"livenodes"
66 static struct dentry *o2hb_debug_dir;
67 static struct dentry *o2hb_debug_livenodes;
68 
69 static LIST_HEAD(o2hb_all_regions);
70 
71 static struct o2hb_callback {
72 	struct list_head list;
73 } o2hb_callbacks[O2HB_NUM_CB];
74 
75 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type);
76 
77 #define O2HB_DEFAULT_BLOCK_BITS       9
78 
79 unsigned int o2hb_dead_threshold = O2HB_DEFAULT_DEAD_THRESHOLD;
80 
81 /* Only sets a new threshold if there are no active regions.
82  *
83  * No locking or otherwise interesting code is required for reading
84  * o2hb_dead_threshold as it can't change once regions are active and
85  * it's not interesting to anyone until then anyway. */
86 static void o2hb_dead_threshold_set(unsigned int threshold)
87 {
88 	if (threshold > O2HB_MIN_DEAD_THRESHOLD) {
89 		spin_lock(&o2hb_live_lock);
90 		if (list_empty(&o2hb_all_regions))
91 			o2hb_dead_threshold = threshold;
92 		spin_unlock(&o2hb_live_lock);
93 	}
94 }
95 
96 struct o2hb_node_event {
97 	struct list_head        hn_item;
98 	enum o2hb_callback_type hn_event_type;
99 	struct o2nm_node        *hn_node;
100 	int                     hn_node_num;
101 };
102 
103 struct o2hb_disk_slot {
104 	struct o2hb_disk_heartbeat_block *ds_raw_block;
105 	u8			ds_node_num;
106 	u64			ds_last_time;
107 	u64			ds_last_generation;
108 	u16			ds_equal_samples;
109 	u16			ds_changed_samples;
110 	struct list_head	ds_live_item;
111 };
112 
113 /* each thread owns a region.. when we're asked to tear down the region
114  * we ask the thread to stop, who cleans up the region */
115 struct o2hb_region {
116 	struct config_item	hr_item;
117 
118 	struct list_head	hr_all_item;
119 	unsigned		hr_unclean_stop:1;
120 
121 	/* protected by the hr_callback_sem */
122 	struct task_struct 	*hr_task;
123 
124 	unsigned int		hr_blocks;
125 	unsigned long long	hr_start_block;
126 
127 	unsigned int		hr_block_bits;
128 	unsigned int		hr_block_bytes;
129 
130 	unsigned int		hr_slots_per_page;
131 	unsigned int		hr_num_pages;
132 
133 	struct page             **hr_slot_data;
134 	struct block_device	*hr_bdev;
135 	struct o2hb_disk_slot	*hr_slots;
136 
137 	/* let the person setting up hb wait for it to return until it
138 	 * has reached a 'steady' state.  This will be fixed when we have
139 	 * a more complete api that doesn't lead to this sort of fragility. */
140 	atomic_t		hr_steady_iterations;
141 
142 	char			hr_dev_name[BDEVNAME_SIZE];
143 
144 	unsigned int		hr_timeout_ms;
145 
146 	/* randomized as the region goes up and down so that a node
147 	 * recognizes a node going up and down in one iteration */
148 	u64			hr_generation;
149 
150 	struct delayed_work	hr_write_timeout_work;
151 	unsigned long		hr_last_timeout_start;
152 
153 	/* Used during o2hb_check_slot to hold a copy of the block
154 	 * being checked because we temporarily have to zero out the
155 	 * crc field. */
156 	struct o2hb_disk_heartbeat_block *hr_tmp_block;
157 };
158 
159 struct o2hb_bio_wait_ctxt {
160 	atomic_t          wc_num_reqs;
161 	struct completion wc_io_complete;
162 	int               wc_error;
163 };
164 
165 static void o2hb_write_timeout(struct work_struct *work)
166 {
167 	struct o2hb_region *reg =
168 		container_of(work, struct o2hb_region,
169 			     hr_write_timeout_work.work);
170 
171 	mlog(ML_ERROR, "Heartbeat write timeout to device %s after %u "
172 	     "milliseconds\n", reg->hr_dev_name,
173 	     jiffies_to_msecs(jiffies - reg->hr_last_timeout_start));
174 	o2quo_disk_timeout();
175 }
176 
177 static void o2hb_arm_write_timeout(struct o2hb_region *reg)
178 {
179 	mlog(ML_HEARTBEAT, "Queue write timeout for %u ms\n",
180 	     O2HB_MAX_WRITE_TIMEOUT_MS);
181 
182 	cancel_delayed_work(&reg->hr_write_timeout_work);
183 	reg->hr_last_timeout_start = jiffies;
184 	schedule_delayed_work(&reg->hr_write_timeout_work,
185 			      msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS));
186 }
187 
188 static void o2hb_disarm_write_timeout(struct o2hb_region *reg)
189 {
190 	cancel_delayed_work(&reg->hr_write_timeout_work);
191 	flush_scheduled_work();
192 }
193 
194 static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc)
195 {
196 	atomic_set(&wc->wc_num_reqs, 1);
197 	init_completion(&wc->wc_io_complete);
198 	wc->wc_error = 0;
199 }
200 
201 /* Used in error paths too */
202 static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc,
203 				     unsigned int num)
204 {
205 	/* sadly atomic_sub_and_test() isn't available on all platforms.  The
206 	 * good news is that the fast path only completes one at a time */
207 	while(num--) {
208 		if (atomic_dec_and_test(&wc->wc_num_reqs)) {
209 			BUG_ON(num > 0);
210 			complete(&wc->wc_io_complete);
211 		}
212 	}
213 }
214 
215 static void o2hb_wait_on_io(struct o2hb_region *reg,
216 			    struct o2hb_bio_wait_ctxt *wc)
217 {
218 	struct address_space *mapping = reg->hr_bdev->bd_inode->i_mapping;
219 
220 	blk_run_address_space(mapping);
221 	o2hb_bio_wait_dec(wc, 1);
222 
223 	wait_for_completion(&wc->wc_io_complete);
224 }
225 
226 static void o2hb_bio_end_io(struct bio *bio,
227 			   int error)
228 {
229 	struct o2hb_bio_wait_ctxt *wc = bio->bi_private;
230 
231 	if (error) {
232 		mlog(ML_ERROR, "IO Error %d\n", error);
233 		wc->wc_error = error;
234 	}
235 
236 	o2hb_bio_wait_dec(wc, 1);
237 	bio_put(bio);
238 }
239 
240 /* Setup a Bio to cover I/O against num_slots slots starting at
241  * start_slot. */
242 static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg,
243 				      struct o2hb_bio_wait_ctxt *wc,
244 				      unsigned int *current_slot,
245 				      unsigned int max_slots)
246 {
247 	int len, current_page;
248 	unsigned int vec_len, vec_start;
249 	unsigned int bits = reg->hr_block_bits;
250 	unsigned int spp = reg->hr_slots_per_page;
251 	unsigned int cs = *current_slot;
252 	struct bio *bio;
253 	struct page *page;
254 
255 	/* Testing has shown this allocation to take long enough under
256 	 * GFP_KERNEL that the local node can get fenced. It would be
257 	 * nicest if we could pre-allocate these bios and avoid this
258 	 * all together. */
259 	bio = bio_alloc(GFP_ATOMIC, 16);
260 	if (!bio) {
261 		mlog(ML_ERROR, "Could not alloc slots BIO!\n");
262 		bio = ERR_PTR(-ENOMEM);
263 		goto bail;
264 	}
265 
266 	/* Must put everything in 512 byte sectors for the bio... */
267 	bio->bi_sector = (reg->hr_start_block + cs) << (bits - 9);
268 	bio->bi_bdev = reg->hr_bdev;
269 	bio->bi_private = wc;
270 	bio->bi_end_io = o2hb_bio_end_io;
271 
272 	vec_start = (cs << bits) % PAGE_CACHE_SIZE;
273 	while(cs < max_slots) {
274 		current_page = cs / spp;
275 		page = reg->hr_slot_data[current_page];
276 
277 		vec_len = min(PAGE_CACHE_SIZE - vec_start,
278 			      (max_slots-cs) * (PAGE_CACHE_SIZE/spp) );
279 
280 		mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n",
281 		     current_page, vec_len, vec_start);
282 
283 		len = bio_add_page(bio, page, vec_len, vec_start);
284 		if (len != vec_len) break;
285 
286 		cs += vec_len / (PAGE_CACHE_SIZE/spp);
287 		vec_start = 0;
288 	}
289 
290 bail:
291 	*current_slot = cs;
292 	return bio;
293 }
294 
295 static int o2hb_read_slots(struct o2hb_region *reg,
296 			   unsigned int max_slots)
297 {
298 	unsigned int current_slot=0;
299 	int status;
300 	struct o2hb_bio_wait_ctxt wc;
301 	struct bio *bio;
302 
303 	o2hb_bio_wait_init(&wc);
304 
305 	while(current_slot < max_slots) {
306 		bio = o2hb_setup_one_bio(reg, &wc, &current_slot, max_slots);
307 		if (IS_ERR(bio)) {
308 			status = PTR_ERR(bio);
309 			mlog_errno(status);
310 			goto bail_and_wait;
311 		}
312 
313 		atomic_inc(&wc.wc_num_reqs);
314 		submit_bio(READ, bio);
315 	}
316 
317 	status = 0;
318 
319 bail_and_wait:
320 	o2hb_wait_on_io(reg, &wc);
321 	if (wc.wc_error && !status)
322 		status = wc.wc_error;
323 
324 	return status;
325 }
326 
327 static int o2hb_issue_node_write(struct o2hb_region *reg,
328 				 struct o2hb_bio_wait_ctxt *write_wc)
329 {
330 	int status;
331 	unsigned int slot;
332 	struct bio *bio;
333 
334 	o2hb_bio_wait_init(write_wc);
335 
336 	slot = o2nm_this_node();
337 
338 	bio = o2hb_setup_one_bio(reg, write_wc, &slot, slot+1);
339 	if (IS_ERR(bio)) {
340 		status = PTR_ERR(bio);
341 		mlog_errno(status);
342 		goto bail;
343 	}
344 
345 	atomic_inc(&write_wc->wc_num_reqs);
346 	submit_bio(WRITE, bio);
347 
348 	status = 0;
349 bail:
350 	return status;
351 }
352 
353 static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg,
354 				     struct o2hb_disk_heartbeat_block *hb_block)
355 {
356 	__le32 old_cksum;
357 	u32 ret;
358 
359 	/* We want to compute the block crc with a 0 value in the
360 	 * hb_cksum field. Save it off here and replace after the
361 	 * crc. */
362 	old_cksum = hb_block->hb_cksum;
363 	hb_block->hb_cksum = 0;
364 
365 	ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes);
366 
367 	hb_block->hb_cksum = old_cksum;
368 
369 	return ret;
370 }
371 
372 static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block)
373 {
374 	mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, "
375 	     "cksum = 0x%x, generation 0x%llx\n",
376 	     (long long)le64_to_cpu(hb_block->hb_seq),
377 	     hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum),
378 	     (long long)le64_to_cpu(hb_block->hb_generation));
379 }
380 
381 static int o2hb_verify_crc(struct o2hb_region *reg,
382 			   struct o2hb_disk_heartbeat_block *hb_block)
383 {
384 	u32 read, computed;
385 
386 	read = le32_to_cpu(hb_block->hb_cksum);
387 	computed = o2hb_compute_block_crc_le(reg, hb_block);
388 
389 	return read == computed;
390 }
391 
392 /* We want to make sure that nobody is heartbeating on top of us --
393  * this will help detect an invalid configuration. */
394 static int o2hb_check_last_timestamp(struct o2hb_region *reg)
395 {
396 	int node_num, ret;
397 	struct o2hb_disk_slot *slot;
398 	struct o2hb_disk_heartbeat_block *hb_block;
399 
400 	node_num = o2nm_this_node();
401 
402 	ret = 1;
403 	slot = &reg->hr_slots[node_num];
404 	/* Don't check on our 1st timestamp */
405 	if (slot->ds_last_time) {
406 		hb_block = slot->ds_raw_block;
407 
408 		if (le64_to_cpu(hb_block->hb_seq) != slot->ds_last_time)
409 			ret = 0;
410 	}
411 
412 	return ret;
413 }
414 
415 static inline void o2hb_prepare_block(struct o2hb_region *reg,
416 				      u64 generation)
417 {
418 	int node_num;
419 	u64 cputime;
420 	struct o2hb_disk_slot *slot;
421 	struct o2hb_disk_heartbeat_block *hb_block;
422 
423 	node_num = o2nm_this_node();
424 	slot = &reg->hr_slots[node_num];
425 
426 	hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block;
427 	memset(hb_block, 0, reg->hr_block_bytes);
428 	/* TODO: time stuff */
429 	cputime = CURRENT_TIME.tv_sec;
430 	if (!cputime)
431 		cputime = 1;
432 
433 	hb_block->hb_seq = cpu_to_le64(cputime);
434 	hb_block->hb_node = node_num;
435 	hb_block->hb_generation = cpu_to_le64(generation);
436 	hb_block->hb_dead_ms = cpu_to_le32(o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS);
437 
438 	/* This step must always happen last! */
439 	hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg,
440 								   hb_block));
441 
442 	mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n",
443 	     (long long)generation,
444 	     le32_to_cpu(hb_block->hb_cksum));
445 }
446 
447 static void o2hb_fire_callbacks(struct o2hb_callback *hbcall,
448 				struct o2nm_node *node,
449 				int idx)
450 {
451 	struct list_head *iter;
452 	struct o2hb_callback_func *f;
453 
454 	list_for_each(iter, &hbcall->list) {
455 		f = list_entry(iter, struct o2hb_callback_func, hc_item);
456 		mlog(ML_HEARTBEAT, "calling funcs %p\n", f);
457 		(f->hc_func)(node, idx, f->hc_data);
458 	}
459 }
460 
461 /* Will run the list in order until we process the passed event */
462 static void o2hb_run_event_list(struct o2hb_node_event *queued_event)
463 {
464 	int empty;
465 	struct o2hb_callback *hbcall;
466 	struct o2hb_node_event *event;
467 
468 	spin_lock(&o2hb_live_lock);
469 	empty = list_empty(&queued_event->hn_item);
470 	spin_unlock(&o2hb_live_lock);
471 	if (empty)
472 		return;
473 
474 	/* Holding callback sem assures we don't alter the callback
475 	 * lists when doing this, and serializes ourselves with other
476 	 * processes wanting callbacks. */
477 	down_write(&o2hb_callback_sem);
478 
479 	spin_lock(&o2hb_live_lock);
480 	while (!list_empty(&o2hb_node_events)
481 	       && !list_empty(&queued_event->hn_item)) {
482 		event = list_entry(o2hb_node_events.next,
483 				   struct o2hb_node_event,
484 				   hn_item);
485 		list_del_init(&event->hn_item);
486 		spin_unlock(&o2hb_live_lock);
487 
488 		mlog(ML_HEARTBEAT, "Node %s event for %d\n",
489 		     event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN",
490 		     event->hn_node_num);
491 
492 		hbcall = hbcall_from_type(event->hn_event_type);
493 
494 		/* We should *never* have gotten on to the list with a
495 		 * bad type... This isn't something that we should try
496 		 * to recover from. */
497 		BUG_ON(IS_ERR(hbcall));
498 
499 		o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num);
500 
501 		spin_lock(&o2hb_live_lock);
502 	}
503 	spin_unlock(&o2hb_live_lock);
504 
505 	up_write(&o2hb_callback_sem);
506 }
507 
508 static void o2hb_queue_node_event(struct o2hb_node_event *event,
509 				  enum o2hb_callback_type type,
510 				  struct o2nm_node *node,
511 				  int node_num)
512 {
513 	assert_spin_locked(&o2hb_live_lock);
514 
515 	event->hn_event_type = type;
516 	event->hn_node = node;
517 	event->hn_node_num = node_num;
518 
519 	mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n",
520 	     type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num);
521 
522 	list_add_tail(&event->hn_item, &o2hb_node_events);
523 }
524 
525 static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot)
526 {
527 	struct o2hb_node_event event =
528 		{ .hn_item = LIST_HEAD_INIT(event.hn_item), };
529 	struct o2nm_node *node;
530 
531 	node = o2nm_get_node_by_num(slot->ds_node_num);
532 	if (!node)
533 		return;
534 
535 	spin_lock(&o2hb_live_lock);
536 	if (!list_empty(&slot->ds_live_item)) {
537 		mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n",
538 		     slot->ds_node_num);
539 
540 		list_del_init(&slot->ds_live_item);
541 
542 		if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
543 			clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
544 
545 			o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
546 					      slot->ds_node_num);
547 		}
548 	}
549 	spin_unlock(&o2hb_live_lock);
550 
551 	o2hb_run_event_list(&event);
552 
553 	o2nm_node_put(node);
554 }
555 
556 static int o2hb_check_slot(struct o2hb_region *reg,
557 			   struct o2hb_disk_slot *slot)
558 {
559 	int changed = 0, gen_changed = 0;
560 	struct o2hb_node_event event =
561 		{ .hn_item = LIST_HEAD_INIT(event.hn_item), };
562 	struct o2nm_node *node;
563 	struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block;
564 	u64 cputime;
565 	unsigned int dead_ms = o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS;
566 	unsigned int slot_dead_ms;
567 
568 	memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes);
569 
570 	/* Is this correct? Do we assume that the node doesn't exist
571 	 * if we're not configured for him? */
572 	node = o2nm_get_node_by_num(slot->ds_node_num);
573 	if (!node)
574 		return 0;
575 
576 	if (!o2hb_verify_crc(reg, hb_block)) {
577 		/* all paths from here will drop o2hb_live_lock for
578 		 * us. */
579 		spin_lock(&o2hb_live_lock);
580 
581 		/* Don't print an error on the console in this case -
582 		 * a freshly formatted heartbeat area will not have a
583 		 * crc set on it. */
584 		if (list_empty(&slot->ds_live_item))
585 			goto out;
586 
587 		/* The node is live but pushed out a bad crc. We
588 		 * consider it a transient miss but don't populate any
589 		 * other values as they may be junk. */
590 		mlog(ML_ERROR, "Node %d has written a bad crc to %s\n",
591 		     slot->ds_node_num, reg->hr_dev_name);
592 		o2hb_dump_slot(hb_block);
593 
594 		slot->ds_equal_samples++;
595 		goto fire_callbacks;
596 	}
597 
598 	/* we don't care if these wrap.. the state transitions below
599 	 * clear at the right places */
600 	cputime = le64_to_cpu(hb_block->hb_seq);
601 	if (slot->ds_last_time != cputime)
602 		slot->ds_changed_samples++;
603 	else
604 		slot->ds_equal_samples++;
605 	slot->ds_last_time = cputime;
606 
607 	/* The node changed heartbeat generations. We assume this to
608 	 * mean it dropped off but came back before we timed out. We
609 	 * want to consider it down for the time being but don't want
610 	 * to lose any changed_samples state we might build up to
611 	 * considering it live again. */
612 	if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) {
613 		gen_changed = 1;
614 		slot->ds_equal_samples = 0;
615 		mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx "
616 		     "to 0x%llx)\n", slot->ds_node_num,
617 		     (long long)slot->ds_last_generation,
618 		     (long long)le64_to_cpu(hb_block->hb_generation));
619 	}
620 
621 	slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
622 
623 	mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x "
624 	     "seq %llu last %llu changed %u equal %u\n",
625 	     slot->ds_node_num, (long long)slot->ds_last_generation,
626 	     le32_to_cpu(hb_block->hb_cksum),
627 	     (unsigned long long)le64_to_cpu(hb_block->hb_seq),
628 	     (unsigned long long)slot->ds_last_time, slot->ds_changed_samples,
629 	     slot->ds_equal_samples);
630 
631 	spin_lock(&o2hb_live_lock);
632 
633 fire_callbacks:
634 	/* dead nodes only come to life after some number of
635 	 * changes at any time during their dead time */
636 	if (list_empty(&slot->ds_live_item) &&
637 	    slot->ds_changed_samples >= O2HB_LIVE_THRESHOLD) {
638 		mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n",
639 		     slot->ds_node_num, (long long)slot->ds_last_generation);
640 
641 		/* first on the list generates a callback */
642 		if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
643 			set_bit(slot->ds_node_num, o2hb_live_node_bitmap);
644 
645 			o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node,
646 					      slot->ds_node_num);
647 
648 			changed = 1;
649 		}
650 
651 		list_add_tail(&slot->ds_live_item,
652 			      &o2hb_live_slots[slot->ds_node_num]);
653 
654 		slot->ds_equal_samples = 0;
655 
656 		/* We want to be sure that all nodes agree on the
657 		 * number of milliseconds before a node will be
658 		 * considered dead. The self-fencing timeout is
659 		 * computed from this value, and a discrepancy might
660 		 * result in heartbeat calling a node dead when it
661 		 * hasn't self-fenced yet. */
662 		slot_dead_ms = le32_to_cpu(hb_block->hb_dead_ms);
663 		if (slot_dead_ms && slot_dead_ms != dead_ms) {
664 			/* TODO: Perhaps we can fail the region here. */
665 			mlog(ML_ERROR, "Node %d on device %s has a dead count "
666 			     "of %u ms, but our count is %u ms.\n"
667 			     "Please double check your configuration values "
668 			     "for 'O2CB_HEARTBEAT_THRESHOLD'\n",
669 			     slot->ds_node_num, reg->hr_dev_name, slot_dead_ms,
670 			     dead_ms);
671 		}
672 		goto out;
673 	}
674 
675 	/* if the list is dead, we're done.. */
676 	if (list_empty(&slot->ds_live_item))
677 		goto out;
678 
679 	/* live nodes only go dead after enough consequtive missed
680 	 * samples..  reset the missed counter whenever we see
681 	 * activity */
682 	if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) {
683 		mlog(ML_HEARTBEAT, "Node %d left my region\n",
684 		     slot->ds_node_num);
685 
686 		/* last off the live_slot generates a callback */
687 		list_del_init(&slot->ds_live_item);
688 		if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
689 			clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
690 
691 			o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
692 					      slot->ds_node_num);
693 
694 			changed = 1;
695 		}
696 
697 		/* We don't clear this because the node is still
698 		 * actually writing new blocks. */
699 		if (!gen_changed)
700 			slot->ds_changed_samples = 0;
701 		goto out;
702 	}
703 	if (slot->ds_changed_samples) {
704 		slot->ds_changed_samples = 0;
705 		slot->ds_equal_samples = 0;
706 	}
707 out:
708 	spin_unlock(&o2hb_live_lock);
709 
710 	o2hb_run_event_list(&event);
711 
712 	o2nm_node_put(node);
713 	return changed;
714 }
715 
716 /* This could be faster if we just implmented a find_last_bit, but I
717  * don't think the circumstances warrant it. */
718 static int o2hb_highest_node(unsigned long *nodes,
719 			     int numbits)
720 {
721 	int highest, node;
722 
723 	highest = numbits;
724 	node = -1;
725 	while ((node = find_next_bit(nodes, numbits, node + 1)) != -1) {
726 		if (node >= numbits)
727 			break;
728 
729 		highest = node;
730 	}
731 
732 	return highest;
733 }
734 
735 static int o2hb_do_disk_heartbeat(struct o2hb_region *reg)
736 {
737 	int i, ret, highest_node, change = 0;
738 	unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)];
739 	struct o2hb_bio_wait_ctxt write_wc;
740 
741 	ret = o2nm_configured_node_map(configured_nodes,
742 				       sizeof(configured_nodes));
743 	if (ret) {
744 		mlog_errno(ret);
745 		return ret;
746 	}
747 
748 	highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES);
749 	if (highest_node >= O2NM_MAX_NODES) {
750 		mlog(ML_NOTICE, "ocfs2_heartbeat: no configured nodes found!\n");
751 		return -EINVAL;
752 	}
753 
754 	/* No sense in reading the slots of nodes that don't exist
755 	 * yet. Of course, if the node definitions have holes in them
756 	 * then we're reading an empty slot anyway... Consider this
757 	 * best-effort. */
758 	ret = o2hb_read_slots(reg, highest_node + 1);
759 	if (ret < 0) {
760 		mlog_errno(ret);
761 		return ret;
762 	}
763 
764 	/* With an up to date view of the slots, we can check that no
765 	 * other node has been improperly configured to heartbeat in
766 	 * our slot. */
767 	if (!o2hb_check_last_timestamp(reg))
768 		mlog(ML_ERROR, "Device \"%s\": another node is heartbeating "
769 		     "in our slot!\n", reg->hr_dev_name);
770 
771 	/* fill in the proper info for our next heartbeat */
772 	o2hb_prepare_block(reg, reg->hr_generation);
773 
774 	/* And fire off the write. Note that we don't wait on this I/O
775 	 * until later. */
776 	ret = o2hb_issue_node_write(reg, &write_wc);
777 	if (ret < 0) {
778 		mlog_errno(ret);
779 		return ret;
780 	}
781 
782 	i = -1;
783 	while((i = find_next_bit(configured_nodes, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
784 
785 		change |= o2hb_check_slot(reg, &reg->hr_slots[i]);
786 	}
787 
788 	/*
789 	 * We have to be sure we've advertised ourselves on disk
790 	 * before we can go to steady state.  This ensures that
791 	 * people we find in our steady state have seen us.
792 	 */
793 	o2hb_wait_on_io(reg, &write_wc);
794 	if (write_wc.wc_error) {
795 		/* Do not re-arm the write timeout on I/O error - we
796 		 * can't be sure that the new block ever made it to
797 		 * disk */
798 		mlog(ML_ERROR, "Write error %d on device \"%s\"\n",
799 		     write_wc.wc_error, reg->hr_dev_name);
800 		return write_wc.wc_error;
801 	}
802 
803 	o2hb_arm_write_timeout(reg);
804 
805 	/* let the person who launched us know when things are steady */
806 	if (!change && (atomic_read(&reg->hr_steady_iterations) != 0)) {
807 		if (atomic_dec_and_test(&reg->hr_steady_iterations))
808 			wake_up(&o2hb_steady_queue);
809 	}
810 
811 	return 0;
812 }
813 
814 /* Subtract b from a, storing the result in a. a *must* have a larger
815  * value than b. */
816 static void o2hb_tv_subtract(struct timeval *a,
817 			     struct timeval *b)
818 {
819 	/* just return 0 when a is after b */
820 	if (a->tv_sec < b->tv_sec ||
821 	    (a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec)) {
822 		a->tv_sec = 0;
823 		a->tv_usec = 0;
824 		return;
825 	}
826 
827 	a->tv_sec -= b->tv_sec;
828 	a->tv_usec -= b->tv_usec;
829 	while ( a->tv_usec < 0 ) {
830 		a->tv_sec--;
831 		a->tv_usec += 1000000;
832 	}
833 }
834 
835 static unsigned int o2hb_elapsed_msecs(struct timeval *start,
836 				       struct timeval *end)
837 {
838 	struct timeval res = *end;
839 
840 	o2hb_tv_subtract(&res, start);
841 
842 	return res.tv_sec * 1000 + res.tv_usec / 1000;
843 }
844 
845 /*
846  * we ride the region ref that the region dir holds.  before the region
847  * dir is removed and drops it ref it will wait to tear down this
848  * thread.
849  */
850 static int o2hb_thread(void *data)
851 {
852 	int i, ret;
853 	struct o2hb_region *reg = data;
854 	struct o2hb_bio_wait_ctxt write_wc;
855 	struct timeval before_hb, after_hb;
856 	unsigned int elapsed_msec;
857 
858 	mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n");
859 
860 	set_user_nice(current, -20);
861 
862 	while (!kthread_should_stop() && !reg->hr_unclean_stop) {
863 		/* We track the time spent inside
864 		 * o2hb_do_disk_heartbeat so that we avoid more than
865 		 * hr_timeout_ms between disk writes. On busy systems
866 		 * this should result in a heartbeat which is less
867 		 * likely to time itself out. */
868 		do_gettimeofday(&before_hb);
869 
870 		i = 0;
871 		do {
872 			ret = o2hb_do_disk_heartbeat(reg);
873 		} while (ret && ++i < 2);
874 
875 		do_gettimeofday(&after_hb);
876 		elapsed_msec = o2hb_elapsed_msecs(&before_hb, &after_hb);
877 
878 		mlog(ML_HEARTBEAT,
879 		     "start = %lu.%lu, end = %lu.%lu, msec = %u\n",
880 		     before_hb.tv_sec, (unsigned long) before_hb.tv_usec,
881 		     after_hb.tv_sec, (unsigned long) after_hb.tv_usec,
882 		     elapsed_msec);
883 
884 		if (elapsed_msec < reg->hr_timeout_ms) {
885 			/* the kthread api has blocked signals for us so no
886 			 * need to record the return value. */
887 			msleep_interruptible(reg->hr_timeout_ms - elapsed_msec);
888 		}
889 	}
890 
891 	o2hb_disarm_write_timeout(reg);
892 
893 	/* unclean stop is only used in very bad situation */
894 	for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++)
895 		o2hb_shutdown_slot(&reg->hr_slots[i]);
896 
897 	/* Explicit down notification - avoid forcing the other nodes
898 	 * to timeout on this region when we could just as easily
899 	 * write a clear generation - thus indicating to them that
900 	 * this node has left this region.
901 	 *
902 	 * XXX: Should we skip this on unclean_stop? */
903 	o2hb_prepare_block(reg, 0);
904 	ret = o2hb_issue_node_write(reg, &write_wc);
905 	if (ret == 0) {
906 		o2hb_wait_on_io(reg, &write_wc);
907 	} else {
908 		mlog_errno(ret);
909 	}
910 
911 	mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread exiting\n");
912 
913 	return 0;
914 }
915 
916 #ifdef CONFIG_DEBUG_FS
917 static int o2hb_debug_open(struct inode *inode, struct file *file)
918 {
919 	unsigned long map[BITS_TO_LONGS(O2NM_MAX_NODES)];
920 	char *buf = NULL;
921 	int i = -1;
922 	int out = 0;
923 
924 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
925 	if (!buf)
926 		goto bail;
927 
928 	o2hb_fill_node_map(map, sizeof(map));
929 
930 	while ((i = find_next_bit(map, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES)
931 		out += snprintf(buf + out, PAGE_SIZE - out, "%d ", i);
932 	out += snprintf(buf + out, PAGE_SIZE - out, "\n");
933 
934 	i_size_write(inode, out);
935 
936 	file->private_data = buf;
937 
938 	return 0;
939 bail:
940 	return -ENOMEM;
941 }
942 
943 static int o2hb_debug_release(struct inode *inode, struct file *file)
944 {
945 	kfree(file->private_data);
946 	return 0;
947 }
948 
949 static ssize_t o2hb_debug_read(struct file *file, char __user *buf,
950 				 size_t nbytes, loff_t *ppos)
951 {
952 	return simple_read_from_buffer(buf, nbytes, ppos, file->private_data,
953 				       i_size_read(file->f_mapping->host));
954 }
955 #else
956 static int o2hb_debug_open(struct inode *inode, struct file *file)
957 {
958 	return 0;
959 }
960 static int o2hb_debug_release(struct inode *inode, struct file *file)
961 {
962 	return 0;
963 }
964 static ssize_t o2hb_debug_read(struct file *file, char __user *buf,
965 			       size_t nbytes, loff_t *ppos)
966 {
967 	return 0;
968 }
969 #endif  /* CONFIG_DEBUG_FS */
970 
971 static const struct file_operations o2hb_debug_fops = {
972 	.open =		o2hb_debug_open,
973 	.release =	o2hb_debug_release,
974 	.read =		o2hb_debug_read,
975 	.llseek =	generic_file_llseek,
976 };
977 
978 void o2hb_exit(void)
979 {
980 	if (o2hb_debug_livenodes)
981 		debugfs_remove(o2hb_debug_livenodes);
982 	if (o2hb_debug_dir)
983 		debugfs_remove(o2hb_debug_dir);
984 }
985 
986 int o2hb_init(void)
987 {
988 	int i;
989 
990 	for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++)
991 		INIT_LIST_HEAD(&o2hb_callbacks[i].list);
992 
993 	for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++)
994 		INIT_LIST_HEAD(&o2hb_live_slots[i]);
995 
996 	INIT_LIST_HEAD(&o2hb_node_events);
997 
998 	memset(o2hb_live_node_bitmap, 0, sizeof(o2hb_live_node_bitmap));
999 
1000 	o2hb_debug_dir = debugfs_create_dir(O2HB_DEBUG_DIR, NULL);
1001 	if (!o2hb_debug_dir) {
1002 		mlog_errno(-ENOMEM);
1003 		return -ENOMEM;
1004 	}
1005 
1006 	o2hb_debug_livenodes = debugfs_create_file(O2HB_DEBUG_LIVENODES,
1007 						   S_IFREG|S_IRUSR,
1008 						   o2hb_debug_dir, NULL,
1009 						   &o2hb_debug_fops);
1010 	if (!o2hb_debug_livenodes) {
1011 		mlog_errno(-ENOMEM);
1012 		debugfs_remove(o2hb_debug_dir);
1013 		return -ENOMEM;
1014 	}
1015 
1016 	return 0;
1017 }
1018 
1019 /* if we're already in a callback then we're already serialized by the sem */
1020 static void o2hb_fill_node_map_from_callback(unsigned long *map,
1021 					     unsigned bytes)
1022 {
1023 	BUG_ON(bytes < (BITS_TO_LONGS(O2NM_MAX_NODES) * sizeof(unsigned long)));
1024 
1025 	memcpy(map, &o2hb_live_node_bitmap, bytes);
1026 }
1027 
1028 /*
1029  * get a map of all nodes that are heartbeating in any regions
1030  */
1031 void o2hb_fill_node_map(unsigned long *map, unsigned bytes)
1032 {
1033 	/* callers want to serialize this map and callbacks so that they
1034 	 * can trust that they don't miss nodes coming to the party */
1035 	down_read(&o2hb_callback_sem);
1036 	spin_lock(&o2hb_live_lock);
1037 	o2hb_fill_node_map_from_callback(map, bytes);
1038 	spin_unlock(&o2hb_live_lock);
1039 	up_read(&o2hb_callback_sem);
1040 }
1041 EXPORT_SYMBOL_GPL(o2hb_fill_node_map);
1042 
1043 /*
1044  * heartbeat configfs bits.  The heartbeat set is a default set under
1045  * the cluster set in nodemanager.c.
1046  */
1047 
1048 static struct o2hb_region *to_o2hb_region(struct config_item *item)
1049 {
1050 	return item ? container_of(item, struct o2hb_region, hr_item) : NULL;
1051 }
1052 
1053 /* drop_item only drops its ref after killing the thread, nothing should
1054  * be using the region anymore.  this has to clean up any state that
1055  * attributes might have built up. */
1056 static void o2hb_region_release(struct config_item *item)
1057 {
1058 	int i;
1059 	struct page *page;
1060 	struct o2hb_region *reg = to_o2hb_region(item);
1061 
1062 	if (reg->hr_tmp_block)
1063 		kfree(reg->hr_tmp_block);
1064 
1065 	if (reg->hr_slot_data) {
1066 		for (i = 0; i < reg->hr_num_pages; i++) {
1067 			page = reg->hr_slot_data[i];
1068 			if (page)
1069 				__free_page(page);
1070 		}
1071 		kfree(reg->hr_slot_data);
1072 	}
1073 
1074 	if (reg->hr_bdev)
1075 		blkdev_put(reg->hr_bdev, FMODE_READ|FMODE_WRITE);
1076 
1077 	if (reg->hr_slots)
1078 		kfree(reg->hr_slots);
1079 
1080 	spin_lock(&o2hb_live_lock);
1081 	list_del(&reg->hr_all_item);
1082 	spin_unlock(&o2hb_live_lock);
1083 
1084 	kfree(reg);
1085 }
1086 
1087 static int o2hb_read_block_input(struct o2hb_region *reg,
1088 				 const char *page,
1089 				 size_t count,
1090 				 unsigned long *ret_bytes,
1091 				 unsigned int *ret_bits)
1092 {
1093 	unsigned long bytes;
1094 	char *p = (char *)page;
1095 
1096 	bytes = simple_strtoul(p, &p, 0);
1097 	if (!p || (*p && (*p != '\n')))
1098 		return -EINVAL;
1099 
1100 	/* Heartbeat and fs min / max block sizes are the same. */
1101 	if (bytes > 4096 || bytes < 512)
1102 		return -ERANGE;
1103 	if (hweight16(bytes) != 1)
1104 		return -EINVAL;
1105 
1106 	if (ret_bytes)
1107 		*ret_bytes = bytes;
1108 	if (ret_bits)
1109 		*ret_bits = ffs(bytes) - 1;
1110 
1111 	return 0;
1112 }
1113 
1114 static ssize_t o2hb_region_block_bytes_read(struct o2hb_region *reg,
1115 					    char *page)
1116 {
1117 	return sprintf(page, "%u\n", reg->hr_block_bytes);
1118 }
1119 
1120 static ssize_t o2hb_region_block_bytes_write(struct o2hb_region *reg,
1121 					     const char *page,
1122 					     size_t count)
1123 {
1124 	int status;
1125 	unsigned long block_bytes;
1126 	unsigned int block_bits;
1127 
1128 	if (reg->hr_bdev)
1129 		return -EINVAL;
1130 
1131 	status = o2hb_read_block_input(reg, page, count,
1132 				       &block_bytes, &block_bits);
1133 	if (status)
1134 		return status;
1135 
1136 	reg->hr_block_bytes = (unsigned int)block_bytes;
1137 	reg->hr_block_bits = block_bits;
1138 
1139 	return count;
1140 }
1141 
1142 static ssize_t o2hb_region_start_block_read(struct o2hb_region *reg,
1143 					    char *page)
1144 {
1145 	return sprintf(page, "%llu\n", reg->hr_start_block);
1146 }
1147 
1148 static ssize_t o2hb_region_start_block_write(struct o2hb_region *reg,
1149 					     const char *page,
1150 					     size_t count)
1151 {
1152 	unsigned long long tmp;
1153 	char *p = (char *)page;
1154 
1155 	if (reg->hr_bdev)
1156 		return -EINVAL;
1157 
1158 	tmp = simple_strtoull(p, &p, 0);
1159 	if (!p || (*p && (*p != '\n')))
1160 		return -EINVAL;
1161 
1162 	reg->hr_start_block = tmp;
1163 
1164 	return count;
1165 }
1166 
1167 static ssize_t o2hb_region_blocks_read(struct o2hb_region *reg,
1168 				       char *page)
1169 {
1170 	return sprintf(page, "%d\n", reg->hr_blocks);
1171 }
1172 
1173 static ssize_t o2hb_region_blocks_write(struct o2hb_region *reg,
1174 					const char *page,
1175 					size_t count)
1176 {
1177 	unsigned long tmp;
1178 	char *p = (char *)page;
1179 
1180 	if (reg->hr_bdev)
1181 		return -EINVAL;
1182 
1183 	tmp = simple_strtoul(p, &p, 0);
1184 	if (!p || (*p && (*p != '\n')))
1185 		return -EINVAL;
1186 
1187 	if (tmp > O2NM_MAX_NODES || tmp == 0)
1188 		return -ERANGE;
1189 
1190 	reg->hr_blocks = (unsigned int)tmp;
1191 
1192 	return count;
1193 }
1194 
1195 static ssize_t o2hb_region_dev_read(struct o2hb_region *reg,
1196 				    char *page)
1197 {
1198 	unsigned int ret = 0;
1199 
1200 	if (reg->hr_bdev)
1201 		ret = sprintf(page, "%s\n", reg->hr_dev_name);
1202 
1203 	return ret;
1204 }
1205 
1206 static void o2hb_init_region_params(struct o2hb_region *reg)
1207 {
1208 	reg->hr_slots_per_page = PAGE_CACHE_SIZE >> reg->hr_block_bits;
1209 	reg->hr_timeout_ms = O2HB_REGION_TIMEOUT_MS;
1210 
1211 	mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n",
1212 	     reg->hr_start_block, reg->hr_blocks);
1213 	mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n",
1214 	     reg->hr_block_bytes, reg->hr_block_bits);
1215 	mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms);
1216 	mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold);
1217 }
1218 
1219 static int o2hb_map_slot_data(struct o2hb_region *reg)
1220 {
1221 	int i, j;
1222 	unsigned int last_slot;
1223 	unsigned int spp = reg->hr_slots_per_page;
1224 	struct page *page;
1225 	char *raw;
1226 	struct o2hb_disk_slot *slot;
1227 
1228 	reg->hr_tmp_block = kmalloc(reg->hr_block_bytes, GFP_KERNEL);
1229 	if (reg->hr_tmp_block == NULL) {
1230 		mlog_errno(-ENOMEM);
1231 		return -ENOMEM;
1232 	}
1233 
1234 	reg->hr_slots = kcalloc(reg->hr_blocks,
1235 				sizeof(struct o2hb_disk_slot), GFP_KERNEL);
1236 	if (reg->hr_slots == NULL) {
1237 		mlog_errno(-ENOMEM);
1238 		return -ENOMEM;
1239 	}
1240 
1241 	for(i = 0; i < reg->hr_blocks; i++) {
1242 		slot = &reg->hr_slots[i];
1243 		slot->ds_node_num = i;
1244 		INIT_LIST_HEAD(&slot->ds_live_item);
1245 		slot->ds_raw_block = NULL;
1246 	}
1247 
1248 	reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp;
1249 	mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks "
1250 			   "at %u blocks per page\n",
1251 	     reg->hr_num_pages, reg->hr_blocks, spp);
1252 
1253 	reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *),
1254 				    GFP_KERNEL);
1255 	if (!reg->hr_slot_data) {
1256 		mlog_errno(-ENOMEM);
1257 		return -ENOMEM;
1258 	}
1259 
1260 	for(i = 0; i < reg->hr_num_pages; i++) {
1261 		page = alloc_page(GFP_KERNEL);
1262 		if (!page) {
1263 			mlog_errno(-ENOMEM);
1264 			return -ENOMEM;
1265 		}
1266 
1267 		reg->hr_slot_data[i] = page;
1268 
1269 		last_slot = i * spp;
1270 		raw = page_address(page);
1271 		for (j = 0;
1272 		     (j < spp) && ((j + last_slot) < reg->hr_blocks);
1273 		     j++) {
1274 			BUG_ON((j + last_slot) >= reg->hr_blocks);
1275 
1276 			slot = &reg->hr_slots[j + last_slot];
1277 			slot->ds_raw_block =
1278 				(struct o2hb_disk_heartbeat_block *) raw;
1279 
1280 			raw += reg->hr_block_bytes;
1281 		}
1282 	}
1283 
1284 	return 0;
1285 }
1286 
1287 /* Read in all the slots available and populate the tracking
1288  * structures so that we can start with a baseline idea of what's
1289  * there. */
1290 static int o2hb_populate_slot_data(struct o2hb_region *reg)
1291 {
1292 	int ret, i;
1293 	struct o2hb_disk_slot *slot;
1294 	struct o2hb_disk_heartbeat_block *hb_block;
1295 
1296 	mlog_entry_void();
1297 
1298 	ret = o2hb_read_slots(reg, reg->hr_blocks);
1299 	if (ret) {
1300 		mlog_errno(ret);
1301 		goto out;
1302 	}
1303 
1304 	/* We only want to get an idea of the values initially in each
1305 	 * slot, so we do no verification - o2hb_check_slot will
1306 	 * actually determine if each configured slot is valid and
1307 	 * whether any values have changed. */
1308 	for(i = 0; i < reg->hr_blocks; i++) {
1309 		slot = &reg->hr_slots[i];
1310 		hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block;
1311 
1312 		/* Only fill the values that o2hb_check_slot uses to
1313 		 * determine changing slots */
1314 		slot->ds_last_time = le64_to_cpu(hb_block->hb_seq);
1315 		slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
1316 	}
1317 
1318 out:
1319 	mlog_exit(ret);
1320 	return ret;
1321 }
1322 
1323 /* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */
1324 static ssize_t o2hb_region_dev_write(struct o2hb_region *reg,
1325 				     const char *page,
1326 				     size_t count)
1327 {
1328 	struct task_struct *hb_task;
1329 	long fd;
1330 	int sectsize;
1331 	char *p = (char *)page;
1332 	struct file *filp = NULL;
1333 	struct inode *inode = NULL;
1334 	ssize_t ret = -EINVAL;
1335 
1336 	if (reg->hr_bdev)
1337 		goto out;
1338 
1339 	/* We can't heartbeat without having had our node number
1340 	 * configured yet. */
1341 	if (o2nm_this_node() == O2NM_MAX_NODES)
1342 		goto out;
1343 
1344 	fd = simple_strtol(p, &p, 0);
1345 	if (!p || (*p && (*p != '\n')))
1346 		goto out;
1347 
1348 	if (fd < 0 || fd >= INT_MAX)
1349 		goto out;
1350 
1351 	filp = fget(fd);
1352 	if (filp == NULL)
1353 		goto out;
1354 
1355 	if (reg->hr_blocks == 0 || reg->hr_start_block == 0 ||
1356 	    reg->hr_block_bytes == 0)
1357 		goto out;
1358 
1359 	inode = igrab(filp->f_mapping->host);
1360 	if (inode == NULL)
1361 		goto out;
1362 
1363 	if (!S_ISBLK(inode->i_mode))
1364 		goto out;
1365 
1366 	reg->hr_bdev = I_BDEV(filp->f_mapping->host);
1367 	ret = blkdev_get(reg->hr_bdev, FMODE_WRITE | FMODE_READ);
1368 	if (ret) {
1369 		reg->hr_bdev = NULL;
1370 		goto out;
1371 	}
1372 	inode = NULL;
1373 
1374 	bdevname(reg->hr_bdev, reg->hr_dev_name);
1375 
1376 	sectsize = bdev_logical_block_size(reg->hr_bdev);
1377 	if (sectsize != reg->hr_block_bytes) {
1378 		mlog(ML_ERROR,
1379 		     "blocksize %u incorrect for device, expected %d",
1380 		     reg->hr_block_bytes, sectsize);
1381 		ret = -EINVAL;
1382 		goto out;
1383 	}
1384 
1385 	o2hb_init_region_params(reg);
1386 
1387 	/* Generation of zero is invalid */
1388 	do {
1389 		get_random_bytes(&reg->hr_generation,
1390 				 sizeof(reg->hr_generation));
1391 	} while (reg->hr_generation == 0);
1392 
1393 	ret = o2hb_map_slot_data(reg);
1394 	if (ret) {
1395 		mlog_errno(ret);
1396 		goto out;
1397 	}
1398 
1399 	ret = o2hb_populate_slot_data(reg);
1400 	if (ret) {
1401 		mlog_errno(ret);
1402 		goto out;
1403 	}
1404 
1405 	INIT_DELAYED_WORK(&reg->hr_write_timeout_work, o2hb_write_timeout);
1406 
1407 	/*
1408 	 * A node is considered live after it has beat LIVE_THRESHOLD
1409 	 * times.  We're not steady until we've given them a chance
1410 	 * _after_ our first read.
1411 	 */
1412 	atomic_set(&reg->hr_steady_iterations, O2HB_LIVE_THRESHOLD + 1);
1413 
1414 	hb_task = kthread_run(o2hb_thread, reg, "o2hb-%s",
1415 			      reg->hr_item.ci_name);
1416 	if (IS_ERR(hb_task)) {
1417 		ret = PTR_ERR(hb_task);
1418 		mlog_errno(ret);
1419 		goto out;
1420 	}
1421 
1422 	spin_lock(&o2hb_live_lock);
1423 	reg->hr_task = hb_task;
1424 	spin_unlock(&o2hb_live_lock);
1425 
1426 	ret = wait_event_interruptible(o2hb_steady_queue,
1427 				atomic_read(&reg->hr_steady_iterations) == 0);
1428 	if (ret) {
1429 		/* We got interrupted (hello ptrace!).  Clean up */
1430 		spin_lock(&o2hb_live_lock);
1431 		hb_task = reg->hr_task;
1432 		reg->hr_task = NULL;
1433 		spin_unlock(&o2hb_live_lock);
1434 
1435 		if (hb_task)
1436 			kthread_stop(hb_task);
1437 		goto out;
1438 	}
1439 
1440 	/* Ok, we were woken.  Make sure it wasn't by drop_item() */
1441 	spin_lock(&o2hb_live_lock);
1442 	hb_task = reg->hr_task;
1443 	spin_unlock(&o2hb_live_lock);
1444 
1445 	if (hb_task)
1446 		ret = count;
1447 	else
1448 		ret = -EIO;
1449 
1450 out:
1451 	if (filp)
1452 		fput(filp);
1453 	if (inode)
1454 		iput(inode);
1455 	if (ret < 0) {
1456 		if (reg->hr_bdev) {
1457 			blkdev_put(reg->hr_bdev, FMODE_READ|FMODE_WRITE);
1458 			reg->hr_bdev = NULL;
1459 		}
1460 	}
1461 	return ret;
1462 }
1463 
1464 static ssize_t o2hb_region_pid_read(struct o2hb_region *reg,
1465                                       char *page)
1466 {
1467 	pid_t pid = 0;
1468 
1469 	spin_lock(&o2hb_live_lock);
1470 	if (reg->hr_task)
1471 		pid = task_pid_nr(reg->hr_task);
1472 	spin_unlock(&o2hb_live_lock);
1473 
1474 	if (!pid)
1475 		return 0;
1476 
1477 	return sprintf(page, "%u\n", pid);
1478 }
1479 
1480 struct o2hb_region_attribute {
1481 	struct configfs_attribute attr;
1482 	ssize_t (*show)(struct o2hb_region *, char *);
1483 	ssize_t (*store)(struct o2hb_region *, const char *, size_t);
1484 };
1485 
1486 static struct o2hb_region_attribute o2hb_region_attr_block_bytes = {
1487 	.attr	= { .ca_owner = THIS_MODULE,
1488 		    .ca_name = "block_bytes",
1489 		    .ca_mode = S_IRUGO | S_IWUSR },
1490 	.show	= o2hb_region_block_bytes_read,
1491 	.store	= o2hb_region_block_bytes_write,
1492 };
1493 
1494 static struct o2hb_region_attribute o2hb_region_attr_start_block = {
1495 	.attr	= { .ca_owner = THIS_MODULE,
1496 		    .ca_name = "start_block",
1497 		    .ca_mode = S_IRUGO | S_IWUSR },
1498 	.show	= o2hb_region_start_block_read,
1499 	.store	= o2hb_region_start_block_write,
1500 };
1501 
1502 static struct o2hb_region_attribute o2hb_region_attr_blocks = {
1503 	.attr	= { .ca_owner = THIS_MODULE,
1504 		    .ca_name = "blocks",
1505 		    .ca_mode = S_IRUGO | S_IWUSR },
1506 	.show	= o2hb_region_blocks_read,
1507 	.store	= o2hb_region_blocks_write,
1508 };
1509 
1510 static struct o2hb_region_attribute o2hb_region_attr_dev = {
1511 	.attr	= { .ca_owner = THIS_MODULE,
1512 		    .ca_name = "dev",
1513 		    .ca_mode = S_IRUGO | S_IWUSR },
1514 	.show	= o2hb_region_dev_read,
1515 	.store	= o2hb_region_dev_write,
1516 };
1517 
1518 static struct o2hb_region_attribute o2hb_region_attr_pid = {
1519        .attr   = { .ca_owner = THIS_MODULE,
1520                    .ca_name = "pid",
1521                    .ca_mode = S_IRUGO | S_IRUSR },
1522        .show   = o2hb_region_pid_read,
1523 };
1524 
1525 static struct configfs_attribute *o2hb_region_attrs[] = {
1526 	&o2hb_region_attr_block_bytes.attr,
1527 	&o2hb_region_attr_start_block.attr,
1528 	&o2hb_region_attr_blocks.attr,
1529 	&o2hb_region_attr_dev.attr,
1530 	&o2hb_region_attr_pid.attr,
1531 	NULL,
1532 };
1533 
1534 static ssize_t o2hb_region_show(struct config_item *item,
1535 				struct configfs_attribute *attr,
1536 				char *page)
1537 {
1538 	struct o2hb_region *reg = to_o2hb_region(item);
1539 	struct o2hb_region_attribute *o2hb_region_attr =
1540 		container_of(attr, struct o2hb_region_attribute, attr);
1541 	ssize_t ret = 0;
1542 
1543 	if (o2hb_region_attr->show)
1544 		ret = o2hb_region_attr->show(reg, page);
1545 	return ret;
1546 }
1547 
1548 static ssize_t o2hb_region_store(struct config_item *item,
1549 				 struct configfs_attribute *attr,
1550 				 const char *page, size_t count)
1551 {
1552 	struct o2hb_region *reg = to_o2hb_region(item);
1553 	struct o2hb_region_attribute *o2hb_region_attr =
1554 		container_of(attr, struct o2hb_region_attribute, attr);
1555 	ssize_t ret = -EINVAL;
1556 
1557 	if (o2hb_region_attr->store)
1558 		ret = o2hb_region_attr->store(reg, page, count);
1559 	return ret;
1560 }
1561 
1562 static struct configfs_item_operations o2hb_region_item_ops = {
1563 	.release		= o2hb_region_release,
1564 	.show_attribute		= o2hb_region_show,
1565 	.store_attribute	= o2hb_region_store,
1566 };
1567 
1568 static struct config_item_type o2hb_region_type = {
1569 	.ct_item_ops	= &o2hb_region_item_ops,
1570 	.ct_attrs	= o2hb_region_attrs,
1571 	.ct_owner	= THIS_MODULE,
1572 };
1573 
1574 /* heartbeat set */
1575 
1576 struct o2hb_heartbeat_group {
1577 	struct config_group hs_group;
1578 	/* some stuff? */
1579 };
1580 
1581 static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group)
1582 {
1583 	return group ?
1584 		container_of(group, struct o2hb_heartbeat_group, hs_group)
1585 		: NULL;
1586 }
1587 
1588 static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group,
1589 							  const char *name)
1590 {
1591 	struct o2hb_region *reg = NULL;
1592 
1593 	reg = kzalloc(sizeof(struct o2hb_region), GFP_KERNEL);
1594 	if (reg == NULL)
1595 		return ERR_PTR(-ENOMEM);
1596 
1597 	config_item_init_type_name(&reg->hr_item, name, &o2hb_region_type);
1598 
1599 	spin_lock(&o2hb_live_lock);
1600 	list_add_tail(&reg->hr_all_item, &o2hb_all_regions);
1601 	spin_unlock(&o2hb_live_lock);
1602 
1603 	return &reg->hr_item;
1604 }
1605 
1606 static void o2hb_heartbeat_group_drop_item(struct config_group *group,
1607 					   struct config_item *item)
1608 {
1609 	struct task_struct *hb_task;
1610 	struct o2hb_region *reg = to_o2hb_region(item);
1611 
1612 	/* stop the thread when the user removes the region dir */
1613 	spin_lock(&o2hb_live_lock);
1614 	hb_task = reg->hr_task;
1615 	reg->hr_task = NULL;
1616 	spin_unlock(&o2hb_live_lock);
1617 
1618 	if (hb_task)
1619 		kthread_stop(hb_task);
1620 
1621 	/*
1622 	 * If we're racing a dev_write(), we need to wake them.  They will
1623 	 * check reg->hr_task
1624 	 */
1625 	if (atomic_read(&reg->hr_steady_iterations) != 0) {
1626 		atomic_set(&reg->hr_steady_iterations, 0);
1627 		wake_up(&o2hb_steady_queue);
1628 	}
1629 
1630 	config_item_put(item);
1631 }
1632 
1633 struct o2hb_heartbeat_group_attribute {
1634 	struct configfs_attribute attr;
1635 	ssize_t (*show)(struct o2hb_heartbeat_group *, char *);
1636 	ssize_t (*store)(struct o2hb_heartbeat_group *, const char *, size_t);
1637 };
1638 
1639 static ssize_t o2hb_heartbeat_group_show(struct config_item *item,
1640 					 struct configfs_attribute *attr,
1641 					 char *page)
1642 {
1643 	struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1644 	struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1645 		container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1646 	ssize_t ret = 0;
1647 
1648 	if (o2hb_heartbeat_group_attr->show)
1649 		ret = o2hb_heartbeat_group_attr->show(reg, page);
1650 	return ret;
1651 }
1652 
1653 static ssize_t o2hb_heartbeat_group_store(struct config_item *item,
1654 					  struct configfs_attribute *attr,
1655 					  const char *page, size_t count)
1656 {
1657 	struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1658 	struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1659 		container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1660 	ssize_t ret = -EINVAL;
1661 
1662 	if (o2hb_heartbeat_group_attr->store)
1663 		ret = o2hb_heartbeat_group_attr->store(reg, page, count);
1664 	return ret;
1665 }
1666 
1667 static ssize_t o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group *group,
1668 						     char *page)
1669 {
1670 	return sprintf(page, "%u\n", o2hb_dead_threshold);
1671 }
1672 
1673 static ssize_t o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group *group,
1674 						    const char *page,
1675 						    size_t count)
1676 {
1677 	unsigned long tmp;
1678 	char *p = (char *)page;
1679 
1680 	tmp = simple_strtoul(p, &p, 10);
1681 	if (!p || (*p && (*p != '\n')))
1682                 return -EINVAL;
1683 
1684 	/* this will validate ranges for us. */
1685 	o2hb_dead_threshold_set((unsigned int) tmp);
1686 
1687 	return count;
1688 }
1689 
1690 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold = {
1691 	.attr	= { .ca_owner = THIS_MODULE,
1692 		    .ca_name = "dead_threshold",
1693 		    .ca_mode = S_IRUGO | S_IWUSR },
1694 	.show	= o2hb_heartbeat_group_threshold_show,
1695 	.store	= o2hb_heartbeat_group_threshold_store,
1696 };
1697 
1698 static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = {
1699 	&o2hb_heartbeat_group_attr_threshold.attr,
1700 	NULL,
1701 };
1702 
1703 static struct configfs_item_operations o2hb_hearbeat_group_item_ops = {
1704 	.show_attribute		= o2hb_heartbeat_group_show,
1705 	.store_attribute	= o2hb_heartbeat_group_store,
1706 };
1707 
1708 static struct configfs_group_operations o2hb_heartbeat_group_group_ops = {
1709 	.make_item	= o2hb_heartbeat_group_make_item,
1710 	.drop_item	= o2hb_heartbeat_group_drop_item,
1711 };
1712 
1713 static struct config_item_type o2hb_heartbeat_group_type = {
1714 	.ct_group_ops	= &o2hb_heartbeat_group_group_ops,
1715 	.ct_item_ops	= &o2hb_hearbeat_group_item_ops,
1716 	.ct_attrs	= o2hb_heartbeat_group_attrs,
1717 	.ct_owner	= THIS_MODULE,
1718 };
1719 
1720 /* this is just here to avoid touching group in heartbeat.h which the
1721  * entire damn world #includes */
1722 struct config_group *o2hb_alloc_hb_set(void)
1723 {
1724 	struct o2hb_heartbeat_group *hs = NULL;
1725 	struct config_group *ret = NULL;
1726 
1727 	hs = kzalloc(sizeof(struct o2hb_heartbeat_group), GFP_KERNEL);
1728 	if (hs == NULL)
1729 		goto out;
1730 
1731 	config_group_init_type_name(&hs->hs_group, "heartbeat",
1732 				    &o2hb_heartbeat_group_type);
1733 
1734 	ret = &hs->hs_group;
1735 out:
1736 	if (ret == NULL)
1737 		kfree(hs);
1738 	return ret;
1739 }
1740 
1741 void o2hb_free_hb_set(struct config_group *group)
1742 {
1743 	struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group);
1744 	kfree(hs);
1745 }
1746 
1747 /* hb callback registration and issueing */
1748 
1749 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type)
1750 {
1751 	if (type == O2HB_NUM_CB)
1752 		return ERR_PTR(-EINVAL);
1753 
1754 	return &o2hb_callbacks[type];
1755 }
1756 
1757 void o2hb_setup_callback(struct o2hb_callback_func *hc,
1758 			 enum o2hb_callback_type type,
1759 			 o2hb_cb_func *func,
1760 			 void *data,
1761 			 int priority)
1762 {
1763 	INIT_LIST_HEAD(&hc->hc_item);
1764 	hc->hc_func = func;
1765 	hc->hc_data = data;
1766 	hc->hc_priority = priority;
1767 	hc->hc_type = type;
1768 	hc->hc_magic = O2HB_CB_MAGIC;
1769 }
1770 EXPORT_SYMBOL_GPL(o2hb_setup_callback);
1771 
1772 static struct o2hb_region *o2hb_find_region(const char *region_uuid)
1773 {
1774 	struct o2hb_region *p, *reg = NULL;
1775 
1776 	assert_spin_locked(&o2hb_live_lock);
1777 
1778 	list_for_each_entry(p, &o2hb_all_regions, hr_all_item) {
1779 		if (!strcmp(region_uuid, config_item_name(&p->hr_item))) {
1780 			reg = p;
1781 			break;
1782 		}
1783 	}
1784 
1785 	return reg;
1786 }
1787 
1788 static int o2hb_region_get(const char *region_uuid)
1789 {
1790 	int ret = 0;
1791 	struct o2hb_region *reg;
1792 
1793 	spin_lock(&o2hb_live_lock);
1794 
1795 	reg = o2hb_find_region(region_uuid);
1796 	if (!reg)
1797 		ret = -ENOENT;
1798 	spin_unlock(&o2hb_live_lock);
1799 
1800 	if (ret)
1801 		goto out;
1802 
1803 	ret = o2nm_depend_this_node();
1804 	if (ret)
1805 		goto out;
1806 
1807 	ret = o2nm_depend_item(&reg->hr_item);
1808 	if (ret)
1809 		o2nm_undepend_this_node();
1810 
1811 out:
1812 	return ret;
1813 }
1814 
1815 static void o2hb_region_put(const char *region_uuid)
1816 {
1817 	struct o2hb_region *reg;
1818 
1819 	spin_lock(&o2hb_live_lock);
1820 
1821 	reg = o2hb_find_region(region_uuid);
1822 
1823 	spin_unlock(&o2hb_live_lock);
1824 
1825 	if (reg) {
1826 		o2nm_undepend_item(&reg->hr_item);
1827 		o2nm_undepend_this_node();
1828 	}
1829 }
1830 
1831 int o2hb_register_callback(const char *region_uuid,
1832 			   struct o2hb_callback_func *hc)
1833 {
1834 	struct o2hb_callback_func *tmp;
1835 	struct list_head *iter;
1836 	struct o2hb_callback *hbcall;
1837 	int ret;
1838 
1839 	BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1840 	BUG_ON(!list_empty(&hc->hc_item));
1841 
1842 	hbcall = hbcall_from_type(hc->hc_type);
1843 	if (IS_ERR(hbcall)) {
1844 		ret = PTR_ERR(hbcall);
1845 		goto out;
1846 	}
1847 
1848 	if (region_uuid) {
1849 		ret = o2hb_region_get(region_uuid);
1850 		if (ret)
1851 			goto out;
1852 	}
1853 
1854 	down_write(&o2hb_callback_sem);
1855 
1856 	list_for_each(iter, &hbcall->list) {
1857 		tmp = list_entry(iter, struct o2hb_callback_func, hc_item);
1858 		if (hc->hc_priority < tmp->hc_priority) {
1859 			list_add_tail(&hc->hc_item, iter);
1860 			break;
1861 		}
1862 	}
1863 	if (list_empty(&hc->hc_item))
1864 		list_add_tail(&hc->hc_item, &hbcall->list);
1865 
1866 	up_write(&o2hb_callback_sem);
1867 	ret = 0;
1868 out:
1869 	mlog(ML_HEARTBEAT, "returning %d on behalf of %p for funcs %p\n",
1870 	     ret, __builtin_return_address(0), hc);
1871 	return ret;
1872 }
1873 EXPORT_SYMBOL_GPL(o2hb_register_callback);
1874 
1875 void o2hb_unregister_callback(const char *region_uuid,
1876 			      struct o2hb_callback_func *hc)
1877 {
1878 	BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1879 
1880 	mlog(ML_HEARTBEAT, "on behalf of %p for funcs %p\n",
1881 	     __builtin_return_address(0), hc);
1882 
1883 	/* XXX Can this happen _with_ a region reference? */
1884 	if (list_empty(&hc->hc_item))
1885 		return;
1886 
1887 	if (region_uuid)
1888 		o2hb_region_put(region_uuid);
1889 
1890 	down_write(&o2hb_callback_sem);
1891 
1892 	list_del_init(&hc->hc_item);
1893 
1894 	up_write(&o2hb_callback_sem);
1895 }
1896 EXPORT_SYMBOL_GPL(o2hb_unregister_callback);
1897 
1898 int o2hb_check_node_heartbeating(u8 node_num)
1899 {
1900 	unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1901 
1902 	o2hb_fill_node_map(testing_map, sizeof(testing_map));
1903 	if (!test_bit(node_num, testing_map)) {
1904 		mlog(ML_HEARTBEAT,
1905 		     "node (%u) does not have heartbeating enabled.\n",
1906 		     node_num);
1907 		return 0;
1908 	}
1909 
1910 	return 1;
1911 }
1912 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating);
1913 
1914 int o2hb_check_node_heartbeating_from_callback(u8 node_num)
1915 {
1916 	unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1917 
1918 	o2hb_fill_node_map_from_callback(testing_map, sizeof(testing_map));
1919 	if (!test_bit(node_num, testing_map)) {
1920 		mlog(ML_HEARTBEAT,
1921 		     "node (%u) does not have heartbeating enabled.\n",
1922 		     node_num);
1923 		return 0;
1924 	}
1925 
1926 	return 1;
1927 }
1928 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback);
1929 
1930 /* Makes sure our local node is configured with a node number, and is
1931  * heartbeating. */
1932 int o2hb_check_local_node_heartbeating(void)
1933 {
1934 	u8 node_num;
1935 
1936 	/* if this node was set then we have networking */
1937 	node_num = o2nm_this_node();
1938 	if (node_num == O2NM_MAX_NODES) {
1939 		mlog(ML_HEARTBEAT, "this node has not been configured.\n");
1940 		return 0;
1941 	}
1942 
1943 	return o2hb_check_node_heartbeating(node_num);
1944 }
1945 EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating);
1946 
1947 /*
1948  * this is just a hack until we get the plumbing which flips file systems
1949  * read only and drops the hb ref instead of killing the node dead.
1950  */
1951 void o2hb_stop_all_regions(void)
1952 {
1953 	struct o2hb_region *reg;
1954 
1955 	mlog(ML_ERROR, "stopping heartbeat on all active regions.\n");
1956 
1957 	spin_lock(&o2hb_live_lock);
1958 
1959 	list_for_each_entry(reg, &o2hb_all_regions, hr_all_item)
1960 		reg->hr_unclean_stop = 1;
1961 
1962 	spin_unlock(&o2hb_live_lock);
1963 }
1964 EXPORT_SYMBOL_GPL(o2hb_stop_all_regions);
1965