1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2004, 2005 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched.h> 24 #include <linux/jiffies.h> 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/bio.h> 28 #include <linux/blkdev.h> 29 #include <linux/delay.h> 30 #include <linux/file.h> 31 #include <linux/kthread.h> 32 #include <linux/configfs.h> 33 #include <linux/random.h> 34 #include <linux/crc32.h> 35 #include <linux/time.h> 36 #include <linux/debugfs.h> 37 #include <linux/slab.h> 38 39 #include "heartbeat.h" 40 #include "tcp.h" 41 #include "nodemanager.h" 42 #include "quorum.h" 43 44 #include "masklog.h" 45 46 47 /* 48 * The first heartbeat pass had one global thread that would serialize all hb 49 * callback calls. This global serializing sem should only be removed once 50 * we've made sure that all callees can deal with being called concurrently 51 * from multiple hb region threads. 52 */ 53 static DECLARE_RWSEM(o2hb_callback_sem); 54 55 /* 56 * multiple hb threads are watching multiple regions. A node is live 57 * whenever any of the threads sees activity from the node in its region. 58 */ 59 static DEFINE_SPINLOCK(o2hb_live_lock); 60 static struct list_head o2hb_live_slots[O2NM_MAX_NODES]; 61 static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)]; 62 static LIST_HEAD(o2hb_node_events); 63 static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue); 64 65 /* 66 * In global heartbeat, we maintain a series of region bitmaps. 67 * - o2hb_region_bitmap allows us to limit the region number to max region. 68 * - o2hb_live_region_bitmap tracks live regions (seen steady iterations). 69 * - o2hb_quorum_region_bitmap tracks live regions that have seen all nodes 70 * heartbeat on it. 71 * - o2hb_failed_region_bitmap tracks the regions that have seen io timeouts. 72 */ 73 static unsigned long o2hb_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)]; 74 static unsigned long o2hb_live_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)]; 75 static unsigned long o2hb_quorum_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)]; 76 static unsigned long o2hb_failed_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)]; 77 78 #define O2HB_DB_TYPE_LIVENODES 0 79 #define O2HB_DB_TYPE_LIVEREGIONS 1 80 #define O2HB_DB_TYPE_QUORUMREGIONS 2 81 #define O2HB_DB_TYPE_FAILEDREGIONS 3 82 #define O2HB_DB_TYPE_REGION_LIVENODES 4 83 #define O2HB_DB_TYPE_REGION_NUMBER 5 84 #define O2HB_DB_TYPE_REGION_ELAPSED_TIME 6 85 #define O2HB_DB_TYPE_REGION_PINNED 7 86 struct o2hb_debug_buf { 87 int db_type; 88 int db_size; 89 int db_len; 90 void *db_data; 91 }; 92 93 static struct o2hb_debug_buf *o2hb_db_livenodes; 94 static struct o2hb_debug_buf *o2hb_db_liveregions; 95 static struct o2hb_debug_buf *o2hb_db_quorumregions; 96 static struct o2hb_debug_buf *o2hb_db_failedregions; 97 98 #define O2HB_DEBUG_DIR "o2hb" 99 #define O2HB_DEBUG_LIVENODES "livenodes" 100 #define O2HB_DEBUG_LIVEREGIONS "live_regions" 101 #define O2HB_DEBUG_QUORUMREGIONS "quorum_regions" 102 #define O2HB_DEBUG_FAILEDREGIONS "failed_regions" 103 #define O2HB_DEBUG_REGION_NUMBER "num" 104 #define O2HB_DEBUG_REGION_ELAPSED_TIME "elapsed_time_in_ms" 105 #define O2HB_DEBUG_REGION_PINNED "pinned" 106 107 static struct dentry *o2hb_debug_dir; 108 static struct dentry *o2hb_debug_livenodes; 109 static struct dentry *o2hb_debug_liveregions; 110 static struct dentry *o2hb_debug_quorumregions; 111 static struct dentry *o2hb_debug_failedregions; 112 113 static LIST_HEAD(o2hb_all_regions); 114 115 static struct o2hb_callback { 116 struct list_head list; 117 } o2hb_callbacks[O2HB_NUM_CB]; 118 119 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type); 120 121 #define O2HB_DEFAULT_BLOCK_BITS 9 122 123 enum o2hb_heartbeat_modes { 124 O2HB_HEARTBEAT_LOCAL = 0, 125 O2HB_HEARTBEAT_GLOBAL, 126 O2HB_HEARTBEAT_NUM_MODES, 127 }; 128 129 char *o2hb_heartbeat_mode_desc[O2HB_HEARTBEAT_NUM_MODES] = { 130 "local", /* O2HB_HEARTBEAT_LOCAL */ 131 "global", /* O2HB_HEARTBEAT_GLOBAL */ 132 }; 133 134 unsigned int o2hb_dead_threshold = O2HB_DEFAULT_DEAD_THRESHOLD; 135 unsigned int o2hb_heartbeat_mode = O2HB_HEARTBEAT_LOCAL; 136 137 /* 138 * o2hb_dependent_users tracks the number of registered callbacks that depend 139 * on heartbeat. o2net and o2dlm are two entities that register this callback. 140 * However only o2dlm depends on the heartbeat. It does not want the heartbeat 141 * to stop while a dlm domain is still active. 142 */ 143 unsigned int o2hb_dependent_users; 144 145 /* 146 * In global heartbeat mode, all regions are pinned if there are one or more 147 * dependent users and the quorum region count is <= O2HB_PIN_CUT_OFF. All 148 * regions are unpinned if the region count exceeds the cut off or the number 149 * of dependent users falls to zero. 150 */ 151 #define O2HB_PIN_CUT_OFF 3 152 153 /* 154 * In local heartbeat mode, we assume the dlm domain name to be the same as 155 * region uuid. This is true for domains created for the file system but not 156 * necessarily true for userdlm domains. This is a known limitation. 157 * 158 * In global heartbeat mode, we pin/unpin all o2hb regions. This solution 159 * works for both file system and userdlm domains. 160 */ 161 static int o2hb_region_pin(const char *region_uuid); 162 static void o2hb_region_unpin(const char *region_uuid); 163 164 /* Only sets a new threshold if there are no active regions. 165 * 166 * No locking or otherwise interesting code is required for reading 167 * o2hb_dead_threshold as it can't change once regions are active and 168 * it's not interesting to anyone until then anyway. */ 169 static void o2hb_dead_threshold_set(unsigned int threshold) 170 { 171 if (threshold > O2HB_MIN_DEAD_THRESHOLD) { 172 spin_lock(&o2hb_live_lock); 173 if (list_empty(&o2hb_all_regions)) 174 o2hb_dead_threshold = threshold; 175 spin_unlock(&o2hb_live_lock); 176 } 177 } 178 179 static int o2hb_global_heartbeat_mode_set(unsigned int hb_mode) 180 { 181 int ret = -1; 182 183 if (hb_mode < O2HB_HEARTBEAT_NUM_MODES) { 184 spin_lock(&o2hb_live_lock); 185 if (list_empty(&o2hb_all_regions)) { 186 o2hb_heartbeat_mode = hb_mode; 187 ret = 0; 188 } 189 spin_unlock(&o2hb_live_lock); 190 } 191 192 return ret; 193 } 194 195 struct o2hb_node_event { 196 struct list_head hn_item; 197 enum o2hb_callback_type hn_event_type; 198 struct o2nm_node *hn_node; 199 int hn_node_num; 200 }; 201 202 struct o2hb_disk_slot { 203 struct o2hb_disk_heartbeat_block *ds_raw_block; 204 u8 ds_node_num; 205 u64 ds_last_time; 206 u64 ds_last_generation; 207 u16 ds_equal_samples; 208 u16 ds_changed_samples; 209 struct list_head ds_live_item; 210 }; 211 212 /* each thread owns a region.. when we're asked to tear down the region 213 * we ask the thread to stop, who cleans up the region */ 214 struct o2hb_region { 215 struct config_item hr_item; 216 217 struct list_head hr_all_item; 218 unsigned hr_unclean_stop:1, 219 hr_aborted_start:1, 220 hr_item_pinned:1, 221 hr_item_dropped:1; 222 223 /* protected by the hr_callback_sem */ 224 struct task_struct *hr_task; 225 226 unsigned int hr_blocks; 227 unsigned long long hr_start_block; 228 229 unsigned int hr_block_bits; 230 unsigned int hr_block_bytes; 231 232 unsigned int hr_slots_per_page; 233 unsigned int hr_num_pages; 234 235 struct page **hr_slot_data; 236 struct block_device *hr_bdev; 237 struct o2hb_disk_slot *hr_slots; 238 239 /* live node map of this region */ 240 unsigned long hr_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)]; 241 unsigned int hr_region_num; 242 243 struct dentry *hr_debug_dir; 244 struct dentry *hr_debug_livenodes; 245 struct dentry *hr_debug_regnum; 246 struct dentry *hr_debug_elapsed_time; 247 struct dentry *hr_debug_pinned; 248 struct o2hb_debug_buf *hr_db_livenodes; 249 struct o2hb_debug_buf *hr_db_regnum; 250 struct o2hb_debug_buf *hr_db_elapsed_time; 251 struct o2hb_debug_buf *hr_db_pinned; 252 253 /* let the person setting up hb wait for it to return until it 254 * has reached a 'steady' state. This will be fixed when we have 255 * a more complete api that doesn't lead to this sort of fragility. */ 256 atomic_t hr_steady_iterations; 257 258 /* terminate o2hb thread if it does not reach steady state 259 * (hr_steady_iterations == 0) within hr_unsteady_iterations */ 260 atomic_t hr_unsteady_iterations; 261 262 char hr_dev_name[BDEVNAME_SIZE]; 263 264 unsigned int hr_timeout_ms; 265 266 /* randomized as the region goes up and down so that a node 267 * recognizes a node going up and down in one iteration */ 268 u64 hr_generation; 269 270 struct delayed_work hr_write_timeout_work; 271 unsigned long hr_last_timeout_start; 272 273 /* Used during o2hb_check_slot to hold a copy of the block 274 * being checked because we temporarily have to zero out the 275 * crc field. */ 276 struct o2hb_disk_heartbeat_block *hr_tmp_block; 277 }; 278 279 struct o2hb_bio_wait_ctxt { 280 atomic_t wc_num_reqs; 281 struct completion wc_io_complete; 282 int wc_error; 283 }; 284 285 static int o2hb_pop_count(void *map, int count) 286 { 287 int i = -1, pop = 0; 288 289 while ((i = find_next_bit(map, count, i + 1)) < count) 290 pop++; 291 return pop; 292 } 293 294 static void o2hb_write_timeout(struct work_struct *work) 295 { 296 int failed, quorum; 297 unsigned long flags; 298 struct o2hb_region *reg = 299 container_of(work, struct o2hb_region, 300 hr_write_timeout_work.work); 301 302 mlog(ML_ERROR, "Heartbeat write timeout to device %s after %u " 303 "milliseconds\n", reg->hr_dev_name, 304 jiffies_to_msecs(jiffies - reg->hr_last_timeout_start)); 305 306 if (o2hb_global_heartbeat_active()) { 307 spin_lock_irqsave(&o2hb_live_lock, flags); 308 if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap)) 309 set_bit(reg->hr_region_num, o2hb_failed_region_bitmap); 310 failed = o2hb_pop_count(&o2hb_failed_region_bitmap, 311 O2NM_MAX_REGIONS); 312 quorum = o2hb_pop_count(&o2hb_quorum_region_bitmap, 313 O2NM_MAX_REGIONS); 314 spin_unlock_irqrestore(&o2hb_live_lock, flags); 315 316 mlog(ML_HEARTBEAT, "Number of regions %d, failed regions %d\n", 317 quorum, failed); 318 319 /* 320 * Fence if the number of failed regions >= half the number 321 * of quorum regions 322 */ 323 if ((failed << 1) < quorum) 324 return; 325 } 326 327 o2quo_disk_timeout(); 328 } 329 330 static void o2hb_arm_write_timeout(struct o2hb_region *reg) 331 { 332 /* Arm writeout only after thread reaches steady state */ 333 if (atomic_read(®->hr_steady_iterations) != 0) 334 return; 335 336 mlog(ML_HEARTBEAT, "Queue write timeout for %u ms\n", 337 O2HB_MAX_WRITE_TIMEOUT_MS); 338 339 if (o2hb_global_heartbeat_active()) { 340 spin_lock(&o2hb_live_lock); 341 clear_bit(reg->hr_region_num, o2hb_failed_region_bitmap); 342 spin_unlock(&o2hb_live_lock); 343 } 344 cancel_delayed_work(®->hr_write_timeout_work); 345 reg->hr_last_timeout_start = jiffies; 346 schedule_delayed_work(®->hr_write_timeout_work, 347 msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS)); 348 } 349 350 static void o2hb_disarm_write_timeout(struct o2hb_region *reg) 351 { 352 cancel_delayed_work_sync(®->hr_write_timeout_work); 353 } 354 355 static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc) 356 { 357 atomic_set(&wc->wc_num_reqs, 1); 358 init_completion(&wc->wc_io_complete); 359 wc->wc_error = 0; 360 } 361 362 /* Used in error paths too */ 363 static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc, 364 unsigned int num) 365 { 366 /* sadly atomic_sub_and_test() isn't available on all platforms. The 367 * good news is that the fast path only completes one at a time */ 368 while(num--) { 369 if (atomic_dec_and_test(&wc->wc_num_reqs)) { 370 BUG_ON(num > 0); 371 complete(&wc->wc_io_complete); 372 } 373 } 374 } 375 376 static void o2hb_wait_on_io(struct o2hb_region *reg, 377 struct o2hb_bio_wait_ctxt *wc) 378 { 379 o2hb_bio_wait_dec(wc, 1); 380 wait_for_completion(&wc->wc_io_complete); 381 } 382 383 static void o2hb_bio_end_io(struct bio *bio, 384 int error) 385 { 386 struct o2hb_bio_wait_ctxt *wc = bio->bi_private; 387 388 if (error) { 389 mlog(ML_ERROR, "IO Error %d\n", error); 390 wc->wc_error = error; 391 } 392 393 o2hb_bio_wait_dec(wc, 1); 394 bio_put(bio); 395 } 396 397 /* Setup a Bio to cover I/O against num_slots slots starting at 398 * start_slot. */ 399 static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg, 400 struct o2hb_bio_wait_ctxt *wc, 401 unsigned int *current_slot, 402 unsigned int max_slots) 403 { 404 int len, current_page; 405 unsigned int vec_len, vec_start; 406 unsigned int bits = reg->hr_block_bits; 407 unsigned int spp = reg->hr_slots_per_page; 408 unsigned int cs = *current_slot; 409 struct bio *bio; 410 struct page *page; 411 412 /* Testing has shown this allocation to take long enough under 413 * GFP_KERNEL that the local node can get fenced. It would be 414 * nicest if we could pre-allocate these bios and avoid this 415 * all together. */ 416 bio = bio_alloc(GFP_ATOMIC, 16); 417 if (!bio) { 418 mlog(ML_ERROR, "Could not alloc slots BIO!\n"); 419 bio = ERR_PTR(-ENOMEM); 420 goto bail; 421 } 422 423 /* Must put everything in 512 byte sectors for the bio... */ 424 bio->bi_sector = (reg->hr_start_block + cs) << (bits - 9); 425 bio->bi_bdev = reg->hr_bdev; 426 bio->bi_private = wc; 427 bio->bi_end_io = o2hb_bio_end_io; 428 429 vec_start = (cs << bits) % PAGE_CACHE_SIZE; 430 while(cs < max_slots) { 431 current_page = cs / spp; 432 page = reg->hr_slot_data[current_page]; 433 434 vec_len = min(PAGE_CACHE_SIZE - vec_start, 435 (max_slots-cs) * (PAGE_CACHE_SIZE/spp) ); 436 437 mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n", 438 current_page, vec_len, vec_start); 439 440 len = bio_add_page(bio, page, vec_len, vec_start); 441 if (len != vec_len) break; 442 443 cs += vec_len / (PAGE_CACHE_SIZE/spp); 444 vec_start = 0; 445 } 446 447 bail: 448 *current_slot = cs; 449 return bio; 450 } 451 452 static int o2hb_read_slots(struct o2hb_region *reg, 453 unsigned int max_slots) 454 { 455 unsigned int current_slot=0; 456 int status; 457 struct o2hb_bio_wait_ctxt wc; 458 struct bio *bio; 459 460 o2hb_bio_wait_init(&wc); 461 462 while(current_slot < max_slots) { 463 bio = o2hb_setup_one_bio(reg, &wc, ¤t_slot, max_slots); 464 if (IS_ERR(bio)) { 465 status = PTR_ERR(bio); 466 mlog_errno(status); 467 goto bail_and_wait; 468 } 469 470 atomic_inc(&wc.wc_num_reqs); 471 submit_bio(READ, bio); 472 } 473 474 status = 0; 475 476 bail_and_wait: 477 o2hb_wait_on_io(reg, &wc); 478 if (wc.wc_error && !status) 479 status = wc.wc_error; 480 481 return status; 482 } 483 484 static int o2hb_issue_node_write(struct o2hb_region *reg, 485 struct o2hb_bio_wait_ctxt *write_wc) 486 { 487 int status; 488 unsigned int slot; 489 struct bio *bio; 490 491 o2hb_bio_wait_init(write_wc); 492 493 slot = o2nm_this_node(); 494 495 bio = o2hb_setup_one_bio(reg, write_wc, &slot, slot+1); 496 if (IS_ERR(bio)) { 497 status = PTR_ERR(bio); 498 mlog_errno(status); 499 goto bail; 500 } 501 502 atomic_inc(&write_wc->wc_num_reqs); 503 submit_bio(WRITE_SYNC, bio); 504 505 status = 0; 506 bail: 507 return status; 508 } 509 510 static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg, 511 struct o2hb_disk_heartbeat_block *hb_block) 512 { 513 __le32 old_cksum; 514 u32 ret; 515 516 /* We want to compute the block crc with a 0 value in the 517 * hb_cksum field. Save it off here and replace after the 518 * crc. */ 519 old_cksum = hb_block->hb_cksum; 520 hb_block->hb_cksum = 0; 521 522 ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes); 523 524 hb_block->hb_cksum = old_cksum; 525 526 return ret; 527 } 528 529 static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block) 530 { 531 mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, " 532 "cksum = 0x%x, generation 0x%llx\n", 533 (long long)le64_to_cpu(hb_block->hb_seq), 534 hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum), 535 (long long)le64_to_cpu(hb_block->hb_generation)); 536 } 537 538 static int o2hb_verify_crc(struct o2hb_region *reg, 539 struct o2hb_disk_heartbeat_block *hb_block) 540 { 541 u32 read, computed; 542 543 read = le32_to_cpu(hb_block->hb_cksum); 544 computed = o2hb_compute_block_crc_le(reg, hb_block); 545 546 return read == computed; 547 } 548 549 /* 550 * Compare the slot data with what we wrote in the last iteration. 551 * If the match fails, print an appropriate error message. This is to 552 * detect errors like... another node hearting on the same slot, 553 * flaky device that is losing writes, etc. 554 * Returns 1 if check succeeds, 0 otherwise. 555 */ 556 static int o2hb_check_own_slot(struct o2hb_region *reg) 557 { 558 struct o2hb_disk_slot *slot; 559 struct o2hb_disk_heartbeat_block *hb_block; 560 char *errstr; 561 562 slot = ®->hr_slots[o2nm_this_node()]; 563 /* Don't check on our 1st timestamp */ 564 if (!slot->ds_last_time) 565 return 0; 566 567 hb_block = slot->ds_raw_block; 568 if (le64_to_cpu(hb_block->hb_seq) == slot->ds_last_time && 569 le64_to_cpu(hb_block->hb_generation) == slot->ds_last_generation && 570 hb_block->hb_node == slot->ds_node_num) 571 return 1; 572 573 #define ERRSTR1 "Another node is heartbeating on device" 574 #define ERRSTR2 "Heartbeat generation mismatch on device" 575 #define ERRSTR3 "Heartbeat sequence mismatch on device" 576 577 if (hb_block->hb_node != slot->ds_node_num) 578 errstr = ERRSTR1; 579 else if (le64_to_cpu(hb_block->hb_generation) != 580 slot->ds_last_generation) 581 errstr = ERRSTR2; 582 else 583 errstr = ERRSTR3; 584 585 mlog(ML_ERROR, "%s (%s): expected(%u:0x%llx, 0x%llx), " 586 "ondisk(%u:0x%llx, 0x%llx)\n", errstr, reg->hr_dev_name, 587 slot->ds_node_num, (unsigned long long)slot->ds_last_generation, 588 (unsigned long long)slot->ds_last_time, hb_block->hb_node, 589 (unsigned long long)le64_to_cpu(hb_block->hb_generation), 590 (unsigned long long)le64_to_cpu(hb_block->hb_seq)); 591 592 return 0; 593 } 594 595 static inline void o2hb_prepare_block(struct o2hb_region *reg, 596 u64 generation) 597 { 598 int node_num; 599 u64 cputime; 600 struct o2hb_disk_slot *slot; 601 struct o2hb_disk_heartbeat_block *hb_block; 602 603 node_num = o2nm_this_node(); 604 slot = ®->hr_slots[node_num]; 605 606 hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block; 607 memset(hb_block, 0, reg->hr_block_bytes); 608 /* TODO: time stuff */ 609 cputime = CURRENT_TIME.tv_sec; 610 if (!cputime) 611 cputime = 1; 612 613 hb_block->hb_seq = cpu_to_le64(cputime); 614 hb_block->hb_node = node_num; 615 hb_block->hb_generation = cpu_to_le64(generation); 616 hb_block->hb_dead_ms = cpu_to_le32(o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS); 617 618 /* This step must always happen last! */ 619 hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg, 620 hb_block)); 621 622 mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n", 623 (long long)generation, 624 le32_to_cpu(hb_block->hb_cksum)); 625 } 626 627 static void o2hb_fire_callbacks(struct o2hb_callback *hbcall, 628 struct o2nm_node *node, 629 int idx) 630 { 631 struct list_head *iter; 632 struct o2hb_callback_func *f; 633 634 list_for_each(iter, &hbcall->list) { 635 f = list_entry(iter, struct o2hb_callback_func, hc_item); 636 mlog(ML_HEARTBEAT, "calling funcs %p\n", f); 637 (f->hc_func)(node, idx, f->hc_data); 638 } 639 } 640 641 /* Will run the list in order until we process the passed event */ 642 static void o2hb_run_event_list(struct o2hb_node_event *queued_event) 643 { 644 int empty; 645 struct o2hb_callback *hbcall; 646 struct o2hb_node_event *event; 647 648 spin_lock(&o2hb_live_lock); 649 empty = list_empty(&queued_event->hn_item); 650 spin_unlock(&o2hb_live_lock); 651 if (empty) 652 return; 653 654 /* Holding callback sem assures we don't alter the callback 655 * lists when doing this, and serializes ourselves with other 656 * processes wanting callbacks. */ 657 down_write(&o2hb_callback_sem); 658 659 spin_lock(&o2hb_live_lock); 660 while (!list_empty(&o2hb_node_events) 661 && !list_empty(&queued_event->hn_item)) { 662 event = list_entry(o2hb_node_events.next, 663 struct o2hb_node_event, 664 hn_item); 665 list_del_init(&event->hn_item); 666 spin_unlock(&o2hb_live_lock); 667 668 mlog(ML_HEARTBEAT, "Node %s event for %d\n", 669 event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN", 670 event->hn_node_num); 671 672 hbcall = hbcall_from_type(event->hn_event_type); 673 674 /* We should *never* have gotten on to the list with a 675 * bad type... This isn't something that we should try 676 * to recover from. */ 677 BUG_ON(IS_ERR(hbcall)); 678 679 o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num); 680 681 spin_lock(&o2hb_live_lock); 682 } 683 spin_unlock(&o2hb_live_lock); 684 685 up_write(&o2hb_callback_sem); 686 } 687 688 static void o2hb_queue_node_event(struct o2hb_node_event *event, 689 enum o2hb_callback_type type, 690 struct o2nm_node *node, 691 int node_num) 692 { 693 assert_spin_locked(&o2hb_live_lock); 694 695 BUG_ON((!node) && (type != O2HB_NODE_DOWN_CB)); 696 697 event->hn_event_type = type; 698 event->hn_node = node; 699 event->hn_node_num = node_num; 700 701 mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n", 702 type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num); 703 704 list_add_tail(&event->hn_item, &o2hb_node_events); 705 } 706 707 static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot) 708 { 709 struct o2hb_node_event event = 710 { .hn_item = LIST_HEAD_INIT(event.hn_item), }; 711 struct o2nm_node *node; 712 713 node = o2nm_get_node_by_num(slot->ds_node_num); 714 if (!node) 715 return; 716 717 spin_lock(&o2hb_live_lock); 718 if (!list_empty(&slot->ds_live_item)) { 719 mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n", 720 slot->ds_node_num); 721 722 list_del_init(&slot->ds_live_item); 723 724 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) { 725 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap); 726 727 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node, 728 slot->ds_node_num); 729 } 730 } 731 spin_unlock(&o2hb_live_lock); 732 733 o2hb_run_event_list(&event); 734 735 o2nm_node_put(node); 736 } 737 738 static void o2hb_set_quorum_device(struct o2hb_region *reg) 739 { 740 if (!o2hb_global_heartbeat_active()) 741 return; 742 743 /* Prevent race with o2hb_heartbeat_group_drop_item() */ 744 if (kthread_should_stop()) 745 return; 746 747 /* Tag region as quorum only after thread reaches steady state */ 748 if (atomic_read(®->hr_steady_iterations) != 0) 749 return; 750 751 spin_lock(&o2hb_live_lock); 752 753 if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap)) 754 goto unlock; 755 756 /* 757 * A region can be added to the quorum only when it sees all 758 * live nodes heartbeat on it. In other words, the region has been 759 * added to all nodes. 760 */ 761 if (memcmp(reg->hr_live_node_bitmap, o2hb_live_node_bitmap, 762 sizeof(o2hb_live_node_bitmap))) 763 goto unlock; 764 765 printk(KERN_NOTICE "o2hb: Region %s (%s) is now a quorum device\n", 766 config_item_name(®->hr_item), reg->hr_dev_name); 767 768 set_bit(reg->hr_region_num, o2hb_quorum_region_bitmap); 769 770 /* 771 * If global heartbeat active, unpin all regions if the 772 * region count > CUT_OFF 773 */ 774 if (o2hb_pop_count(&o2hb_quorum_region_bitmap, 775 O2NM_MAX_REGIONS) > O2HB_PIN_CUT_OFF) 776 o2hb_region_unpin(NULL); 777 unlock: 778 spin_unlock(&o2hb_live_lock); 779 } 780 781 static int o2hb_check_slot(struct o2hb_region *reg, 782 struct o2hb_disk_slot *slot) 783 { 784 int changed = 0, gen_changed = 0; 785 struct o2hb_node_event event = 786 { .hn_item = LIST_HEAD_INIT(event.hn_item), }; 787 struct o2nm_node *node; 788 struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block; 789 u64 cputime; 790 unsigned int dead_ms = o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS; 791 unsigned int slot_dead_ms; 792 int tmp; 793 794 memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes); 795 796 /* 797 * If a node is no longer configured but is still in the livemap, we 798 * may need to clear that bit from the livemap. 799 */ 800 node = o2nm_get_node_by_num(slot->ds_node_num); 801 if (!node) { 802 spin_lock(&o2hb_live_lock); 803 tmp = test_bit(slot->ds_node_num, o2hb_live_node_bitmap); 804 spin_unlock(&o2hb_live_lock); 805 if (!tmp) 806 return 0; 807 } 808 809 if (!o2hb_verify_crc(reg, hb_block)) { 810 /* all paths from here will drop o2hb_live_lock for 811 * us. */ 812 spin_lock(&o2hb_live_lock); 813 814 /* Don't print an error on the console in this case - 815 * a freshly formatted heartbeat area will not have a 816 * crc set on it. */ 817 if (list_empty(&slot->ds_live_item)) 818 goto out; 819 820 /* The node is live but pushed out a bad crc. We 821 * consider it a transient miss but don't populate any 822 * other values as they may be junk. */ 823 mlog(ML_ERROR, "Node %d has written a bad crc to %s\n", 824 slot->ds_node_num, reg->hr_dev_name); 825 o2hb_dump_slot(hb_block); 826 827 slot->ds_equal_samples++; 828 goto fire_callbacks; 829 } 830 831 /* we don't care if these wrap.. the state transitions below 832 * clear at the right places */ 833 cputime = le64_to_cpu(hb_block->hb_seq); 834 if (slot->ds_last_time != cputime) 835 slot->ds_changed_samples++; 836 else 837 slot->ds_equal_samples++; 838 slot->ds_last_time = cputime; 839 840 /* The node changed heartbeat generations. We assume this to 841 * mean it dropped off but came back before we timed out. We 842 * want to consider it down for the time being but don't want 843 * to lose any changed_samples state we might build up to 844 * considering it live again. */ 845 if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) { 846 gen_changed = 1; 847 slot->ds_equal_samples = 0; 848 mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx " 849 "to 0x%llx)\n", slot->ds_node_num, 850 (long long)slot->ds_last_generation, 851 (long long)le64_to_cpu(hb_block->hb_generation)); 852 } 853 854 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation); 855 856 mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x " 857 "seq %llu last %llu changed %u equal %u\n", 858 slot->ds_node_num, (long long)slot->ds_last_generation, 859 le32_to_cpu(hb_block->hb_cksum), 860 (unsigned long long)le64_to_cpu(hb_block->hb_seq), 861 (unsigned long long)slot->ds_last_time, slot->ds_changed_samples, 862 slot->ds_equal_samples); 863 864 spin_lock(&o2hb_live_lock); 865 866 fire_callbacks: 867 /* dead nodes only come to life after some number of 868 * changes at any time during their dead time */ 869 if (list_empty(&slot->ds_live_item) && 870 slot->ds_changed_samples >= O2HB_LIVE_THRESHOLD) { 871 mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n", 872 slot->ds_node_num, (long long)slot->ds_last_generation); 873 874 set_bit(slot->ds_node_num, reg->hr_live_node_bitmap); 875 876 /* first on the list generates a callback */ 877 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) { 878 mlog(ML_HEARTBEAT, "o2hb: Add node %d to live nodes " 879 "bitmap\n", slot->ds_node_num); 880 set_bit(slot->ds_node_num, o2hb_live_node_bitmap); 881 882 o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node, 883 slot->ds_node_num); 884 885 changed = 1; 886 } 887 888 list_add_tail(&slot->ds_live_item, 889 &o2hb_live_slots[slot->ds_node_num]); 890 891 slot->ds_equal_samples = 0; 892 893 /* We want to be sure that all nodes agree on the 894 * number of milliseconds before a node will be 895 * considered dead. The self-fencing timeout is 896 * computed from this value, and a discrepancy might 897 * result in heartbeat calling a node dead when it 898 * hasn't self-fenced yet. */ 899 slot_dead_ms = le32_to_cpu(hb_block->hb_dead_ms); 900 if (slot_dead_ms && slot_dead_ms != dead_ms) { 901 /* TODO: Perhaps we can fail the region here. */ 902 mlog(ML_ERROR, "Node %d on device %s has a dead count " 903 "of %u ms, but our count is %u ms.\n" 904 "Please double check your configuration values " 905 "for 'O2CB_HEARTBEAT_THRESHOLD'\n", 906 slot->ds_node_num, reg->hr_dev_name, slot_dead_ms, 907 dead_ms); 908 } 909 goto out; 910 } 911 912 /* if the list is dead, we're done.. */ 913 if (list_empty(&slot->ds_live_item)) 914 goto out; 915 916 /* live nodes only go dead after enough consequtive missed 917 * samples.. reset the missed counter whenever we see 918 * activity */ 919 if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) { 920 mlog(ML_HEARTBEAT, "Node %d left my region\n", 921 slot->ds_node_num); 922 923 clear_bit(slot->ds_node_num, reg->hr_live_node_bitmap); 924 925 /* last off the live_slot generates a callback */ 926 list_del_init(&slot->ds_live_item); 927 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) { 928 mlog(ML_HEARTBEAT, "o2hb: Remove node %d from live " 929 "nodes bitmap\n", slot->ds_node_num); 930 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap); 931 932 /* node can be null */ 933 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, 934 node, slot->ds_node_num); 935 936 changed = 1; 937 } 938 939 /* We don't clear this because the node is still 940 * actually writing new blocks. */ 941 if (!gen_changed) 942 slot->ds_changed_samples = 0; 943 goto out; 944 } 945 if (slot->ds_changed_samples) { 946 slot->ds_changed_samples = 0; 947 slot->ds_equal_samples = 0; 948 } 949 out: 950 spin_unlock(&o2hb_live_lock); 951 952 o2hb_run_event_list(&event); 953 954 if (node) 955 o2nm_node_put(node); 956 return changed; 957 } 958 959 /* This could be faster if we just implmented a find_last_bit, but I 960 * don't think the circumstances warrant it. */ 961 static int o2hb_highest_node(unsigned long *nodes, 962 int numbits) 963 { 964 int highest, node; 965 966 highest = numbits; 967 node = -1; 968 while ((node = find_next_bit(nodes, numbits, node + 1)) != -1) { 969 if (node >= numbits) 970 break; 971 972 highest = node; 973 } 974 975 return highest; 976 } 977 978 static int o2hb_do_disk_heartbeat(struct o2hb_region *reg) 979 { 980 int i, ret, highest_node; 981 int membership_change = 0, own_slot_ok = 0; 982 unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)]; 983 unsigned long live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)]; 984 struct o2hb_bio_wait_ctxt write_wc; 985 986 ret = o2nm_configured_node_map(configured_nodes, 987 sizeof(configured_nodes)); 988 if (ret) { 989 mlog_errno(ret); 990 goto bail; 991 } 992 993 /* 994 * If a node is not configured but is in the livemap, we still need 995 * to read the slot so as to be able to remove it from the livemap. 996 */ 997 o2hb_fill_node_map(live_node_bitmap, sizeof(live_node_bitmap)); 998 i = -1; 999 while ((i = find_next_bit(live_node_bitmap, 1000 O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) { 1001 set_bit(i, configured_nodes); 1002 } 1003 1004 highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES); 1005 if (highest_node >= O2NM_MAX_NODES) { 1006 mlog(ML_NOTICE, "o2hb: No configured nodes found!\n"); 1007 ret = -EINVAL; 1008 goto bail; 1009 } 1010 1011 /* No sense in reading the slots of nodes that don't exist 1012 * yet. Of course, if the node definitions have holes in them 1013 * then we're reading an empty slot anyway... Consider this 1014 * best-effort. */ 1015 ret = o2hb_read_slots(reg, highest_node + 1); 1016 if (ret < 0) { 1017 mlog_errno(ret); 1018 goto bail; 1019 } 1020 1021 /* With an up to date view of the slots, we can check that no 1022 * other node has been improperly configured to heartbeat in 1023 * our slot. */ 1024 own_slot_ok = o2hb_check_own_slot(reg); 1025 1026 /* fill in the proper info for our next heartbeat */ 1027 o2hb_prepare_block(reg, reg->hr_generation); 1028 1029 ret = o2hb_issue_node_write(reg, &write_wc); 1030 if (ret < 0) { 1031 mlog_errno(ret); 1032 goto bail; 1033 } 1034 1035 i = -1; 1036 while((i = find_next_bit(configured_nodes, 1037 O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) { 1038 membership_change |= o2hb_check_slot(reg, ®->hr_slots[i]); 1039 } 1040 1041 /* 1042 * We have to be sure we've advertised ourselves on disk 1043 * before we can go to steady state. This ensures that 1044 * people we find in our steady state have seen us. 1045 */ 1046 o2hb_wait_on_io(reg, &write_wc); 1047 if (write_wc.wc_error) { 1048 /* Do not re-arm the write timeout on I/O error - we 1049 * can't be sure that the new block ever made it to 1050 * disk */ 1051 mlog(ML_ERROR, "Write error %d on device \"%s\"\n", 1052 write_wc.wc_error, reg->hr_dev_name); 1053 ret = write_wc.wc_error; 1054 goto bail; 1055 } 1056 1057 /* Skip disarming the timeout if own slot has stale/bad data */ 1058 if (own_slot_ok) { 1059 o2hb_set_quorum_device(reg); 1060 o2hb_arm_write_timeout(reg); 1061 } 1062 1063 bail: 1064 /* let the person who launched us know when things are steady */ 1065 if (atomic_read(®->hr_steady_iterations) != 0) { 1066 if (!ret && own_slot_ok && !membership_change) { 1067 if (atomic_dec_and_test(®->hr_steady_iterations)) 1068 wake_up(&o2hb_steady_queue); 1069 } 1070 } 1071 1072 if (atomic_read(®->hr_steady_iterations) != 0) { 1073 if (atomic_dec_and_test(®->hr_unsteady_iterations)) { 1074 printk(KERN_NOTICE "o2hb: Unable to stabilize " 1075 "heartbeart on region %s (%s)\n", 1076 config_item_name(®->hr_item), 1077 reg->hr_dev_name); 1078 atomic_set(®->hr_steady_iterations, 0); 1079 reg->hr_aborted_start = 1; 1080 wake_up(&o2hb_steady_queue); 1081 ret = -EIO; 1082 } 1083 } 1084 1085 return ret; 1086 } 1087 1088 /* Subtract b from a, storing the result in a. a *must* have a larger 1089 * value than b. */ 1090 static void o2hb_tv_subtract(struct timeval *a, 1091 struct timeval *b) 1092 { 1093 /* just return 0 when a is after b */ 1094 if (a->tv_sec < b->tv_sec || 1095 (a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec)) { 1096 a->tv_sec = 0; 1097 a->tv_usec = 0; 1098 return; 1099 } 1100 1101 a->tv_sec -= b->tv_sec; 1102 a->tv_usec -= b->tv_usec; 1103 while ( a->tv_usec < 0 ) { 1104 a->tv_sec--; 1105 a->tv_usec += 1000000; 1106 } 1107 } 1108 1109 static unsigned int o2hb_elapsed_msecs(struct timeval *start, 1110 struct timeval *end) 1111 { 1112 struct timeval res = *end; 1113 1114 o2hb_tv_subtract(&res, start); 1115 1116 return res.tv_sec * 1000 + res.tv_usec / 1000; 1117 } 1118 1119 /* 1120 * we ride the region ref that the region dir holds. before the region 1121 * dir is removed and drops it ref it will wait to tear down this 1122 * thread. 1123 */ 1124 static int o2hb_thread(void *data) 1125 { 1126 int i, ret; 1127 struct o2hb_region *reg = data; 1128 struct o2hb_bio_wait_ctxt write_wc; 1129 struct timeval before_hb, after_hb; 1130 unsigned int elapsed_msec; 1131 1132 mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n"); 1133 1134 set_user_nice(current, -20); 1135 1136 /* Pin node */ 1137 o2nm_depend_this_node(); 1138 1139 while (!kthread_should_stop() && 1140 !reg->hr_unclean_stop && !reg->hr_aborted_start) { 1141 /* We track the time spent inside 1142 * o2hb_do_disk_heartbeat so that we avoid more than 1143 * hr_timeout_ms between disk writes. On busy systems 1144 * this should result in a heartbeat which is less 1145 * likely to time itself out. */ 1146 do_gettimeofday(&before_hb); 1147 1148 ret = o2hb_do_disk_heartbeat(reg); 1149 1150 do_gettimeofday(&after_hb); 1151 elapsed_msec = o2hb_elapsed_msecs(&before_hb, &after_hb); 1152 1153 mlog(ML_HEARTBEAT, 1154 "start = %lu.%lu, end = %lu.%lu, msec = %u\n", 1155 before_hb.tv_sec, (unsigned long) before_hb.tv_usec, 1156 after_hb.tv_sec, (unsigned long) after_hb.tv_usec, 1157 elapsed_msec); 1158 1159 if (!kthread_should_stop() && 1160 elapsed_msec < reg->hr_timeout_ms) { 1161 /* the kthread api has blocked signals for us so no 1162 * need to record the return value. */ 1163 msleep_interruptible(reg->hr_timeout_ms - elapsed_msec); 1164 } 1165 } 1166 1167 o2hb_disarm_write_timeout(reg); 1168 1169 /* unclean stop is only used in very bad situation */ 1170 for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++) 1171 o2hb_shutdown_slot(®->hr_slots[i]); 1172 1173 /* Explicit down notification - avoid forcing the other nodes 1174 * to timeout on this region when we could just as easily 1175 * write a clear generation - thus indicating to them that 1176 * this node has left this region. 1177 */ 1178 if (!reg->hr_unclean_stop && !reg->hr_aborted_start) { 1179 o2hb_prepare_block(reg, 0); 1180 ret = o2hb_issue_node_write(reg, &write_wc); 1181 if (ret == 0) 1182 o2hb_wait_on_io(reg, &write_wc); 1183 else 1184 mlog_errno(ret); 1185 } 1186 1187 /* Unpin node */ 1188 o2nm_undepend_this_node(); 1189 1190 mlog(ML_HEARTBEAT|ML_KTHREAD, "o2hb thread exiting\n"); 1191 1192 return 0; 1193 } 1194 1195 #ifdef CONFIG_DEBUG_FS 1196 static int o2hb_debug_open(struct inode *inode, struct file *file) 1197 { 1198 struct o2hb_debug_buf *db = inode->i_private; 1199 struct o2hb_region *reg; 1200 unsigned long map[BITS_TO_LONGS(O2NM_MAX_NODES)]; 1201 unsigned long lts; 1202 char *buf = NULL; 1203 int i = -1; 1204 int out = 0; 1205 1206 /* max_nodes should be the largest bitmap we pass here */ 1207 BUG_ON(sizeof(map) < db->db_size); 1208 1209 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1210 if (!buf) 1211 goto bail; 1212 1213 switch (db->db_type) { 1214 case O2HB_DB_TYPE_LIVENODES: 1215 case O2HB_DB_TYPE_LIVEREGIONS: 1216 case O2HB_DB_TYPE_QUORUMREGIONS: 1217 case O2HB_DB_TYPE_FAILEDREGIONS: 1218 spin_lock(&o2hb_live_lock); 1219 memcpy(map, db->db_data, db->db_size); 1220 spin_unlock(&o2hb_live_lock); 1221 break; 1222 1223 case O2HB_DB_TYPE_REGION_LIVENODES: 1224 spin_lock(&o2hb_live_lock); 1225 reg = (struct o2hb_region *)db->db_data; 1226 memcpy(map, reg->hr_live_node_bitmap, db->db_size); 1227 spin_unlock(&o2hb_live_lock); 1228 break; 1229 1230 case O2HB_DB_TYPE_REGION_NUMBER: 1231 reg = (struct o2hb_region *)db->db_data; 1232 out += snprintf(buf + out, PAGE_SIZE - out, "%d\n", 1233 reg->hr_region_num); 1234 goto done; 1235 1236 case O2HB_DB_TYPE_REGION_ELAPSED_TIME: 1237 reg = (struct o2hb_region *)db->db_data; 1238 lts = reg->hr_last_timeout_start; 1239 /* If 0, it has never been set before */ 1240 if (lts) 1241 lts = jiffies_to_msecs(jiffies - lts); 1242 out += snprintf(buf + out, PAGE_SIZE - out, "%lu\n", lts); 1243 goto done; 1244 1245 case O2HB_DB_TYPE_REGION_PINNED: 1246 reg = (struct o2hb_region *)db->db_data; 1247 out += snprintf(buf + out, PAGE_SIZE - out, "%u\n", 1248 !!reg->hr_item_pinned); 1249 goto done; 1250 1251 default: 1252 goto done; 1253 } 1254 1255 while ((i = find_next_bit(map, db->db_len, i + 1)) < db->db_len) 1256 out += snprintf(buf + out, PAGE_SIZE - out, "%d ", i); 1257 out += snprintf(buf + out, PAGE_SIZE - out, "\n"); 1258 1259 done: 1260 i_size_write(inode, out); 1261 1262 file->private_data = buf; 1263 1264 return 0; 1265 bail: 1266 return -ENOMEM; 1267 } 1268 1269 static int o2hb_debug_release(struct inode *inode, struct file *file) 1270 { 1271 kfree(file->private_data); 1272 return 0; 1273 } 1274 1275 static ssize_t o2hb_debug_read(struct file *file, char __user *buf, 1276 size_t nbytes, loff_t *ppos) 1277 { 1278 return simple_read_from_buffer(buf, nbytes, ppos, file->private_data, 1279 i_size_read(file->f_mapping->host)); 1280 } 1281 #else 1282 static int o2hb_debug_open(struct inode *inode, struct file *file) 1283 { 1284 return 0; 1285 } 1286 static int o2hb_debug_release(struct inode *inode, struct file *file) 1287 { 1288 return 0; 1289 } 1290 static ssize_t o2hb_debug_read(struct file *file, char __user *buf, 1291 size_t nbytes, loff_t *ppos) 1292 { 1293 return 0; 1294 } 1295 #endif /* CONFIG_DEBUG_FS */ 1296 1297 static const struct file_operations o2hb_debug_fops = { 1298 .open = o2hb_debug_open, 1299 .release = o2hb_debug_release, 1300 .read = o2hb_debug_read, 1301 .llseek = generic_file_llseek, 1302 }; 1303 1304 void o2hb_exit(void) 1305 { 1306 kfree(o2hb_db_livenodes); 1307 kfree(o2hb_db_liveregions); 1308 kfree(o2hb_db_quorumregions); 1309 kfree(o2hb_db_failedregions); 1310 debugfs_remove(o2hb_debug_failedregions); 1311 debugfs_remove(o2hb_debug_quorumregions); 1312 debugfs_remove(o2hb_debug_liveregions); 1313 debugfs_remove(o2hb_debug_livenodes); 1314 debugfs_remove(o2hb_debug_dir); 1315 } 1316 1317 static struct dentry *o2hb_debug_create(const char *name, struct dentry *dir, 1318 struct o2hb_debug_buf **db, int db_len, 1319 int type, int size, int len, void *data) 1320 { 1321 *db = kmalloc(db_len, GFP_KERNEL); 1322 if (!*db) 1323 return NULL; 1324 1325 (*db)->db_type = type; 1326 (*db)->db_size = size; 1327 (*db)->db_len = len; 1328 (*db)->db_data = data; 1329 1330 return debugfs_create_file(name, S_IFREG|S_IRUSR, dir, *db, 1331 &o2hb_debug_fops); 1332 } 1333 1334 static int o2hb_debug_init(void) 1335 { 1336 int ret = -ENOMEM; 1337 1338 o2hb_debug_dir = debugfs_create_dir(O2HB_DEBUG_DIR, NULL); 1339 if (!o2hb_debug_dir) { 1340 mlog_errno(ret); 1341 goto bail; 1342 } 1343 1344 o2hb_debug_livenodes = o2hb_debug_create(O2HB_DEBUG_LIVENODES, 1345 o2hb_debug_dir, 1346 &o2hb_db_livenodes, 1347 sizeof(*o2hb_db_livenodes), 1348 O2HB_DB_TYPE_LIVENODES, 1349 sizeof(o2hb_live_node_bitmap), 1350 O2NM_MAX_NODES, 1351 o2hb_live_node_bitmap); 1352 if (!o2hb_debug_livenodes) { 1353 mlog_errno(ret); 1354 goto bail; 1355 } 1356 1357 o2hb_debug_liveregions = o2hb_debug_create(O2HB_DEBUG_LIVEREGIONS, 1358 o2hb_debug_dir, 1359 &o2hb_db_liveregions, 1360 sizeof(*o2hb_db_liveregions), 1361 O2HB_DB_TYPE_LIVEREGIONS, 1362 sizeof(o2hb_live_region_bitmap), 1363 O2NM_MAX_REGIONS, 1364 o2hb_live_region_bitmap); 1365 if (!o2hb_debug_liveregions) { 1366 mlog_errno(ret); 1367 goto bail; 1368 } 1369 1370 o2hb_debug_quorumregions = 1371 o2hb_debug_create(O2HB_DEBUG_QUORUMREGIONS, 1372 o2hb_debug_dir, 1373 &o2hb_db_quorumregions, 1374 sizeof(*o2hb_db_quorumregions), 1375 O2HB_DB_TYPE_QUORUMREGIONS, 1376 sizeof(o2hb_quorum_region_bitmap), 1377 O2NM_MAX_REGIONS, 1378 o2hb_quorum_region_bitmap); 1379 if (!o2hb_debug_quorumregions) { 1380 mlog_errno(ret); 1381 goto bail; 1382 } 1383 1384 o2hb_debug_failedregions = 1385 o2hb_debug_create(O2HB_DEBUG_FAILEDREGIONS, 1386 o2hb_debug_dir, 1387 &o2hb_db_failedregions, 1388 sizeof(*o2hb_db_failedregions), 1389 O2HB_DB_TYPE_FAILEDREGIONS, 1390 sizeof(o2hb_failed_region_bitmap), 1391 O2NM_MAX_REGIONS, 1392 o2hb_failed_region_bitmap); 1393 if (!o2hb_debug_failedregions) { 1394 mlog_errno(ret); 1395 goto bail; 1396 } 1397 1398 ret = 0; 1399 bail: 1400 if (ret) 1401 o2hb_exit(); 1402 1403 return ret; 1404 } 1405 1406 int o2hb_init(void) 1407 { 1408 int i; 1409 1410 for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++) 1411 INIT_LIST_HEAD(&o2hb_callbacks[i].list); 1412 1413 for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++) 1414 INIT_LIST_HEAD(&o2hb_live_slots[i]); 1415 1416 INIT_LIST_HEAD(&o2hb_node_events); 1417 1418 memset(o2hb_live_node_bitmap, 0, sizeof(o2hb_live_node_bitmap)); 1419 memset(o2hb_region_bitmap, 0, sizeof(o2hb_region_bitmap)); 1420 memset(o2hb_live_region_bitmap, 0, sizeof(o2hb_live_region_bitmap)); 1421 memset(o2hb_quorum_region_bitmap, 0, sizeof(o2hb_quorum_region_bitmap)); 1422 memset(o2hb_failed_region_bitmap, 0, sizeof(o2hb_failed_region_bitmap)); 1423 1424 o2hb_dependent_users = 0; 1425 1426 return o2hb_debug_init(); 1427 } 1428 1429 /* if we're already in a callback then we're already serialized by the sem */ 1430 static void o2hb_fill_node_map_from_callback(unsigned long *map, 1431 unsigned bytes) 1432 { 1433 BUG_ON(bytes < (BITS_TO_LONGS(O2NM_MAX_NODES) * sizeof(unsigned long))); 1434 1435 memcpy(map, &o2hb_live_node_bitmap, bytes); 1436 } 1437 1438 /* 1439 * get a map of all nodes that are heartbeating in any regions 1440 */ 1441 void o2hb_fill_node_map(unsigned long *map, unsigned bytes) 1442 { 1443 /* callers want to serialize this map and callbacks so that they 1444 * can trust that they don't miss nodes coming to the party */ 1445 down_read(&o2hb_callback_sem); 1446 spin_lock(&o2hb_live_lock); 1447 o2hb_fill_node_map_from_callback(map, bytes); 1448 spin_unlock(&o2hb_live_lock); 1449 up_read(&o2hb_callback_sem); 1450 } 1451 EXPORT_SYMBOL_GPL(o2hb_fill_node_map); 1452 1453 /* 1454 * heartbeat configfs bits. The heartbeat set is a default set under 1455 * the cluster set in nodemanager.c. 1456 */ 1457 1458 static struct o2hb_region *to_o2hb_region(struct config_item *item) 1459 { 1460 return item ? container_of(item, struct o2hb_region, hr_item) : NULL; 1461 } 1462 1463 /* drop_item only drops its ref after killing the thread, nothing should 1464 * be using the region anymore. this has to clean up any state that 1465 * attributes might have built up. */ 1466 static void o2hb_region_release(struct config_item *item) 1467 { 1468 int i; 1469 struct page *page; 1470 struct o2hb_region *reg = to_o2hb_region(item); 1471 1472 mlog(ML_HEARTBEAT, "hb region release (%s)\n", reg->hr_dev_name); 1473 1474 kfree(reg->hr_tmp_block); 1475 1476 if (reg->hr_slot_data) { 1477 for (i = 0; i < reg->hr_num_pages; i++) { 1478 page = reg->hr_slot_data[i]; 1479 if (page) 1480 __free_page(page); 1481 } 1482 kfree(reg->hr_slot_data); 1483 } 1484 1485 if (reg->hr_bdev) 1486 blkdev_put(reg->hr_bdev, FMODE_READ|FMODE_WRITE); 1487 1488 kfree(reg->hr_slots); 1489 1490 kfree(reg->hr_db_regnum); 1491 kfree(reg->hr_db_livenodes); 1492 debugfs_remove(reg->hr_debug_livenodes); 1493 debugfs_remove(reg->hr_debug_regnum); 1494 debugfs_remove(reg->hr_debug_elapsed_time); 1495 debugfs_remove(reg->hr_debug_pinned); 1496 debugfs_remove(reg->hr_debug_dir); 1497 1498 spin_lock(&o2hb_live_lock); 1499 list_del(®->hr_all_item); 1500 spin_unlock(&o2hb_live_lock); 1501 1502 kfree(reg); 1503 } 1504 1505 static int o2hb_read_block_input(struct o2hb_region *reg, 1506 const char *page, 1507 size_t count, 1508 unsigned long *ret_bytes, 1509 unsigned int *ret_bits) 1510 { 1511 unsigned long bytes; 1512 char *p = (char *)page; 1513 1514 bytes = simple_strtoul(p, &p, 0); 1515 if (!p || (*p && (*p != '\n'))) 1516 return -EINVAL; 1517 1518 /* Heartbeat and fs min / max block sizes are the same. */ 1519 if (bytes > 4096 || bytes < 512) 1520 return -ERANGE; 1521 if (hweight16(bytes) != 1) 1522 return -EINVAL; 1523 1524 if (ret_bytes) 1525 *ret_bytes = bytes; 1526 if (ret_bits) 1527 *ret_bits = ffs(bytes) - 1; 1528 1529 return 0; 1530 } 1531 1532 static ssize_t o2hb_region_block_bytes_read(struct o2hb_region *reg, 1533 char *page) 1534 { 1535 return sprintf(page, "%u\n", reg->hr_block_bytes); 1536 } 1537 1538 static ssize_t o2hb_region_block_bytes_write(struct o2hb_region *reg, 1539 const char *page, 1540 size_t count) 1541 { 1542 int status; 1543 unsigned long block_bytes; 1544 unsigned int block_bits; 1545 1546 if (reg->hr_bdev) 1547 return -EINVAL; 1548 1549 status = o2hb_read_block_input(reg, page, count, 1550 &block_bytes, &block_bits); 1551 if (status) 1552 return status; 1553 1554 reg->hr_block_bytes = (unsigned int)block_bytes; 1555 reg->hr_block_bits = block_bits; 1556 1557 return count; 1558 } 1559 1560 static ssize_t o2hb_region_start_block_read(struct o2hb_region *reg, 1561 char *page) 1562 { 1563 return sprintf(page, "%llu\n", reg->hr_start_block); 1564 } 1565 1566 static ssize_t o2hb_region_start_block_write(struct o2hb_region *reg, 1567 const char *page, 1568 size_t count) 1569 { 1570 unsigned long long tmp; 1571 char *p = (char *)page; 1572 1573 if (reg->hr_bdev) 1574 return -EINVAL; 1575 1576 tmp = simple_strtoull(p, &p, 0); 1577 if (!p || (*p && (*p != '\n'))) 1578 return -EINVAL; 1579 1580 reg->hr_start_block = tmp; 1581 1582 return count; 1583 } 1584 1585 static ssize_t o2hb_region_blocks_read(struct o2hb_region *reg, 1586 char *page) 1587 { 1588 return sprintf(page, "%d\n", reg->hr_blocks); 1589 } 1590 1591 static ssize_t o2hb_region_blocks_write(struct o2hb_region *reg, 1592 const char *page, 1593 size_t count) 1594 { 1595 unsigned long tmp; 1596 char *p = (char *)page; 1597 1598 if (reg->hr_bdev) 1599 return -EINVAL; 1600 1601 tmp = simple_strtoul(p, &p, 0); 1602 if (!p || (*p && (*p != '\n'))) 1603 return -EINVAL; 1604 1605 if (tmp > O2NM_MAX_NODES || tmp == 0) 1606 return -ERANGE; 1607 1608 reg->hr_blocks = (unsigned int)tmp; 1609 1610 return count; 1611 } 1612 1613 static ssize_t o2hb_region_dev_read(struct o2hb_region *reg, 1614 char *page) 1615 { 1616 unsigned int ret = 0; 1617 1618 if (reg->hr_bdev) 1619 ret = sprintf(page, "%s\n", reg->hr_dev_name); 1620 1621 return ret; 1622 } 1623 1624 static void o2hb_init_region_params(struct o2hb_region *reg) 1625 { 1626 reg->hr_slots_per_page = PAGE_CACHE_SIZE >> reg->hr_block_bits; 1627 reg->hr_timeout_ms = O2HB_REGION_TIMEOUT_MS; 1628 1629 mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n", 1630 reg->hr_start_block, reg->hr_blocks); 1631 mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n", 1632 reg->hr_block_bytes, reg->hr_block_bits); 1633 mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms); 1634 mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold); 1635 } 1636 1637 static int o2hb_map_slot_data(struct o2hb_region *reg) 1638 { 1639 int i, j; 1640 unsigned int last_slot; 1641 unsigned int spp = reg->hr_slots_per_page; 1642 struct page *page; 1643 char *raw; 1644 struct o2hb_disk_slot *slot; 1645 1646 reg->hr_tmp_block = kmalloc(reg->hr_block_bytes, GFP_KERNEL); 1647 if (reg->hr_tmp_block == NULL) { 1648 mlog_errno(-ENOMEM); 1649 return -ENOMEM; 1650 } 1651 1652 reg->hr_slots = kcalloc(reg->hr_blocks, 1653 sizeof(struct o2hb_disk_slot), GFP_KERNEL); 1654 if (reg->hr_slots == NULL) { 1655 mlog_errno(-ENOMEM); 1656 return -ENOMEM; 1657 } 1658 1659 for(i = 0; i < reg->hr_blocks; i++) { 1660 slot = ®->hr_slots[i]; 1661 slot->ds_node_num = i; 1662 INIT_LIST_HEAD(&slot->ds_live_item); 1663 slot->ds_raw_block = NULL; 1664 } 1665 1666 reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp; 1667 mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks " 1668 "at %u blocks per page\n", 1669 reg->hr_num_pages, reg->hr_blocks, spp); 1670 1671 reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *), 1672 GFP_KERNEL); 1673 if (!reg->hr_slot_data) { 1674 mlog_errno(-ENOMEM); 1675 return -ENOMEM; 1676 } 1677 1678 for(i = 0; i < reg->hr_num_pages; i++) { 1679 page = alloc_page(GFP_KERNEL); 1680 if (!page) { 1681 mlog_errno(-ENOMEM); 1682 return -ENOMEM; 1683 } 1684 1685 reg->hr_slot_data[i] = page; 1686 1687 last_slot = i * spp; 1688 raw = page_address(page); 1689 for (j = 0; 1690 (j < spp) && ((j + last_slot) < reg->hr_blocks); 1691 j++) { 1692 BUG_ON((j + last_slot) >= reg->hr_blocks); 1693 1694 slot = ®->hr_slots[j + last_slot]; 1695 slot->ds_raw_block = 1696 (struct o2hb_disk_heartbeat_block *) raw; 1697 1698 raw += reg->hr_block_bytes; 1699 } 1700 } 1701 1702 return 0; 1703 } 1704 1705 /* Read in all the slots available and populate the tracking 1706 * structures so that we can start with a baseline idea of what's 1707 * there. */ 1708 static int o2hb_populate_slot_data(struct o2hb_region *reg) 1709 { 1710 int ret, i; 1711 struct o2hb_disk_slot *slot; 1712 struct o2hb_disk_heartbeat_block *hb_block; 1713 1714 ret = o2hb_read_slots(reg, reg->hr_blocks); 1715 if (ret) { 1716 mlog_errno(ret); 1717 goto out; 1718 } 1719 1720 /* We only want to get an idea of the values initially in each 1721 * slot, so we do no verification - o2hb_check_slot will 1722 * actually determine if each configured slot is valid and 1723 * whether any values have changed. */ 1724 for(i = 0; i < reg->hr_blocks; i++) { 1725 slot = ®->hr_slots[i]; 1726 hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block; 1727 1728 /* Only fill the values that o2hb_check_slot uses to 1729 * determine changing slots */ 1730 slot->ds_last_time = le64_to_cpu(hb_block->hb_seq); 1731 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation); 1732 } 1733 1734 out: 1735 return ret; 1736 } 1737 1738 /* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */ 1739 static ssize_t o2hb_region_dev_write(struct o2hb_region *reg, 1740 const char *page, 1741 size_t count) 1742 { 1743 struct task_struct *hb_task; 1744 long fd; 1745 int sectsize; 1746 char *p = (char *)page; 1747 struct fd f; 1748 struct inode *inode; 1749 ssize_t ret = -EINVAL; 1750 int live_threshold; 1751 1752 if (reg->hr_bdev) 1753 goto out; 1754 1755 /* We can't heartbeat without having had our node number 1756 * configured yet. */ 1757 if (o2nm_this_node() == O2NM_MAX_NODES) 1758 goto out; 1759 1760 fd = simple_strtol(p, &p, 0); 1761 if (!p || (*p && (*p != '\n'))) 1762 goto out; 1763 1764 if (fd < 0 || fd >= INT_MAX) 1765 goto out; 1766 1767 f = fdget(fd); 1768 if (f.file == NULL) 1769 goto out; 1770 1771 if (reg->hr_blocks == 0 || reg->hr_start_block == 0 || 1772 reg->hr_block_bytes == 0) 1773 goto out2; 1774 1775 inode = igrab(f.file->f_mapping->host); 1776 if (inode == NULL) 1777 goto out2; 1778 1779 if (!S_ISBLK(inode->i_mode)) 1780 goto out3; 1781 1782 reg->hr_bdev = I_BDEV(f.file->f_mapping->host); 1783 ret = blkdev_get(reg->hr_bdev, FMODE_WRITE | FMODE_READ, NULL); 1784 if (ret) { 1785 reg->hr_bdev = NULL; 1786 goto out3; 1787 } 1788 inode = NULL; 1789 1790 bdevname(reg->hr_bdev, reg->hr_dev_name); 1791 1792 sectsize = bdev_logical_block_size(reg->hr_bdev); 1793 if (sectsize != reg->hr_block_bytes) { 1794 mlog(ML_ERROR, 1795 "blocksize %u incorrect for device, expected %d", 1796 reg->hr_block_bytes, sectsize); 1797 ret = -EINVAL; 1798 goto out3; 1799 } 1800 1801 o2hb_init_region_params(reg); 1802 1803 /* Generation of zero is invalid */ 1804 do { 1805 get_random_bytes(®->hr_generation, 1806 sizeof(reg->hr_generation)); 1807 } while (reg->hr_generation == 0); 1808 1809 ret = o2hb_map_slot_data(reg); 1810 if (ret) { 1811 mlog_errno(ret); 1812 goto out3; 1813 } 1814 1815 ret = o2hb_populate_slot_data(reg); 1816 if (ret) { 1817 mlog_errno(ret); 1818 goto out3; 1819 } 1820 1821 INIT_DELAYED_WORK(®->hr_write_timeout_work, o2hb_write_timeout); 1822 1823 /* 1824 * A node is considered live after it has beat LIVE_THRESHOLD 1825 * times. We're not steady until we've given them a chance 1826 * _after_ our first read. 1827 * The default threshold is bare minimum so as to limit the delay 1828 * during mounts. For global heartbeat, the threshold doubled for the 1829 * first region. 1830 */ 1831 live_threshold = O2HB_LIVE_THRESHOLD; 1832 if (o2hb_global_heartbeat_active()) { 1833 spin_lock(&o2hb_live_lock); 1834 if (o2hb_pop_count(&o2hb_region_bitmap, O2NM_MAX_REGIONS) == 1) 1835 live_threshold <<= 1; 1836 spin_unlock(&o2hb_live_lock); 1837 } 1838 ++live_threshold; 1839 atomic_set(®->hr_steady_iterations, live_threshold); 1840 /* unsteady_iterations is double the steady_iterations */ 1841 atomic_set(®->hr_unsteady_iterations, (live_threshold << 1)); 1842 1843 hb_task = kthread_run(o2hb_thread, reg, "o2hb-%s", 1844 reg->hr_item.ci_name); 1845 if (IS_ERR(hb_task)) { 1846 ret = PTR_ERR(hb_task); 1847 mlog_errno(ret); 1848 goto out3; 1849 } 1850 1851 spin_lock(&o2hb_live_lock); 1852 reg->hr_task = hb_task; 1853 spin_unlock(&o2hb_live_lock); 1854 1855 ret = wait_event_interruptible(o2hb_steady_queue, 1856 atomic_read(®->hr_steady_iterations) == 0); 1857 if (ret) { 1858 atomic_set(®->hr_steady_iterations, 0); 1859 reg->hr_aborted_start = 1; 1860 } 1861 1862 if (reg->hr_aborted_start) { 1863 ret = -EIO; 1864 goto out3; 1865 } 1866 1867 /* Ok, we were woken. Make sure it wasn't by drop_item() */ 1868 spin_lock(&o2hb_live_lock); 1869 hb_task = reg->hr_task; 1870 if (o2hb_global_heartbeat_active()) 1871 set_bit(reg->hr_region_num, o2hb_live_region_bitmap); 1872 spin_unlock(&o2hb_live_lock); 1873 1874 if (hb_task) 1875 ret = count; 1876 else 1877 ret = -EIO; 1878 1879 if (hb_task && o2hb_global_heartbeat_active()) 1880 printk(KERN_NOTICE "o2hb: Heartbeat started on region %s (%s)\n", 1881 config_item_name(®->hr_item), reg->hr_dev_name); 1882 1883 out3: 1884 iput(inode); 1885 out2: 1886 fdput(f); 1887 out: 1888 if (ret < 0) { 1889 if (reg->hr_bdev) { 1890 blkdev_put(reg->hr_bdev, FMODE_READ|FMODE_WRITE); 1891 reg->hr_bdev = NULL; 1892 } 1893 } 1894 return ret; 1895 } 1896 1897 static ssize_t o2hb_region_pid_read(struct o2hb_region *reg, 1898 char *page) 1899 { 1900 pid_t pid = 0; 1901 1902 spin_lock(&o2hb_live_lock); 1903 if (reg->hr_task) 1904 pid = task_pid_nr(reg->hr_task); 1905 spin_unlock(&o2hb_live_lock); 1906 1907 if (!pid) 1908 return 0; 1909 1910 return sprintf(page, "%u\n", pid); 1911 } 1912 1913 struct o2hb_region_attribute { 1914 struct configfs_attribute attr; 1915 ssize_t (*show)(struct o2hb_region *, char *); 1916 ssize_t (*store)(struct o2hb_region *, const char *, size_t); 1917 }; 1918 1919 static struct o2hb_region_attribute o2hb_region_attr_block_bytes = { 1920 .attr = { .ca_owner = THIS_MODULE, 1921 .ca_name = "block_bytes", 1922 .ca_mode = S_IRUGO | S_IWUSR }, 1923 .show = o2hb_region_block_bytes_read, 1924 .store = o2hb_region_block_bytes_write, 1925 }; 1926 1927 static struct o2hb_region_attribute o2hb_region_attr_start_block = { 1928 .attr = { .ca_owner = THIS_MODULE, 1929 .ca_name = "start_block", 1930 .ca_mode = S_IRUGO | S_IWUSR }, 1931 .show = o2hb_region_start_block_read, 1932 .store = o2hb_region_start_block_write, 1933 }; 1934 1935 static struct o2hb_region_attribute o2hb_region_attr_blocks = { 1936 .attr = { .ca_owner = THIS_MODULE, 1937 .ca_name = "blocks", 1938 .ca_mode = S_IRUGO | S_IWUSR }, 1939 .show = o2hb_region_blocks_read, 1940 .store = o2hb_region_blocks_write, 1941 }; 1942 1943 static struct o2hb_region_attribute o2hb_region_attr_dev = { 1944 .attr = { .ca_owner = THIS_MODULE, 1945 .ca_name = "dev", 1946 .ca_mode = S_IRUGO | S_IWUSR }, 1947 .show = o2hb_region_dev_read, 1948 .store = o2hb_region_dev_write, 1949 }; 1950 1951 static struct o2hb_region_attribute o2hb_region_attr_pid = { 1952 .attr = { .ca_owner = THIS_MODULE, 1953 .ca_name = "pid", 1954 .ca_mode = S_IRUGO | S_IRUSR }, 1955 .show = o2hb_region_pid_read, 1956 }; 1957 1958 static struct configfs_attribute *o2hb_region_attrs[] = { 1959 &o2hb_region_attr_block_bytes.attr, 1960 &o2hb_region_attr_start_block.attr, 1961 &o2hb_region_attr_blocks.attr, 1962 &o2hb_region_attr_dev.attr, 1963 &o2hb_region_attr_pid.attr, 1964 NULL, 1965 }; 1966 1967 static ssize_t o2hb_region_show(struct config_item *item, 1968 struct configfs_attribute *attr, 1969 char *page) 1970 { 1971 struct o2hb_region *reg = to_o2hb_region(item); 1972 struct o2hb_region_attribute *o2hb_region_attr = 1973 container_of(attr, struct o2hb_region_attribute, attr); 1974 ssize_t ret = 0; 1975 1976 if (o2hb_region_attr->show) 1977 ret = o2hb_region_attr->show(reg, page); 1978 return ret; 1979 } 1980 1981 static ssize_t o2hb_region_store(struct config_item *item, 1982 struct configfs_attribute *attr, 1983 const char *page, size_t count) 1984 { 1985 struct o2hb_region *reg = to_o2hb_region(item); 1986 struct o2hb_region_attribute *o2hb_region_attr = 1987 container_of(attr, struct o2hb_region_attribute, attr); 1988 ssize_t ret = -EINVAL; 1989 1990 if (o2hb_region_attr->store) 1991 ret = o2hb_region_attr->store(reg, page, count); 1992 return ret; 1993 } 1994 1995 static struct configfs_item_operations o2hb_region_item_ops = { 1996 .release = o2hb_region_release, 1997 .show_attribute = o2hb_region_show, 1998 .store_attribute = o2hb_region_store, 1999 }; 2000 2001 static struct config_item_type o2hb_region_type = { 2002 .ct_item_ops = &o2hb_region_item_ops, 2003 .ct_attrs = o2hb_region_attrs, 2004 .ct_owner = THIS_MODULE, 2005 }; 2006 2007 /* heartbeat set */ 2008 2009 struct o2hb_heartbeat_group { 2010 struct config_group hs_group; 2011 /* some stuff? */ 2012 }; 2013 2014 static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group) 2015 { 2016 return group ? 2017 container_of(group, struct o2hb_heartbeat_group, hs_group) 2018 : NULL; 2019 } 2020 2021 static int o2hb_debug_region_init(struct o2hb_region *reg, struct dentry *dir) 2022 { 2023 int ret = -ENOMEM; 2024 2025 reg->hr_debug_dir = 2026 debugfs_create_dir(config_item_name(®->hr_item), dir); 2027 if (!reg->hr_debug_dir) { 2028 mlog_errno(ret); 2029 goto bail; 2030 } 2031 2032 reg->hr_debug_livenodes = 2033 o2hb_debug_create(O2HB_DEBUG_LIVENODES, 2034 reg->hr_debug_dir, 2035 &(reg->hr_db_livenodes), 2036 sizeof(*(reg->hr_db_livenodes)), 2037 O2HB_DB_TYPE_REGION_LIVENODES, 2038 sizeof(reg->hr_live_node_bitmap), 2039 O2NM_MAX_NODES, reg); 2040 if (!reg->hr_debug_livenodes) { 2041 mlog_errno(ret); 2042 goto bail; 2043 } 2044 2045 reg->hr_debug_regnum = 2046 o2hb_debug_create(O2HB_DEBUG_REGION_NUMBER, 2047 reg->hr_debug_dir, 2048 &(reg->hr_db_regnum), 2049 sizeof(*(reg->hr_db_regnum)), 2050 O2HB_DB_TYPE_REGION_NUMBER, 2051 0, O2NM_MAX_NODES, reg); 2052 if (!reg->hr_debug_regnum) { 2053 mlog_errno(ret); 2054 goto bail; 2055 } 2056 2057 reg->hr_debug_elapsed_time = 2058 o2hb_debug_create(O2HB_DEBUG_REGION_ELAPSED_TIME, 2059 reg->hr_debug_dir, 2060 &(reg->hr_db_elapsed_time), 2061 sizeof(*(reg->hr_db_elapsed_time)), 2062 O2HB_DB_TYPE_REGION_ELAPSED_TIME, 2063 0, 0, reg); 2064 if (!reg->hr_debug_elapsed_time) { 2065 mlog_errno(ret); 2066 goto bail; 2067 } 2068 2069 reg->hr_debug_pinned = 2070 o2hb_debug_create(O2HB_DEBUG_REGION_PINNED, 2071 reg->hr_debug_dir, 2072 &(reg->hr_db_pinned), 2073 sizeof(*(reg->hr_db_pinned)), 2074 O2HB_DB_TYPE_REGION_PINNED, 2075 0, 0, reg); 2076 if (!reg->hr_debug_pinned) { 2077 mlog_errno(ret); 2078 goto bail; 2079 } 2080 2081 ret = 0; 2082 bail: 2083 return ret; 2084 } 2085 2086 static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group, 2087 const char *name) 2088 { 2089 struct o2hb_region *reg = NULL; 2090 int ret; 2091 2092 reg = kzalloc(sizeof(struct o2hb_region), GFP_KERNEL); 2093 if (reg == NULL) 2094 return ERR_PTR(-ENOMEM); 2095 2096 if (strlen(name) > O2HB_MAX_REGION_NAME_LEN) { 2097 ret = -ENAMETOOLONG; 2098 goto free; 2099 } 2100 2101 spin_lock(&o2hb_live_lock); 2102 reg->hr_region_num = 0; 2103 if (o2hb_global_heartbeat_active()) { 2104 reg->hr_region_num = find_first_zero_bit(o2hb_region_bitmap, 2105 O2NM_MAX_REGIONS); 2106 if (reg->hr_region_num >= O2NM_MAX_REGIONS) { 2107 spin_unlock(&o2hb_live_lock); 2108 ret = -EFBIG; 2109 goto free; 2110 } 2111 set_bit(reg->hr_region_num, o2hb_region_bitmap); 2112 } 2113 list_add_tail(®->hr_all_item, &o2hb_all_regions); 2114 spin_unlock(&o2hb_live_lock); 2115 2116 config_item_init_type_name(®->hr_item, name, &o2hb_region_type); 2117 2118 ret = o2hb_debug_region_init(reg, o2hb_debug_dir); 2119 if (ret) { 2120 config_item_put(®->hr_item); 2121 goto free; 2122 } 2123 2124 return ®->hr_item; 2125 free: 2126 kfree(reg); 2127 return ERR_PTR(ret); 2128 } 2129 2130 static void o2hb_heartbeat_group_drop_item(struct config_group *group, 2131 struct config_item *item) 2132 { 2133 struct task_struct *hb_task; 2134 struct o2hb_region *reg = to_o2hb_region(item); 2135 int quorum_region = 0; 2136 2137 /* stop the thread when the user removes the region dir */ 2138 spin_lock(&o2hb_live_lock); 2139 hb_task = reg->hr_task; 2140 reg->hr_task = NULL; 2141 reg->hr_item_dropped = 1; 2142 spin_unlock(&o2hb_live_lock); 2143 2144 if (hb_task) 2145 kthread_stop(hb_task); 2146 2147 if (o2hb_global_heartbeat_active()) { 2148 spin_lock(&o2hb_live_lock); 2149 clear_bit(reg->hr_region_num, o2hb_region_bitmap); 2150 clear_bit(reg->hr_region_num, o2hb_live_region_bitmap); 2151 if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap)) 2152 quorum_region = 1; 2153 clear_bit(reg->hr_region_num, o2hb_quorum_region_bitmap); 2154 spin_unlock(&o2hb_live_lock); 2155 printk(KERN_NOTICE "o2hb: Heartbeat %s on region %s (%s)\n", 2156 ((atomic_read(®->hr_steady_iterations) == 0) ? 2157 "stopped" : "start aborted"), config_item_name(item), 2158 reg->hr_dev_name); 2159 } 2160 2161 /* 2162 * If we're racing a dev_write(), we need to wake them. They will 2163 * check reg->hr_task 2164 */ 2165 if (atomic_read(®->hr_steady_iterations) != 0) { 2166 reg->hr_aborted_start = 1; 2167 atomic_set(®->hr_steady_iterations, 0); 2168 wake_up(&o2hb_steady_queue); 2169 } 2170 2171 config_item_put(item); 2172 2173 if (!o2hb_global_heartbeat_active() || !quorum_region) 2174 return; 2175 2176 /* 2177 * If global heartbeat active and there are dependent users, 2178 * pin all regions if quorum region count <= CUT_OFF 2179 */ 2180 spin_lock(&o2hb_live_lock); 2181 2182 if (!o2hb_dependent_users) 2183 goto unlock; 2184 2185 if (o2hb_pop_count(&o2hb_quorum_region_bitmap, 2186 O2NM_MAX_REGIONS) <= O2HB_PIN_CUT_OFF) 2187 o2hb_region_pin(NULL); 2188 2189 unlock: 2190 spin_unlock(&o2hb_live_lock); 2191 } 2192 2193 struct o2hb_heartbeat_group_attribute { 2194 struct configfs_attribute attr; 2195 ssize_t (*show)(struct o2hb_heartbeat_group *, char *); 2196 ssize_t (*store)(struct o2hb_heartbeat_group *, const char *, size_t); 2197 }; 2198 2199 static ssize_t o2hb_heartbeat_group_show(struct config_item *item, 2200 struct configfs_attribute *attr, 2201 char *page) 2202 { 2203 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item)); 2204 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr = 2205 container_of(attr, struct o2hb_heartbeat_group_attribute, attr); 2206 ssize_t ret = 0; 2207 2208 if (o2hb_heartbeat_group_attr->show) 2209 ret = o2hb_heartbeat_group_attr->show(reg, page); 2210 return ret; 2211 } 2212 2213 static ssize_t o2hb_heartbeat_group_store(struct config_item *item, 2214 struct configfs_attribute *attr, 2215 const char *page, size_t count) 2216 { 2217 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item)); 2218 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr = 2219 container_of(attr, struct o2hb_heartbeat_group_attribute, attr); 2220 ssize_t ret = -EINVAL; 2221 2222 if (o2hb_heartbeat_group_attr->store) 2223 ret = o2hb_heartbeat_group_attr->store(reg, page, count); 2224 return ret; 2225 } 2226 2227 static ssize_t o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group *group, 2228 char *page) 2229 { 2230 return sprintf(page, "%u\n", o2hb_dead_threshold); 2231 } 2232 2233 static ssize_t o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group *group, 2234 const char *page, 2235 size_t count) 2236 { 2237 unsigned long tmp; 2238 char *p = (char *)page; 2239 2240 tmp = simple_strtoul(p, &p, 10); 2241 if (!p || (*p && (*p != '\n'))) 2242 return -EINVAL; 2243 2244 /* this will validate ranges for us. */ 2245 o2hb_dead_threshold_set((unsigned int) tmp); 2246 2247 return count; 2248 } 2249 2250 static 2251 ssize_t o2hb_heartbeat_group_mode_show(struct o2hb_heartbeat_group *group, 2252 char *page) 2253 { 2254 return sprintf(page, "%s\n", 2255 o2hb_heartbeat_mode_desc[o2hb_heartbeat_mode]); 2256 } 2257 2258 static 2259 ssize_t o2hb_heartbeat_group_mode_store(struct o2hb_heartbeat_group *group, 2260 const char *page, size_t count) 2261 { 2262 unsigned int i; 2263 int ret; 2264 size_t len; 2265 2266 len = (page[count - 1] == '\n') ? count - 1 : count; 2267 if (!len) 2268 return -EINVAL; 2269 2270 for (i = 0; i < O2HB_HEARTBEAT_NUM_MODES; ++i) { 2271 if (strnicmp(page, o2hb_heartbeat_mode_desc[i], len)) 2272 continue; 2273 2274 ret = o2hb_global_heartbeat_mode_set(i); 2275 if (!ret) 2276 printk(KERN_NOTICE "o2hb: Heartbeat mode set to %s\n", 2277 o2hb_heartbeat_mode_desc[i]); 2278 return count; 2279 } 2280 2281 return -EINVAL; 2282 2283 } 2284 2285 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold = { 2286 .attr = { .ca_owner = THIS_MODULE, 2287 .ca_name = "dead_threshold", 2288 .ca_mode = S_IRUGO | S_IWUSR }, 2289 .show = o2hb_heartbeat_group_threshold_show, 2290 .store = o2hb_heartbeat_group_threshold_store, 2291 }; 2292 2293 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_mode = { 2294 .attr = { .ca_owner = THIS_MODULE, 2295 .ca_name = "mode", 2296 .ca_mode = S_IRUGO | S_IWUSR }, 2297 .show = o2hb_heartbeat_group_mode_show, 2298 .store = o2hb_heartbeat_group_mode_store, 2299 }; 2300 2301 static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = { 2302 &o2hb_heartbeat_group_attr_threshold.attr, 2303 &o2hb_heartbeat_group_attr_mode.attr, 2304 NULL, 2305 }; 2306 2307 static struct configfs_item_operations o2hb_heartbeat_group_item_ops = { 2308 .show_attribute = o2hb_heartbeat_group_show, 2309 .store_attribute = o2hb_heartbeat_group_store, 2310 }; 2311 2312 static struct configfs_group_operations o2hb_heartbeat_group_group_ops = { 2313 .make_item = o2hb_heartbeat_group_make_item, 2314 .drop_item = o2hb_heartbeat_group_drop_item, 2315 }; 2316 2317 static struct config_item_type o2hb_heartbeat_group_type = { 2318 .ct_group_ops = &o2hb_heartbeat_group_group_ops, 2319 .ct_item_ops = &o2hb_heartbeat_group_item_ops, 2320 .ct_attrs = o2hb_heartbeat_group_attrs, 2321 .ct_owner = THIS_MODULE, 2322 }; 2323 2324 /* this is just here to avoid touching group in heartbeat.h which the 2325 * entire damn world #includes */ 2326 struct config_group *o2hb_alloc_hb_set(void) 2327 { 2328 struct o2hb_heartbeat_group *hs = NULL; 2329 struct config_group *ret = NULL; 2330 2331 hs = kzalloc(sizeof(struct o2hb_heartbeat_group), GFP_KERNEL); 2332 if (hs == NULL) 2333 goto out; 2334 2335 config_group_init_type_name(&hs->hs_group, "heartbeat", 2336 &o2hb_heartbeat_group_type); 2337 2338 ret = &hs->hs_group; 2339 out: 2340 if (ret == NULL) 2341 kfree(hs); 2342 return ret; 2343 } 2344 2345 void o2hb_free_hb_set(struct config_group *group) 2346 { 2347 struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group); 2348 kfree(hs); 2349 } 2350 2351 /* hb callback registration and issuing */ 2352 2353 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type) 2354 { 2355 if (type == O2HB_NUM_CB) 2356 return ERR_PTR(-EINVAL); 2357 2358 return &o2hb_callbacks[type]; 2359 } 2360 2361 void o2hb_setup_callback(struct o2hb_callback_func *hc, 2362 enum o2hb_callback_type type, 2363 o2hb_cb_func *func, 2364 void *data, 2365 int priority) 2366 { 2367 INIT_LIST_HEAD(&hc->hc_item); 2368 hc->hc_func = func; 2369 hc->hc_data = data; 2370 hc->hc_priority = priority; 2371 hc->hc_type = type; 2372 hc->hc_magic = O2HB_CB_MAGIC; 2373 } 2374 EXPORT_SYMBOL_GPL(o2hb_setup_callback); 2375 2376 /* 2377 * In local heartbeat mode, region_uuid passed matches the dlm domain name. 2378 * In global heartbeat mode, region_uuid passed is NULL. 2379 * 2380 * In local, we only pin the matching region. In global we pin all the active 2381 * regions. 2382 */ 2383 static int o2hb_region_pin(const char *region_uuid) 2384 { 2385 int ret = 0, found = 0; 2386 struct o2hb_region *reg; 2387 char *uuid; 2388 2389 assert_spin_locked(&o2hb_live_lock); 2390 2391 list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) { 2392 if (reg->hr_item_dropped) 2393 continue; 2394 2395 uuid = config_item_name(®->hr_item); 2396 2397 /* local heartbeat */ 2398 if (region_uuid) { 2399 if (strcmp(region_uuid, uuid)) 2400 continue; 2401 found = 1; 2402 } 2403 2404 if (reg->hr_item_pinned || reg->hr_item_dropped) 2405 goto skip_pin; 2406 2407 /* Ignore ENOENT only for local hb (userdlm domain) */ 2408 ret = o2nm_depend_item(®->hr_item); 2409 if (!ret) { 2410 mlog(ML_CLUSTER, "Pin region %s\n", uuid); 2411 reg->hr_item_pinned = 1; 2412 } else { 2413 if (ret == -ENOENT && found) 2414 ret = 0; 2415 else { 2416 mlog(ML_ERROR, "Pin region %s fails with %d\n", 2417 uuid, ret); 2418 break; 2419 } 2420 } 2421 skip_pin: 2422 if (found) 2423 break; 2424 } 2425 2426 return ret; 2427 } 2428 2429 /* 2430 * In local heartbeat mode, region_uuid passed matches the dlm domain name. 2431 * In global heartbeat mode, region_uuid passed is NULL. 2432 * 2433 * In local, we only unpin the matching region. In global we unpin all the 2434 * active regions. 2435 */ 2436 static void o2hb_region_unpin(const char *region_uuid) 2437 { 2438 struct o2hb_region *reg; 2439 char *uuid; 2440 int found = 0; 2441 2442 assert_spin_locked(&o2hb_live_lock); 2443 2444 list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) { 2445 if (reg->hr_item_dropped) 2446 continue; 2447 2448 uuid = config_item_name(®->hr_item); 2449 if (region_uuid) { 2450 if (strcmp(region_uuid, uuid)) 2451 continue; 2452 found = 1; 2453 } 2454 2455 if (reg->hr_item_pinned) { 2456 mlog(ML_CLUSTER, "Unpin region %s\n", uuid); 2457 o2nm_undepend_item(®->hr_item); 2458 reg->hr_item_pinned = 0; 2459 } 2460 if (found) 2461 break; 2462 } 2463 } 2464 2465 static int o2hb_region_inc_user(const char *region_uuid) 2466 { 2467 int ret = 0; 2468 2469 spin_lock(&o2hb_live_lock); 2470 2471 /* local heartbeat */ 2472 if (!o2hb_global_heartbeat_active()) { 2473 ret = o2hb_region_pin(region_uuid); 2474 goto unlock; 2475 } 2476 2477 /* 2478 * if global heartbeat active and this is the first dependent user, 2479 * pin all regions if quorum region count <= CUT_OFF 2480 */ 2481 o2hb_dependent_users++; 2482 if (o2hb_dependent_users > 1) 2483 goto unlock; 2484 2485 if (o2hb_pop_count(&o2hb_quorum_region_bitmap, 2486 O2NM_MAX_REGIONS) <= O2HB_PIN_CUT_OFF) 2487 ret = o2hb_region_pin(NULL); 2488 2489 unlock: 2490 spin_unlock(&o2hb_live_lock); 2491 return ret; 2492 } 2493 2494 void o2hb_region_dec_user(const char *region_uuid) 2495 { 2496 spin_lock(&o2hb_live_lock); 2497 2498 /* local heartbeat */ 2499 if (!o2hb_global_heartbeat_active()) { 2500 o2hb_region_unpin(region_uuid); 2501 goto unlock; 2502 } 2503 2504 /* 2505 * if global heartbeat active and there are no dependent users, 2506 * unpin all quorum regions 2507 */ 2508 o2hb_dependent_users--; 2509 if (!o2hb_dependent_users) 2510 o2hb_region_unpin(NULL); 2511 2512 unlock: 2513 spin_unlock(&o2hb_live_lock); 2514 } 2515 2516 int o2hb_register_callback(const char *region_uuid, 2517 struct o2hb_callback_func *hc) 2518 { 2519 struct o2hb_callback_func *tmp; 2520 struct list_head *iter; 2521 struct o2hb_callback *hbcall; 2522 int ret; 2523 2524 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC); 2525 BUG_ON(!list_empty(&hc->hc_item)); 2526 2527 hbcall = hbcall_from_type(hc->hc_type); 2528 if (IS_ERR(hbcall)) { 2529 ret = PTR_ERR(hbcall); 2530 goto out; 2531 } 2532 2533 if (region_uuid) { 2534 ret = o2hb_region_inc_user(region_uuid); 2535 if (ret) { 2536 mlog_errno(ret); 2537 goto out; 2538 } 2539 } 2540 2541 down_write(&o2hb_callback_sem); 2542 2543 list_for_each(iter, &hbcall->list) { 2544 tmp = list_entry(iter, struct o2hb_callback_func, hc_item); 2545 if (hc->hc_priority < tmp->hc_priority) { 2546 list_add_tail(&hc->hc_item, iter); 2547 break; 2548 } 2549 } 2550 if (list_empty(&hc->hc_item)) 2551 list_add_tail(&hc->hc_item, &hbcall->list); 2552 2553 up_write(&o2hb_callback_sem); 2554 ret = 0; 2555 out: 2556 mlog(ML_CLUSTER, "returning %d on behalf of %p for funcs %p\n", 2557 ret, __builtin_return_address(0), hc); 2558 return ret; 2559 } 2560 EXPORT_SYMBOL_GPL(o2hb_register_callback); 2561 2562 void o2hb_unregister_callback(const char *region_uuid, 2563 struct o2hb_callback_func *hc) 2564 { 2565 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC); 2566 2567 mlog(ML_CLUSTER, "on behalf of %p for funcs %p\n", 2568 __builtin_return_address(0), hc); 2569 2570 /* XXX Can this happen _with_ a region reference? */ 2571 if (list_empty(&hc->hc_item)) 2572 return; 2573 2574 if (region_uuid) 2575 o2hb_region_dec_user(region_uuid); 2576 2577 down_write(&o2hb_callback_sem); 2578 2579 list_del_init(&hc->hc_item); 2580 2581 up_write(&o2hb_callback_sem); 2582 } 2583 EXPORT_SYMBOL_GPL(o2hb_unregister_callback); 2584 2585 int o2hb_check_node_heartbeating(u8 node_num) 2586 { 2587 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)]; 2588 2589 o2hb_fill_node_map(testing_map, sizeof(testing_map)); 2590 if (!test_bit(node_num, testing_map)) { 2591 mlog(ML_HEARTBEAT, 2592 "node (%u) does not have heartbeating enabled.\n", 2593 node_num); 2594 return 0; 2595 } 2596 2597 return 1; 2598 } 2599 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating); 2600 2601 int o2hb_check_node_heartbeating_from_callback(u8 node_num) 2602 { 2603 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)]; 2604 2605 o2hb_fill_node_map_from_callback(testing_map, sizeof(testing_map)); 2606 if (!test_bit(node_num, testing_map)) { 2607 mlog(ML_HEARTBEAT, 2608 "node (%u) does not have heartbeating enabled.\n", 2609 node_num); 2610 return 0; 2611 } 2612 2613 return 1; 2614 } 2615 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback); 2616 2617 /* Makes sure our local node is configured with a node number, and is 2618 * heartbeating. */ 2619 int o2hb_check_local_node_heartbeating(void) 2620 { 2621 u8 node_num; 2622 2623 /* if this node was set then we have networking */ 2624 node_num = o2nm_this_node(); 2625 if (node_num == O2NM_MAX_NODES) { 2626 mlog(ML_HEARTBEAT, "this node has not been configured.\n"); 2627 return 0; 2628 } 2629 2630 return o2hb_check_node_heartbeating(node_num); 2631 } 2632 EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating); 2633 2634 /* 2635 * this is just a hack until we get the plumbing which flips file systems 2636 * read only and drops the hb ref instead of killing the node dead. 2637 */ 2638 void o2hb_stop_all_regions(void) 2639 { 2640 struct o2hb_region *reg; 2641 2642 mlog(ML_ERROR, "stopping heartbeat on all active regions.\n"); 2643 2644 spin_lock(&o2hb_live_lock); 2645 2646 list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) 2647 reg->hr_unclean_stop = 1; 2648 2649 spin_unlock(&o2hb_live_lock); 2650 } 2651 EXPORT_SYMBOL_GPL(o2hb_stop_all_regions); 2652 2653 int o2hb_get_all_regions(char *region_uuids, u8 max_regions) 2654 { 2655 struct o2hb_region *reg; 2656 int numregs = 0; 2657 char *p; 2658 2659 spin_lock(&o2hb_live_lock); 2660 2661 p = region_uuids; 2662 list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) { 2663 if (reg->hr_item_dropped) 2664 continue; 2665 2666 mlog(0, "Region: %s\n", config_item_name(®->hr_item)); 2667 if (numregs < max_regions) { 2668 memcpy(p, config_item_name(®->hr_item), 2669 O2HB_MAX_REGION_NAME_LEN); 2670 p += O2HB_MAX_REGION_NAME_LEN; 2671 } 2672 numregs++; 2673 } 2674 2675 spin_unlock(&o2hb_live_lock); 2676 2677 return numregs; 2678 } 2679 EXPORT_SYMBOL_GPL(o2hb_get_all_regions); 2680 2681 int o2hb_global_heartbeat_active(void) 2682 { 2683 return (o2hb_heartbeat_mode == O2HB_HEARTBEAT_GLOBAL); 2684 } 2685 EXPORT_SYMBOL(o2hb_global_heartbeat_active); 2686