xref: /openbmc/linux/fs/ocfs2/blockcheck.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* -*- mode: c; c-basic-offset: 8; -*-
3  * vim: noexpandtab sw=8 ts=8 sts=0:
4  *
5  * blockcheck.c
6  *
7  * Checksum and ECC codes for the OCFS2 userspace library.
8  *
9  * Copyright (C) 2006, 2008 Oracle.  All rights reserved.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/crc32.h>
15 #include <linux/buffer_head.h>
16 #include <linux/bitops.h>
17 #include <linux/debugfs.h>
18 #include <linux/module.h>
19 #include <linux/fs.h>
20 #include <asm/byteorder.h>
21 
22 #include <cluster/masklog.h>
23 
24 #include "ocfs2.h"
25 
26 #include "blockcheck.h"
27 
28 
29 /*
30  * We use the following conventions:
31  *
32  * d = # data bits
33  * p = # parity bits
34  * c = # total code bits (d + p)
35  */
36 
37 
38 /*
39  * Calculate the bit offset in the hamming code buffer based on the bit's
40  * offset in the data buffer.  Since the hamming code reserves all
41  * power-of-two bits for parity, the data bit number and the code bit
42  * number are offset by all the parity bits beforehand.
43  *
44  * Recall that bit numbers in hamming code are 1-based.  This function
45  * takes the 0-based data bit from the caller.
46  *
47  * An example.  Take bit 1 of the data buffer.  1 is a power of two (2^0),
48  * so it's a parity bit.  2 is a power of two (2^1), so it's a parity bit.
49  * 3 is not a power of two.  So bit 1 of the data buffer ends up as bit 3
50  * in the code buffer.
51  *
52  * The caller can pass in *p if it wants to keep track of the most recent
53  * number of parity bits added.  This allows the function to start the
54  * calculation at the last place.
55  */
56 static unsigned int calc_code_bit(unsigned int i, unsigned int *p_cache)
57 {
58 	unsigned int b, p = 0;
59 
60 	/*
61 	 * Data bits are 0-based, but we're talking code bits, which
62 	 * are 1-based.
63 	 */
64 	b = i + 1;
65 
66 	/* Use the cache if it is there */
67 	if (p_cache)
68 		p = *p_cache;
69         b += p;
70 
71 	/*
72 	 * For every power of two below our bit number, bump our bit.
73 	 *
74 	 * We compare with (b + 1) because we have to compare with what b
75 	 * would be _if_ it were bumped up by the parity bit.  Capice?
76 	 *
77 	 * p is set above.
78 	 */
79 	for (; (1 << p) < (b + 1); p++)
80 		b++;
81 
82 	if (p_cache)
83 		*p_cache = p;
84 
85 	return b;
86 }
87 
88 /*
89  * This is the low level encoder function.  It can be called across
90  * multiple hunks just like the crc32 code.  'd' is the number of bits
91  * _in_this_hunk_.  nr is the bit offset of this hunk.  So, if you had
92  * two 512B buffers, you would do it like so:
93  *
94  * parity = ocfs2_hamming_encode(0, buf1, 512 * 8, 0);
95  * parity = ocfs2_hamming_encode(parity, buf2, 512 * 8, 512 * 8);
96  *
97  * If you just have one buffer, use ocfs2_hamming_encode_block().
98  */
99 u32 ocfs2_hamming_encode(u32 parity, void *data, unsigned int d, unsigned int nr)
100 {
101 	unsigned int i, b, p = 0;
102 
103 	BUG_ON(!d);
104 
105 	/*
106 	 * b is the hamming code bit number.  Hamming code specifies a
107 	 * 1-based array, but C uses 0-based.  So 'i' is for C, and 'b' is
108 	 * for the algorithm.
109 	 *
110 	 * The i++ in the for loop is so that the start offset passed
111 	 * to ocfs2_find_next_bit_set() is one greater than the previously
112 	 * found bit.
113 	 */
114 	for (i = 0; (i = ocfs2_find_next_bit(data, d, i)) < d; i++)
115 	{
116 		/*
117 		 * i is the offset in this hunk, nr + i is the total bit
118 		 * offset.
119 		 */
120 		b = calc_code_bit(nr + i, &p);
121 
122 		/*
123 		 * Data bits in the resultant code are checked by
124 		 * parity bits that are part of the bit number
125 		 * representation.  Huh?
126 		 *
127 		 * <wikipedia href="http://en.wikipedia.org/wiki/Hamming_code">
128 		 * In other words, the parity bit at position 2^k
129 		 * checks bits in positions having bit k set in
130 		 * their binary representation.  Conversely, for
131 		 * instance, bit 13, i.e. 1101(2), is checked by
132 		 * bits 1000(2) = 8, 0100(2)=4 and 0001(2) = 1.
133 		 * </wikipedia>
134 		 *
135 		 * Note that 'k' is the _code_ bit number.  'b' in
136 		 * our loop.
137 		 */
138 		parity ^= b;
139 	}
140 
141 	/* While the data buffer was treated as little endian, the
142 	 * return value is in host endian. */
143 	return parity;
144 }
145 
146 u32 ocfs2_hamming_encode_block(void *data, unsigned int blocksize)
147 {
148 	return ocfs2_hamming_encode(0, data, blocksize * 8, 0);
149 }
150 
151 /*
152  * Like ocfs2_hamming_encode(), this can handle hunks.  nr is the bit
153  * offset of the current hunk.  If bit to be fixed is not part of the
154  * current hunk, this does nothing.
155  *
156  * If you only have one hunk, use ocfs2_hamming_fix_block().
157  */
158 void ocfs2_hamming_fix(void *data, unsigned int d, unsigned int nr,
159 		       unsigned int fix)
160 {
161 	unsigned int i, b;
162 
163 	BUG_ON(!d);
164 
165 	/*
166 	 * If the bit to fix has an hweight of 1, it's a parity bit.  One
167 	 * busted parity bit is its own error.  Nothing to do here.
168 	 */
169 	if (hweight32(fix) == 1)
170 		return;
171 
172 	/*
173 	 * nr + d is the bit right past the data hunk we're looking at.
174 	 * If fix after that, nothing to do
175 	 */
176 	if (fix >= calc_code_bit(nr + d, NULL))
177 		return;
178 
179 	/*
180 	 * nr is the offset in the data hunk we're starting at.  Let's
181 	 * start b at the offset in the code buffer.  See hamming_encode()
182 	 * for a more detailed description of 'b'.
183 	 */
184 	b = calc_code_bit(nr, NULL);
185 	/* If the fix is before this hunk, nothing to do */
186 	if (fix < b)
187 		return;
188 
189 	for (i = 0; i < d; i++, b++)
190 	{
191 		/* Skip past parity bits */
192 		while (hweight32(b) == 1)
193 			b++;
194 
195 		/*
196 		 * i is the offset in this data hunk.
197 		 * nr + i is the offset in the total data buffer.
198 		 * b is the offset in the total code buffer.
199 		 *
200 		 * Thus, when b == fix, bit i in the current hunk needs
201 		 * fixing.
202 		 */
203 		if (b == fix)
204 		{
205 			if (ocfs2_test_bit(i, data))
206 				ocfs2_clear_bit(i, data);
207 			else
208 				ocfs2_set_bit(i, data);
209 			break;
210 		}
211 	}
212 }
213 
214 void ocfs2_hamming_fix_block(void *data, unsigned int blocksize,
215 			     unsigned int fix)
216 {
217 	ocfs2_hamming_fix(data, blocksize * 8, 0, fix);
218 }
219 
220 
221 /*
222  * Debugfs handling.
223  */
224 
225 #ifdef CONFIG_DEBUG_FS
226 
227 static int blockcheck_u64_get(void *data, u64 *val)
228 {
229 	*val = *(u64 *)data;
230 	return 0;
231 }
232 DEFINE_SIMPLE_ATTRIBUTE(blockcheck_fops, blockcheck_u64_get, NULL, "%llu\n");
233 
234 static struct dentry *blockcheck_debugfs_create(const char *name,
235 						struct dentry *parent,
236 						u64 *value)
237 {
238 	return debugfs_create_file(name, S_IFREG | S_IRUSR, parent, value,
239 				   &blockcheck_fops);
240 }
241 
242 static void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
243 {
244 	if (stats) {
245 		debugfs_remove_recursive(stats->b_debug_dir);
246 		stats->b_debug_dir = NULL;
247 	}
248 }
249 
250 static void ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
251 					   struct dentry *parent)
252 {
253 	stats->b_debug_dir = debugfs_create_dir("blockcheck", parent);
254 
255 	blockcheck_debugfs_create("blocks_checked", stats->b_debug_dir,
256 				  &stats->b_check_count);
257 
258 	blockcheck_debugfs_create("checksums_failed", stats->b_debug_dir,
259 				  &stats->b_failure_count);
260 
261 	blockcheck_debugfs_create("ecc_recoveries", stats->b_debug_dir,
262 				  &stats->b_recover_count);
263 }
264 #else
265 static inline void ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
266 						  struct dentry *parent)
267 {
268 }
269 
270 static inline void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
271 {
272 }
273 #endif  /* CONFIG_DEBUG_FS */
274 
275 /* Always-called wrappers for starting and stopping the debugfs files */
276 void ocfs2_blockcheck_stats_debugfs_install(struct ocfs2_blockcheck_stats *stats,
277 					    struct dentry *parent)
278 {
279 	ocfs2_blockcheck_debug_install(stats, parent);
280 }
281 
282 void ocfs2_blockcheck_stats_debugfs_remove(struct ocfs2_blockcheck_stats *stats)
283 {
284 	ocfs2_blockcheck_debug_remove(stats);
285 }
286 
287 static void ocfs2_blockcheck_inc_check(struct ocfs2_blockcheck_stats *stats)
288 {
289 	u64 new_count;
290 
291 	if (!stats)
292 		return;
293 
294 	spin_lock(&stats->b_lock);
295 	stats->b_check_count++;
296 	new_count = stats->b_check_count;
297 	spin_unlock(&stats->b_lock);
298 
299 	if (!new_count)
300 		mlog(ML_NOTICE, "Block check count has wrapped\n");
301 }
302 
303 static void ocfs2_blockcheck_inc_failure(struct ocfs2_blockcheck_stats *stats)
304 {
305 	u64 new_count;
306 
307 	if (!stats)
308 		return;
309 
310 	spin_lock(&stats->b_lock);
311 	stats->b_failure_count++;
312 	new_count = stats->b_failure_count;
313 	spin_unlock(&stats->b_lock);
314 
315 	if (!new_count)
316 		mlog(ML_NOTICE, "Checksum failure count has wrapped\n");
317 }
318 
319 static void ocfs2_blockcheck_inc_recover(struct ocfs2_blockcheck_stats *stats)
320 {
321 	u64 new_count;
322 
323 	if (!stats)
324 		return;
325 
326 	spin_lock(&stats->b_lock);
327 	stats->b_recover_count++;
328 	new_count = stats->b_recover_count;
329 	spin_unlock(&stats->b_lock);
330 
331 	if (!new_count)
332 		mlog(ML_NOTICE, "ECC recovery count has wrapped\n");
333 }
334 
335 
336 
337 /*
338  * These are the low-level APIs for using the ocfs2_block_check structure.
339  */
340 
341 /*
342  * This function generates check information for a block.
343  * data is the block to be checked.  bc is a pointer to the
344  * ocfs2_block_check structure describing the crc32 and the ecc.
345  *
346  * bc should be a pointer inside data, as the function will
347  * take care of zeroing it before calculating the check information.  If
348  * bc does not point inside data, the caller must make sure any inline
349  * ocfs2_block_check structures are zeroed.
350  *
351  * The data buffer must be in on-disk endian (little endian for ocfs2).
352  * bc will be filled with little-endian values and will be ready to go to
353  * disk.
354  */
355 void ocfs2_block_check_compute(void *data, size_t blocksize,
356 			       struct ocfs2_block_check *bc)
357 {
358 	u32 crc;
359 	u32 ecc;
360 
361 	memset(bc, 0, sizeof(struct ocfs2_block_check));
362 
363 	crc = crc32_le(~0, data, blocksize);
364 	ecc = ocfs2_hamming_encode_block(data, blocksize);
365 
366 	/*
367 	 * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
368 	 * larger than 16 bits.
369 	 */
370 	BUG_ON(ecc > USHRT_MAX);
371 
372 	bc->bc_crc32e = cpu_to_le32(crc);
373 	bc->bc_ecc = cpu_to_le16((u16)ecc);
374 }
375 
376 /*
377  * This function validates existing check information.  Like _compute,
378  * the function will take care of zeroing bc before calculating check codes.
379  * If bc is not a pointer inside data, the caller must have zeroed any
380  * inline ocfs2_block_check structures.
381  *
382  * Again, the data passed in should be the on-disk endian.
383  */
384 int ocfs2_block_check_validate(void *data, size_t blocksize,
385 			       struct ocfs2_block_check *bc,
386 			       struct ocfs2_blockcheck_stats *stats)
387 {
388 	int rc = 0;
389 	u32 bc_crc32e;
390 	u16 bc_ecc;
391 	u32 crc, ecc;
392 
393 	ocfs2_blockcheck_inc_check(stats);
394 
395 	bc_crc32e = le32_to_cpu(bc->bc_crc32e);
396 	bc_ecc = le16_to_cpu(bc->bc_ecc);
397 
398 	memset(bc, 0, sizeof(struct ocfs2_block_check));
399 
400 	/* Fast path - if the crc32 validates, we're good to go */
401 	crc = crc32_le(~0, data, blocksize);
402 	if (crc == bc_crc32e)
403 		goto out;
404 
405 	ocfs2_blockcheck_inc_failure(stats);
406 	mlog(ML_ERROR,
407 	     "CRC32 failed: stored: 0x%x, computed 0x%x. Applying ECC.\n",
408 	     (unsigned int)bc_crc32e, (unsigned int)crc);
409 
410 	/* Ok, try ECC fixups */
411 	ecc = ocfs2_hamming_encode_block(data, blocksize);
412 	ocfs2_hamming_fix_block(data, blocksize, ecc ^ bc_ecc);
413 
414 	/* And check the crc32 again */
415 	crc = crc32_le(~0, data, blocksize);
416 	if (crc == bc_crc32e) {
417 		ocfs2_blockcheck_inc_recover(stats);
418 		goto out;
419 	}
420 
421 	mlog(ML_ERROR, "Fixed CRC32 failed: stored: 0x%x, computed 0x%x\n",
422 	     (unsigned int)bc_crc32e, (unsigned int)crc);
423 
424 	rc = -EIO;
425 
426 out:
427 	bc->bc_crc32e = cpu_to_le32(bc_crc32e);
428 	bc->bc_ecc = cpu_to_le16(bc_ecc);
429 
430 	return rc;
431 }
432 
433 /*
434  * This function generates check information for a list of buffer_heads.
435  * bhs is the blocks to be checked.  bc is a pointer to the
436  * ocfs2_block_check structure describing the crc32 and the ecc.
437  *
438  * bc should be a pointer inside data, as the function will
439  * take care of zeroing it before calculating the check information.  If
440  * bc does not point inside data, the caller must make sure any inline
441  * ocfs2_block_check structures are zeroed.
442  *
443  * The data buffer must be in on-disk endian (little endian for ocfs2).
444  * bc will be filled with little-endian values and will be ready to go to
445  * disk.
446  */
447 void ocfs2_block_check_compute_bhs(struct buffer_head **bhs, int nr,
448 				   struct ocfs2_block_check *bc)
449 {
450 	int i;
451 	u32 crc, ecc;
452 
453 	BUG_ON(nr < 0);
454 
455 	if (!nr)
456 		return;
457 
458 	memset(bc, 0, sizeof(struct ocfs2_block_check));
459 
460 	for (i = 0, crc = ~0, ecc = 0; i < nr; i++) {
461 		crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
462 		/*
463 		 * The number of bits in a buffer is obviously b_size*8.
464 		 * The offset of this buffer is b_size*i, so the bit offset
465 		 * of this buffer is b_size*8*i.
466 		 */
467 		ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
468 						bhs[i]->b_size * 8,
469 						bhs[i]->b_size * 8 * i);
470 	}
471 
472 	/*
473 	 * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
474 	 * larger than 16 bits.
475 	 */
476 	BUG_ON(ecc > USHRT_MAX);
477 
478 	bc->bc_crc32e = cpu_to_le32(crc);
479 	bc->bc_ecc = cpu_to_le16((u16)ecc);
480 }
481 
482 /*
483  * This function validates existing check information on a list of
484  * buffer_heads.  Like _compute_bhs, the function will take care of
485  * zeroing bc before calculating check codes.  If bc is not a pointer
486  * inside data, the caller must have zeroed any inline
487  * ocfs2_block_check structures.
488  *
489  * Again, the data passed in should be the on-disk endian.
490  */
491 int ocfs2_block_check_validate_bhs(struct buffer_head **bhs, int nr,
492 				   struct ocfs2_block_check *bc,
493 				   struct ocfs2_blockcheck_stats *stats)
494 {
495 	int i, rc = 0;
496 	u32 bc_crc32e;
497 	u16 bc_ecc;
498 	u32 crc, ecc, fix;
499 
500 	BUG_ON(nr < 0);
501 
502 	if (!nr)
503 		return 0;
504 
505 	ocfs2_blockcheck_inc_check(stats);
506 
507 	bc_crc32e = le32_to_cpu(bc->bc_crc32e);
508 	bc_ecc = le16_to_cpu(bc->bc_ecc);
509 
510 	memset(bc, 0, sizeof(struct ocfs2_block_check));
511 
512 	/* Fast path - if the crc32 validates, we're good to go */
513 	for (i = 0, crc = ~0; i < nr; i++)
514 		crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
515 	if (crc == bc_crc32e)
516 		goto out;
517 
518 	ocfs2_blockcheck_inc_failure(stats);
519 	mlog(ML_ERROR,
520 	     "CRC32 failed: stored: %u, computed %u.  Applying ECC.\n",
521 	     (unsigned int)bc_crc32e, (unsigned int)crc);
522 
523 	/* Ok, try ECC fixups */
524 	for (i = 0, ecc = 0; i < nr; i++) {
525 		/*
526 		 * The number of bits in a buffer is obviously b_size*8.
527 		 * The offset of this buffer is b_size*i, so the bit offset
528 		 * of this buffer is b_size*8*i.
529 		 */
530 		ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
531 						bhs[i]->b_size * 8,
532 						bhs[i]->b_size * 8 * i);
533 	}
534 	fix = ecc ^ bc_ecc;
535 	for (i = 0; i < nr; i++) {
536 		/*
537 		 * Try the fix against each buffer.  It will only affect
538 		 * one of them.
539 		 */
540 		ocfs2_hamming_fix(bhs[i]->b_data, bhs[i]->b_size * 8,
541 				  bhs[i]->b_size * 8 * i, fix);
542 	}
543 
544 	/* And check the crc32 again */
545 	for (i = 0, crc = ~0; i < nr; i++)
546 		crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
547 	if (crc == bc_crc32e) {
548 		ocfs2_blockcheck_inc_recover(stats);
549 		goto out;
550 	}
551 
552 	mlog(ML_ERROR, "Fixed CRC32 failed: stored: %u, computed %u\n",
553 	     (unsigned int)bc_crc32e, (unsigned int)crc);
554 
555 	rc = -EIO;
556 
557 out:
558 	bc->bc_crc32e = cpu_to_le32(bc_crc32e);
559 	bc->bc_ecc = cpu_to_le16(bc_ecc);
560 
561 	return rc;
562 }
563 
564 /*
565  * These are the main API.  They check the superblock flag before
566  * calling the underlying operations.
567  *
568  * They expect the buffer(s) to be in disk format.
569  */
570 void ocfs2_compute_meta_ecc(struct super_block *sb, void *data,
571 			    struct ocfs2_block_check *bc)
572 {
573 	if (ocfs2_meta_ecc(OCFS2_SB(sb)))
574 		ocfs2_block_check_compute(data, sb->s_blocksize, bc);
575 }
576 
577 int ocfs2_validate_meta_ecc(struct super_block *sb, void *data,
578 			    struct ocfs2_block_check *bc)
579 {
580 	int rc = 0;
581 	struct ocfs2_super *osb = OCFS2_SB(sb);
582 
583 	if (ocfs2_meta_ecc(osb))
584 		rc = ocfs2_block_check_validate(data, sb->s_blocksize, bc,
585 						&osb->osb_ecc_stats);
586 
587 	return rc;
588 }
589 
590 void ocfs2_compute_meta_ecc_bhs(struct super_block *sb,
591 				struct buffer_head **bhs, int nr,
592 				struct ocfs2_block_check *bc)
593 {
594 	if (ocfs2_meta_ecc(OCFS2_SB(sb)))
595 		ocfs2_block_check_compute_bhs(bhs, nr, bc);
596 }
597 
598 int ocfs2_validate_meta_ecc_bhs(struct super_block *sb,
599 				struct buffer_head **bhs, int nr,
600 				struct ocfs2_block_check *bc)
601 {
602 	int rc = 0;
603 	struct ocfs2_super *osb = OCFS2_SB(sb);
604 
605 	if (ocfs2_meta_ecc(osb))
606 		rc = ocfs2_block_check_validate_bhs(bhs, nr, bc,
607 						    &osb->osb_ecc_stats);
608 
609 	return rc;
610 }
611 
612