xref: /openbmc/linux/fs/ocfs2/aops.c (revision f35e839a)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 
32 #include <cluster/masklog.h>
33 
34 #include "ocfs2.h"
35 
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
48 
49 #include "buffer_head_io.h"
50 
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 				   struct buffer_head *bh_result, int create)
53 {
54 	int err = -EIO;
55 	int status;
56 	struct ocfs2_dinode *fe = NULL;
57 	struct buffer_head *bh = NULL;
58 	struct buffer_head *buffer_cache_bh = NULL;
59 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 	void *kaddr;
61 
62 	trace_ocfs2_symlink_get_block(
63 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
64 			(unsigned long long)iblock, bh_result, create);
65 
66 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67 
68 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 		     (unsigned long long)iblock);
71 		goto bail;
72 	}
73 
74 	status = ocfs2_read_inode_block(inode, &bh);
75 	if (status < 0) {
76 		mlog_errno(status);
77 		goto bail;
78 	}
79 	fe = (struct ocfs2_dinode *) bh->b_data;
80 
81 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 						    le32_to_cpu(fe->i_clusters))) {
83 		mlog(ML_ERROR, "block offset is outside the allocated size: "
84 		     "%llu\n", (unsigned long long)iblock);
85 		goto bail;
86 	}
87 
88 	/* We don't use the page cache to create symlink data, so if
89 	 * need be, copy it over from the buffer cache. */
90 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 			    iblock;
93 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 		if (!buffer_cache_bh) {
95 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 			goto bail;
97 		}
98 
99 		/* we haven't locked out transactions, so a commit
100 		 * could've happened. Since we've got a reference on
101 		 * the bh, even if it commits while we're doing the
102 		 * copy, the data is still good. */
103 		if (buffer_jbd(buffer_cache_bh)
104 		    && ocfs2_inode_is_new(inode)) {
105 			kaddr = kmap_atomic(bh_result->b_page);
106 			if (!kaddr) {
107 				mlog(ML_ERROR, "couldn't kmap!\n");
108 				goto bail;
109 			}
110 			memcpy(kaddr + (bh_result->b_size * iblock),
111 			       buffer_cache_bh->b_data,
112 			       bh_result->b_size);
113 			kunmap_atomic(kaddr);
114 			set_buffer_uptodate(bh_result);
115 		}
116 		brelse(buffer_cache_bh);
117 	}
118 
119 	map_bh(bh_result, inode->i_sb,
120 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121 
122 	err = 0;
123 
124 bail:
125 	brelse(bh);
126 
127 	return err;
128 }
129 
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 		    struct buffer_head *bh_result, int create)
132 {
133 	int err = 0;
134 	unsigned int ext_flags;
135 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 	u64 p_blkno, count, past_eof;
137 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138 
139 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 			      (unsigned long long)iblock, bh_result, create);
141 
142 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 		     inode, inode->i_ino);
145 
146 	if (S_ISLNK(inode->i_mode)) {
147 		/* this always does I/O for some reason. */
148 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 		goto bail;
150 	}
151 
152 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 					  &ext_flags);
154 	if (err) {
155 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 		     (unsigned long long)p_blkno);
158 		goto bail;
159 	}
160 
161 	if (max_blocks < count)
162 		count = max_blocks;
163 
164 	/*
165 	 * ocfs2 never allocates in this function - the only time we
166 	 * need to use BH_New is when we're extending i_size on a file
167 	 * system which doesn't support holes, in which case BH_New
168 	 * allows __block_write_begin() to zero.
169 	 *
170 	 * If we see this on a sparse file system, then a truncate has
171 	 * raced us and removed the cluster. In this case, we clear
172 	 * the buffers dirty and uptodate bits and let the buffer code
173 	 * ignore it as a hole.
174 	 */
175 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 		clear_buffer_dirty(bh_result);
177 		clear_buffer_uptodate(bh_result);
178 		goto bail;
179 	}
180 
181 	/* Treat the unwritten extent as a hole for zeroing purposes. */
182 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 		map_bh(bh_result, inode->i_sb, p_blkno);
184 
185 	bh_result->b_size = count << inode->i_blkbits;
186 
187 	if (!ocfs2_sparse_alloc(osb)) {
188 		if (p_blkno == 0) {
189 			err = -EIO;
190 			mlog(ML_ERROR,
191 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 			     (unsigned long long)iblock,
193 			     (unsigned long long)p_blkno,
194 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 			dump_stack();
197 			goto bail;
198 		}
199 	}
200 
201 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202 
203 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 				  (unsigned long long)past_eof);
205 	if (create && (iblock >= past_eof))
206 		set_buffer_new(bh_result);
207 
208 bail:
209 	if (err < 0)
210 		err = -EIO;
211 
212 	return err;
213 }
214 
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 			   struct buffer_head *di_bh)
217 {
218 	void *kaddr;
219 	loff_t size;
220 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221 
222 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 		return -EROFS;
226 	}
227 
228 	size = i_size_read(inode);
229 
230 	if (size > PAGE_CACHE_SIZE ||
231 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 		ocfs2_error(inode->i_sb,
233 			    "Inode %llu has with inline data has bad size: %Lu",
234 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 			    (unsigned long long)size);
236 		return -EROFS;
237 	}
238 
239 	kaddr = kmap_atomic(page);
240 	if (size)
241 		memcpy(kaddr, di->id2.i_data.id_data, size);
242 	/* Clear the remaining part of the page */
243 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 	flush_dcache_page(page);
245 	kunmap_atomic(kaddr);
246 
247 	SetPageUptodate(page);
248 
249 	return 0;
250 }
251 
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253 {
254 	int ret;
255 	struct buffer_head *di_bh = NULL;
256 
257 	BUG_ON(!PageLocked(page));
258 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259 
260 	ret = ocfs2_read_inode_block(inode, &di_bh);
261 	if (ret) {
262 		mlog_errno(ret);
263 		goto out;
264 	}
265 
266 	ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268 	unlock_page(page);
269 
270 	brelse(di_bh);
271 	return ret;
272 }
273 
274 static int ocfs2_readpage(struct file *file, struct page *page)
275 {
276 	struct inode *inode = page->mapping->host;
277 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 	int ret, unlock = 1;
280 
281 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 			     (page ? page->index : 0));
283 
284 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 	if (ret != 0) {
286 		if (ret == AOP_TRUNCATED_PAGE)
287 			unlock = 0;
288 		mlog_errno(ret);
289 		goto out;
290 	}
291 
292 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293 		/*
294 		 * Unlock the page and cycle ip_alloc_sem so that we don't
295 		 * busyloop waiting for ip_alloc_sem to unlock
296 		 */
297 		ret = AOP_TRUNCATED_PAGE;
298 		unlock_page(page);
299 		unlock = 0;
300 		down_read(&oi->ip_alloc_sem);
301 		up_read(&oi->ip_alloc_sem);
302 		goto out_inode_unlock;
303 	}
304 
305 	/*
306 	 * i_size might have just been updated as we grabed the meta lock.  We
307 	 * might now be discovering a truncate that hit on another node.
308 	 * block_read_full_page->get_block freaks out if it is asked to read
309 	 * beyond the end of a file, so we check here.  Callers
310 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
311 	 * and notice that the page they just read isn't needed.
312 	 *
313 	 * XXX sys_readahead() seems to get that wrong?
314 	 */
315 	if (start >= i_size_read(inode)) {
316 		zero_user(page, 0, PAGE_SIZE);
317 		SetPageUptodate(page);
318 		ret = 0;
319 		goto out_alloc;
320 	}
321 
322 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
323 		ret = ocfs2_readpage_inline(inode, page);
324 	else
325 		ret = block_read_full_page(page, ocfs2_get_block);
326 	unlock = 0;
327 
328 out_alloc:
329 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
330 out_inode_unlock:
331 	ocfs2_inode_unlock(inode, 0);
332 out:
333 	if (unlock)
334 		unlock_page(page);
335 	return ret;
336 }
337 
338 /*
339  * This is used only for read-ahead. Failures or difficult to handle
340  * situations are safe to ignore.
341  *
342  * Right now, we don't bother with BH_Boundary - in-inode extent lists
343  * are quite large (243 extents on 4k blocks), so most inodes don't
344  * grow out to a tree. If need be, detecting boundary extents could
345  * trivially be added in a future version of ocfs2_get_block().
346  */
347 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
348 			   struct list_head *pages, unsigned nr_pages)
349 {
350 	int ret, err = -EIO;
351 	struct inode *inode = mapping->host;
352 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
353 	loff_t start;
354 	struct page *last;
355 
356 	/*
357 	 * Use the nonblocking flag for the dlm code to avoid page
358 	 * lock inversion, but don't bother with retrying.
359 	 */
360 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361 	if (ret)
362 		return err;
363 
364 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
365 		ocfs2_inode_unlock(inode, 0);
366 		return err;
367 	}
368 
369 	/*
370 	 * Don't bother with inline-data. There isn't anything
371 	 * to read-ahead in that case anyway...
372 	 */
373 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
374 		goto out_unlock;
375 
376 	/*
377 	 * Check whether a remote node truncated this file - we just
378 	 * drop out in that case as it's not worth handling here.
379 	 */
380 	last = list_entry(pages->prev, struct page, lru);
381 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
382 	if (start >= i_size_read(inode))
383 		goto out_unlock;
384 
385 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
386 
387 out_unlock:
388 	up_read(&oi->ip_alloc_sem);
389 	ocfs2_inode_unlock(inode, 0);
390 
391 	return err;
392 }
393 
394 /* Note: Because we don't support holes, our allocation has
395  * already happened (allocation writes zeros to the file data)
396  * so we don't have to worry about ordered writes in
397  * ocfs2_writepage.
398  *
399  * ->writepage is called during the process of invalidating the page cache
400  * during blocked lock processing.  It can't block on any cluster locks
401  * to during block mapping.  It's relying on the fact that the block
402  * mapping can't have disappeared under the dirty pages that it is
403  * being asked to write back.
404  */
405 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
406 {
407 	trace_ocfs2_writepage(
408 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
409 		page->index);
410 
411 	return block_write_full_page(page, ocfs2_get_block, wbc);
412 }
413 
414 /* Taken from ext3. We don't necessarily need the full blown
415  * functionality yet, but IMHO it's better to cut and paste the whole
416  * thing so we can avoid introducing our own bugs (and easily pick up
417  * their fixes when they happen) --Mark */
418 int walk_page_buffers(	handle_t *handle,
419 			struct buffer_head *head,
420 			unsigned from,
421 			unsigned to,
422 			int *partial,
423 			int (*fn)(	handle_t *handle,
424 					struct buffer_head *bh))
425 {
426 	struct buffer_head *bh;
427 	unsigned block_start, block_end;
428 	unsigned blocksize = head->b_size;
429 	int err, ret = 0;
430 	struct buffer_head *next;
431 
432 	for (	bh = head, block_start = 0;
433 		ret == 0 && (bh != head || !block_start);
434 	    	block_start = block_end, bh = next)
435 	{
436 		next = bh->b_this_page;
437 		block_end = block_start + blocksize;
438 		if (block_end <= from || block_start >= to) {
439 			if (partial && !buffer_uptodate(bh))
440 				*partial = 1;
441 			continue;
442 		}
443 		err = (*fn)(handle, bh);
444 		if (!ret)
445 			ret = err;
446 	}
447 	return ret;
448 }
449 
450 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
451 {
452 	sector_t status;
453 	u64 p_blkno = 0;
454 	int err = 0;
455 	struct inode *inode = mapping->host;
456 
457 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
458 			 (unsigned long long)block);
459 
460 	/* We don't need to lock journal system files, since they aren't
461 	 * accessed concurrently from multiple nodes.
462 	 */
463 	if (!INODE_JOURNAL(inode)) {
464 		err = ocfs2_inode_lock(inode, NULL, 0);
465 		if (err) {
466 			if (err != -ENOENT)
467 				mlog_errno(err);
468 			goto bail;
469 		}
470 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
471 	}
472 
473 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
474 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
475 						  NULL);
476 
477 	if (!INODE_JOURNAL(inode)) {
478 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
479 		ocfs2_inode_unlock(inode, 0);
480 	}
481 
482 	if (err) {
483 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
484 		     (unsigned long long)block);
485 		mlog_errno(err);
486 		goto bail;
487 	}
488 
489 bail:
490 	status = err ? 0 : p_blkno;
491 
492 	return status;
493 }
494 
495 /*
496  * TODO: Make this into a generic get_blocks function.
497  *
498  * From do_direct_io in direct-io.c:
499  *  "So what we do is to permit the ->get_blocks function to populate
500  *   bh.b_size with the size of IO which is permitted at this offset and
501  *   this i_blkbits."
502  *
503  * This function is called directly from get_more_blocks in direct-io.c.
504  *
505  * called like this: dio->get_blocks(dio->inode, fs_startblk,
506  * 					fs_count, map_bh, dio->rw == WRITE);
507  *
508  * Note that we never bother to allocate blocks here, and thus ignore the
509  * create argument.
510  */
511 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
512 				     struct buffer_head *bh_result, int create)
513 {
514 	int ret;
515 	u64 p_blkno, inode_blocks, contig_blocks;
516 	unsigned int ext_flags;
517 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
518 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
519 
520 	/* This function won't even be called if the request isn't all
521 	 * nicely aligned and of the right size, so there's no need
522 	 * for us to check any of that. */
523 
524 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
525 
526 	/* This figures out the size of the next contiguous block, and
527 	 * our logical offset */
528 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
529 					  &contig_blocks, &ext_flags);
530 	if (ret) {
531 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
532 		     (unsigned long long)iblock);
533 		ret = -EIO;
534 		goto bail;
535 	}
536 
537 	/* We should already CoW the refcounted extent in case of create. */
538 	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
539 
540 	/*
541 	 * get_more_blocks() expects us to describe a hole by clearing
542 	 * the mapped bit on bh_result().
543 	 *
544 	 * Consider an unwritten extent as a hole.
545 	 */
546 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
547 		map_bh(bh_result, inode->i_sb, p_blkno);
548 	else
549 		clear_buffer_mapped(bh_result);
550 
551 	/* make sure we don't map more than max_blocks blocks here as
552 	   that's all the kernel will handle at this point. */
553 	if (max_blocks < contig_blocks)
554 		contig_blocks = max_blocks;
555 	bh_result->b_size = contig_blocks << blocksize_bits;
556 bail:
557 	return ret;
558 }
559 
560 /*
561  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
562  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
563  * to protect io on one node from truncation on another.
564  */
565 static void ocfs2_dio_end_io(struct kiocb *iocb,
566 			     loff_t offset,
567 			     ssize_t bytes,
568 			     void *private,
569 			     int ret,
570 			     bool is_async)
571 {
572 	struct inode *inode = file_inode(iocb->ki_filp);
573 	int level;
574 	wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
575 
576 	/* this io's submitter should not have unlocked this before we could */
577 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
578 
579 	if (ocfs2_iocb_is_sem_locked(iocb))
580 		ocfs2_iocb_clear_sem_locked(iocb);
581 
582 	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
583 		ocfs2_iocb_clear_unaligned_aio(iocb);
584 
585 		if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
586 		    waitqueue_active(wq)) {
587 			wake_up_all(wq);
588 		}
589 	}
590 
591 	ocfs2_iocb_clear_rw_locked(iocb);
592 
593 	level = ocfs2_iocb_rw_locked_level(iocb);
594 	ocfs2_rw_unlock(inode, level);
595 
596 	inode_dio_done(inode);
597 	if (is_async)
598 		aio_complete(iocb, ret, 0);
599 }
600 
601 /*
602  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
603  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
604  * do journalled data.
605  */
606 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
607 {
608 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
609 
610 	jbd2_journal_invalidatepage(journal, page, offset);
611 }
612 
613 static int ocfs2_releasepage(struct page *page, gfp_t wait)
614 {
615 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
616 
617 	if (!page_has_buffers(page))
618 		return 0;
619 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
620 }
621 
622 static ssize_t ocfs2_direct_IO(int rw,
623 			       struct kiocb *iocb,
624 			       const struct iovec *iov,
625 			       loff_t offset,
626 			       unsigned long nr_segs)
627 {
628 	struct file *file = iocb->ki_filp;
629 	struct inode *inode = file_inode(file)->i_mapping->host;
630 
631 	/*
632 	 * Fallback to buffered I/O if we see an inode without
633 	 * extents.
634 	 */
635 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
636 		return 0;
637 
638 	/* Fallback to buffered I/O if we are appending. */
639 	if (i_size_read(inode) <= offset)
640 		return 0;
641 
642 	return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
643 				    iov, offset, nr_segs,
644 				    ocfs2_direct_IO_get_blocks,
645 				    ocfs2_dio_end_io, NULL, 0);
646 }
647 
648 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
649 					    u32 cpos,
650 					    unsigned int *start,
651 					    unsigned int *end)
652 {
653 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
654 
655 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
656 		unsigned int cpp;
657 
658 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
659 
660 		cluster_start = cpos % cpp;
661 		cluster_start = cluster_start << osb->s_clustersize_bits;
662 
663 		cluster_end = cluster_start + osb->s_clustersize;
664 	}
665 
666 	BUG_ON(cluster_start > PAGE_SIZE);
667 	BUG_ON(cluster_end > PAGE_SIZE);
668 
669 	if (start)
670 		*start = cluster_start;
671 	if (end)
672 		*end = cluster_end;
673 }
674 
675 /*
676  * 'from' and 'to' are the region in the page to avoid zeroing.
677  *
678  * If pagesize > clustersize, this function will avoid zeroing outside
679  * of the cluster boundary.
680  *
681  * from == to == 0 is code for "zero the entire cluster region"
682  */
683 static void ocfs2_clear_page_regions(struct page *page,
684 				     struct ocfs2_super *osb, u32 cpos,
685 				     unsigned from, unsigned to)
686 {
687 	void *kaddr;
688 	unsigned int cluster_start, cluster_end;
689 
690 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
691 
692 	kaddr = kmap_atomic(page);
693 
694 	if (from || to) {
695 		if (from > cluster_start)
696 			memset(kaddr + cluster_start, 0, from - cluster_start);
697 		if (to < cluster_end)
698 			memset(kaddr + to, 0, cluster_end - to);
699 	} else {
700 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
701 	}
702 
703 	kunmap_atomic(kaddr);
704 }
705 
706 /*
707  * Nonsparse file systems fully allocate before we get to the write
708  * code. This prevents ocfs2_write() from tagging the write as an
709  * allocating one, which means ocfs2_map_page_blocks() might try to
710  * read-in the blocks at the tail of our file. Avoid reading them by
711  * testing i_size against each block offset.
712  */
713 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
714 				 unsigned int block_start)
715 {
716 	u64 offset = page_offset(page) + block_start;
717 
718 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
719 		return 1;
720 
721 	if (i_size_read(inode) > offset)
722 		return 1;
723 
724 	return 0;
725 }
726 
727 /*
728  * Some of this taken from __block_write_begin(). We already have our
729  * mapping by now though, and the entire write will be allocating or
730  * it won't, so not much need to use BH_New.
731  *
732  * This will also skip zeroing, which is handled externally.
733  */
734 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
735 			  struct inode *inode, unsigned int from,
736 			  unsigned int to, int new)
737 {
738 	int ret = 0;
739 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
740 	unsigned int block_end, block_start;
741 	unsigned int bsize = 1 << inode->i_blkbits;
742 
743 	if (!page_has_buffers(page))
744 		create_empty_buffers(page, bsize, 0);
745 
746 	head = page_buffers(page);
747 	for (bh = head, block_start = 0; bh != head || !block_start;
748 	     bh = bh->b_this_page, block_start += bsize) {
749 		block_end = block_start + bsize;
750 
751 		clear_buffer_new(bh);
752 
753 		/*
754 		 * Ignore blocks outside of our i/o range -
755 		 * they may belong to unallocated clusters.
756 		 */
757 		if (block_start >= to || block_end <= from) {
758 			if (PageUptodate(page))
759 				set_buffer_uptodate(bh);
760 			continue;
761 		}
762 
763 		/*
764 		 * For an allocating write with cluster size >= page
765 		 * size, we always write the entire page.
766 		 */
767 		if (new)
768 			set_buffer_new(bh);
769 
770 		if (!buffer_mapped(bh)) {
771 			map_bh(bh, inode->i_sb, *p_blkno);
772 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
773 		}
774 
775 		if (PageUptodate(page)) {
776 			if (!buffer_uptodate(bh))
777 				set_buffer_uptodate(bh);
778 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
779 			   !buffer_new(bh) &&
780 			   ocfs2_should_read_blk(inode, page, block_start) &&
781 			   (block_start < from || block_end > to)) {
782 			ll_rw_block(READ, 1, &bh);
783 			*wait_bh++=bh;
784 		}
785 
786 		*p_blkno = *p_blkno + 1;
787 	}
788 
789 	/*
790 	 * If we issued read requests - let them complete.
791 	 */
792 	while(wait_bh > wait) {
793 		wait_on_buffer(*--wait_bh);
794 		if (!buffer_uptodate(*wait_bh))
795 			ret = -EIO;
796 	}
797 
798 	if (ret == 0 || !new)
799 		return ret;
800 
801 	/*
802 	 * If we get -EIO above, zero out any newly allocated blocks
803 	 * to avoid exposing stale data.
804 	 */
805 	bh = head;
806 	block_start = 0;
807 	do {
808 		block_end = block_start + bsize;
809 		if (block_end <= from)
810 			goto next_bh;
811 		if (block_start >= to)
812 			break;
813 
814 		zero_user(page, block_start, bh->b_size);
815 		set_buffer_uptodate(bh);
816 		mark_buffer_dirty(bh);
817 
818 next_bh:
819 		block_start = block_end;
820 		bh = bh->b_this_page;
821 	} while (bh != head);
822 
823 	return ret;
824 }
825 
826 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
827 #define OCFS2_MAX_CTXT_PAGES	1
828 #else
829 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
830 #endif
831 
832 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
833 
834 /*
835  * Describe the state of a single cluster to be written to.
836  */
837 struct ocfs2_write_cluster_desc {
838 	u32		c_cpos;
839 	u32		c_phys;
840 	/*
841 	 * Give this a unique field because c_phys eventually gets
842 	 * filled.
843 	 */
844 	unsigned	c_new;
845 	unsigned	c_unwritten;
846 	unsigned	c_needs_zero;
847 };
848 
849 struct ocfs2_write_ctxt {
850 	/* Logical cluster position / len of write */
851 	u32				w_cpos;
852 	u32				w_clen;
853 
854 	/* First cluster allocated in a nonsparse extend */
855 	u32				w_first_new_cpos;
856 
857 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
858 
859 	/*
860 	 * This is true if page_size > cluster_size.
861 	 *
862 	 * It triggers a set of special cases during write which might
863 	 * have to deal with allocating writes to partial pages.
864 	 */
865 	unsigned int			w_large_pages;
866 
867 	/*
868 	 * Pages involved in this write.
869 	 *
870 	 * w_target_page is the page being written to by the user.
871 	 *
872 	 * w_pages is an array of pages which always contains
873 	 * w_target_page, and in the case of an allocating write with
874 	 * page_size < cluster size, it will contain zero'd and mapped
875 	 * pages adjacent to w_target_page which need to be written
876 	 * out in so that future reads from that region will get
877 	 * zero's.
878 	 */
879 	unsigned int			w_num_pages;
880 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
881 	struct page			*w_target_page;
882 
883 	/*
884 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
885 	 * against w_target_page in ocfs2_write_end_nolock.
886 	 */
887 	unsigned int			w_target_locked:1;
888 
889 	/*
890 	 * ocfs2_write_end() uses this to know what the real range to
891 	 * write in the target should be.
892 	 */
893 	unsigned int			w_target_from;
894 	unsigned int			w_target_to;
895 
896 	/*
897 	 * We could use journal_current_handle() but this is cleaner,
898 	 * IMHO -Mark
899 	 */
900 	handle_t			*w_handle;
901 
902 	struct buffer_head		*w_di_bh;
903 
904 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
905 };
906 
907 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
908 {
909 	int i;
910 
911 	for(i = 0; i < num_pages; i++) {
912 		if (pages[i]) {
913 			unlock_page(pages[i]);
914 			mark_page_accessed(pages[i]);
915 			page_cache_release(pages[i]);
916 		}
917 	}
918 }
919 
920 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
921 {
922 	int i;
923 
924 	/*
925 	 * w_target_locked is only set to true in the page_mkwrite() case.
926 	 * The intent is to allow us to lock the target page from write_begin()
927 	 * to write_end(). The caller must hold a ref on w_target_page.
928 	 */
929 	if (wc->w_target_locked) {
930 		BUG_ON(!wc->w_target_page);
931 		for (i = 0; i < wc->w_num_pages; i++) {
932 			if (wc->w_target_page == wc->w_pages[i]) {
933 				wc->w_pages[i] = NULL;
934 				break;
935 			}
936 		}
937 		mark_page_accessed(wc->w_target_page);
938 		page_cache_release(wc->w_target_page);
939 	}
940 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
941 
942 	brelse(wc->w_di_bh);
943 	kfree(wc);
944 }
945 
946 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
947 				  struct ocfs2_super *osb, loff_t pos,
948 				  unsigned len, struct buffer_head *di_bh)
949 {
950 	u32 cend;
951 	struct ocfs2_write_ctxt *wc;
952 
953 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
954 	if (!wc)
955 		return -ENOMEM;
956 
957 	wc->w_cpos = pos >> osb->s_clustersize_bits;
958 	wc->w_first_new_cpos = UINT_MAX;
959 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
960 	wc->w_clen = cend - wc->w_cpos + 1;
961 	get_bh(di_bh);
962 	wc->w_di_bh = di_bh;
963 
964 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
965 		wc->w_large_pages = 1;
966 	else
967 		wc->w_large_pages = 0;
968 
969 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
970 
971 	*wcp = wc;
972 
973 	return 0;
974 }
975 
976 /*
977  * If a page has any new buffers, zero them out here, and mark them uptodate
978  * and dirty so they'll be written out (in order to prevent uninitialised
979  * block data from leaking). And clear the new bit.
980  */
981 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
982 {
983 	unsigned int block_start, block_end;
984 	struct buffer_head *head, *bh;
985 
986 	BUG_ON(!PageLocked(page));
987 	if (!page_has_buffers(page))
988 		return;
989 
990 	bh = head = page_buffers(page);
991 	block_start = 0;
992 	do {
993 		block_end = block_start + bh->b_size;
994 
995 		if (buffer_new(bh)) {
996 			if (block_end > from && block_start < to) {
997 				if (!PageUptodate(page)) {
998 					unsigned start, end;
999 
1000 					start = max(from, block_start);
1001 					end = min(to, block_end);
1002 
1003 					zero_user_segment(page, start, end);
1004 					set_buffer_uptodate(bh);
1005 				}
1006 
1007 				clear_buffer_new(bh);
1008 				mark_buffer_dirty(bh);
1009 			}
1010 		}
1011 
1012 		block_start = block_end;
1013 		bh = bh->b_this_page;
1014 	} while (bh != head);
1015 }
1016 
1017 /*
1018  * Only called when we have a failure during allocating write to write
1019  * zero's to the newly allocated region.
1020  */
1021 static void ocfs2_write_failure(struct inode *inode,
1022 				struct ocfs2_write_ctxt *wc,
1023 				loff_t user_pos, unsigned user_len)
1024 {
1025 	int i;
1026 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1027 		to = user_pos + user_len;
1028 	struct page *tmppage;
1029 
1030 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1031 
1032 	for(i = 0; i < wc->w_num_pages; i++) {
1033 		tmppage = wc->w_pages[i];
1034 
1035 		if (page_has_buffers(tmppage)) {
1036 			if (ocfs2_should_order_data(inode))
1037 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1038 
1039 			block_commit_write(tmppage, from, to);
1040 		}
1041 	}
1042 }
1043 
1044 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1045 					struct ocfs2_write_ctxt *wc,
1046 					struct page *page, u32 cpos,
1047 					loff_t user_pos, unsigned user_len,
1048 					int new)
1049 {
1050 	int ret;
1051 	unsigned int map_from = 0, map_to = 0;
1052 	unsigned int cluster_start, cluster_end;
1053 	unsigned int user_data_from = 0, user_data_to = 0;
1054 
1055 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1056 					&cluster_start, &cluster_end);
1057 
1058 	/* treat the write as new if the a hole/lseek spanned across
1059 	 * the page boundary.
1060 	 */
1061 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1062 			(page_offset(page) <= user_pos));
1063 
1064 	if (page == wc->w_target_page) {
1065 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1066 		map_to = map_from + user_len;
1067 
1068 		if (new)
1069 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1070 						    cluster_start, cluster_end,
1071 						    new);
1072 		else
1073 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1074 						    map_from, map_to, new);
1075 		if (ret) {
1076 			mlog_errno(ret);
1077 			goto out;
1078 		}
1079 
1080 		user_data_from = map_from;
1081 		user_data_to = map_to;
1082 		if (new) {
1083 			map_from = cluster_start;
1084 			map_to = cluster_end;
1085 		}
1086 	} else {
1087 		/*
1088 		 * If we haven't allocated the new page yet, we
1089 		 * shouldn't be writing it out without copying user
1090 		 * data. This is likely a math error from the caller.
1091 		 */
1092 		BUG_ON(!new);
1093 
1094 		map_from = cluster_start;
1095 		map_to = cluster_end;
1096 
1097 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1098 					    cluster_start, cluster_end, new);
1099 		if (ret) {
1100 			mlog_errno(ret);
1101 			goto out;
1102 		}
1103 	}
1104 
1105 	/*
1106 	 * Parts of newly allocated pages need to be zero'd.
1107 	 *
1108 	 * Above, we have also rewritten 'to' and 'from' - as far as
1109 	 * the rest of the function is concerned, the entire cluster
1110 	 * range inside of a page needs to be written.
1111 	 *
1112 	 * We can skip this if the page is up to date - it's already
1113 	 * been zero'd from being read in as a hole.
1114 	 */
1115 	if (new && !PageUptodate(page))
1116 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1117 					 cpos, user_data_from, user_data_to);
1118 
1119 	flush_dcache_page(page);
1120 
1121 out:
1122 	return ret;
1123 }
1124 
1125 /*
1126  * This function will only grab one clusters worth of pages.
1127  */
1128 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1129 				      struct ocfs2_write_ctxt *wc,
1130 				      u32 cpos, loff_t user_pos,
1131 				      unsigned user_len, int new,
1132 				      struct page *mmap_page)
1133 {
1134 	int ret = 0, i;
1135 	unsigned long start, target_index, end_index, index;
1136 	struct inode *inode = mapping->host;
1137 	loff_t last_byte;
1138 
1139 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1140 
1141 	/*
1142 	 * Figure out how many pages we'll be manipulating here. For
1143 	 * non allocating write, we just change the one
1144 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1145 	 * writing past i_size, we only need enough pages to cover the
1146 	 * last page of the write.
1147 	 */
1148 	if (new) {
1149 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1150 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1151 		/*
1152 		 * We need the index *past* the last page we could possibly
1153 		 * touch.  This is the page past the end of the write or
1154 		 * i_size, whichever is greater.
1155 		 */
1156 		last_byte = max(user_pos + user_len, i_size_read(inode));
1157 		BUG_ON(last_byte < 1);
1158 		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1159 		if ((start + wc->w_num_pages) > end_index)
1160 			wc->w_num_pages = end_index - start;
1161 	} else {
1162 		wc->w_num_pages = 1;
1163 		start = target_index;
1164 	}
1165 
1166 	for(i = 0; i < wc->w_num_pages; i++) {
1167 		index = start + i;
1168 
1169 		if (index == target_index && mmap_page) {
1170 			/*
1171 			 * ocfs2_pagemkwrite() is a little different
1172 			 * and wants us to directly use the page
1173 			 * passed in.
1174 			 */
1175 			lock_page(mmap_page);
1176 
1177 			/* Exit and let the caller retry */
1178 			if (mmap_page->mapping != mapping) {
1179 				WARN_ON(mmap_page->mapping);
1180 				unlock_page(mmap_page);
1181 				ret = -EAGAIN;
1182 				goto out;
1183 			}
1184 
1185 			page_cache_get(mmap_page);
1186 			wc->w_pages[i] = mmap_page;
1187 			wc->w_target_locked = true;
1188 		} else {
1189 			wc->w_pages[i] = find_or_create_page(mapping, index,
1190 							     GFP_NOFS);
1191 			if (!wc->w_pages[i]) {
1192 				ret = -ENOMEM;
1193 				mlog_errno(ret);
1194 				goto out;
1195 			}
1196 		}
1197 		wait_for_stable_page(wc->w_pages[i]);
1198 
1199 		if (index == target_index)
1200 			wc->w_target_page = wc->w_pages[i];
1201 	}
1202 out:
1203 	if (ret)
1204 		wc->w_target_locked = false;
1205 	return ret;
1206 }
1207 
1208 /*
1209  * Prepare a single cluster for write one cluster into the file.
1210  */
1211 static int ocfs2_write_cluster(struct address_space *mapping,
1212 			       u32 phys, unsigned int unwritten,
1213 			       unsigned int should_zero,
1214 			       struct ocfs2_alloc_context *data_ac,
1215 			       struct ocfs2_alloc_context *meta_ac,
1216 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1217 			       loff_t user_pos, unsigned user_len)
1218 {
1219 	int ret, i, new;
1220 	u64 v_blkno, p_blkno;
1221 	struct inode *inode = mapping->host;
1222 	struct ocfs2_extent_tree et;
1223 
1224 	new = phys == 0 ? 1 : 0;
1225 	if (new) {
1226 		u32 tmp_pos;
1227 
1228 		/*
1229 		 * This is safe to call with the page locks - it won't take
1230 		 * any additional semaphores or cluster locks.
1231 		 */
1232 		tmp_pos = cpos;
1233 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1234 					   &tmp_pos, 1, 0, wc->w_di_bh,
1235 					   wc->w_handle, data_ac,
1236 					   meta_ac, NULL);
1237 		/*
1238 		 * This shouldn't happen because we must have already
1239 		 * calculated the correct meta data allocation required. The
1240 		 * internal tree allocation code should know how to increase
1241 		 * transaction credits itself.
1242 		 *
1243 		 * If need be, we could handle -EAGAIN for a
1244 		 * RESTART_TRANS here.
1245 		 */
1246 		mlog_bug_on_msg(ret == -EAGAIN,
1247 				"Inode %llu: EAGAIN return during allocation.\n",
1248 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1249 		if (ret < 0) {
1250 			mlog_errno(ret);
1251 			goto out;
1252 		}
1253 	} else if (unwritten) {
1254 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1255 					      wc->w_di_bh);
1256 		ret = ocfs2_mark_extent_written(inode, &et,
1257 						wc->w_handle, cpos, 1, phys,
1258 						meta_ac, &wc->w_dealloc);
1259 		if (ret < 0) {
1260 			mlog_errno(ret);
1261 			goto out;
1262 		}
1263 	}
1264 
1265 	if (should_zero)
1266 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1267 	else
1268 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1269 
1270 	/*
1271 	 * The only reason this should fail is due to an inability to
1272 	 * find the extent added.
1273 	 */
1274 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1275 					  NULL);
1276 	if (ret < 0) {
1277 		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1278 			    "at logical block %llu",
1279 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1280 			    (unsigned long long)v_blkno);
1281 		goto out;
1282 	}
1283 
1284 	BUG_ON(p_blkno == 0);
1285 
1286 	for(i = 0; i < wc->w_num_pages; i++) {
1287 		int tmpret;
1288 
1289 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1290 						      wc->w_pages[i], cpos,
1291 						      user_pos, user_len,
1292 						      should_zero);
1293 		if (tmpret) {
1294 			mlog_errno(tmpret);
1295 			if (ret == 0)
1296 				ret = tmpret;
1297 		}
1298 	}
1299 
1300 	/*
1301 	 * We only have cleanup to do in case of allocating write.
1302 	 */
1303 	if (ret && new)
1304 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1305 
1306 out:
1307 
1308 	return ret;
1309 }
1310 
1311 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1312 				       struct ocfs2_alloc_context *data_ac,
1313 				       struct ocfs2_alloc_context *meta_ac,
1314 				       struct ocfs2_write_ctxt *wc,
1315 				       loff_t pos, unsigned len)
1316 {
1317 	int ret, i;
1318 	loff_t cluster_off;
1319 	unsigned int local_len = len;
1320 	struct ocfs2_write_cluster_desc *desc;
1321 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1322 
1323 	for (i = 0; i < wc->w_clen; i++) {
1324 		desc = &wc->w_desc[i];
1325 
1326 		/*
1327 		 * We have to make sure that the total write passed in
1328 		 * doesn't extend past a single cluster.
1329 		 */
1330 		local_len = len;
1331 		cluster_off = pos & (osb->s_clustersize - 1);
1332 		if ((cluster_off + local_len) > osb->s_clustersize)
1333 			local_len = osb->s_clustersize - cluster_off;
1334 
1335 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1336 					  desc->c_unwritten,
1337 					  desc->c_needs_zero,
1338 					  data_ac, meta_ac,
1339 					  wc, desc->c_cpos, pos, local_len);
1340 		if (ret) {
1341 			mlog_errno(ret);
1342 			goto out;
1343 		}
1344 
1345 		len -= local_len;
1346 		pos += local_len;
1347 	}
1348 
1349 	ret = 0;
1350 out:
1351 	return ret;
1352 }
1353 
1354 /*
1355  * ocfs2_write_end() wants to know which parts of the target page it
1356  * should complete the write on. It's easiest to compute them ahead of
1357  * time when a more complete view of the write is available.
1358  */
1359 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1360 					struct ocfs2_write_ctxt *wc,
1361 					loff_t pos, unsigned len, int alloc)
1362 {
1363 	struct ocfs2_write_cluster_desc *desc;
1364 
1365 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1366 	wc->w_target_to = wc->w_target_from + len;
1367 
1368 	if (alloc == 0)
1369 		return;
1370 
1371 	/*
1372 	 * Allocating write - we may have different boundaries based
1373 	 * on page size and cluster size.
1374 	 *
1375 	 * NOTE: We can no longer compute one value from the other as
1376 	 * the actual write length and user provided length may be
1377 	 * different.
1378 	 */
1379 
1380 	if (wc->w_large_pages) {
1381 		/*
1382 		 * We only care about the 1st and last cluster within
1383 		 * our range and whether they should be zero'd or not. Either
1384 		 * value may be extended out to the start/end of a
1385 		 * newly allocated cluster.
1386 		 */
1387 		desc = &wc->w_desc[0];
1388 		if (desc->c_needs_zero)
1389 			ocfs2_figure_cluster_boundaries(osb,
1390 							desc->c_cpos,
1391 							&wc->w_target_from,
1392 							NULL);
1393 
1394 		desc = &wc->w_desc[wc->w_clen - 1];
1395 		if (desc->c_needs_zero)
1396 			ocfs2_figure_cluster_boundaries(osb,
1397 							desc->c_cpos,
1398 							NULL,
1399 							&wc->w_target_to);
1400 	} else {
1401 		wc->w_target_from = 0;
1402 		wc->w_target_to = PAGE_CACHE_SIZE;
1403 	}
1404 }
1405 
1406 /*
1407  * Populate each single-cluster write descriptor in the write context
1408  * with information about the i/o to be done.
1409  *
1410  * Returns the number of clusters that will have to be allocated, as
1411  * well as a worst case estimate of the number of extent records that
1412  * would have to be created during a write to an unwritten region.
1413  */
1414 static int ocfs2_populate_write_desc(struct inode *inode,
1415 				     struct ocfs2_write_ctxt *wc,
1416 				     unsigned int *clusters_to_alloc,
1417 				     unsigned int *extents_to_split)
1418 {
1419 	int ret;
1420 	struct ocfs2_write_cluster_desc *desc;
1421 	unsigned int num_clusters = 0;
1422 	unsigned int ext_flags = 0;
1423 	u32 phys = 0;
1424 	int i;
1425 
1426 	*clusters_to_alloc = 0;
1427 	*extents_to_split = 0;
1428 
1429 	for (i = 0; i < wc->w_clen; i++) {
1430 		desc = &wc->w_desc[i];
1431 		desc->c_cpos = wc->w_cpos + i;
1432 
1433 		if (num_clusters == 0) {
1434 			/*
1435 			 * Need to look up the next extent record.
1436 			 */
1437 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1438 						 &num_clusters, &ext_flags);
1439 			if (ret) {
1440 				mlog_errno(ret);
1441 				goto out;
1442 			}
1443 
1444 			/* We should already CoW the refcountd extent. */
1445 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1446 
1447 			/*
1448 			 * Assume worst case - that we're writing in
1449 			 * the middle of the extent.
1450 			 *
1451 			 * We can assume that the write proceeds from
1452 			 * left to right, in which case the extent
1453 			 * insert code is smart enough to coalesce the
1454 			 * next splits into the previous records created.
1455 			 */
1456 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1457 				*extents_to_split = *extents_to_split + 2;
1458 		} else if (phys) {
1459 			/*
1460 			 * Only increment phys if it doesn't describe
1461 			 * a hole.
1462 			 */
1463 			phys++;
1464 		}
1465 
1466 		/*
1467 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1468 		 * file that got extended.  w_first_new_cpos tells us
1469 		 * where the newly allocated clusters are so we can
1470 		 * zero them.
1471 		 */
1472 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1473 			BUG_ON(phys == 0);
1474 			desc->c_needs_zero = 1;
1475 		}
1476 
1477 		desc->c_phys = phys;
1478 		if (phys == 0) {
1479 			desc->c_new = 1;
1480 			desc->c_needs_zero = 1;
1481 			*clusters_to_alloc = *clusters_to_alloc + 1;
1482 		}
1483 
1484 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1485 			desc->c_unwritten = 1;
1486 			desc->c_needs_zero = 1;
1487 		}
1488 
1489 		num_clusters--;
1490 	}
1491 
1492 	ret = 0;
1493 out:
1494 	return ret;
1495 }
1496 
1497 static int ocfs2_write_begin_inline(struct address_space *mapping,
1498 				    struct inode *inode,
1499 				    struct ocfs2_write_ctxt *wc)
1500 {
1501 	int ret;
1502 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1503 	struct page *page;
1504 	handle_t *handle;
1505 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1506 
1507 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1508 	if (!page) {
1509 		ret = -ENOMEM;
1510 		mlog_errno(ret);
1511 		goto out;
1512 	}
1513 	/*
1514 	 * If we don't set w_num_pages then this page won't get unlocked
1515 	 * and freed on cleanup of the write context.
1516 	 */
1517 	wc->w_pages[0] = wc->w_target_page = page;
1518 	wc->w_num_pages = 1;
1519 
1520 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1521 	if (IS_ERR(handle)) {
1522 		ret = PTR_ERR(handle);
1523 		mlog_errno(ret);
1524 		goto out;
1525 	}
1526 
1527 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1528 				      OCFS2_JOURNAL_ACCESS_WRITE);
1529 	if (ret) {
1530 		ocfs2_commit_trans(osb, handle);
1531 
1532 		mlog_errno(ret);
1533 		goto out;
1534 	}
1535 
1536 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1537 		ocfs2_set_inode_data_inline(inode, di);
1538 
1539 	if (!PageUptodate(page)) {
1540 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1541 		if (ret) {
1542 			ocfs2_commit_trans(osb, handle);
1543 
1544 			goto out;
1545 		}
1546 	}
1547 
1548 	wc->w_handle = handle;
1549 out:
1550 	return ret;
1551 }
1552 
1553 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1554 {
1555 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1556 
1557 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1558 		return 1;
1559 	return 0;
1560 }
1561 
1562 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1563 					  struct inode *inode, loff_t pos,
1564 					  unsigned len, struct page *mmap_page,
1565 					  struct ocfs2_write_ctxt *wc)
1566 {
1567 	int ret, written = 0;
1568 	loff_t end = pos + len;
1569 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1570 	struct ocfs2_dinode *di = NULL;
1571 
1572 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1573 					     len, (unsigned long long)pos,
1574 					     oi->ip_dyn_features);
1575 
1576 	/*
1577 	 * Handle inodes which already have inline data 1st.
1578 	 */
1579 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1580 		if (mmap_page == NULL &&
1581 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1582 			goto do_inline_write;
1583 
1584 		/*
1585 		 * The write won't fit - we have to give this inode an
1586 		 * inline extent list now.
1587 		 */
1588 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1589 		if (ret)
1590 			mlog_errno(ret);
1591 		goto out;
1592 	}
1593 
1594 	/*
1595 	 * Check whether the inode can accept inline data.
1596 	 */
1597 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1598 		return 0;
1599 
1600 	/*
1601 	 * Check whether the write can fit.
1602 	 */
1603 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1604 	if (mmap_page ||
1605 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1606 		return 0;
1607 
1608 do_inline_write:
1609 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1610 	if (ret) {
1611 		mlog_errno(ret);
1612 		goto out;
1613 	}
1614 
1615 	/*
1616 	 * This signals to the caller that the data can be written
1617 	 * inline.
1618 	 */
1619 	written = 1;
1620 out:
1621 	return written ? written : ret;
1622 }
1623 
1624 /*
1625  * This function only does anything for file systems which can't
1626  * handle sparse files.
1627  *
1628  * What we want to do here is fill in any hole between the current end
1629  * of allocation and the end of our write. That way the rest of the
1630  * write path can treat it as an non-allocating write, which has no
1631  * special case code for sparse/nonsparse files.
1632  */
1633 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1634 					struct buffer_head *di_bh,
1635 					loff_t pos, unsigned len,
1636 					struct ocfs2_write_ctxt *wc)
1637 {
1638 	int ret;
1639 	loff_t newsize = pos + len;
1640 
1641 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1642 
1643 	if (newsize <= i_size_read(inode))
1644 		return 0;
1645 
1646 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1647 	if (ret)
1648 		mlog_errno(ret);
1649 
1650 	wc->w_first_new_cpos =
1651 		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1652 
1653 	return ret;
1654 }
1655 
1656 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1657 			   loff_t pos)
1658 {
1659 	int ret = 0;
1660 
1661 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1662 	if (pos > i_size_read(inode))
1663 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1664 
1665 	return ret;
1666 }
1667 
1668 /*
1669  * Try to flush truncate logs if we can free enough clusters from it.
1670  * As for return value, "< 0" means error, "0" no space and "1" means
1671  * we have freed enough spaces and let the caller try to allocate again.
1672  */
1673 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1674 					  unsigned int needed)
1675 {
1676 	tid_t target;
1677 	int ret = 0;
1678 	unsigned int truncated_clusters;
1679 
1680 	mutex_lock(&osb->osb_tl_inode->i_mutex);
1681 	truncated_clusters = osb->truncated_clusters;
1682 	mutex_unlock(&osb->osb_tl_inode->i_mutex);
1683 
1684 	/*
1685 	 * Check whether we can succeed in allocating if we free
1686 	 * the truncate log.
1687 	 */
1688 	if (truncated_clusters < needed)
1689 		goto out;
1690 
1691 	ret = ocfs2_flush_truncate_log(osb);
1692 	if (ret) {
1693 		mlog_errno(ret);
1694 		goto out;
1695 	}
1696 
1697 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1698 		jbd2_log_wait_commit(osb->journal->j_journal, target);
1699 		ret = 1;
1700 	}
1701 out:
1702 	return ret;
1703 }
1704 
1705 int ocfs2_write_begin_nolock(struct file *filp,
1706 			     struct address_space *mapping,
1707 			     loff_t pos, unsigned len, unsigned flags,
1708 			     struct page **pagep, void **fsdata,
1709 			     struct buffer_head *di_bh, struct page *mmap_page)
1710 {
1711 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1712 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1713 	struct ocfs2_write_ctxt *wc;
1714 	struct inode *inode = mapping->host;
1715 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1716 	struct ocfs2_dinode *di;
1717 	struct ocfs2_alloc_context *data_ac = NULL;
1718 	struct ocfs2_alloc_context *meta_ac = NULL;
1719 	handle_t *handle;
1720 	struct ocfs2_extent_tree et;
1721 	int try_free = 1, ret1;
1722 
1723 try_again:
1724 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1725 	if (ret) {
1726 		mlog_errno(ret);
1727 		return ret;
1728 	}
1729 
1730 	if (ocfs2_supports_inline_data(osb)) {
1731 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1732 						     mmap_page, wc);
1733 		if (ret == 1) {
1734 			ret = 0;
1735 			goto success;
1736 		}
1737 		if (ret < 0) {
1738 			mlog_errno(ret);
1739 			goto out;
1740 		}
1741 	}
1742 
1743 	if (ocfs2_sparse_alloc(osb))
1744 		ret = ocfs2_zero_tail(inode, di_bh, pos);
1745 	else
1746 		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1747 						   wc);
1748 	if (ret) {
1749 		mlog_errno(ret);
1750 		goto out;
1751 	}
1752 
1753 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1754 	if (ret < 0) {
1755 		mlog_errno(ret);
1756 		goto out;
1757 	} else if (ret == 1) {
1758 		clusters_need = wc->w_clen;
1759 		ret = ocfs2_refcount_cow(inode, filp, di_bh,
1760 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1761 		if (ret) {
1762 			mlog_errno(ret);
1763 			goto out;
1764 		}
1765 	}
1766 
1767 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1768 					&extents_to_split);
1769 	if (ret) {
1770 		mlog_errno(ret);
1771 		goto out;
1772 	}
1773 	clusters_need += clusters_to_alloc;
1774 
1775 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1776 
1777 	trace_ocfs2_write_begin_nolock(
1778 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1779 			(long long)i_size_read(inode),
1780 			le32_to_cpu(di->i_clusters),
1781 			pos, len, flags, mmap_page,
1782 			clusters_to_alloc, extents_to_split);
1783 
1784 	/*
1785 	 * We set w_target_from, w_target_to here so that
1786 	 * ocfs2_write_end() knows which range in the target page to
1787 	 * write out. An allocation requires that we write the entire
1788 	 * cluster range.
1789 	 */
1790 	if (clusters_to_alloc || extents_to_split) {
1791 		/*
1792 		 * XXX: We are stretching the limits of
1793 		 * ocfs2_lock_allocators(). It greatly over-estimates
1794 		 * the work to be done.
1795 		 */
1796 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1797 					      wc->w_di_bh);
1798 		ret = ocfs2_lock_allocators(inode, &et,
1799 					    clusters_to_alloc, extents_to_split,
1800 					    &data_ac, &meta_ac);
1801 		if (ret) {
1802 			mlog_errno(ret);
1803 			goto out;
1804 		}
1805 
1806 		if (data_ac)
1807 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1808 
1809 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1810 						    &di->id2.i_list,
1811 						    clusters_to_alloc);
1812 
1813 	}
1814 
1815 	/*
1816 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1817 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1818 	 * we know zeros will only be needed in the first and/or last cluster.
1819 	 */
1820 	if (clusters_to_alloc || extents_to_split ||
1821 	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1822 			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1823 		cluster_of_pages = 1;
1824 	else
1825 		cluster_of_pages = 0;
1826 
1827 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1828 
1829 	handle = ocfs2_start_trans(osb, credits);
1830 	if (IS_ERR(handle)) {
1831 		ret = PTR_ERR(handle);
1832 		mlog_errno(ret);
1833 		goto out;
1834 	}
1835 
1836 	wc->w_handle = handle;
1837 
1838 	if (clusters_to_alloc) {
1839 		ret = dquot_alloc_space_nodirty(inode,
1840 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1841 		if (ret)
1842 			goto out_commit;
1843 	}
1844 	/*
1845 	 * We don't want this to fail in ocfs2_write_end(), so do it
1846 	 * here.
1847 	 */
1848 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1849 				      OCFS2_JOURNAL_ACCESS_WRITE);
1850 	if (ret) {
1851 		mlog_errno(ret);
1852 		goto out_quota;
1853 	}
1854 
1855 	/*
1856 	 * Fill our page array first. That way we've grabbed enough so
1857 	 * that we can zero and flush if we error after adding the
1858 	 * extent.
1859 	 */
1860 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1861 					 cluster_of_pages, mmap_page);
1862 	if (ret && ret != -EAGAIN) {
1863 		mlog_errno(ret);
1864 		goto out_quota;
1865 	}
1866 
1867 	/*
1868 	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1869 	 * the target page. In this case, we exit with no error and no target
1870 	 * page. This will trigger the caller, page_mkwrite(), to re-try
1871 	 * the operation.
1872 	 */
1873 	if (ret == -EAGAIN) {
1874 		BUG_ON(wc->w_target_page);
1875 		ret = 0;
1876 		goto out_quota;
1877 	}
1878 
1879 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1880 					  len);
1881 	if (ret) {
1882 		mlog_errno(ret);
1883 		goto out_quota;
1884 	}
1885 
1886 	if (data_ac)
1887 		ocfs2_free_alloc_context(data_ac);
1888 	if (meta_ac)
1889 		ocfs2_free_alloc_context(meta_ac);
1890 
1891 success:
1892 	*pagep = wc->w_target_page;
1893 	*fsdata = wc;
1894 	return 0;
1895 out_quota:
1896 	if (clusters_to_alloc)
1897 		dquot_free_space(inode,
1898 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1899 out_commit:
1900 	ocfs2_commit_trans(osb, handle);
1901 
1902 out:
1903 	ocfs2_free_write_ctxt(wc);
1904 
1905 	if (data_ac)
1906 		ocfs2_free_alloc_context(data_ac);
1907 	if (meta_ac)
1908 		ocfs2_free_alloc_context(meta_ac);
1909 
1910 	if (ret == -ENOSPC && try_free) {
1911 		/*
1912 		 * Try to free some truncate log so that we can have enough
1913 		 * clusters to allocate.
1914 		 */
1915 		try_free = 0;
1916 
1917 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1918 		if (ret1 == 1)
1919 			goto try_again;
1920 
1921 		if (ret1 < 0)
1922 			mlog_errno(ret1);
1923 	}
1924 
1925 	return ret;
1926 }
1927 
1928 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1929 			     loff_t pos, unsigned len, unsigned flags,
1930 			     struct page **pagep, void **fsdata)
1931 {
1932 	int ret;
1933 	struct buffer_head *di_bh = NULL;
1934 	struct inode *inode = mapping->host;
1935 
1936 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1937 	if (ret) {
1938 		mlog_errno(ret);
1939 		return ret;
1940 	}
1941 
1942 	/*
1943 	 * Take alloc sem here to prevent concurrent lookups. That way
1944 	 * the mapping, zeroing and tree manipulation within
1945 	 * ocfs2_write() will be safe against ->readpage(). This
1946 	 * should also serve to lock out allocation from a shared
1947 	 * writeable region.
1948 	 */
1949 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1950 
1951 	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1952 				       fsdata, di_bh, NULL);
1953 	if (ret) {
1954 		mlog_errno(ret);
1955 		goto out_fail;
1956 	}
1957 
1958 	brelse(di_bh);
1959 
1960 	return 0;
1961 
1962 out_fail:
1963 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1964 
1965 	brelse(di_bh);
1966 	ocfs2_inode_unlock(inode, 1);
1967 
1968 	return ret;
1969 }
1970 
1971 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1972 				   unsigned len, unsigned *copied,
1973 				   struct ocfs2_dinode *di,
1974 				   struct ocfs2_write_ctxt *wc)
1975 {
1976 	void *kaddr;
1977 
1978 	if (unlikely(*copied < len)) {
1979 		if (!PageUptodate(wc->w_target_page)) {
1980 			*copied = 0;
1981 			return;
1982 		}
1983 	}
1984 
1985 	kaddr = kmap_atomic(wc->w_target_page);
1986 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1987 	kunmap_atomic(kaddr);
1988 
1989 	trace_ocfs2_write_end_inline(
1990 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1991 	     (unsigned long long)pos, *copied,
1992 	     le16_to_cpu(di->id2.i_data.id_count),
1993 	     le16_to_cpu(di->i_dyn_features));
1994 }
1995 
1996 int ocfs2_write_end_nolock(struct address_space *mapping,
1997 			   loff_t pos, unsigned len, unsigned copied,
1998 			   struct page *page, void *fsdata)
1999 {
2000 	int i;
2001 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2002 	struct inode *inode = mapping->host;
2003 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2004 	struct ocfs2_write_ctxt *wc = fsdata;
2005 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2006 	handle_t *handle = wc->w_handle;
2007 	struct page *tmppage;
2008 
2009 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2010 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2011 		goto out_write_size;
2012 	}
2013 
2014 	if (unlikely(copied < len)) {
2015 		if (!PageUptodate(wc->w_target_page))
2016 			copied = 0;
2017 
2018 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2019 				       start+len);
2020 	}
2021 	flush_dcache_page(wc->w_target_page);
2022 
2023 	for(i = 0; i < wc->w_num_pages; i++) {
2024 		tmppage = wc->w_pages[i];
2025 
2026 		if (tmppage == wc->w_target_page) {
2027 			from = wc->w_target_from;
2028 			to = wc->w_target_to;
2029 
2030 			BUG_ON(from > PAGE_CACHE_SIZE ||
2031 			       to > PAGE_CACHE_SIZE ||
2032 			       to < from);
2033 		} else {
2034 			/*
2035 			 * Pages adjacent to the target (if any) imply
2036 			 * a hole-filling write in which case we want
2037 			 * to flush their entire range.
2038 			 */
2039 			from = 0;
2040 			to = PAGE_CACHE_SIZE;
2041 		}
2042 
2043 		if (page_has_buffers(tmppage)) {
2044 			if (ocfs2_should_order_data(inode))
2045 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
2046 			block_commit_write(tmppage, from, to);
2047 		}
2048 	}
2049 
2050 out_write_size:
2051 	pos += copied;
2052 	if (pos > inode->i_size) {
2053 		i_size_write(inode, pos);
2054 		mark_inode_dirty(inode);
2055 	}
2056 	inode->i_blocks = ocfs2_inode_sector_count(inode);
2057 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2058 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2059 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2060 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2061 	ocfs2_journal_dirty(handle, wc->w_di_bh);
2062 
2063 	ocfs2_commit_trans(osb, handle);
2064 
2065 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2066 
2067 	ocfs2_free_write_ctxt(wc);
2068 
2069 	return copied;
2070 }
2071 
2072 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2073 			   loff_t pos, unsigned len, unsigned copied,
2074 			   struct page *page, void *fsdata)
2075 {
2076 	int ret;
2077 	struct inode *inode = mapping->host;
2078 
2079 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2080 
2081 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2082 	ocfs2_inode_unlock(inode, 1);
2083 
2084 	return ret;
2085 }
2086 
2087 const struct address_space_operations ocfs2_aops = {
2088 	.readpage		= ocfs2_readpage,
2089 	.readpages		= ocfs2_readpages,
2090 	.writepage		= ocfs2_writepage,
2091 	.write_begin		= ocfs2_write_begin,
2092 	.write_end		= ocfs2_write_end,
2093 	.bmap			= ocfs2_bmap,
2094 	.direct_IO		= ocfs2_direct_IO,
2095 	.invalidatepage		= ocfs2_invalidatepage,
2096 	.releasepage		= ocfs2_releasepage,
2097 	.migratepage		= buffer_migrate_page,
2098 	.is_partially_uptodate	= block_is_partially_uptodate,
2099 	.error_remove_page	= generic_error_remove_page,
2100 };
2101