1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 #include <linux/quotaops.h> 31 #include <linux/blkdev.h> 32 #include <linux/uio.h> 33 #include <linux/mm.h> 34 35 #include <cluster/masklog.h> 36 37 #include "ocfs2.h" 38 39 #include "alloc.h" 40 #include "aops.h" 41 #include "dlmglue.h" 42 #include "extent_map.h" 43 #include "file.h" 44 #include "inode.h" 45 #include "journal.h" 46 #include "suballoc.h" 47 #include "super.h" 48 #include "symlink.h" 49 #include "refcounttree.h" 50 #include "ocfs2_trace.h" 51 52 #include "buffer_head_io.h" 53 #include "dir.h" 54 #include "namei.h" 55 #include "sysfile.h" 56 57 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 58 struct buffer_head *bh_result, int create) 59 { 60 int err = -EIO; 61 int status; 62 struct ocfs2_dinode *fe = NULL; 63 struct buffer_head *bh = NULL; 64 struct buffer_head *buffer_cache_bh = NULL; 65 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 66 void *kaddr; 67 68 trace_ocfs2_symlink_get_block( 69 (unsigned long long)OCFS2_I(inode)->ip_blkno, 70 (unsigned long long)iblock, bh_result, create); 71 72 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 73 74 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 75 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 76 (unsigned long long)iblock); 77 goto bail; 78 } 79 80 status = ocfs2_read_inode_block(inode, &bh); 81 if (status < 0) { 82 mlog_errno(status); 83 goto bail; 84 } 85 fe = (struct ocfs2_dinode *) bh->b_data; 86 87 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 88 le32_to_cpu(fe->i_clusters))) { 89 err = -ENOMEM; 90 mlog(ML_ERROR, "block offset is outside the allocated size: " 91 "%llu\n", (unsigned long long)iblock); 92 goto bail; 93 } 94 95 /* We don't use the page cache to create symlink data, so if 96 * need be, copy it over from the buffer cache. */ 97 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 98 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 99 iblock; 100 buffer_cache_bh = sb_getblk(osb->sb, blkno); 101 if (!buffer_cache_bh) { 102 err = -ENOMEM; 103 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 104 goto bail; 105 } 106 107 /* we haven't locked out transactions, so a commit 108 * could've happened. Since we've got a reference on 109 * the bh, even if it commits while we're doing the 110 * copy, the data is still good. */ 111 if (buffer_jbd(buffer_cache_bh) 112 && ocfs2_inode_is_new(inode)) { 113 kaddr = kmap_atomic(bh_result->b_page); 114 if (!kaddr) { 115 mlog(ML_ERROR, "couldn't kmap!\n"); 116 goto bail; 117 } 118 memcpy(kaddr + (bh_result->b_size * iblock), 119 buffer_cache_bh->b_data, 120 bh_result->b_size); 121 kunmap_atomic(kaddr); 122 set_buffer_uptodate(bh_result); 123 } 124 brelse(buffer_cache_bh); 125 } 126 127 map_bh(bh_result, inode->i_sb, 128 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 129 130 err = 0; 131 132 bail: 133 brelse(bh); 134 135 return err; 136 } 137 138 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock, 139 struct buffer_head *bh_result, int create) 140 { 141 int ret = 0; 142 struct ocfs2_inode_info *oi = OCFS2_I(inode); 143 144 down_read(&oi->ip_alloc_sem); 145 ret = ocfs2_get_block(inode, iblock, bh_result, create); 146 up_read(&oi->ip_alloc_sem); 147 148 return ret; 149 } 150 151 int ocfs2_get_block(struct inode *inode, sector_t iblock, 152 struct buffer_head *bh_result, int create) 153 { 154 int err = 0; 155 unsigned int ext_flags; 156 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 157 u64 p_blkno, count, past_eof; 158 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 159 160 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 161 (unsigned long long)iblock, bh_result, create); 162 163 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 164 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 165 inode, inode->i_ino); 166 167 if (S_ISLNK(inode->i_mode)) { 168 /* this always does I/O for some reason. */ 169 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 170 goto bail; 171 } 172 173 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 174 &ext_flags); 175 if (err) { 176 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 177 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 178 (unsigned long long)p_blkno); 179 goto bail; 180 } 181 182 if (max_blocks < count) 183 count = max_blocks; 184 185 /* 186 * ocfs2 never allocates in this function - the only time we 187 * need to use BH_New is when we're extending i_size on a file 188 * system which doesn't support holes, in which case BH_New 189 * allows __block_write_begin() to zero. 190 * 191 * If we see this on a sparse file system, then a truncate has 192 * raced us and removed the cluster. In this case, we clear 193 * the buffers dirty and uptodate bits and let the buffer code 194 * ignore it as a hole. 195 */ 196 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 197 clear_buffer_dirty(bh_result); 198 clear_buffer_uptodate(bh_result); 199 goto bail; 200 } 201 202 /* Treat the unwritten extent as a hole for zeroing purposes. */ 203 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 204 map_bh(bh_result, inode->i_sb, p_blkno); 205 206 bh_result->b_size = count << inode->i_blkbits; 207 208 if (!ocfs2_sparse_alloc(osb)) { 209 if (p_blkno == 0) { 210 err = -EIO; 211 mlog(ML_ERROR, 212 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 213 (unsigned long long)iblock, 214 (unsigned long long)p_blkno, 215 (unsigned long long)OCFS2_I(inode)->ip_blkno); 216 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 217 dump_stack(); 218 goto bail; 219 } 220 } 221 222 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 223 224 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 225 (unsigned long long)past_eof); 226 if (create && (iblock >= past_eof)) 227 set_buffer_new(bh_result); 228 229 bail: 230 if (err < 0) 231 err = -EIO; 232 233 return err; 234 } 235 236 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 237 struct buffer_head *di_bh) 238 { 239 void *kaddr; 240 loff_t size; 241 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 242 243 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 244 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 245 (unsigned long long)OCFS2_I(inode)->ip_blkno); 246 return -EROFS; 247 } 248 249 size = i_size_read(inode); 250 251 if (size > PAGE_SIZE || 252 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 253 ocfs2_error(inode->i_sb, 254 "Inode %llu has with inline data has bad size: %Lu\n", 255 (unsigned long long)OCFS2_I(inode)->ip_blkno, 256 (unsigned long long)size); 257 return -EROFS; 258 } 259 260 kaddr = kmap_atomic(page); 261 if (size) 262 memcpy(kaddr, di->id2.i_data.id_data, size); 263 /* Clear the remaining part of the page */ 264 memset(kaddr + size, 0, PAGE_SIZE - size); 265 flush_dcache_page(page); 266 kunmap_atomic(kaddr); 267 268 SetPageUptodate(page); 269 270 return 0; 271 } 272 273 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 274 { 275 int ret; 276 struct buffer_head *di_bh = NULL; 277 278 BUG_ON(!PageLocked(page)); 279 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 280 281 ret = ocfs2_read_inode_block(inode, &di_bh); 282 if (ret) { 283 mlog_errno(ret); 284 goto out; 285 } 286 287 ret = ocfs2_read_inline_data(inode, page, di_bh); 288 out: 289 unlock_page(page); 290 291 brelse(di_bh); 292 return ret; 293 } 294 295 static int ocfs2_readpage(struct file *file, struct page *page) 296 { 297 struct inode *inode = page->mapping->host; 298 struct ocfs2_inode_info *oi = OCFS2_I(inode); 299 loff_t start = (loff_t)page->index << PAGE_SHIFT; 300 int ret, unlock = 1; 301 302 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 303 (page ? page->index : 0)); 304 305 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 306 if (ret != 0) { 307 if (ret == AOP_TRUNCATED_PAGE) 308 unlock = 0; 309 mlog_errno(ret); 310 goto out; 311 } 312 313 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 314 /* 315 * Unlock the page and cycle ip_alloc_sem so that we don't 316 * busyloop waiting for ip_alloc_sem to unlock 317 */ 318 ret = AOP_TRUNCATED_PAGE; 319 unlock_page(page); 320 unlock = 0; 321 down_read(&oi->ip_alloc_sem); 322 up_read(&oi->ip_alloc_sem); 323 goto out_inode_unlock; 324 } 325 326 /* 327 * i_size might have just been updated as we grabed the meta lock. We 328 * might now be discovering a truncate that hit on another node. 329 * block_read_full_page->get_block freaks out if it is asked to read 330 * beyond the end of a file, so we check here. Callers 331 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 332 * and notice that the page they just read isn't needed. 333 * 334 * XXX sys_readahead() seems to get that wrong? 335 */ 336 if (start >= i_size_read(inode)) { 337 zero_user(page, 0, PAGE_SIZE); 338 SetPageUptodate(page); 339 ret = 0; 340 goto out_alloc; 341 } 342 343 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 344 ret = ocfs2_readpage_inline(inode, page); 345 else 346 ret = block_read_full_page(page, ocfs2_get_block); 347 unlock = 0; 348 349 out_alloc: 350 up_read(&oi->ip_alloc_sem); 351 out_inode_unlock: 352 ocfs2_inode_unlock(inode, 0); 353 out: 354 if (unlock) 355 unlock_page(page); 356 return ret; 357 } 358 359 /* 360 * This is used only for read-ahead. Failures or difficult to handle 361 * situations are safe to ignore. 362 * 363 * Right now, we don't bother with BH_Boundary - in-inode extent lists 364 * are quite large (243 extents on 4k blocks), so most inodes don't 365 * grow out to a tree. If need be, detecting boundary extents could 366 * trivially be added in a future version of ocfs2_get_block(). 367 */ 368 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 369 struct list_head *pages, unsigned nr_pages) 370 { 371 int ret, err = -EIO; 372 struct inode *inode = mapping->host; 373 struct ocfs2_inode_info *oi = OCFS2_I(inode); 374 loff_t start; 375 struct page *last; 376 377 /* 378 * Use the nonblocking flag for the dlm code to avoid page 379 * lock inversion, but don't bother with retrying. 380 */ 381 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 382 if (ret) 383 return err; 384 385 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 386 ocfs2_inode_unlock(inode, 0); 387 return err; 388 } 389 390 /* 391 * Don't bother with inline-data. There isn't anything 392 * to read-ahead in that case anyway... 393 */ 394 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 395 goto out_unlock; 396 397 /* 398 * Check whether a remote node truncated this file - we just 399 * drop out in that case as it's not worth handling here. 400 */ 401 last = lru_to_page(pages); 402 start = (loff_t)last->index << PAGE_SHIFT; 403 if (start >= i_size_read(inode)) 404 goto out_unlock; 405 406 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 407 408 out_unlock: 409 up_read(&oi->ip_alloc_sem); 410 ocfs2_inode_unlock(inode, 0); 411 412 return err; 413 } 414 415 /* Note: Because we don't support holes, our allocation has 416 * already happened (allocation writes zeros to the file data) 417 * so we don't have to worry about ordered writes in 418 * ocfs2_writepage. 419 * 420 * ->writepage is called during the process of invalidating the page cache 421 * during blocked lock processing. It can't block on any cluster locks 422 * to during block mapping. It's relying on the fact that the block 423 * mapping can't have disappeared under the dirty pages that it is 424 * being asked to write back. 425 */ 426 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 427 { 428 trace_ocfs2_writepage( 429 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 430 page->index); 431 432 return block_write_full_page(page, ocfs2_get_block, wbc); 433 } 434 435 /* Taken from ext3. We don't necessarily need the full blown 436 * functionality yet, but IMHO it's better to cut and paste the whole 437 * thing so we can avoid introducing our own bugs (and easily pick up 438 * their fixes when they happen) --Mark */ 439 int walk_page_buffers( handle_t *handle, 440 struct buffer_head *head, 441 unsigned from, 442 unsigned to, 443 int *partial, 444 int (*fn)( handle_t *handle, 445 struct buffer_head *bh)) 446 { 447 struct buffer_head *bh; 448 unsigned block_start, block_end; 449 unsigned blocksize = head->b_size; 450 int err, ret = 0; 451 struct buffer_head *next; 452 453 for ( bh = head, block_start = 0; 454 ret == 0 && (bh != head || !block_start); 455 block_start = block_end, bh = next) 456 { 457 next = bh->b_this_page; 458 block_end = block_start + blocksize; 459 if (block_end <= from || block_start >= to) { 460 if (partial && !buffer_uptodate(bh)) 461 *partial = 1; 462 continue; 463 } 464 err = (*fn)(handle, bh); 465 if (!ret) 466 ret = err; 467 } 468 return ret; 469 } 470 471 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 472 { 473 sector_t status; 474 u64 p_blkno = 0; 475 int err = 0; 476 struct inode *inode = mapping->host; 477 478 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 479 (unsigned long long)block); 480 481 /* 482 * The swap code (ab-)uses ->bmap to get a block mapping and then 483 * bypasseѕ the file system for actual I/O. We really can't allow 484 * that on refcounted inodes, so we have to skip out here. And yes, 485 * 0 is the magic code for a bmap error.. 486 */ 487 if (ocfs2_is_refcount_inode(inode)) 488 return 0; 489 490 /* We don't need to lock journal system files, since they aren't 491 * accessed concurrently from multiple nodes. 492 */ 493 if (!INODE_JOURNAL(inode)) { 494 err = ocfs2_inode_lock(inode, NULL, 0); 495 if (err) { 496 if (err != -ENOENT) 497 mlog_errno(err); 498 goto bail; 499 } 500 down_read(&OCFS2_I(inode)->ip_alloc_sem); 501 } 502 503 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 504 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 505 NULL); 506 507 if (!INODE_JOURNAL(inode)) { 508 up_read(&OCFS2_I(inode)->ip_alloc_sem); 509 ocfs2_inode_unlock(inode, 0); 510 } 511 512 if (err) { 513 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 514 (unsigned long long)block); 515 mlog_errno(err); 516 goto bail; 517 } 518 519 bail: 520 status = err ? 0 : p_blkno; 521 522 return status; 523 } 524 525 static int ocfs2_releasepage(struct page *page, gfp_t wait) 526 { 527 if (!page_has_buffers(page)) 528 return 0; 529 return try_to_free_buffers(page); 530 } 531 532 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 533 u32 cpos, 534 unsigned int *start, 535 unsigned int *end) 536 { 537 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE; 538 539 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) { 540 unsigned int cpp; 541 542 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits); 543 544 cluster_start = cpos % cpp; 545 cluster_start = cluster_start << osb->s_clustersize_bits; 546 547 cluster_end = cluster_start + osb->s_clustersize; 548 } 549 550 BUG_ON(cluster_start > PAGE_SIZE); 551 BUG_ON(cluster_end > PAGE_SIZE); 552 553 if (start) 554 *start = cluster_start; 555 if (end) 556 *end = cluster_end; 557 } 558 559 /* 560 * 'from' and 'to' are the region in the page to avoid zeroing. 561 * 562 * If pagesize > clustersize, this function will avoid zeroing outside 563 * of the cluster boundary. 564 * 565 * from == to == 0 is code for "zero the entire cluster region" 566 */ 567 static void ocfs2_clear_page_regions(struct page *page, 568 struct ocfs2_super *osb, u32 cpos, 569 unsigned from, unsigned to) 570 { 571 void *kaddr; 572 unsigned int cluster_start, cluster_end; 573 574 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 575 576 kaddr = kmap_atomic(page); 577 578 if (from || to) { 579 if (from > cluster_start) 580 memset(kaddr + cluster_start, 0, from - cluster_start); 581 if (to < cluster_end) 582 memset(kaddr + to, 0, cluster_end - to); 583 } else { 584 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 585 } 586 587 kunmap_atomic(kaddr); 588 } 589 590 /* 591 * Nonsparse file systems fully allocate before we get to the write 592 * code. This prevents ocfs2_write() from tagging the write as an 593 * allocating one, which means ocfs2_map_page_blocks() might try to 594 * read-in the blocks at the tail of our file. Avoid reading them by 595 * testing i_size against each block offset. 596 */ 597 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 598 unsigned int block_start) 599 { 600 u64 offset = page_offset(page) + block_start; 601 602 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 603 return 1; 604 605 if (i_size_read(inode) > offset) 606 return 1; 607 608 return 0; 609 } 610 611 /* 612 * Some of this taken from __block_write_begin(). We already have our 613 * mapping by now though, and the entire write will be allocating or 614 * it won't, so not much need to use BH_New. 615 * 616 * This will also skip zeroing, which is handled externally. 617 */ 618 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 619 struct inode *inode, unsigned int from, 620 unsigned int to, int new) 621 { 622 int ret = 0; 623 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 624 unsigned int block_end, block_start; 625 unsigned int bsize = i_blocksize(inode); 626 627 if (!page_has_buffers(page)) 628 create_empty_buffers(page, bsize, 0); 629 630 head = page_buffers(page); 631 for (bh = head, block_start = 0; bh != head || !block_start; 632 bh = bh->b_this_page, block_start += bsize) { 633 block_end = block_start + bsize; 634 635 clear_buffer_new(bh); 636 637 /* 638 * Ignore blocks outside of our i/o range - 639 * they may belong to unallocated clusters. 640 */ 641 if (block_start >= to || block_end <= from) { 642 if (PageUptodate(page)) 643 set_buffer_uptodate(bh); 644 continue; 645 } 646 647 /* 648 * For an allocating write with cluster size >= page 649 * size, we always write the entire page. 650 */ 651 if (new) 652 set_buffer_new(bh); 653 654 if (!buffer_mapped(bh)) { 655 map_bh(bh, inode->i_sb, *p_blkno); 656 clean_bdev_bh_alias(bh); 657 } 658 659 if (PageUptodate(page)) { 660 if (!buffer_uptodate(bh)) 661 set_buffer_uptodate(bh); 662 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 663 !buffer_new(bh) && 664 ocfs2_should_read_blk(inode, page, block_start) && 665 (block_start < from || block_end > to)) { 666 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 667 *wait_bh++=bh; 668 } 669 670 *p_blkno = *p_blkno + 1; 671 } 672 673 /* 674 * If we issued read requests - let them complete. 675 */ 676 while(wait_bh > wait) { 677 wait_on_buffer(*--wait_bh); 678 if (!buffer_uptodate(*wait_bh)) 679 ret = -EIO; 680 } 681 682 if (ret == 0 || !new) 683 return ret; 684 685 /* 686 * If we get -EIO above, zero out any newly allocated blocks 687 * to avoid exposing stale data. 688 */ 689 bh = head; 690 block_start = 0; 691 do { 692 block_end = block_start + bsize; 693 if (block_end <= from) 694 goto next_bh; 695 if (block_start >= to) 696 break; 697 698 zero_user(page, block_start, bh->b_size); 699 set_buffer_uptodate(bh); 700 mark_buffer_dirty(bh); 701 702 next_bh: 703 block_start = block_end; 704 bh = bh->b_this_page; 705 } while (bh != head); 706 707 return ret; 708 } 709 710 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 711 #define OCFS2_MAX_CTXT_PAGES 1 712 #else 713 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE) 714 #endif 715 716 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE) 717 718 struct ocfs2_unwritten_extent { 719 struct list_head ue_node; 720 struct list_head ue_ip_node; 721 u32 ue_cpos; 722 u32 ue_phys; 723 }; 724 725 /* 726 * Describe the state of a single cluster to be written to. 727 */ 728 struct ocfs2_write_cluster_desc { 729 u32 c_cpos; 730 u32 c_phys; 731 /* 732 * Give this a unique field because c_phys eventually gets 733 * filled. 734 */ 735 unsigned c_new; 736 unsigned c_clear_unwritten; 737 unsigned c_needs_zero; 738 }; 739 740 struct ocfs2_write_ctxt { 741 /* Logical cluster position / len of write */ 742 u32 w_cpos; 743 u32 w_clen; 744 745 /* First cluster allocated in a nonsparse extend */ 746 u32 w_first_new_cpos; 747 748 /* Type of caller. Must be one of buffer, mmap, direct. */ 749 ocfs2_write_type_t w_type; 750 751 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 752 753 /* 754 * This is true if page_size > cluster_size. 755 * 756 * It triggers a set of special cases during write which might 757 * have to deal with allocating writes to partial pages. 758 */ 759 unsigned int w_large_pages; 760 761 /* 762 * Pages involved in this write. 763 * 764 * w_target_page is the page being written to by the user. 765 * 766 * w_pages is an array of pages which always contains 767 * w_target_page, and in the case of an allocating write with 768 * page_size < cluster size, it will contain zero'd and mapped 769 * pages adjacent to w_target_page which need to be written 770 * out in so that future reads from that region will get 771 * zero's. 772 */ 773 unsigned int w_num_pages; 774 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 775 struct page *w_target_page; 776 777 /* 778 * w_target_locked is used for page_mkwrite path indicating no unlocking 779 * against w_target_page in ocfs2_write_end_nolock. 780 */ 781 unsigned int w_target_locked:1; 782 783 /* 784 * ocfs2_write_end() uses this to know what the real range to 785 * write in the target should be. 786 */ 787 unsigned int w_target_from; 788 unsigned int w_target_to; 789 790 /* 791 * We could use journal_current_handle() but this is cleaner, 792 * IMHO -Mark 793 */ 794 handle_t *w_handle; 795 796 struct buffer_head *w_di_bh; 797 798 struct ocfs2_cached_dealloc_ctxt w_dealloc; 799 800 struct list_head w_unwritten_list; 801 unsigned int w_unwritten_count; 802 }; 803 804 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 805 { 806 int i; 807 808 for(i = 0; i < num_pages; i++) { 809 if (pages[i]) { 810 unlock_page(pages[i]); 811 mark_page_accessed(pages[i]); 812 put_page(pages[i]); 813 } 814 } 815 } 816 817 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 818 { 819 int i; 820 821 /* 822 * w_target_locked is only set to true in the page_mkwrite() case. 823 * The intent is to allow us to lock the target page from write_begin() 824 * to write_end(). The caller must hold a ref on w_target_page. 825 */ 826 if (wc->w_target_locked) { 827 BUG_ON(!wc->w_target_page); 828 for (i = 0; i < wc->w_num_pages; i++) { 829 if (wc->w_target_page == wc->w_pages[i]) { 830 wc->w_pages[i] = NULL; 831 break; 832 } 833 } 834 mark_page_accessed(wc->w_target_page); 835 put_page(wc->w_target_page); 836 } 837 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 838 } 839 840 static void ocfs2_free_unwritten_list(struct inode *inode, 841 struct list_head *head) 842 { 843 struct ocfs2_inode_info *oi = OCFS2_I(inode); 844 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL; 845 846 list_for_each_entry_safe(ue, tmp, head, ue_node) { 847 list_del(&ue->ue_node); 848 spin_lock(&oi->ip_lock); 849 list_del(&ue->ue_ip_node); 850 spin_unlock(&oi->ip_lock); 851 kfree(ue); 852 } 853 } 854 855 static void ocfs2_free_write_ctxt(struct inode *inode, 856 struct ocfs2_write_ctxt *wc) 857 { 858 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list); 859 ocfs2_unlock_pages(wc); 860 brelse(wc->w_di_bh); 861 kfree(wc); 862 } 863 864 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 865 struct ocfs2_super *osb, loff_t pos, 866 unsigned len, ocfs2_write_type_t type, 867 struct buffer_head *di_bh) 868 { 869 u32 cend; 870 struct ocfs2_write_ctxt *wc; 871 872 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 873 if (!wc) 874 return -ENOMEM; 875 876 wc->w_cpos = pos >> osb->s_clustersize_bits; 877 wc->w_first_new_cpos = UINT_MAX; 878 cend = (pos + len - 1) >> osb->s_clustersize_bits; 879 wc->w_clen = cend - wc->w_cpos + 1; 880 get_bh(di_bh); 881 wc->w_di_bh = di_bh; 882 wc->w_type = type; 883 884 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) 885 wc->w_large_pages = 1; 886 else 887 wc->w_large_pages = 0; 888 889 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 890 INIT_LIST_HEAD(&wc->w_unwritten_list); 891 892 *wcp = wc; 893 894 return 0; 895 } 896 897 /* 898 * If a page has any new buffers, zero them out here, and mark them uptodate 899 * and dirty so they'll be written out (in order to prevent uninitialised 900 * block data from leaking). And clear the new bit. 901 */ 902 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 903 { 904 unsigned int block_start, block_end; 905 struct buffer_head *head, *bh; 906 907 BUG_ON(!PageLocked(page)); 908 if (!page_has_buffers(page)) 909 return; 910 911 bh = head = page_buffers(page); 912 block_start = 0; 913 do { 914 block_end = block_start + bh->b_size; 915 916 if (buffer_new(bh)) { 917 if (block_end > from && block_start < to) { 918 if (!PageUptodate(page)) { 919 unsigned start, end; 920 921 start = max(from, block_start); 922 end = min(to, block_end); 923 924 zero_user_segment(page, start, end); 925 set_buffer_uptodate(bh); 926 } 927 928 clear_buffer_new(bh); 929 mark_buffer_dirty(bh); 930 } 931 } 932 933 block_start = block_end; 934 bh = bh->b_this_page; 935 } while (bh != head); 936 } 937 938 /* 939 * Only called when we have a failure during allocating write to write 940 * zero's to the newly allocated region. 941 */ 942 static void ocfs2_write_failure(struct inode *inode, 943 struct ocfs2_write_ctxt *wc, 944 loff_t user_pos, unsigned user_len) 945 { 946 int i; 947 unsigned from = user_pos & (PAGE_SIZE - 1), 948 to = user_pos + user_len; 949 struct page *tmppage; 950 951 if (wc->w_target_page) 952 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 953 954 for(i = 0; i < wc->w_num_pages; i++) { 955 tmppage = wc->w_pages[i]; 956 957 if (tmppage && page_has_buffers(tmppage)) { 958 if (ocfs2_should_order_data(inode)) 959 ocfs2_jbd2_file_inode(wc->w_handle, inode); 960 961 block_commit_write(tmppage, from, to); 962 } 963 } 964 } 965 966 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 967 struct ocfs2_write_ctxt *wc, 968 struct page *page, u32 cpos, 969 loff_t user_pos, unsigned user_len, 970 int new) 971 { 972 int ret; 973 unsigned int map_from = 0, map_to = 0; 974 unsigned int cluster_start, cluster_end; 975 unsigned int user_data_from = 0, user_data_to = 0; 976 977 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 978 &cluster_start, &cluster_end); 979 980 /* treat the write as new if the a hole/lseek spanned across 981 * the page boundary. 982 */ 983 new = new | ((i_size_read(inode) <= page_offset(page)) && 984 (page_offset(page) <= user_pos)); 985 986 if (page == wc->w_target_page) { 987 map_from = user_pos & (PAGE_SIZE - 1); 988 map_to = map_from + user_len; 989 990 if (new) 991 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 992 cluster_start, cluster_end, 993 new); 994 else 995 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 996 map_from, map_to, new); 997 if (ret) { 998 mlog_errno(ret); 999 goto out; 1000 } 1001 1002 user_data_from = map_from; 1003 user_data_to = map_to; 1004 if (new) { 1005 map_from = cluster_start; 1006 map_to = cluster_end; 1007 } 1008 } else { 1009 /* 1010 * If we haven't allocated the new page yet, we 1011 * shouldn't be writing it out without copying user 1012 * data. This is likely a math error from the caller. 1013 */ 1014 BUG_ON(!new); 1015 1016 map_from = cluster_start; 1017 map_to = cluster_end; 1018 1019 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1020 cluster_start, cluster_end, new); 1021 if (ret) { 1022 mlog_errno(ret); 1023 goto out; 1024 } 1025 } 1026 1027 /* 1028 * Parts of newly allocated pages need to be zero'd. 1029 * 1030 * Above, we have also rewritten 'to' and 'from' - as far as 1031 * the rest of the function is concerned, the entire cluster 1032 * range inside of a page needs to be written. 1033 * 1034 * We can skip this if the page is up to date - it's already 1035 * been zero'd from being read in as a hole. 1036 */ 1037 if (new && !PageUptodate(page)) 1038 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1039 cpos, user_data_from, user_data_to); 1040 1041 flush_dcache_page(page); 1042 1043 out: 1044 return ret; 1045 } 1046 1047 /* 1048 * This function will only grab one clusters worth of pages. 1049 */ 1050 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1051 struct ocfs2_write_ctxt *wc, 1052 u32 cpos, loff_t user_pos, 1053 unsigned user_len, int new, 1054 struct page *mmap_page) 1055 { 1056 int ret = 0, i; 1057 unsigned long start, target_index, end_index, index; 1058 struct inode *inode = mapping->host; 1059 loff_t last_byte; 1060 1061 target_index = user_pos >> PAGE_SHIFT; 1062 1063 /* 1064 * Figure out how many pages we'll be manipulating here. For 1065 * non allocating write, we just change the one 1066 * page. Otherwise, we'll need a whole clusters worth. If we're 1067 * writing past i_size, we only need enough pages to cover the 1068 * last page of the write. 1069 */ 1070 if (new) { 1071 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1072 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1073 /* 1074 * We need the index *past* the last page we could possibly 1075 * touch. This is the page past the end of the write or 1076 * i_size, whichever is greater. 1077 */ 1078 last_byte = max(user_pos + user_len, i_size_read(inode)); 1079 BUG_ON(last_byte < 1); 1080 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1; 1081 if ((start + wc->w_num_pages) > end_index) 1082 wc->w_num_pages = end_index - start; 1083 } else { 1084 wc->w_num_pages = 1; 1085 start = target_index; 1086 } 1087 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT; 1088 1089 for(i = 0; i < wc->w_num_pages; i++) { 1090 index = start + i; 1091 1092 if (index >= target_index && index <= end_index && 1093 wc->w_type == OCFS2_WRITE_MMAP) { 1094 /* 1095 * ocfs2_pagemkwrite() is a little different 1096 * and wants us to directly use the page 1097 * passed in. 1098 */ 1099 lock_page(mmap_page); 1100 1101 /* Exit and let the caller retry */ 1102 if (mmap_page->mapping != mapping) { 1103 WARN_ON(mmap_page->mapping); 1104 unlock_page(mmap_page); 1105 ret = -EAGAIN; 1106 goto out; 1107 } 1108 1109 get_page(mmap_page); 1110 wc->w_pages[i] = mmap_page; 1111 wc->w_target_locked = true; 1112 } else if (index >= target_index && index <= end_index && 1113 wc->w_type == OCFS2_WRITE_DIRECT) { 1114 /* Direct write has no mapping page. */ 1115 wc->w_pages[i] = NULL; 1116 continue; 1117 } else { 1118 wc->w_pages[i] = find_or_create_page(mapping, index, 1119 GFP_NOFS); 1120 if (!wc->w_pages[i]) { 1121 ret = -ENOMEM; 1122 mlog_errno(ret); 1123 goto out; 1124 } 1125 } 1126 wait_for_stable_page(wc->w_pages[i]); 1127 1128 if (index == target_index) 1129 wc->w_target_page = wc->w_pages[i]; 1130 } 1131 out: 1132 if (ret) 1133 wc->w_target_locked = false; 1134 return ret; 1135 } 1136 1137 /* 1138 * Prepare a single cluster for write one cluster into the file. 1139 */ 1140 static int ocfs2_write_cluster(struct address_space *mapping, 1141 u32 *phys, unsigned int new, 1142 unsigned int clear_unwritten, 1143 unsigned int should_zero, 1144 struct ocfs2_alloc_context *data_ac, 1145 struct ocfs2_alloc_context *meta_ac, 1146 struct ocfs2_write_ctxt *wc, u32 cpos, 1147 loff_t user_pos, unsigned user_len) 1148 { 1149 int ret, i; 1150 u64 p_blkno; 1151 struct inode *inode = mapping->host; 1152 struct ocfs2_extent_tree et; 1153 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); 1154 1155 if (new) { 1156 u32 tmp_pos; 1157 1158 /* 1159 * This is safe to call with the page locks - it won't take 1160 * any additional semaphores or cluster locks. 1161 */ 1162 tmp_pos = cpos; 1163 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1164 &tmp_pos, 1, !clear_unwritten, 1165 wc->w_di_bh, wc->w_handle, 1166 data_ac, meta_ac, NULL); 1167 /* 1168 * This shouldn't happen because we must have already 1169 * calculated the correct meta data allocation required. The 1170 * internal tree allocation code should know how to increase 1171 * transaction credits itself. 1172 * 1173 * If need be, we could handle -EAGAIN for a 1174 * RESTART_TRANS here. 1175 */ 1176 mlog_bug_on_msg(ret == -EAGAIN, 1177 "Inode %llu: EAGAIN return during allocation.\n", 1178 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1179 if (ret < 0) { 1180 mlog_errno(ret); 1181 goto out; 1182 } 1183 } else if (clear_unwritten) { 1184 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1185 wc->w_di_bh); 1186 ret = ocfs2_mark_extent_written(inode, &et, 1187 wc->w_handle, cpos, 1, *phys, 1188 meta_ac, &wc->w_dealloc); 1189 if (ret < 0) { 1190 mlog_errno(ret); 1191 goto out; 1192 } 1193 } 1194 1195 /* 1196 * The only reason this should fail is due to an inability to 1197 * find the extent added. 1198 */ 1199 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL); 1200 if (ret < 0) { 1201 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1202 "at logical cluster %u", 1203 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 1204 goto out; 1205 } 1206 1207 BUG_ON(*phys == 0); 1208 1209 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys); 1210 if (!should_zero) 1211 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1); 1212 1213 for(i = 0; i < wc->w_num_pages; i++) { 1214 int tmpret; 1215 1216 /* This is the direct io target page. */ 1217 if (wc->w_pages[i] == NULL) { 1218 p_blkno++; 1219 continue; 1220 } 1221 1222 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1223 wc->w_pages[i], cpos, 1224 user_pos, user_len, 1225 should_zero); 1226 if (tmpret) { 1227 mlog_errno(tmpret); 1228 if (ret == 0) 1229 ret = tmpret; 1230 } 1231 } 1232 1233 /* 1234 * We only have cleanup to do in case of allocating write. 1235 */ 1236 if (ret && new) 1237 ocfs2_write_failure(inode, wc, user_pos, user_len); 1238 1239 out: 1240 1241 return ret; 1242 } 1243 1244 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1245 struct ocfs2_alloc_context *data_ac, 1246 struct ocfs2_alloc_context *meta_ac, 1247 struct ocfs2_write_ctxt *wc, 1248 loff_t pos, unsigned len) 1249 { 1250 int ret, i; 1251 loff_t cluster_off; 1252 unsigned int local_len = len; 1253 struct ocfs2_write_cluster_desc *desc; 1254 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1255 1256 for (i = 0; i < wc->w_clen; i++) { 1257 desc = &wc->w_desc[i]; 1258 1259 /* 1260 * We have to make sure that the total write passed in 1261 * doesn't extend past a single cluster. 1262 */ 1263 local_len = len; 1264 cluster_off = pos & (osb->s_clustersize - 1); 1265 if ((cluster_off + local_len) > osb->s_clustersize) 1266 local_len = osb->s_clustersize - cluster_off; 1267 1268 ret = ocfs2_write_cluster(mapping, &desc->c_phys, 1269 desc->c_new, 1270 desc->c_clear_unwritten, 1271 desc->c_needs_zero, 1272 data_ac, meta_ac, 1273 wc, desc->c_cpos, pos, local_len); 1274 if (ret) { 1275 mlog_errno(ret); 1276 goto out; 1277 } 1278 1279 len -= local_len; 1280 pos += local_len; 1281 } 1282 1283 ret = 0; 1284 out: 1285 return ret; 1286 } 1287 1288 /* 1289 * ocfs2_write_end() wants to know which parts of the target page it 1290 * should complete the write on. It's easiest to compute them ahead of 1291 * time when a more complete view of the write is available. 1292 */ 1293 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1294 struct ocfs2_write_ctxt *wc, 1295 loff_t pos, unsigned len, int alloc) 1296 { 1297 struct ocfs2_write_cluster_desc *desc; 1298 1299 wc->w_target_from = pos & (PAGE_SIZE - 1); 1300 wc->w_target_to = wc->w_target_from + len; 1301 1302 if (alloc == 0) 1303 return; 1304 1305 /* 1306 * Allocating write - we may have different boundaries based 1307 * on page size and cluster size. 1308 * 1309 * NOTE: We can no longer compute one value from the other as 1310 * the actual write length and user provided length may be 1311 * different. 1312 */ 1313 1314 if (wc->w_large_pages) { 1315 /* 1316 * We only care about the 1st and last cluster within 1317 * our range and whether they should be zero'd or not. Either 1318 * value may be extended out to the start/end of a 1319 * newly allocated cluster. 1320 */ 1321 desc = &wc->w_desc[0]; 1322 if (desc->c_needs_zero) 1323 ocfs2_figure_cluster_boundaries(osb, 1324 desc->c_cpos, 1325 &wc->w_target_from, 1326 NULL); 1327 1328 desc = &wc->w_desc[wc->w_clen - 1]; 1329 if (desc->c_needs_zero) 1330 ocfs2_figure_cluster_boundaries(osb, 1331 desc->c_cpos, 1332 NULL, 1333 &wc->w_target_to); 1334 } else { 1335 wc->w_target_from = 0; 1336 wc->w_target_to = PAGE_SIZE; 1337 } 1338 } 1339 1340 /* 1341 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to 1342 * do the zero work. And should not to clear UNWRITTEN since it will be cleared 1343 * by the direct io procedure. 1344 * If this is a new extent that allocated by direct io, we should mark it in 1345 * the ip_unwritten_list. 1346 */ 1347 static int ocfs2_unwritten_check(struct inode *inode, 1348 struct ocfs2_write_ctxt *wc, 1349 struct ocfs2_write_cluster_desc *desc) 1350 { 1351 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1352 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL; 1353 int ret = 0; 1354 1355 if (!desc->c_needs_zero) 1356 return 0; 1357 1358 retry: 1359 spin_lock(&oi->ip_lock); 1360 /* Needs not to zero no metter buffer or direct. The one who is zero 1361 * the cluster is doing zero. And he will clear unwritten after all 1362 * cluster io finished. */ 1363 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) { 1364 if (desc->c_cpos == ue->ue_cpos) { 1365 BUG_ON(desc->c_new); 1366 desc->c_needs_zero = 0; 1367 desc->c_clear_unwritten = 0; 1368 goto unlock; 1369 } 1370 } 1371 1372 if (wc->w_type != OCFS2_WRITE_DIRECT) 1373 goto unlock; 1374 1375 if (new == NULL) { 1376 spin_unlock(&oi->ip_lock); 1377 new = kmalloc(sizeof(struct ocfs2_unwritten_extent), 1378 GFP_NOFS); 1379 if (new == NULL) { 1380 ret = -ENOMEM; 1381 goto out; 1382 } 1383 goto retry; 1384 } 1385 /* This direct write will doing zero. */ 1386 new->ue_cpos = desc->c_cpos; 1387 new->ue_phys = desc->c_phys; 1388 desc->c_clear_unwritten = 0; 1389 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list); 1390 list_add_tail(&new->ue_node, &wc->w_unwritten_list); 1391 wc->w_unwritten_count++; 1392 new = NULL; 1393 unlock: 1394 spin_unlock(&oi->ip_lock); 1395 out: 1396 kfree(new); 1397 return ret; 1398 } 1399 1400 /* 1401 * Populate each single-cluster write descriptor in the write context 1402 * with information about the i/o to be done. 1403 * 1404 * Returns the number of clusters that will have to be allocated, as 1405 * well as a worst case estimate of the number of extent records that 1406 * would have to be created during a write to an unwritten region. 1407 */ 1408 static int ocfs2_populate_write_desc(struct inode *inode, 1409 struct ocfs2_write_ctxt *wc, 1410 unsigned int *clusters_to_alloc, 1411 unsigned int *extents_to_split) 1412 { 1413 int ret; 1414 struct ocfs2_write_cluster_desc *desc; 1415 unsigned int num_clusters = 0; 1416 unsigned int ext_flags = 0; 1417 u32 phys = 0; 1418 int i; 1419 1420 *clusters_to_alloc = 0; 1421 *extents_to_split = 0; 1422 1423 for (i = 0; i < wc->w_clen; i++) { 1424 desc = &wc->w_desc[i]; 1425 desc->c_cpos = wc->w_cpos + i; 1426 1427 if (num_clusters == 0) { 1428 /* 1429 * Need to look up the next extent record. 1430 */ 1431 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1432 &num_clusters, &ext_flags); 1433 if (ret) { 1434 mlog_errno(ret); 1435 goto out; 1436 } 1437 1438 /* We should already CoW the refcountd extent. */ 1439 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1440 1441 /* 1442 * Assume worst case - that we're writing in 1443 * the middle of the extent. 1444 * 1445 * We can assume that the write proceeds from 1446 * left to right, in which case the extent 1447 * insert code is smart enough to coalesce the 1448 * next splits into the previous records created. 1449 */ 1450 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1451 *extents_to_split = *extents_to_split + 2; 1452 } else if (phys) { 1453 /* 1454 * Only increment phys if it doesn't describe 1455 * a hole. 1456 */ 1457 phys++; 1458 } 1459 1460 /* 1461 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1462 * file that got extended. w_first_new_cpos tells us 1463 * where the newly allocated clusters are so we can 1464 * zero them. 1465 */ 1466 if (desc->c_cpos >= wc->w_first_new_cpos) { 1467 BUG_ON(phys == 0); 1468 desc->c_needs_zero = 1; 1469 } 1470 1471 desc->c_phys = phys; 1472 if (phys == 0) { 1473 desc->c_new = 1; 1474 desc->c_needs_zero = 1; 1475 desc->c_clear_unwritten = 1; 1476 *clusters_to_alloc = *clusters_to_alloc + 1; 1477 } 1478 1479 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1480 desc->c_clear_unwritten = 1; 1481 desc->c_needs_zero = 1; 1482 } 1483 1484 ret = ocfs2_unwritten_check(inode, wc, desc); 1485 if (ret) { 1486 mlog_errno(ret); 1487 goto out; 1488 } 1489 1490 num_clusters--; 1491 } 1492 1493 ret = 0; 1494 out: 1495 return ret; 1496 } 1497 1498 static int ocfs2_write_begin_inline(struct address_space *mapping, 1499 struct inode *inode, 1500 struct ocfs2_write_ctxt *wc) 1501 { 1502 int ret; 1503 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1504 struct page *page; 1505 handle_t *handle; 1506 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1507 1508 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1509 if (IS_ERR(handle)) { 1510 ret = PTR_ERR(handle); 1511 mlog_errno(ret); 1512 goto out; 1513 } 1514 1515 page = find_or_create_page(mapping, 0, GFP_NOFS); 1516 if (!page) { 1517 ocfs2_commit_trans(osb, handle); 1518 ret = -ENOMEM; 1519 mlog_errno(ret); 1520 goto out; 1521 } 1522 /* 1523 * If we don't set w_num_pages then this page won't get unlocked 1524 * and freed on cleanup of the write context. 1525 */ 1526 wc->w_pages[0] = wc->w_target_page = page; 1527 wc->w_num_pages = 1; 1528 1529 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1530 OCFS2_JOURNAL_ACCESS_WRITE); 1531 if (ret) { 1532 ocfs2_commit_trans(osb, handle); 1533 1534 mlog_errno(ret); 1535 goto out; 1536 } 1537 1538 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1539 ocfs2_set_inode_data_inline(inode, di); 1540 1541 if (!PageUptodate(page)) { 1542 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1543 if (ret) { 1544 ocfs2_commit_trans(osb, handle); 1545 1546 goto out; 1547 } 1548 } 1549 1550 wc->w_handle = handle; 1551 out: 1552 return ret; 1553 } 1554 1555 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1556 { 1557 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1558 1559 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1560 return 1; 1561 return 0; 1562 } 1563 1564 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1565 struct inode *inode, loff_t pos, 1566 unsigned len, struct page *mmap_page, 1567 struct ocfs2_write_ctxt *wc) 1568 { 1569 int ret, written = 0; 1570 loff_t end = pos + len; 1571 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1572 struct ocfs2_dinode *di = NULL; 1573 1574 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1575 len, (unsigned long long)pos, 1576 oi->ip_dyn_features); 1577 1578 /* 1579 * Handle inodes which already have inline data 1st. 1580 */ 1581 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1582 if (mmap_page == NULL && 1583 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1584 goto do_inline_write; 1585 1586 /* 1587 * The write won't fit - we have to give this inode an 1588 * inline extent list now. 1589 */ 1590 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1591 if (ret) 1592 mlog_errno(ret); 1593 goto out; 1594 } 1595 1596 /* 1597 * Check whether the inode can accept inline data. 1598 */ 1599 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1600 return 0; 1601 1602 /* 1603 * Check whether the write can fit. 1604 */ 1605 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1606 if (mmap_page || 1607 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1608 return 0; 1609 1610 do_inline_write: 1611 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1612 if (ret) { 1613 mlog_errno(ret); 1614 goto out; 1615 } 1616 1617 /* 1618 * This signals to the caller that the data can be written 1619 * inline. 1620 */ 1621 written = 1; 1622 out: 1623 return written ? written : ret; 1624 } 1625 1626 /* 1627 * This function only does anything for file systems which can't 1628 * handle sparse files. 1629 * 1630 * What we want to do here is fill in any hole between the current end 1631 * of allocation and the end of our write. That way the rest of the 1632 * write path can treat it as an non-allocating write, which has no 1633 * special case code for sparse/nonsparse files. 1634 */ 1635 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1636 struct buffer_head *di_bh, 1637 loff_t pos, unsigned len, 1638 struct ocfs2_write_ctxt *wc) 1639 { 1640 int ret; 1641 loff_t newsize = pos + len; 1642 1643 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1644 1645 if (newsize <= i_size_read(inode)) 1646 return 0; 1647 1648 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1649 if (ret) 1650 mlog_errno(ret); 1651 1652 /* There is no wc if this is call from direct. */ 1653 if (wc) 1654 wc->w_first_new_cpos = 1655 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1656 1657 return ret; 1658 } 1659 1660 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1661 loff_t pos) 1662 { 1663 int ret = 0; 1664 1665 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1666 if (pos > i_size_read(inode)) 1667 ret = ocfs2_zero_extend(inode, di_bh, pos); 1668 1669 return ret; 1670 } 1671 1672 int ocfs2_write_begin_nolock(struct address_space *mapping, 1673 loff_t pos, unsigned len, ocfs2_write_type_t type, 1674 struct page **pagep, void **fsdata, 1675 struct buffer_head *di_bh, struct page *mmap_page) 1676 { 1677 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1678 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1679 struct ocfs2_write_ctxt *wc; 1680 struct inode *inode = mapping->host; 1681 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1682 struct ocfs2_dinode *di; 1683 struct ocfs2_alloc_context *data_ac = NULL; 1684 struct ocfs2_alloc_context *meta_ac = NULL; 1685 handle_t *handle; 1686 struct ocfs2_extent_tree et; 1687 int try_free = 1, ret1; 1688 1689 try_again: 1690 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh); 1691 if (ret) { 1692 mlog_errno(ret); 1693 return ret; 1694 } 1695 1696 if (ocfs2_supports_inline_data(osb)) { 1697 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1698 mmap_page, wc); 1699 if (ret == 1) { 1700 ret = 0; 1701 goto success; 1702 } 1703 if (ret < 0) { 1704 mlog_errno(ret); 1705 goto out; 1706 } 1707 } 1708 1709 /* Direct io change i_size late, should not zero tail here. */ 1710 if (type != OCFS2_WRITE_DIRECT) { 1711 if (ocfs2_sparse_alloc(osb)) 1712 ret = ocfs2_zero_tail(inode, di_bh, pos); 1713 else 1714 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 1715 len, wc); 1716 if (ret) { 1717 mlog_errno(ret); 1718 goto out; 1719 } 1720 } 1721 1722 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1723 if (ret < 0) { 1724 mlog_errno(ret); 1725 goto out; 1726 } else if (ret == 1) { 1727 clusters_need = wc->w_clen; 1728 ret = ocfs2_refcount_cow(inode, di_bh, 1729 wc->w_cpos, wc->w_clen, UINT_MAX); 1730 if (ret) { 1731 mlog_errno(ret); 1732 goto out; 1733 } 1734 } 1735 1736 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1737 &extents_to_split); 1738 if (ret) { 1739 mlog_errno(ret); 1740 goto out; 1741 } 1742 clusters_need += clusters_to_alloc; 1743 1744 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1745 1746 trace_ocfs2_write_begin_nolock( 1747 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1748 (long long)i_size_read(inode), 1749 le32_to_cpu(di->i_clusters), 1750 pos, len, type, mmap_page, 1751 clusters_to_alloc, extents_to_split); 1752 1753 /* 1754 * We set w_target_from, w_target_to here so that 1755 * ocfs2_write_end() knows which range in the target page to 1756 * write out. An allocation requires that we write the entire 1757 * cluster range. 1758 */ 1759 if (clusters_to_alloc || extents_to_split) { 1760 /* 1761 * XXX: We are stretching the limits of 1762 * ocfs2_lock_allocators(). It greatly over-estimates 1763 * the work to be done. 1764 */ 1765 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1766 wc->w_di_bh); 1767 ret = ocfs2_lock_allocators(inode, &et, 1768 clusters_to_alloc, extents_to_split, 1769 &data_ac, &meta_ac); 1770 if (ret) { 1771 mlog_errno(ret); 1772 goto out; 1773 } 1774 1775 if (data_ac) 1776 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1777 1778 credits = ocfs2_calc_extend_credits(inode->i_sb, 1779 &di->id2.i_list); 1780 } else if (type == OCFS2_WRITE_DIRECT) 1781 /* direct write needs not to start trans if no extents alloc. */ 1782 goto success; 1783 1784 /* 1785 * We have to zero sparse allocated clusters, unwritten extent clusters, 1786 * and non-sparse clusters we just extended. For non-sparse writes, 1787 * we know zeros will only be needed in the first and/or last cluster. 1788 */ 1789 if (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1790 wc->w_desc[wc->w_clen - 1].c_needs_zero)) 1791 cluster_of_pages = 1; 1792 else 1793 cluster_of_pages = 0; 1794 1795 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1796 1797 handle = ocfs2_start_trans(osb, credits); 1798 if (IS_ERR(handle)) { 1799 ret = PTR_ERR(handle); 1800 mlog_errno(ret); 1801 goto out; 1802 } 1803 1804 wc->w_handle = handle; 1805 1806 if (clusters_to_alloc) { 1807 ret = dquot_alloc_space_nodirty(inode, 1808 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1809 if (ret) 1810 goto out_commit; 1811 } 1812 1813 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1814 OCFS2_JOURNAL_ACCESS_WRITE); 1815 if (ret) { 1816 mlog_errno(ret); 1817 goto out_quota; 1818 } 1819 1820 /* 1821 * Fill our page array first. That way we've grabbed enough so 1822 * that we can zero and flush if we error after adding the 1823 * extent. 1824 */ 1825 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1826 cluster_of_pages, mmap_page); 1827 if (ret && ret != -EAGAIN) { 1828 mlog_errno(ret); 1829 goto out_quota; 1830 } 1831 1832 /* 1833 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 1834 * the target page. In this case, we exit with no error and no target 1835 * page. This will trigger the caller, page_mkwrite(), to re-try 1836 * the operation. 1837 */ 1838 if (ret == -EAGAIN) { 1839 BUG_ON(wc->w_target_page); 1840 ret = 0; 1841 goto out_quota; 1842 } 1843 1844 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1845 len); 1846 if (ret) { 1847 mlog_errno(ret); 1848 goto out_quota; 1849 } 1850 1851 if (data_ac) 1852 ocfs2_free_alloc_context(data_ac); 1853 if (meta_ac) 1854 ocfs2_free_alloc_context(meta_ac); 1855 1856 success: 1857 if (pagep) 1858 *pagep = wc->w_target_page; 1859 *fsdata = wc; 1860 return 0; 1861 out_quota: 1862 if (clusters_to_alloc) 1863 dquot_free_space(inode, 1864 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1865 out_commit: 1866 ocfs2_commit_trans(osb, handle); 1867 1868 out: 1869 /* 1870 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(), 1871 * even in case of error here like ENOSPC and ENOMEM. So, we need 1872 * to unlock the target page manually to prevent deadlocks when 1873 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED 1874 * to VM code. 1875 */ 1876 if (wc->w_target_locked) 1877 unlock_page(mmap_page); 1878 1879 ocfs2_free_write_ctxt(inode, wc); 1880 1881 if (data_ac) { 1882 ocfs2_free_alloc_context(data_ac); 1883 data_ac = NULL; 1884 } 1885 if (meta_ac) { 1886 ocfs2_free_alloc_context(meta_ac); 1887 meta_ac = NULL; 1888 } 1889 1890 if (ret == -ENOSPC && try_free) { 1891 /* 1892 * Try to free some truncate log so that we can have enough 1893 * clusters to allocate. 1894 */ 1895 try_free = 0; 1896 1897 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1898 if (ret1 == 1) 1899 goto try_again; 1900 1901 if (ret1 < 0) 1902 mlog_errno(ret1); 1903 } 1904 1905 return ret; 1906 } 1907 1908 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1909 loff_t pos, unsigned len, unsigned flags, 1910 struct page **pagep, void **fsdata) 1911 { 1912 int ret; 1913 struct buffer_head *di_bh = NULL; 1914 struct inode *inode = mapping->host; 1915 1916 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1917 if (ret) { 1918 mlog_errno(ret); 1919 return ret; 1920 } 1921 1922 /* 1923 * Take alloc sem here to prevent concurrent lookups. That way 1924 * the mapping, zeroing and tree manipulation within 1925 * ocfs2_write() will be safe against ->readpage(). This 1926 * should also serve to lock out allocation from a shared 1927 * writeable region. 1928 */ 1929 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1930 1931 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER, 1932 pagep, fsdata, di_bh, NULL); 1933 if (ret) { 1934 mlog_errno(ret); 1935 goto out_fail; 1936 } 1937 1938 brelse(di_bh); 1939 1940 return 0; 1941 1942 out_fail: 1943 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1944 1945 brelse(di_bh); 1946 ocfs2_inode_unlock(inode, 1); 1947 1948 return ret; 1949 } 1950 1951 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1952 unsigned len, unsigned *copied, 1953 struct ocfs2_dinode *di, 1954 struct ocfs2_write_ctxt *wc) 1955 { 1956 void *kaddr; 1957 1958 if (unlikely(*copied < len)) { 1959 if (!PageUptodate(wc->w_target_page)) { 1960 *copied = 0; 1961 return; 1962 } 1963 } 1964 1965 kaddr = kmap_atomic(wc->w_target_page); 1966 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1967 kunmap_atomic(kaddr); 1968 1969 trace_ocfs2_write_end_inline( 1970 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1971 (unsigned long long)pos, *copied, 1972 le16_to_cpu(di->id2.i_data.id_count), 1973 le16_to_cpu(di->i_dyn_features)); 1974 } 1975 1976 int ocfs2_write_end_nolock(struct address_space *mapping, 1977 loff_t pos, unsigned len, unsigned copied, void *fsdata) 1978 { 1979 int i, ret; 1980 unsigned from, to, start = pos & (PAGE_SIZE - 1); 1981 struct inode *inode = mapping->host; 1982 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1983 struct ocfs2_write_ctxt *wc = fsdata; 1984 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1985 handle_t *handle = wc->w_handle; 1986 struct page *tmppage; 1987 1988 BUG_ON(!list_empty(&wc->w_unwritten_list)); 1989 1990 if (handle) { 1991 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), 1992 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); 1993 if (ret) { 1994 copied = ret; 1995 mlog_errno(ret); 1996 goto out; 1997 } 1998 } 1999 2000 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2001 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 2002 goto out_write_size; 2003 } 2004 2005 if (unlikely(copied < len) && wc->w_target_page) { 2006 if (!PageUptodate(wc->w_target_page)) 2007 copied = 0; 2008 2009 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 2010 start+len); 2011 } 2012 if (wc->w_target_page) 2013 flush_dcache_page(wc->w_target_page); 2014 2015 for(i = 0; i < wc->w_num_pages; i++) { 2016 tmppage = wc->w_pages[i]; 2017 2018 /* This is the direct io target page. */ 2019 if (tmppage == NULL) 2020 continue; 2021 2022 if (tmppage == wc->w_target_page) { 2023 from = wc->w_target_from; 2024 to = wc->w_target_to; 2025 2026 BUG_ON(from > PAGE_SIZE || 2027 to > PAGE_SIZE || 2028 to < from); 2029 } else { 2030 /* 2031 * Pages adjacent to the target (if any) imply 2032 * a hole-filling write in which case we want 2033 * to flush their entire range. 2034 */ 2035 from = 0; 2036 to = PAGE_SIZE; 2037 } 2038 2039 if (page_has_buffers(tmppage)) { 2040 if (handle && ocfs2_should_order_data(inode)) 2041 ocfs2_jbd2_file_inode(handle, inode); 2042 block_commit_write(tmppage, from, to); 2043 } 2044 } 2045 2046 out_write_size: 2047 /* Direct io do not update i_size here. */ 2048 if (wc->w_type != OCFS2_WRITE_DIRECT) { 2049 pos += copied; 2050 if (pos > i_size_read(inode)) { 2051 i_size_write(inode, pos); 2052 mark_inode_dirty(inode); 2053 } 2054 inode->i_blocks = ocfs2_inode_sector_count(inode); 2055 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2056 inode->i_mtime = inode->i_ctime = current_time(inode); 2057 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2058 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2059 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2060 } 2061 if (handle) 2062 ocfs2_journal_dirty(handle, wc->w_di_bh); 2063 2064 out: 2065 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2066 * lock, or it will cause a deadlock since journal commit threads holds 2067 * this lock and will ask for the page lock when flushing the data. 2068 * put it here to preserve the unlock order. 2069 */ 2070 ocfs2_unlock_pages(wc); 2071 2072 if (handle) 2073 ocfs2_commit_trans(osb, handle); 2074 2075 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2076 2077 brelse(wc->w_di_bh); 2078 kfree(wc); 2079 2080 return copied; 2081 } 2082 2083 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2084 loff_t pos, unsigned len, unsigned copied, 2085 struct page *page, void *fsdata) 2086 { 2087 int ret; 2088 struct inode *inode = mapping->host; 2089 2090 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata); 2091 2092 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2093 ocfs2_inode_unlock(inode, 1); 2094 2095 return ret; 2096 } 2097 2098 struct ocfs2_dio_write_ctxt { 2099 struct list_head dw_zero_list; 2100 unsigned dw_zero_count; 2101 int dw_orphaned; 2102 pid_t dw_writer_pid; 2103 }; 2104 2105 static struct ocfs2_dio_write_ctxt * 2106 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc) 2107 { 2108 struct ocfs2_dio_write_ctxt *dwc = NULL; 2109 2110 if (bh->b_private) 2111 return bh->b_private; 2112 2113 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS); 2114 if (dwc == NULL) 2115 return NULL; 2116 INIT_LIST_HEAD(&dwc->dw_zero_list); 2117 dwc->dw_zero_count = 0; 2118 dwc->dw_orphaned = 0; 2119 dwc->dw_writer_pid = task_pid_nr(current); 2120 bh->b_private = dwc; 2121 *alloc = 1; 2122 2123 return dwc; 2124 } 2125 2126 static void ocfs2_dio_free_write_ctx(struct inode *inode, 2127 struct ocfs2_dio_write_ctxt *dwc) 2128 { 2129 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list); 2130 kfree(dwc); 2131 } 2132 2133 /* 2134 * TODO: Make this into a generic get_blocks function. 2135 * 2136 * From do_direct_io in direct-io.c: 2137 * "So what we do is to permit the ->get_blocks function to populate 2138 * bh.b_size with the size of IO which is permitted at this offset and 2139 * this i_blkbits." 2140 * 2141 * This function is called directly from get_more_blocks in direct-io.c. 2142 * 2143 * called like this: dio->get_blocks(dio->inode, fs_startblk, 2144 * fs_count, map_bh, dio->rw == WRITE); 2145 */ 2146 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock, 2147 struct buffer_head *bh_result, int create) 2148 { 2149 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2150 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2151 struct ocfs2_write_ctxt *wc; 2152 struct ocfs2_write_cluster_desc *desc = NULL; 2153 struct ocfs2_dio_write_ctxt *dwc = NULL; 2154 struct buffer_head *di_bh = NULL; 2155 u64 p_blkno; 2156 loff_t pos = iblock << inode->i_sb->s_blocksize_bits; 2157 unsigned len, total_len = bh_result->b_size; 2158 int ret = 0, first_get_block = 0; 2159 2160 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1)); 2161 len = min(total_len, len); 2162 2163 mlog(0, "get block of %lu at %llu:%u req %u\n", 2164 inode->i_ino, pos, len, total_len); 2165 2166 /* 2167 * Because we need to change file size in ocfs2_dio_end_io_write(), or 2168 * we may need to add it to orphan dir. So can not fall to fast path 2169 * while file size will be changed. 2170 */ 2171 if (pos + total_len <= i_size_read(inode)) { 2172 2173 /* This is the fast path for re-write. */ 2174 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create); 2175 if (buffer_mapped(bh_result) && 2176 !buffer_new(bh_result) && 2177 ret == 0) 2178 goto out; 2179 2180 /* Clear state set by ocfs2_get_block. */ 2181 bh_result->b_state = 0; 2182 } 2183 2184 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block); 2185 if (unlikely(dwc == NULL)) { 2186 ret = -ENOMEM; 2187 mlog_errno(ret); 2188 goto out; 2189 } 2190 2191 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) > 2192 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) && 2193 !dwc->dw_orphaned) { 2194 /* 2195 * when we are going to alloc extents beyond file size, add the 2196 * inode to orphan dir, so we can recall those spaces when 2197 * system crashed during write. 2198 */ 2199 ret = ocfs2_add_inode_to_orphan(osb, inode); 2200 if (ret < 0) { 2201 mlog_errno(ret); 2202 goto out; 2203 } 2204 dwc->dw_orphaned = 1; 2205 } 2206 2207 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2208 if (ret) { 2209 mlog_errno(ret); 2210 goto out; 2211 } 2212 2213 down_write(&oi->ip_alloc_sem); 2214 2215 if (first_get_block) { 2216 if (ocfs2_sparse_alloc(osb)) 2217 ret = ocfs2_zero_tail(inode, di_bh, pos); 2218 else 2219 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 2220 total_len, NULL); 2221 if (ret < 0) { 2222 mlog_errno(ret); 2223 goto unlock; 2224 } 2225 } 2226 2227 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len, 2228 OCFS2_WRITE_DIRECT, NULL, 2229 (void **)&wc, di_bh, NULL); 2230 if (ret) { 2231 mlog_errno(ret); 2232 goto unlock; 2233 } 2234 2235 desc = &wc->w_desc[0]; 2236 2237 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys); 2238 BUG_ON(p_blkno == 0); 2239 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1); 2240 2241 map_bh(bh_result, inode->i_sb, p_blkno); 2242 bh_result->b_size = len; 2243 if (desc->c_needs_zero) 2244 set_buffer_new(bh_result); 2245 2246 /* May sleep in end_io. It should not happen in a irq context. So defer 2247 * it to dio work queue. */ 2248 set_buffer_defer_completion(bh_result); 2249 2250 if (!list_empty(&wc->w_unwritten_list)) { 2251 struct ocfs2_unwritten_extent *ue = NULL; 2252 2253 ue = list_first_entry(&wc->w_unwritten_list, 2254 struct ocfs2_unwritten_extent, 2255 ue_node); 2256 BUG_ON(ue->ue_cpos != desc->c_cpos); 2257 /* The physical address may be 0, fill it. */ 2258 ue->ue_phys = desc->c_phys; 2259 2260 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list); 2261 dwc->dw_zero_count += wc->w_unwritten_count; 2262 } 2263 2264 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc); 2265 BUG_ON(ret != len); 2266 ret = 0; 2267 unlock: 2268 up_write(&oi->ip_alloc_sem); 2269 ocfs2_inode_unlock(inode, 1); 2270 brelse(di_bh); 2271 out: 2272 if (ret < 0) 2273 ret = -EIO; 2274 return ret; 2275 } 2276 2277 static int ocfs2_dio_end_io_write(struct inode *inode, 2278 struct ocfs2_dio_write_ctxt *dwc, 2279 loff_t offset, 2280 ssize_t bytes) 2281 { 2282 struct ocfs2_cached_dealloc_ctxt dealloc; 2283 struct ocfs2_extent_tree et; 2284 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2285 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2286 struct ocfs2_unwritten_extent *ue = NULL; 2287 struct buffer_head *di_bh = NULL; 2288 struct ocfs2_dinode *di; 2289 struct ocfs2_alloc_context *data_ac = NULL; 2290 struct ocfs2_alloc_context *meta_ac = NULL; 2291 handle_t *handle = NULL; 2292 loff_t end = offset + bytes; 2293 int ret = 0, credits = 0, locked = 0; 2294 2295 ocfs2_init_dealloc_ctxt(&dealloc); 2296 2297 /* We do clear unwritten, delete orphan, change i_size here. If neither 2298 * of these happen, we can skip all this. */ 2299 if (list_empty(&dwc->dw_zero_list) && 2300 end <= i_size_read(inode) && 2301 !dwc->dw_orphaned) 2302 goto out; 2303 2304 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we 2305 * are in that context. */ 2306 if (dwc->dw_writer_pid != task_pid_nr(current)) { 2307 inode_lock(inode); 2308 locked = 1; 2309 } 2310 2311 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2312 if (ret < 0) { 2313 mlog_errno(ret); 2314 goto out; 2315 } 2316 2317 down_write(&oi->ip_alloc_sem); 2318 2319 /* Delete orphan before acquire i_mutex. */ 2320 if (dwc->dw_orphaned) { 2321 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current)); 2322 2323 end = end > i_size_read(inode) ? end : 0; 2324 2325 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 2326 !!end, end); 2327 if (ret < 0) 2328 mlog_errno(ret); 2329 } 2330 2331 di = (struct ocfs2_dinode *)di_bh->b_data; 2332 2333 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 2334 2335 /* Attach dealloc with extent tree in case that we may reuse extents 2336 * which are already unlinked from current extent tree due to extent 2337 * rotation and merging. 2338 */ 2339 et.et_dealloc = &dealloc; 2340 2341 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2, 2342 &data_ac, &meta_ac); 2343 if (ret) { 2344 mlog_errno(ret); 2345 goto unlock; 2346 } 2347 2348 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list); 2349 2350 handle = ocfs2_start_trans(osb, credits); 2351 if (IS_ERR(handle)) { 2352 ret = PTR_ERR(handle); 2353 mlog_errno(ret); 2354 goto unlock; 2355 } 2356 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 2357 OCFS2_JOURNAL_ACCESS_WRITE); 2358 if (ret) { 2359 mlog_errno(ret); 2360 goto commit; 2361 } 2362 2363 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) { 2364 ret = ocfs2_mark_extent_written(inode, &et, handle, 2365 ue->ue_cpos, 1, 2366 ue->ue_phys, 2367 meta_ac, &dealloc); 2368 if (ret < 0) { 2369 mlog_errno(ret); 2370 break; 2371 } 2372 } 2373 2374 if (end > i_size_read(inode)) { 2375 ret = ocfs2_set_inode_size(handle, inode, di_bh, end); 2376 if (ret < 0) 2377 mlog_errno(ret); 2378 } 2379 commit: 2380 ocfs2_commit_trans(osb, handle); 2381 unlock: 2382 up_write(&oi->ip_alloc_sem); 2383 ocfs2_inode_unlock(inode, 1); 2384 brelse(di_bh); 2385 out: 2386 if (data_ac) 2387 ocfs2_free_alloc_context(data_ac); 2388 if (meta_ac) 2389 ocfs2_free_alloc_context(meta_ac); 2390 ocfs2_run_deallocs(osb, &dealloc); 2391 if (locked) 2392 inode_unlock(inode); 2393 ocfs2_dio_free_write_ctx(inode, dwc); 2394 2395 return ret; 2396 } 2397 2398 /* 2399 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 2400 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 2401 * to protect io on one node from truncation on another. 2402 */ 2403 static int ocfs2_dio_end_io(struct kiocb *iocb, 2404 loff_t offset, 2405 ssize_t bytes, 2406 void *private) 2407 { 2408 struct inode *inode = file_inode(iocb->ki_filp); 2409 int level; 2410 int ret = 0; 2411 2412 /* this io's submitter should not have unlocked this before we could */ 2413 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 2414 2415 if (bytes <= 0) 2416 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld", 2417 (long long)bytes); 2418 if (private) { 2419 if (bytes > 0) 2420 ret = ocfs2_dio_end_io_write(inode, private, offset, 2421 bytes); 2422 else 2423 ocfs2_dio_free_write_ctx(inode, private); 2424 } 2425 2426 ocfs2_iocb_clear_rw_locked(iocb); 2427 2428 level = ocfs2_iocb_rw_locked_level(iocb); 2429 ocfs2_rw_unlock(inode, level); 2430 return ret; 2431 } 2432 2433 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2434 { 2435 struct file *file = iocb->ki_filp; 2436 struct inode *inode = file->f_mapping->host; 2437 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2438 get_block_t *get_block; 2439 2440 /* 2441 * Fallback to buffered I/O if we see an inode without 2442 * extents. 2443 */ 2444 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2445 return 0; 2446 2447 /* Fallback to buffered I/O if we do not support append dio. */ 2448 if (iocb->ki_pos + iter->count > i_size_read(inode) && 2449 !ocfs2_supports_append_dio(osb)) 2450 return 0; 2451 2452 if (iov_iter_rw(iter) == READ) 2453 get_block = ocfs2_lock_get_block; 2454 else 2455 get_block = ocfs2_dio_wr_get_block; 2456 2457 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2458 iter, get_block, 2459 ocfs2_dio_end_io, NULL, 0); 2460 } 2461 2462 const struct address_space_operations ocfs2_aops = { 2463 .readpage = ocfs2_readpage, 2464 .readpages = ocfs2_readpages, 2465 .writepage = ocfs2_writepage, 2466 .write_begin = ocfs2_write_begin, 2467 .write_end = ocfs2_write_end, 2468 .bmap = ocfs2_bmap, 2469 .direct_IO = ocfs2_direct_IO, 2470 .invalidatepage = block_invalidatepage, 2471 .releasepage = ocfs2_releasepage, 2472 .migratepage = buffer_migrate_page, 2473 .is_partially_uptodate = block_is_partially_uptodate, 2474 .error_remove_page = generic_error_remove_page, 2475 }; 2476