xref: /openbmc/linux/fs/ocfs2/blockcheck.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * blockcheck.c
5  *
6  * Checksum and ECC codes for the OCFS2 userspace library.
7  *
8  * Copyright (C) 2006, 2008 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License, version 2, as published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/types.h>
22 #include <linux/crc32.h>
23 #include <linux/buffer_head.h>
24 #include <linux/bitops.h>
25 #include <asm/byteorder.h>
26 
27 #include <cluster/masklog.h>
28 
29 #include "ocfs2.h"
30 
31 #include "blockcheck.h"
32 
33 
34 /*
35  * We use the following conventions:
36  *
37  * d = # data bits
38  * p = # parity bits
39  * c = # total code bits (d + p)
40  */
41 
42 
43 /*
44  * Calculate the bit offset in the hamming code buffer based on the bit's
45  * offset in the data buffer.  Since the hamming code reserves all
46  * power-of-two bits for parity, the data bit number and the code bit
47  * number are offest by all the parity bits beforehand.
48  *
49  * Recall that bit numbers in hamming code are 1-based.  This function
50  * takes the 0-based data bit from the caller.
51  *
52  * An example.  Take bit 1 of the data buffer.  1 is a power of two (2^0),
53  * so it's a parity bit.  2 is a power of two (2^1), so it's a parity bit.
54  * 3 is not a power of two.  So bit 1 of the data buffer ends up as bit 3
55  * in the code buffer.
56  *
57  * The caller can pass in *p if it wants to keep track of the most recent
58  * number of parity bits added.  This allows the function to start the
59  * calculation at the last place.
60  */
61 static unsigned int calc_code_bit(unsigned int i, unsigned int *p_cache)
62 {
63 	unsigned int b, p = 0;
64 
65 	/*
66 	 * Data bits are 0-based, but we're talking code bits, which
67 	 * are 1-based.
68 	 */
69 	b = i + 1;
70 
71 	/* Use the cache if it is there */
72 	if (p_cache)
73 		p = *p_cache;
74         b += p;
75 
76 	/*
77 	 * For every power of two below our bit number, bump our bit.
78 	 *
79 	 * We compare with (b + 1) because we have to compare with what b
80 	 * would be _if_ it were bumped up by the parity bit.  Capice?
81 	 *
82 	 * p is set above.
83 	 */
84 	for (; (1 << p) < (b + 1); p++)
85 		b++;
86 
87 	if (p_cache)
88 		*p_cache = p;
89 
90 	return b;
91 }
92 
93 /*
94  * This is the low level encoder function.  It can be called across
95  * multiple hunks just like the crc32 code.  'd' is the number of bits
96  * _in_this_hunk_.  nr is the bit offset of this hunk.  So, if you had
97  * two 512B buffers, you would do it like so:
98  *
99  * parity = ocfs2_hamming_encode(0, buf1, 512 * 8, 0);
100  * parity = ocfs2_hamming_encode(parity, buf2, 512 * 8, 512 * 8);
101  *
102  * If you just have one buffer, use ocfs2_hamming_encode_block().
103  */
104 u32 ocfs2_hamming_encode(u32 parity, void *data, unsigned int d, unsigned int nr)
105 {
106 	unsigned int i, b, p = 0;
107 
108 	BUG_ON(!d);
109 
110 	/*
111 	 * b is the hamming code bit number.  Hamming code specifies a
112 	 * 1-based array, but C uses 0-based.  So 'i' is for C, and 'b' is
113 	 * for the algorithm.
114 	 *
115 	 * The i++ in the for loop is so that the start offset passed
116 	 * to ocfs2_find_next_bit_set() is one greater than the previously
117 	 * found bit.
118 	 */
119 	for (i = 0; (i = ocfs2_find_next_bit(data, d, i)) < d; i++)
120 	{
121 		/*
122 		 * i is the offset in this hunk, nr + i is the total bit
123 		 * offset.
124 		 */
125 		b = calc_code_bit(nr + i, &p);
126 
127 		/*
128 		 * Data bits in the resultant code are checked by
129 		 * parity bits that are part of the bit number
130 		 * representation.  Huh?
131 		 *
132 		 * <wikipedia href="http://en.wikipedia.org/wiki/Hamming_code">
133 		 * In other words, the parity bit at position 2^k
134 		 * checks bits in positions having bit k set in
135 		 * their binary representation.  Conversely, for
136 		 * instance, bit 13, i.e. 1101(2), is checked by
137 		 * bits 1000(2) = 8, 0100(2)=4 and 0001(2) = 1.
138 		 * </wikipedia>
139 		 *
140 		 * Note that 'k' is the _code_ bit number.  'b' in
141 		 * our loop.
142 		 */
143 		parity ^= b;
144 	}
145 
146 	/* While the data buffer was treated as little endian, the
147 	 * return value is in host endian. */
148 	return parity;
149 }
150 
151 u32 ocfs2_hamming_encode_block(void *data, unsigned int blocksize)
152 {
153 	return ocfs2_hamming_encode(0, data, blocksize * 8, 0);
154 }
155 
156 /*
157  * Like ocfs2_hamming_encode(), this can handle hunks.  nr is the bit
158  * offset of the current hunk.  If bit to be fixed is not part of the
159  * current hunk, this does nothing.
160  *
161  * If you only have one hunk, use ocfs2_hamming_fix_block().
162  */
163 void ocfs2_hamming_fix(void *data, unsigned int d, unsigned int nr,
164 		       unsigned int fix)
165 {
166 	unsigned int i, b;
167 
168 	BUG_ON(!d);
169 
170 	/*
171 	 * If the bit to fix has an hweight of 1, it's a parity bit.  One
172 	 * busted parity bit is its own error.  Nothing to do here.
173 	 */
174 	if (hweight32(fix) == 1)
175 		return;
176 
177 	/*
178 	 * nr + d is the bit right past the data hunk we're looking at.
179 	 * If fix after that, nothing to do
180 	 */
181 	if (fix >= calc_code_bit(nr + d, NULL))
182 		return;
183 
184 	/*
185 	 * nr is the offset in the data hunk we're starting at.  Let's
186 	 * start b at the offset in the code buffer.  See hamming_encode()
187 	 * for a more detailed description of 'b'.
188 	 */
189 	b = calc_code_bit(nr, NULL);
190 	/* If the fix is before this hunk, nothing to do */
191 	if (fix < b)
192 		return;
193 
194 	for (i = 0; i < d; i++, b++)
195 	{
196 		/* Skip past parity bits */
197 		while (hweight32(b) == 1)
198 			b++;
199 
200 		/*
201 		 * i is the offset in this data hunk.
202 		 * nr + i is the offset in the total data buffer.
203 		 * b is the offset in the total code buffer.
204 		 *
205 		 * Thus, when b == fix, bit i in the current hunk needs
206 		 * fixing.
207 		 */
208 		if (b == fix)
209 		{
210 			if (ocfs2_test_bit(i, data))
211 				ocfs2_clear_bit(i, data);
212 			else
213 				ocfs2_set_bit(i, data);
214 			break;
215 		}
216 	}
217 }
218 
219 void ocfs2_hamming_fix_block(void *data, unsigned int blocksize,
220 			     unsigned int fix)
221 {
222 	ocfs2_hamming_fix(data, blocksize * 8, 0, fix);
223 }
224 
225 /*
226  * This function generates check information for a block.
227  * data is the block to be checked.  bc is a pointer to the
228  * ocfs2_block_check structure describing the crc32 and the ecc.
229  *
230  * bc should be a pointer inside data, as the function will
231  * take care of zeroing it before calculating the check information.  If
232  * bc does not point inside data, the caller must make sure any inline
233  * ocfs2_block_check structures are zeroed.
234  *
235  * The data buffer must be in on-disk endian (little endian for ocfs2).
236  * bc will be filled with little-endian values and will be ready to go to
237  * disk.
238  */
239 void ocfs2_block_check_compute(void *data, size_t blocksize,
240 			       struct ocfs2_block_check *bc)
241 {
242 	u32 crc;
243 	u32 ecc;
244 
245 	memset(bc, 0, sizeof(struct ocfs2_block_check));
246 
247 	crc = crc32_le(~0, data, blocksize);
248 	ecc = ocfs2_hamming_encode_block(data, blocksize);
249 
250 	/*
251 	 * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
252 	 * larger than 16 bits.
253 	 */
254 	BUG_ON(ecc > USHORT_MAX);
255 
256 	bc->bc_crc32e = cpu_to_le32(crc);
257 	bc->bc_ecc = cpu_to_le16((u16)ecc);
258 }
259 
260 /*
261  * This function validates existing check information.  Like _compute,
262  * the function will take care of zeroing bc before calculating check codes.
263  * If bc is not a pointer inside data, the caller must have zeroed any
264  * inline ocfs2_block_check structures.
265  *
266  * Again, the data passed in should be the on-disk endian.
267  */
268 int ocfs2_block_check_validate(void *data, size_t blocksize,
269 			       struct ocfs2_block_check *bc)
270 {
271 	int rc = 0;
272 	struct ocfs2_block_check check;
273 	u32 crc, ecc;
274 
275 	check.bc_crc32e = le32_to_cpu(bc->bc_crc32e);
276 	check.bc_ecc = le16_to_cpu(bc->bc_ecc);
277 
278 	memset(bc, 0, sizeof(struct ocfs2_block_check));
279 
280 	/* Fast path - if the crc32 validates, we're good to go */
281 	crc = crc32_le(~0, data, blocksize);
282 	if (crc == check.bc_crc32e)
283 		goto out;
284 
285 	mlog(ML_ERROR,
286 	     "CRC32 failed: stored: %u, computed %u.  Applying ECC.\n",
287 	     (unsigned int)check.bc_crc32e, (unsigned int)crc);
288 
289 	/* Ok, try ECC fixups */
290 	ecc = ocfs2_hamming_encode_block(data, blocksize);
291 	ocfs2_hamming_fix_block(data, blocksize, ecc ^ check.bc_ecc);
292 
293 	/* And check the crc32 again */
294 	crc = crc32_le(~0, data, blocksize);
295 	if (crc == check.bc_crc32e)
296 		goto out;
297 
298 	mlog(ML_ERROR, "Fixed CRC32 failed: stored: %u, computed %u\n",
299 	     (unsigned int)check.bc_crc32e, (unsigned int)crc);
300 
301 	rc = -EIO;
302 
303 out:
304 	bc->bc_crc32e = cpu_to_le32(check.bc_crc32e);
305 	bc->bc_ecc = cpu_to_le16(check.bc_ecc);
306 
307 	return rc;
308 }
309 
310 /*
311  * This function generates check information for a list of buffer_heads.
312  * bhs is the blocks to be checked.  bc is a pointer to the
313  * ocfs2_block_check structure describing the crc32 and the ecc.
314  *
315  * bc should be a pointer inside data, as the function will
316  * take care of zeroing it before calculating the check information.  If
317  * bc does not point inside data, the caller must make sure any inline
318  * ocfs2_block_check structures are zeroed.
319  *
320  * The data buffer must be in on-disk endian (little endian for ocfs2).
321  * bc will be filled with little-endian values and will be ready to go to
322  * disk.
323  */
324 void ocfs2_block_check_compute_bhs(struct buffer_head **bhs, int nr,
325 				   struct ocfs2_block_check *bc)
326 {
327 	int i;
328 	u32 crc, ecc;
329 
330 	BUG_ON(nr < 0);
331 
332 	if (!nr)
333 		return;
334 
335 	memset(bc, 0, sizeof(struct ocfs2_block_check));
336 
337 	for (i = 0, crc = ~0, ecc = 0; i < nr; i++) {
338 		crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
339 		/*
340 		 * The number of bits in a buffer is obviously b_size*8.
341 		 * The offset of this buffer is b_size*i, so the bit offset
342 		 * of this buffer is b_size*8*i.
343 		 */
344 		ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
345 						bhs[i]->b_size * 8,
346 						bhs[i]->b_size * 8 * i);
347 	}
348 
349 	/*
350 	 * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
351 	 * larger than 16 bits.
352 	 */
353 	BUG_ON(ecc > USHORT_MAX);
354 
355 	bc->bc_crc32e = cpu_to_le32(crc);
356 	bc->bc_ecc = cpu_to_le16((u16)ecc);
357 }
358 
359 /*
360  * This function validates existing check information on a list of
361  * buffer_heads.  Like _compute_bhs, the function will take care of
362  * zeroing bc before calculating check codes.  If bc is not a pointer
363  * inside data, the caller must have zeroed any inline
364  * ocfs2_block_check structures.
365  *
366  * Again, the data passed in should be the on-disk endian.
367  */
368 int ocfs2_block_check_validate_bhs(struct buffer_head **bhs, int nr,
369 				   struct ocfs2_block_check *bc)
370 {
371 	int i, rc = 0;
372 	struct ocfs2_block_check check;
373 	u32 crc, ecc, fix;
374 
375 	BUG_ON(nr < 0);
376 
377 	if (!nr)
378 		return 0;
379 
380 	check.bc_crc32e = le32_to_cpu(bc->bc_crc32e);
381 	check.bc_ecc = le16_to_cpu(bc->bc_ecc);
382 
383 	memset(bc, 0, sizeof(struct ocfs2_block_check));
384 
385 	/* Fast path - if the crc32 validates, we're good to go */
386 	for (i = 0, crc = ~0; i < nr; i++)
387 		crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
388 	if (crc == check.bc_crc32e)
389 		goto out;
390 
391 	mlog(ML_ERROR,
392 	     "CRC32 failed: stored: %u, computed %u.  Applying ECC.\n",
393 	     (unsigned int)check.bc_crc32e, (unsigned int)crc);
394 
395 	/* Ok, try ECC fixups */
396 	for (i = 0, ecc = 0; i < nr; i++) {
397 		/*
398 		 * The number of bits in a buffer is obviously b_size*8.
399 		 * The offset of this buffer is b_size*i, so the bit offset
400 		 * of this buffer is b_size*8*i.
401 		 */
402 		ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
403 						bhs[i]->b_size * 8,
404 						bhs[i]->b_size * 8 * i);
405 	}
406 	fix = ecc ^ check.bc_ecc;
407 	for (i = 0; i < nr; i++) {
408 		/*
409 		 * Try the fix against each buffer.  It will only affect
410 		 * one of them.
411 		 */
412 		ocfs2_hamming_fix(bhs[i]->b_data, bhs[i]->b_size * 8,
413 				  bhs[i]->b_size * 8 * i, fix);
414 	}
415 
416 	/* And check the crc32 again */
417 	for (i = 0, crc = ~0; i < nr; i++)
418 		crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
419 	if (crc == check.bc_crc32e)
420 		goto out;
421 
422 	mlog(ML_ERROR, "Fixed CRC32 failed: stored: %u, computed %u\n",
423 	     (unsigned int)check.bc_crc32e, (unsigned int)crc);
424 
425 	rc = -EIO;
426 
427 out:
428 	bc->bc_crc32e = cpu_to_le32(check.bc_crc32e);
429 	bc->bc_ecc = cpu_to_le16(check.bc_ecc);
430 
431 	return rc;
432 }
433 
434 /*
435  * These are the main API.  They check the superblock flag before
436  * calling the underlying operations.
437  *
438  * They expect the buffer(s) to be in disk format.
439  */
440 void ocfs2_compute_meta_ecc(struct super_block *sb, void *data,
441 			    struct ocfs2_block_check *bc)
442 {
443 	if (ocfs2_meta_ecc(OCFS2_SB(sb)))
444 		ocfs2_block_check_compute(data, sb->s_blocksize, bc);
445 }
446 
447 int ocfs2_validate_meta_ecc(struct super_block *sb, void *data,
448 			    struct ocfs2_block_check *bc)
449 {
450 	int rc = 0;
451 
452 	if (ocfs2_meta_ecc(OCFS2_SB(sb)))
453 		rc = ocfs2_block_check_validate(data, sb->s_blocksize, bc);
454 
455 	return rc;
456 }
457 
458 void ocfs2_compute_meta_ecc_bhs(struct super_block *sb,
459 				struct buffer_head **bhs, int nr,
460 				struct ocfs2_block_check *bc)
461 {
462 	if (ocfs2_meta_ecc(OCFS2_SB(sb)))
463 		ocfs2_block_check_compute_bhs(bhs, nr, bc);
464 }
465 
466 int ocfs2_validate_meta_ecc_bhs(struct super_block *sb,
467 				struct buffer_head **bhs, int nr,
468 				struct ocfs2_block_check *bc)
469 {
470 	int rc = 0;
471 
472 	if (ocfs2_meta_ecc(OCFS2_SB(sb)))
473 		rc = ocfs2_block_check_validate_bhs(bhs, nr, bc);
474 
475 	return rc;
476 }
477 
478