xref: /openbmc/linux/fs/ocfs2/aops.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 
31 #define MLOG_MASK_PREFIX ML_FILE_IO
32 #include <cluster/masklog.h>
33 
34 #include "ocfs2.h"
35 
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 
47 #include "buffer_head_io.h"
48 
49 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
50 				   struct buffer_head *bh_result, int create)
51 {
52 	int err = -EIO;
53 	int status;
54 	struct ocfs2_dinode *fe = NULL;
55 	struct buffer_head *bh = NULL;
56 	struct buffer_head *buffer_cache_bh = NULL;
57 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58 	void *kaddr;
59 
60 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
61 		   (unsigned long long)iblock, bh_result, create);
62 
63 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64 
65 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
66 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
67 		     (unsigned long long)iblock);
68 		goto bail;
69 	}
70 
71 	status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
72 				  OCFS2_I(inode)->ip_blkno,
73 				  &bh, OCFS2_BH_CACHED, inode);
74 	if (status < 0) {
75 		mlog_errno(status);
76 		goto bail;
77 	}
78 	fe = (struct ocfs2_dinode *) bh->b_data;
79 
80 	if (!OCFS2_IS_VALID_DINODE(fe)) {
81 		mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
82 		     (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
83 		     fe->i_signature);
84 		goto bail;
85 	}
86 
87 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
88 						    le32_to_cpu(fe->i_clusters))) {
89 		mlog(ML_ERROR, "block offset is outside the allocated size: "
90 		     "%llu\n", (unsigned long long)iblock);
91 		goto bail;
92 	}
93 
94 	/* We don't use the page cache to create symlink data, so if
95 	 * need be, copy it over from the buffer cache. */
96 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 			    iblock;
99 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 		if (!buffer_cache_bh) {
101 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
102 			goto bail;
103 		}
104 
105 		/* we haven't locked out transactions, so a commit
106 		 * could've happened. Since we've got a reference on
107 		 * the bh, even if it commits while we're doing the
108 		 * copy, the data is still good. */
109 		if (buffer_jbd(buffer_cache_bh)
110 		    && ocfs2_inode_is_new(inode)) {
111 			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
112 			if (!kaddr) {
113 				mlog(ML_ERROR, "couldn't kmap!\n");
114 				goto bail;
115 			}
116 			memcpy(kaddr + (bh_result->b_size * iblock),
117 			       buffer_cache_bh->b_data,
118 			       bh_result->b_size);
119 			kunmap_atomic(kaddr, KM_USER0);
120 			set_buffer_uptodate(bh_result);
121 		}
122 		brelse(buffer_cache_bh);
123 	}
124 
125 	map_bh(bh_result, inode->i_sb,
126 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127 
128 	err = 0;
129 
130 bail:
131 	if (bh)
132 		brelse(bh);
133 
134 	mlog_exit(err);
135 	return err;
136 }
137 
138 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
139 			   struct buffer_head *bh_result, int create)
140 {
141 	int err = 0;
142 	unsigned int ext_flags;
143 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
144 	u64 p_blkno, count, past_eof;
145 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
146 
147 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
148 		   (unsigned long long)iblock, bh_result, create);
149 
150 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
151 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
152 		     inode, inode->i_ino);
153 
154 	if (S_ISLNK(inode->i_mode)) {
155 		/* this always does I/O for some reason. */
156 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
157 		goto bail;
158 	}
159 
160 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
161 					  &ext_flags);
162 	if (err) {
163 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
164 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
165 		     (unsigned long long)p_blkno);
166 		goto bail;
167 	}
168 
169 	if (max_blocks < count)
170 		count = max_blocks;
171 
172 	/*
173 	 * ocfs2 never allocates in this function - the only time we
174 	 * need to use BH_New is when we're extending i_size on a file
175 	 * system which doesn't support holes, in which case BH_New
176 	 * allows block_prepare_write() to zero.
177 	 *
178 	 * If we see this on a sparse file system, then a truncate has
179 	 * raced us and removed the cluster. In this case, we clear
180 	 * the buffers dirty and uptodate bits and let the buffer code
181 	 * ignore it as a hole.
182 	 */
183 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
184 		clear_buffer_dirty(bh_result);
185 		clear_buffer_uptodate(bh_result);
186 		goto bail;
187 	}
188 
189 	/* Treat the unwritten extent as a hole for zeroing purposes. */
190 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
191 		map_bh(bh_result, inode->i_sb, p_blkno);
192 
193 	bh_result->b_size = count << inode->i_blkbits;
194 
195 	if (!ocfs2_sparse_alloc(osb)) {
196 		if (p_blkno == 0) {
197 			err = -EIO;
198 			mlog(ML_ERROR,
199 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
200 			     (unsigned long long)iblock,
201 			     (unsigned long long)p_blkno,
202 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
203 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
204 			dump_stack();
205 		}
206 
207 		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
208 		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
209 		     (unsigned long long)past_eof);
210 
211 		if (create && (iblock >= past_eof))
212 			set_buffer_new(bh_result);
213 	}
214 
215 bail:
216 	if (err < 0)
217 		err = -EIO;
218 
219 	mlog_exit(err);
220 	return err;
221 }
222 
223 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
224 			   struct buffer_head *di_bh)
225 {
226 	void *kaddr;
227 	loff_t size;
228 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
229 
230 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
231 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
232 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
233 		return -EROFS;
234 	}
235 
236 	size = i_size_read(inode);
237 
238 	if (size > PAGE_CACHE_SIZE ||
239 	    size > ocfs2_max_inline_data(inode->i_sb)) {
240 		ocfs2_error(inode->i_sb,
241 			    "Inode %llu has with inline data has bad size: %Lu",
242 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
243 			    (unsigned long long)size);
244 		return -EROFS;
245 	}
246 
247 	kaddr = kmap_atomic(page, KM_USER0);
248 	if (size)
249 		memcpy(kaddr, di->id2.i_data.id_data, size);
250 	/* Clear the remaining part of the page */
251 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
252 	flush_dcache_page(page);
253 	kunmap_atomic(kaddr, KM_USER0);
254 
255 	SetPageUptodate(page);
256 
257 	return 0;
258 }
259 
260 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
261 {
262 	int ret;
263 	struct buffer_head *di_bh = NULL;
264 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
265 
266 	BUG_ON(!PageLocked(page));
267 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
268 
269 	ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh,
270 			       OCFS2_BH_CACHED, inode);
271 	if (ret) {
272 		mlog_errno(ret);
273 		goto out;
274 	}
275 
276 	ret = ocfs2_read_inline_data(inode, page, di_bh);
277 out:
278 	unlock_page(page);
279 
280 	brelse(di_bh);
281 	return ret;
282 }
283 
284 static int ocfs2_readpage(struct file *file, struct page *page)
285 {
286 	struct inode *inode = page->mapping->host;
287 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
288 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
289 	int ret, unlock = 1;
290 
291 	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
292 
293 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
294 	if (ret != 0) {
295 		if (ret == AOP_TRUNCATED_PAGE)
296 			unlock = 0;
297 		mlog_errno(ret);
298 		goto out;
299 	}
300 
301 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
302 		ret = AOP_TRUNCATED_PAGE;
303 		goto out_inode_unlock;
304 	}
305 
306 	/*
307 	 * i_size might have just been updated as we grabed the meta lock.  We
308 	 * might now be discovering a truncate that hit on another node.
309 	 * block_read_full_page->get_block freaks out if it is asked to read
310 	 * beyond the end of a file, so we check here.  Callers
311 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
312 	 * and notice that the page they just read isn't needed.
313 	 *
314 	 * XXX sys_readahead() seems to get that wrong?
315 	 */
316 	if (start >= i_size_read(inode)) {
317 		zero_user(page, 0, PAGE_SIZE);
318 		SetPageUptodate(page);
319 		ret = 0;
320 		goto out_alloc;
321 	}
322 
323 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
324 		ret = ocfs2_readpage_inline(inode, page);
325 	else
326 		ret = block_read_full_page(page, ocfs2_get_block);
327 	unlock = 0;
328 
329 out_alloc:
330 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
331 out_inode_unlock:
332 	ocfs2_inode_unlock(inode, 0);
333 out:
334 	if (unlock)
335 		unlock_page(page);
336 	mlog_exit(ret);
337 	return ret;
338 }
339 
340 /*
341  * This is used only for read-ahead. Failures or difficult to handle
342  * situations are safe to ignore.
343  *
344  * Right now, we don't bother with BH_Boundary - in-inode extent lists
345  * are quite large (243 extents on 4k blocks), so most inodes don't
346  * grow out to a tree. If need be, detecting boundary extents could
347  * trivially be added in a future version of ocfs2_get_block().
348  */
349 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
350 			   struct list_head *pages, unsigned nr_pages)
351 {
352 	int ret, err = -EIO;
353 	struct inode *inode = mapping->host;
354 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
355 	loff_t start;
356 	struct page *last;
357 
358 	/*
359 	 * Use the nonblocking flag for the dlm code to avoid page
360 	 * lock inversion, but don't bother with retrying.
361 	 */
362 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
363 	if (ret)
364 		return err;
365 
366 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
367 		ocfs2_inode_unlock(inode, 0);
368 		return err;
369 	}
370 
371 	/*
372 	 * Don't bother with inline-data. There isn't anything
373 	 * to read-ahead in that case anyway...
374 	 */
375 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
376 		goto out_unlock;
377 
378 	/*
379 	 * Check whether a remote node truncated this file - we just
380 	 * drop out in that case as it's not worth handling here.
381 	 */
382 	last = list_entry(pages->prev, struct page, lru);
383 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
384 	if (start >= i_size_read(inode))
385 		goto out_unlock;
386 
387 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
388 
389 out_unlock:
390 	up_read(&oi->ip_alloc_sem);
391 	ocfs2_inode_unlock(inode, 0);
392 
393 	return err;
394 }
395 
396 /* Note: Because we don't support holes, our allocation has
397  * already happened (allocation writes zeros to the file data)
398  * so we don't have to worry about ordered writes in
399  * ocfs2_writepage.
400  *
401  * ->writepage is called during the process of invalidating the page cache
402  * during blocked lock processing.  It can't block on any cluster locks
403  * to during block mapping.  It's relying on the fact that the block
404  * mapping can't have disappeared under the dirty pages that it is
405  * being asked to write back.
406  */
407 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
408 {
409 	int ret;
410 
411 	mlog_entry("(0x%p)\n", page);
412 
413 	ret = block_write_full_page(page, ocfs2_get_block, wbc);
414 
415 	mlog_exit(ret);
416 
417 	return ret;
418 }
419 
420 /*
421  * This is called from ocfs2_write_zero_page() which has handled it's
422  * own cluster locking and has ensured allocation exists for those
423  * blocks to be written.
424  */
425 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
426 			       unsigned from, unsigned to)
427 {
428 	int ret;
429 
430 	ret = block_prepare_write(page, from, to, ocfs2_get_block);
431 
432 	return ret;
433 }
434 
435 /* Taken from ext3. We don't necessarily need the full blown
436  * functionality yet, but IMHO it's better to cut and paste the whole
437  * thing so we can avoid introducing our own bugs (and easily pick up
438  * their fixes when they happen) --Mark */
439 int walk_page_buffers(	handle_t *handle,
440 			struct buffer_head *head,
441 			unsigned from,
442 			unsigned to,
443 			int *partial,
444 			int (*fn)(	handle_t *handle,
445 					struct buffer_head *bh))
446 {
447 	struct buffer_head *bh;
448 	unsigned block_start, block_end;
449 	unsigned blocksize = head->b_size;
450 	int err, ret = 0;
451 	struct buffer_head *next;
452 
453 	for (	bh = head, block_start = 0;
454 		ret == 0 && (bh != head || !block_start);
455 	    	block_start = block_end, bh = next)
456 	{
457 		next = bh->b_this_page;
458 		block_end = block_start + blocksize;
459 		if (block_end <= from || block_start >= to) {
460 			if (partial && !buffer_uptodate(bh))
461 				*partial = 1;
462 			continue;
463 		}
464 		err = (*fn)(handle, bh);
465 		if (!ret)
466 			ret = err;
467 	}
468 	return ret;
469 }
470 
471 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
472 							 struct page *page,
473 							 unsigned from,
474 							 unsigned to)
475 {
476 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
477 	handle_t *handle;
478 	int ret = 0;
479 
480 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
481 	if (IS_ERR(handle)) {
482 		ret = -ENOMEM;
483 		mlog_errno(ret);
484 		goto out;
485 	}
486 
487 	if (ocfs2_should_order_data(inode)) {
488 		ret = walk_page_buffers(handle,
489 					page_buffers(page),
490 					from, to, NULL,
491 					ocfs2_journal_dirty_data);
492 		if (ret < 0)
493 			mlog_errno(ret);
494 	}
495 out:
496 	if (ret) {
497 		if (!IS_ERR(handle))
498 			ocfs2_commit_trans(osb, handle);
499 		handle = ERR_PTR(ret);
500 	}
501 	return handle;
502 }
503 
504 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
505 {
506 	sector_t status;
507 	u64 p_blkno = 0;
508 	int err = 0;
509 	struct inode *inode = mapping->host;
510 
511 	mlog_entry("(block = %llu)\n", (unsigned long long)block);
512 
513 	/* We don't need to lock journal system files, since they aren't
514 	 * accessed concurrently from multiple nodes.
515 	 */
516 	if (!INODE_JOURNAL(inode)) {
517 		err = ocfs2_inode_lock(inode, NULL, 0);
518 		if (err) {
519 			if (err != -ENOENT)
520 				mlog_errno(err);
521 			goto bail;
522 		}
523 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
524 	}
525 
526 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
527 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
528 						  NULL);
529 
530 	if (!INODE_JOURNAL(inode)) {
531 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
532 		ocfs2_inode_unlock(inode, 0);
533 	}
534 
535 	if (err) {
536 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
537 		     (unsigned long long)block);
538 		mlog_errno(err);
539 		goto bail;
540 	}
541 
542 bail:
543 	status = err ? 0 : p_blkno;
544 
545 	mlog_exit((int)status);
546 
547 	return status;
548 }
549 
550 /*
551  * TODO: Make this into a generic get_blocks function.
552  *
553  * From do_direct_io in direct-io.c:
554  *  "So what we do is to permit the ->get_blocks function to populate
555  *   bh.b_size with the size of IO which is permitted at this offset and
556  *   this i_blkbits."
557  *
558  * This function is called directly from get_more_blocks in direct-io.c.
559  *
560  * called like this: dio->get_blocks(dio->inode, fs_startblk,
561  * 					fs_count, map_bh, dio->rw == WRITE);
562  */
563 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
564 				     struct buffer_head *bh_result, int create)
565 {
566 	int ret;
567 	u64 p_blkno, inode_blocks, contig_blocks;
568 	unsigned int ext_flags;
569 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
570 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
571 
572 	/* This function won't even be called if the request isn't all
573 	 * nicely aligned and of the right size, so there's no need
574 	 * for us to check any of that. */
575 
576 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
577 
578 	/*
579 	 * Any write past EOF is not allowed because we'd be extending.
580 	 */
581 	if (create && (iblock + max_blocks) > inode_blocks) {
582 		ret = -EIO;
583 		goto bail;
584 	}
585 
586 	/* This figures out the size of the next contiguous block, and
587 	 * our logical offset */
588 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
589 					  &contig_blocks, &ext_flags);
590 	if (ret) {
591 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
592 		     (unsigned long long)iblock);
593 		ret = -EIO;
594 		goto bail;
595 	}
596 
597 	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
598 		ocfs2_error(inode->i_sb,
599 			    "Inode %llu has a hole at block %llu\n",
600 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
601 			    (unsigned long long)iblock);
602 		ret = -EROFS;
603 		goto bail;
604 	}
605 
606 	/*
607 	 * get_more_blocks() expects us to describe a hole by clearing
608 	 * the mapped bit on bh_result().
609 	 *
610 	 * Consider an unwritten extent as a hole.
611 	 */
612 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
613 		map_bh(bh_result, inode->i_sb, p_blkno);
614 	else {
615 		/*
616 		 * ocfs2_prepare_inode_for_write() should have caught
617 		 * the case where we'd be filling a hole and triggered
618 		 * a buffered write instead.
619 		 */
620 		if (create) {
621 			ret = -EIO;
622 			mlog_errno(ret);
623 			goto bail;
624 		}
625 
626 		clear_buffer_mapped(bh_result);
627 	}
628 
629 	/* make sure we don't map more than max_blocks blocks here as
630 	   that's all the kernel will handle at this point. */
631 	if (max_blocks < contig_blocks)
632 		contig_blocks = max_blocks;
633 	bh_result->b_size = contig_blocks << blocksize_bits;
634 bail:
635 	return ret;
636 }
637 
638 /*
639  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
640  * particularly interested in the aio/dio case.  Like the core uses
641  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
642  * truncation on another.
643  */
644 static void ocfs2_dio_end_io(struct kiocb *iocb,
645 			     loff_t offset,
646 			     ssize_t bytes,
647 			     void *private)
648 {
649 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
650 	int level;
651 
652 	/* this io's submitter should not have unlocked this before we could */
653 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
654 
655 	ocfs2_iocb_clear_rw_locked(iocb);
656 
657 	level = ocfs2_iocb_rw_locked_level(iocb);
658 	if (!level)
659 		up_read(&inode->i_alloc_sem);
660 	ocfs2_rw_unlock(inode, level);
661 }
662 
663 /*
664  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
665  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
666  * do journalled data.
667  */
668 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
669 {
670 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
671 
672 	journal_invalidatepage(journal, page, offset);
673 }
674 
675 static int ocfs2_releasepage(struct page *page, gfp_t wait)
676 {
677 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
678 
679 	if (!page_has_buffers(page))
680 		return 0;
681 	return journal_try_to_free_buffers(journal, page, wait);
682 }
683 
684 static ssize_t ocfs2_direct_IO(int rw,
685 			       struct kiocb *iocb,
686 			       const struct iovec *iov,
687 			       loff_t offset,
688 			       unsigned long nr_segs)
689 {
690 	struct file *file = iocb->ki_filp;
691 	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
692 	int ret;
693 
694 	mlog_entry_void();
695 
696 	/*
697 	 * Fallback to buffered I/O if we see an inode without
698 	 * extents.
699 	 */
700 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
701 		return 0;
702 
703 	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
704 					    inode->i_sb->s_bdev, iov, offset,
705 					    nr_segs,
706 					    ocfs2_direct_IO_get_blocks,
707 					    ocfs2_dio_end_io);
708 
709 	mlog_exit(ret);
710 	return ret;
711 }
712 
713 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
714 					    u32 cpos,
715 					    unsigned int *start,
716 					    unsigned int *end)
717 {
718 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
719 
720 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
721 		unsigned int cpp;
722 
723 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
724 
725 		cluster_start = cpos % cpp;
726 		cluster_start = cluster_start << osb->s_clustersize_bits;
727 
728 		cluster_end = cluster_start + osb->s_clustersize;
729 	}
730 
731 	BUG_ON(cluster_start > PAGE_SIZE);
732 	BUG_ON(cluster_end > PAGE_SIZE);
733 
734 	if (start)
735 		*start = cluster_start;
736 	if (end)
737 		*end = cluster_end;
738 }
739 
740 /*
741  * 'from' and 'to' are the region in the page to avoid zeroing.
742  *
743  * If pagesize > clustersize, this function will avoid zeroing outside
744  * of the cluster boundary.
745  *
746  * from == to == 0 is code for "zero the entire cluster region"
747  */
748 static void ocfs2_clear_page_regions(struct page *page,
749 				     struct ocfs2_super *osb, u32 cpos,
750 				     unsigned from, unsigned to)
751 {
752 	void *kaddr;
753 	unsigned int cluster_start, cluster_end;
754 
755 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
756 
757 	kaddr = kmap_atomic(page, KM_USER0);
758 
759 	if (from || to) {
760 		if (from > cluster_start)
761 			memset(kaddr + cluster_start, 0, from - cluster_start);
762 		if (to < cluster_end)
763 			memset(kaddr + to, 0, cluster_end - to);
764 	} else {
765 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
766 	}
767 
768 	kunmap_atomic(kaddr, KM_USER0);
769 }
770 
771 /*
772  * Nonsparse file systems fully allocate before we get to the write
773  * code. This prevents ocfs2_write() from tagging the write as an
774  * allocating one, which means ocfs2_map_page_blocks() might try to
775  * read-in the blocks at the tail of our file. Avoid reading them by
776  * testing i_size against each block offset.
777  */
778 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
779 				 unsigned int block_start)
780 {
781 	u64 offset = page_offset(page) + block_start;
782 
783 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
784 		return 1;
785 
786 	if (i_size_read(inode) > offset)
787 		return 1;
788 
789 	return 0;
790 }
791 
792 /*
793  * Some of this taken from block_prepare_write(). We already have our
794  * mapping by now though, and the entire write will be allocating or
795  * it won't, so not much need to use BH_New.
796  *
797  * This will also skip zeroing, which is handled externally.
798  */
799 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
800 			  struct inode *inode, unsigned int from,
801 			  unsigned int to, int new)
802 {
803 	int ret = 0;
804 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
805 	unsigned int block_end, block_start;
806 	unsigned int bsize = 1 << inode->i_blkbits;
807 
808 	if (!page_has_buffers(page))
809 		create_empty_buffers(page, bsize, 0);
810 
811 	head = page_buffers(page);
812 	for (bh = head, block_start = 0; bh != head || !block_start;
813 	     bh = bh->b_this_page, block_start += bsize) {
814 		block_end = block_start + bsize;
815 
816 		clear_buffer_new(bh);
817 
818 		/*
819 		 * Ignore blocks outside of our i/o range -
820 		 * they may belong to unallocated clusters.
821 		 */
822 		if (block_start >= to || block_end <= from) {
823 			if (PageUptodate(page))
824 				set_buffer_uptodate(bh);
825 			continue;
826 		}
827 
828 		/*
829 		 * For an allocating write with cluster size >= page
830 		 * size, we always write the entire page.
831 		 */
832 		if (new)
833 			set_buffer_new(bh);
834 
835 		if (!buffer_mapped(bh)) {
836 			map_bh(bh, inode->i_sb, *p_blkno);
837 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
838 		}
839 
840 		if (PageUptodate(page)) {
841 			if (!buffer_uptodate(bh))
842 				set_buffer_uptodate(bh);
843 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
844 			   !buffer_new(bh) &&
845 			   ocfs2_should_read_blk(inode, page, block_start) &&
846 			   (block_start < from || block_end > to)) {
847 			ll_rw_block(READ, 1, &bh);
848 			*wait_bh++=bh;
849 		}
850 
851 		*p_blkno = *p_blkno + 1;
852 	}
853 
854 	/*
855 	 * If we issued read requests - let them complete.
856 	 */
857 	while(wait_bh > wait) {
858 		wait_on_buffer(*--wait_bh);
859 		if (!buffer_uptodate(*wait_bh))
860 			ret = -EIO;
861 	}
862 
863 	if (ret == 0 || !new)
864 		return ret;
865 
866 	/*
867 	 * If we get -EIO above, zero out any newly allocated blocks
868 	 * to avoid exposing stale data.
869 	 */
870 	bh = head;
871 	block_start = 0;
872 	do {
873 		block_end = block_start + bsize;
874 		if (block_end <= from)
875 			goto next_bh;
876 		if (block_start >= to)
877 			break;
878 
879 		zero_user(page, block_start, bh->b_size);
880 		set_buffer_uptodate(bh);
881 		mark_buffer_dirty(bh);
882 
883 next_bh:
884 		block_start = block_end;
885 		bh = bh->b_this_page;
886 	} while (bh != head);
887 
888 	return ret;
889 }
890 
891 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
892 #define OCFS2_MAX_CTXT_PAGES	1
893 #else
894 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
895 #endif
896 
897 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
898 
899 /*
900  * Describe the state of a single cluster to be written to.
901  */
902 struct ocfs2_write_cluster_desc {
903 	u32		c_cpos;
904 	u32		c_phys;
905 	/*
906 	 * Give this a unique field because c_phys eventually gets
907 	 * filled.
908 	 */
909 	unsigned	c_new;
910 	unsigned	c_unwritten;
911 };
912 
913 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
914 {
915 	return d->c_new || d->c_unwritten;
916 }
917 
918 struct ocfs2_write_ctxt {
919 	/* Logical cluster position / len of write */
920 	u32				w_cpos;
921 	u32				w_clen;
922 
923 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
924 
925 	/*
926 	 * This is true if page_size > cluster_size.
927 	 *
928 	 * It triggers a set of special cases during write which might
929 	 * have to deal with allocating writes to partial pages.
930 	 */
931 	unsigned int			w_large_pages;
932 
933 	/*
934 	 * Pages involved in this write.
935 	 *
936 	 * w_target_page is the page being written to by the user.
937 	 *
938 	 * w_pages is an array of pages which always contains
939 	 * w_target_page, and in the case of an allocating write with
940 	 * page_size < cluster size, it will contain zero'd and mapped
941 	 * pages adjacent to w_target_page which need to be written
942 	 * out in so that future reads from that region will get
943 	 * zero's.
944 	 */
945 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
946 	unsigned int			w_num_pages;
947 	struct page			*w_target_page;
948 
949 	/*
950 	 * ocfs2_write_end() uses this to know what the real range to
951 	 * write in the target should be.
952 	 */
953 	unsigned int			w_target_from;
954 	unsigned int			w_target_to;
955 
956 	/*
957 	 * We could use journal_current_handle() but this is cleaner,
958 	 * IMHO -Mark
959 	 */
960 	handle_t			*w_handle;
961 
962 	struct buffer_head		*w_di_bh;
963 
964 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
965 };
966 
967 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
968 {
969 	int i;
970 
971 	for(i = 0; i < num_pages; i++) {
972 		if (pages[i]) {
973 			unlock_page(pages[i]);
974 			mark_page_accessed(pages[i]);
975 			page_cache_release(pages[i]);
976 		}
977 	}
978 }
979 
980 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
981 {
982 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
983 
984 	brelse(wc->w_di_bh);
985 	kfree(wc);
986 }
987 
988 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
989 				  struct ocfs2_super *osb, loff_t pos,
990 				  unsigned len, struct buffer_head *di_bh)
991 {
992 	u32 cend;
993 	struct ocfs2_write_ctxt *wc;
994 
995 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
996 	if (!wc)
997 		return -ENOMEM;
998 
999 	wc->w_cpos = pos >> osb->s_clustersize_bits;
1000 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
1001 	wc->w_clen = cend - wc->w_cpos + 1;
1002 	get_bh(di_bh);
1003 	wc->w_di_bh = di_bh;
1004 
1005 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1006 		wc->w_large_pages = 1;
1007 	else
1008 		wc->w_large_pages = 0;
1009 
1010 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1011 
1012 	*wcp = wc;
1013 
1014 	return 0;
1015 }
1016 
1017 /*
1018  * If a page has any new buffers, zero them out here, and mark them uptodate
1019  * and dirty so they'll be written out (in order to prevent uninitialised
1020  * block data from leaking). And clear the new bit.
1021  */
1022 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1023 {
1024 	unsigned int block_start, block_end;
1025 	struct buffer_head *head, *bh;
1026 
1027 	BUG_ON(!PageLocked(page));
1028 	if (!page_has_buffers(page))
1029 		return;
1030 
1031 	bh = head = page_buffers(page);
1032 	block_start = 0;
1033 	do {
1034 		block_end = block_start + bh->b_size;
1035 
1036 		if (buffer_new(bh)) {
1037 			if (block_end > from && block_start < to) {
1038 				if (!PageUptodate(page)) {
1039 					unsigned start, end;
1040 
1041 					start = max(from, block_start);
1042 					end = min(to, block_end);
1043 
1044 					zero_user_segment(page, start, end);
1045 					set_buffer_uptodate(bh);
1046 				}
1047 
1048 				clear_buffer_new(bh);
1049 				mark_buffer_dirty(bh);
1050 			}
1051 		}
1052 
1053 		block_start = block_end;
1054 		bh = bh->b_this_page;
1055 	} while (bh != head);
1056 }
1057 
1058 /*
1059  * Only called when we have a failure during allocating write to write
1060  * zero's to the newly allocated region.
1061  */
1062 static void ocfs2_write_failure(struct inode *inode,
1063 				struct ocfs2_write_ctxt *wc,
1064 				loff_t user_pos, unsigned user_len)
1065 {
1066 	int i;
1067 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1068 		to = user_pos + user_len;
1069 	struct page *tmppage;
1070 
1071 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1072 
1073 	for(i = 0; i < wc->w_num_pages; i++) {
1074 		tmppage = wc->w_pages[i];
1075 
1076 		if (ocfs2_should_order_data(inode))
1077 			walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1078 					  from, to, NULL,
1079 					  ocfs2_journal_dirty_data);
1080 
1081 		block_commit_write(tmppage, from, to);
1082 	}
1083 }
1084 
1085 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1086 					struct ocfs2_write_ctxt *wc,
1087 					struct page *page, u32 cpos,
1088 					loff_t user_pos, unsigned user_len,
1089 					int new)
1090 {
1091 	int ret;
1092 	unsigned int map_from = 0, map_to = 0;
1093 	unsigned int cluster_start, cluster_end;
1094 	unsigned int user_data_from = 0, user_data_to = 0;
1095 
1096 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1097 					&cluster_start, &cluster_end);
1098 
1099 	if (page == wc->w_target_page) {
1100 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1101 		map_to = map_from + user_len;
1102 
1103 		if (new)
1104 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1105 						    cluster_start, cluster_end,
1106 						    new);
1107 		else
1108 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1109 						    map_from, map_to, new);
1110 		if (ret) {
1111 			mlog_errno(ret);
1112 			goto out;
1113 		}
1114 
1115 		user_data_from = map_from;
1116 		user_data_to = map_to;
1117 		if (new) {
1118 			map_from = cluster_start;
1119 			map_to = cluster_end;
1120 		}
1121 	} else {
1122 		/*
1123 		 * If we haven't allocated the new page yet, we
1124 		 * shouldn't be writing it out without copying user
1125 		 * data. This is likely a math error from the caller.
1126 		 */
1127 		BUG_ON(!new);
1128 
1129 		map_from = cluster_start;
1130 		map_to = cluster_end;
1131 
1132 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1133 					    cluster_start, cluster_end, new);
1134 		if (ret) {
1135 			mlog_errno(ret);
1136 			goto out;
1137 		}
1138 	}
1139 
1140 	/*
1141 	 * Parts of newly allocated pages need to be zero'd.
1142 	 *
1143 	 * Above, we have also rewritten 'to' and 'from' - as far as
1144 	 * the rest of the function is concerned, the entire cluster
1145 	 * range inside of a page needs to be written.
1146 	 *
1147 	 * We can skip this if the page is up to date - it's already
1148 	 * been zero'd from being read in as a hole.
1149 	 */
1150 	if (new && !PageUptodate(page))
1151 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1152 					 cpos, user_data_from, user_data_to);
1153 
1154 	flush_dcache_page(page);
1155 
1156 out:
1157 	return ret;
1158 }
1159 
1160 /*
1161  * This function will only grab one clusters worth of pages.
1162  */
1163 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1164 				      struct ocfs2_write_ctxt *wc,
1165 				      u32 cpos, loff_t user_pos, int new,
1166 				      struct page *mmap_page)
1167 {
1168 	int ret = 0, i;
1169 	unsigned long start, target_index, index;
1170 	struct inode *inode = mapping->host;
1171 
1172 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1173 
1174 	/*
1175 	 * Figure out how many pages we'll be manipulating here. For
1176 	 * non allocating write, we just change the one
1177 	 * page. Otherwise, we'll need a whole clusters worth.
1178 	 */
1179 	if (new) {
1180 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1181 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1182 	} else {
1183 		wc->w_num_pages = 1;
1184 		start = target_index;
1185 	}
1186 
1187 	for(i = 0; i < wc->w_num_pages; i++) {
1188 		index = start + i;
1189 
1190 		if (index == target_index && mmap_page) {
1191 			/*
1192 			 * ocfs2_pagemkwrite() is a little different
1193 			 * and wants us to directly use the page
1194 			 * passed in.
1195 			 */
1196 			lock_page(mmap_page);
1197 
1198 			if (mmap_page->mapping != mapping) {
1199 				unlock_page(mmap_page);
1200 				/*
1201 				 * Sanity check - the locking in
1202 				 * ocfs2_pagemkwrite() should ensure
1203 				 * that this code doesn't trigger.
1204 				 */
1205 				ret = -EINVAL;
1206 				mlog_errno(ret);
1207 				goto out;
1208 			}
1209 
1210 			page_cache_get(mmap_page);
1211 			wc->w_pages[i] = mmap_page;
1212 		} else {
1213 			wc->w_pages[i] = find_or_create_page(mapping, index,
1214 							     GFP_NOFS);
1215 			if (!wc->w_pages[i]) {
1216 				ret = -ENOMEM;
1217 				mlog_errno(ret);
1218 				goto out;
1219 			}
1220 		}
1221 
1222 		if (index == target_index)
1223 			wc->w_target_page = wc->w_pages[i];
1224 	}
1225 out:
1226 	return ret;
1227 }
1228 
1229 /*
1230  * Prepare a single cluster for write one cluster into the file.
1231  */
1232 static int ocfs2_write_cluster(struct address_space *mapping,
1233 			       u32 phys, unsigned int unwritten,
1234 			       struct ocfs2_alloc_context *data_ac,
1235 			       struct ocfs2_alloc_context *meta_ac,
1236 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1237 			       loff_t user_pos, unsigned user_len)
1238 {
1239 	int ret, i, new, should_zero = 0;
1240 	u64 v_blkno, p_blkno;
1241 	struct inode *inode = mapping->host;
1242 
1243 	new = phys == 0 ? 1 : 0;
1244 	if (new || unwritten)
1245 		should_zero = 1;
1246 
1247 	if (new) {
1248 		u32 tmp_pos;
1249 
1250 		/*
1251 		 * This is safe to call with the page locks - it won't take
1252 		 * any additional semaphores or cluster locks.
1253 		 */
1254 		tmp_pos = cpos;
1255 		ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1256 						 &tmp_pos, 1, 0, wc->w_di_bh,
1257 						 wc->w_handle, data_ac,
1258 						 meta_ac, NULL);
1259 		/*
1260 		 * This shouldn't happen because we must have already
1261 		 * calculated the correct meta data allocation required. The
1262 		 * internal tree allocation code should know how to increase
1263 		 * transaction credits itself.
1264 		 *
1265 		 * If need be, we could handle -EAGAIN for a
1266 		 * RESTART_TRANS here.
1267 		 */
1268 		mlog_bug_on_msg(ret == -EAGAIN,
1269 				"Inode %llu: EAGAIN return during allocation.\n",
1270 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1271 		if (ret < 0) {
1272 			mlog_errno(ret);
1273 			goto out;
1274 		}
1275 	} else if (unwritten) {
1276 		ret = ocfs2_mark_extent_written(inode, wc->w_di_bh,
1277 						wc->w_handle, cpos, 1, phys,
1278 						meta_ac, &wc->w_dealloc);
1279 		if (ret < 0) {
1280 			mlog_errno(ret);
1281 			goto out;
1282 		}
1283 	}
1284 
1285 	if (should_zero)
1286 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1287 	else
1288 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1289 
1290 	/*
1291 	 * The only reason this should fail is due to an inability to
1292 	 * find the extent added.
1293 	 */
1294 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1295 					  NULL);
1296 	if (ret < 0) {
1297 		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1298 			    "at logical block %llu",
1299 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1300 			    (unsigned long long)v_blkno);
1301 		goto out;
1302 	}
1303 
1304 	BUG_ON(p_blkno == 0);
1305 
1306 	for(i = 0; i < wc->w_num_pages; i++) {
1307 		int tmpret;
1308 
1309 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1310 						      wc->w_pages[i], cpos,
1311 						      user_pos, user_len,
1312 						      should_zero);
1313 		if (tmpret) {
1314 			mlog_errno(tmpret);
1315 			if (ret == 0)
1316 				tmpret = ret;
1317 		}
1318 	}
1319 
1320 	/*
1321 	 * We only have cleanup to do in case of allocating write.
1322 	 */
1323 	if (ret && new)
1324 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1325 
1326 out:
1327 
1328 	return ret;
1329 }
1330 
1331 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1332 				       struct ocfs2_alloc_context *data_ac,
1333 				       struct ocfs2_alloc_context *meta_ac,
1334 				       struct ocfs2_write_ctxt *wc,
1335 				       loff_t pos, unsigned len)
1336 {
1337 	int ret, i;
1338 	loff_t cluster_off;
1339 	unsigned int local_len = len;
1340 	struct ocfs2_write_cluster_desc *desc;
1341 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1342 
1343 	for (i = 0; i < wc->w_clen; i++) {
1344 		desc = &wc->w_desc[i];
1345 
1346 		/*
1347 		 * We have to make sure that the total write passed in
1348 		 * doesn't extend past a single cluster.
1349 		 */
1350 		local_len = len;
1351 		cluster_off = pos & (osb->s_clustersize - 1);
1352 		if ((cluster_off + local_len) > osb->s_clustersize)
1353 			local_len = osb->s_clustersize - cluster_off;
1354 
1355 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1356 					  desc->c_unwritten, data_ac, meta_ac,
1357 					  wc, desc->c_cpos, pos, local_len);
1358 		if (ret) {
1359 			mlog_errno(ret);
1360 			goto out;
1361 		}
1362 
1363 		len -= local_len;
1364 		pos += local_len;
1365 	}
1366 
1367 	ret = 0;
1368 out:
1369 	return ret;
1370 }
1371 
1372 /*
1373  * ocfs2_write_end() wants to know which parts of the target page it
1374  * should complete the write on. It's easiest to compute them ahead of
1375  * time when a more complete view of the write is available.
1376  */
1377 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1378 					struct ocfs2_write_ctxt *wc,
1379 					loff_t pos, unsigned len, int alloc)
1380 {
1381 	struct ocfs2_write_cluster_desc *desc;
1382 
1383 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1384 	wc->w_target_to = wc->w_target_from + len;
1385 
1386 	if (alloc == 0)
1387 		return;
1388 
1389 	/*
1390 	 * Allocating write - we may have different boundaries based
1391 	 * on page size and cluster size.
1392 	 *
1393 	 * NOTE: We can no longer compute one value from the other as
1394 	 * the actual write length and user provided length may be
1395 	 * different.
1396 	 */
1397 
1398 	if (wc->w_large_pages) {
1399 		/*
1400 		 * We only care about the 1st and last cluster within
1401 		 * our range and whether they should be zero'd or not. Either
1402 		 * value may be extended out to the start/end of a
1403 		 * newly allocated cluster.
1404 		 */
1405 		desc = &wc->w_desc[0];
1406 		if (ocfs2_should_zero_cluster(desc))
1407 			ocfs2_figure_cluster_boundaries(osb,
1408 							desc->c_cpos,
1409 							&wc->w_target_from,
1410 							NULL);
1411 
1412 		desc = &wc->w_desc[wc->w_clen - 1];
1413 		if (ocfs2_should_zero_cluster(desc))
1414 			ocfs2_figure_cluster_boundaries(osb,
1415 							desc->c_cpos,
1416 							NULL,
1417 							&wc->w_target_to);
1418 	} else {
1419 		wc->w_target_from = 0;
1420 		wc->w_target_to = PAGE_CACHE_SIZE;
1421 	}
1422 }
1423 
1424 /*
1425  * Populate each single-cluster write descriptor in the write context
1426  * with information about the i/o to be done.
1427  *
1428  * Returns the number of clusters that will have to be allocated, as
1429  * well as a worst case estimate of the number of extent records that
1430  * would have to be created during a write to an unwritten region.
1431  */
1432 static int ocfs2_populate_write_desc(struct inode *inode,
1433 				     struct ocfs2_write_ctxt *wc,
1434 				     unsigned int *clusters_to_alloc,
1435 				     unsigned int *extents_to_split)
1436 {
1437 	int ret;
1438 	struct ocfs2_write_cluster_desc *desc;
1439 	unsigned int num_clusters = 0;
1440 	unsigned int ext_flags = 0;
1441 	u32 phys = 0;
1442 	int i;
1443 
1444 	*clusters_to_alloc = 0;
1445 	*extents_to_split = 0;
1446 
1447 	for (i = 0; i < wc->w_clen; i++) {
1448 		desc = &wc->w_desc[i];
1449 		desc->c_cpos = wc->w_cpos + i;
1450 
1451 		if (num_clusters == 0) {
1452 			/*
1453 			 * Need to look up the next extent record.
1454 			 */
1455 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1456 						 &num_clusters, &ext_flags);
1457 			if (ret) {
1458 				mlog_errno(ret);
1459 				goto out;
1460 			}
1461 
1462 			/*
1463 			 * Assume worst case - that we're writing in
1464 			 * the middle of the extent.
1465 			 *
1466 			 * We can assume that the write proceeds from
1467 			 * left to right, in which case the extent
1468 			 * insert code is smart enough to coalesce the
1469 			 * next splits into the previous records created.
1470 			 */
1471 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1472 				*extents_to_split = *extents_to_split + 2;
1473 		} else if (phys) {
1474 			/*
1475 			 * Only increment phys if it doesn't describe
1476 			 * a hole.
1477 			 */
1478 			phys++;
1479 		}
1480 
1481 		desc->c_phys = phys;
1482 		if (phys == 0) {
1483 			desc->c_new = 1;
1484 			*clusters_to_alloc = *clusters_to_alloc + 1;
1485 		}
1486 		if (ext_flags & OCFS2_EXT_UNWRITTEN)
1487 			desc->c_unwritten = 1;
1488 
1489 		num_clusters--;
1490 	}
1491 
1492 	ret = 0;
1493 out:
1494 	return ret;
1495 }
1496 
1497 static int ocfs2_write_begin_inline(struct address_space *mapping,
1498 				    struct inode *inode,
1499 				    struct ocfs2_write_ctxt *wc)
1500 {
1501 	int ret;
1502 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1503 	struct page *page;
1504 	handle_t *handle;
1505 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1506 
1507 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1508 	if (!page) {
1509 		ret = -ENOMEM;
1510 		mlog_errno(ret);
1511 		goto out;
1512 	}
1513 	/*
1514 	 * If we don't set w_num_pages then this page won't get unlocked
1515 	 * and freed on cleanup of the write context.
1516 	 */
1517 	wc->w_pages[0] = wc->w_target_page = page;
1518 	wc->w_num_pages = 1;
1519 
1520 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1521 	if (IS_ERR(handle)) {
1522 		ret = PTR_ERR(handle);
1523 		mlog_errno(ret);
1524 		goto out;
1525 	}
1526 
1527 	ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1528 				   OCFS2_JOURNAL_ACCESS_WRITE);
1529 	if (ret) {
1530 		ocfs2_commit_trans(osb, handle);
1531 
1532 		mlog_errno(ret);
1533 		goto out;
1534 	}
1535 
1536 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1537 		ocfs2_set_inode_data_inline(inode, di);
1538 
1539 	if (!PageUptodate(page)) {
1540 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1541 		if (ret) {
1542 			ocfs2_commit_trans(osb, handle);
1543 
1544 			goto out;
1545 		}
1546 	}
1547 
1548 	wc->w_handle = handle;
1549 out:
1550 	return ret;
1551 }
1552 
1553 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1554 {
1555 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1556 
1557 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1558 		return 1;
1559 	return 0;
1560 }
1561 
1562 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1563 					  struct inode *inode, loff_t pos,
1564 					  unsigned len, struct page *mmap_page,
1565 					  struct ocfs2_write_ctxt *wc)
1566 {
1567 	int ret, written = 0;
1568 	loff_t end = pos + len;
1569 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1570 
1571 	mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1572 	     (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1573 	     oi->ip_dyn_features);
1574 
1575 	/*
1576 	 * Handle inodes which already have inline data 1st.
1577 	 */
1578 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1579 		if (mmap_page == NULL &&
1580 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1581 			goto do_inline_write;
1582 
1583 		/*
1584 		 * The write won't fit - we have to give this inode an
1585 		 * inline extent list now.
1586 		 */
1587 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1588 		if (ret)
1589 			mlog_errno(ret);
1590 		goto out;
1591 	}
1592 
1593 	/*
1594 	 * Check whether the inode can accept inline data.
1595 	 */
1596 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1597 		return 0;
1598 
1599 	/*
1600 	 * Check whether the write can fit.
1601 	 */
1602 	if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1603 		return 0;
1604 
1605 do_inline_write:
1606 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1607 	if (ret) {
1608 		mlog_errno(ret);
1609 		goto out;
1610 	}
1611 
1612 	/*
1613 	 * This signals to the caller that the data can be written
1614 	 * inline.
1615 	 */
1616 	written = 1;
1617 out:
1618 	return written ? written : ret;
1619 }
1620 
1621 /*
1622  * This function only does anything for file systems which can't
1623  * handle sparse files.
1624  *
1625  * What we want to do here is fill in any hole between the current end
1626  * of allocation and the end of our write. That way the rest of the
1627  * write path can treat it as an non-allocating write, which has no
1628  * special case code for sparse/nonsparse files.
1629  */
1630 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1631 					unsigned len,
1632 					struct ocfs2_write_ctxt *wc)
1633 {
1634 	int ret;
1635 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1636 	loff_t newsize = pos + len;
1637 
1638 	if (ocfs2_sparse_alloc(osb))
1639 		return 0;
1640 
1641 	if (newsize <= i_size_read(inode))
1642 		return 0;
1643 
1644 	ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1645 	if (ret)
1646 		mlog_errno(ret);
1647 
1648 	return ret;
1649 }
1650 
1651 int ocfs2_write_begin_nolock(struct address_space *mapping,
1652 			     loff_t pos, unsigned len, unsigned flags,
1653 			     struct page **pagep, void **fsdata,
1654 			     struct buffer_head *di_bh, struct page *mmap_page)
1655 {
1656 	int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1657 	unsigned int clusters_to_alloc, extents_to_split;
1658 	struct ocfs2_write_ctxt *wc;
1659 	struct inode *inode = mapping->host;
1660 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1661 	struct ocfs2_dinode *di;
1662 	struct ocfs2_alloc_context *data_ac = NULL;
1663 	struct ocfs2_alloc_context *meta_ac = NULL;
1664 	handle_t *handle;
1665 
1666 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1667 	if (ret) {
1668 		mlog_errno(ret);
1669 		return ret;
1670 	}
1671 
1672 	if (ocfs2_supports_inline_data(osb)) {
1673 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1674 						     mmap_page, wc);
1675 		if (ret == 1) {
1676 			ret = 0;
1677 			goto success;
1678 		}
1679 		if (ret < 0) {
1680 			mlog_errno(ret);
1681 			goto out;
1682 		}
1683 	}
1684 
1685 	ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1686 	if (ret) {
1687 		mlog_errno(ret);
1688 		goto out;
1689 	}
1690 
1691 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1692 					&extents_to_split);
1693 	if (ret) {
1694 		mlog_errno(ret);
1695 		goto out;
1696 	}
1697 
1698 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1699 
1700 	/*
1701 	 * We set w_target_from, w_target_to here so that
1702 	 * ocfs2_write_end() knows which range in the target page to
1703 	 * write out. An allocation requires that we write the entire
1704 	 * cluster range.
1705 	 */
1706 	if (clusters_to_alloc || extents_to_split) {
1707 		/*
1708 		 * XXX: We are stretching the limits of
1709 		 * ocfs2_lock_allocators(). It greatly over-estimates
1710 		 * the work to be done.
1711 		 */
1712 		ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
1713 					    extents_to_split, &data_ac, &meta_ac);
1714 		if (ret) {
1715 			mlog_errno(ret);
1716 			goto out;
1717 		}
1718 
1719 		credits = ocfs2_calc_extend_credits(inode->i_sb, di,
1720 						    clusters_to_alloc);
1721 
1722 	}
1723 
1724 	ocfs2_set_target_boundaries(osb, wc, pos, len,
1725 				    clusters_to_alloc + extents_to_split);
1726 
1727 	handle = ocfs2_start_trans(osb, credits);
1728 	if (IS_ERR(handle)) {
1729 		ret = PTR_ERR(handle);
1730 		mlog_errno(ret);
1731 		goto out;
1732 	}
1733 
1734 	wc->w_handle = handle;
1735 
1736 	/*
1737 	 * We don't want this to fail in ocfs2_write_end(), so do it
1738 	 * here.
1739 	 */
1740 	ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1741 				   OCFS2_JOURNAL_ACCESS_WRITE);
1742 	if (ret) {
1743 		mlog_errno(ret);
1744 		goto out_commit;
1745 	}
1746 
1747 	/*
1748 	 * Fill our page array first. That way we've grabbed enough so
1749 	 * that we can zero and flush if we error after adding the
1750 	 * extent.
1751 	 */
1752 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1753 					 clusters_to_alloc + extents_to_split,
1754 					 mmap_page);
1755 	if (ret) {
1756 		mlog_errno(ret);
1757 		goto out_commit;
1758 	}
1759 
1760 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1761 					  len);
1762 	if (ret) {
1763 		mlog_errno(ret);
1764 		goto out_commit;
1765 	}
1766 
1767 	if (data_ac)
1768 		ocfs2_free_alloc_context(data_ac);
1769 	if (meta_ac)
1770 		ocfs2_free_alloc_context(meta_ac);
1771 
1772 success:
1773 	*pagep = wc->w_target_page;
1774 	*fsdata = wc;
1775 	return 0;
1776 out_commit:
1777 	ocfs2_commit_trans(osb, handle);
1778 
1779 out:
1780 	ocfs2_free_write_ctxt(wc);
1781 
1782 	if (data_ac)
1783 		ocfs2_free_alloc_context(data_ac);
1784 	if (meta_ac)
1785 		ocfs2_free_alloc_context(meta_ac);
1786 	return ret;
1787 }
1788 
1789 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1790 			     loff_t pos, unsigned len, unsigned flags,
1791 			     struct page **pagep, void **fsdata)
1792 {
1793 	int ret;
1794 	struct buffer_head *di_bh = NULL;
1795 	struct inode *inode = mapping->host;
1796 
1797 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1798 	if (ret) {
1799 		mlog_errno(ret);
1800 		return ret;
1801 	}
1802 
1803 	/*
1804 	 * Take alloc sem here to prevent concurrent lookups. That way
1805 	 * the mapping, zeroing and tree manipulation within
1806 	 * ocfs2_write() will be safe against ->readpage(). This
1807 	 * should also serve to lock out allocation from a shared
1808 	 * writeable region.
1809 	 */
1810 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1811 
1812 	ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1813 				       fsdata, di_bh, NULL);
1814 	if (ret) {
1815 		mlog_errno(ret);
1816 		goto out_fail;
1817 	}
1818 
1819 	brelse(di_bh);
1820 
1821 	return 0;
1822 
1823 out_fail:
1824 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1825 
1826 	brelse(di_bh);
1827 	ocfs2_inode_unlock(inode, 1);
1828 
1829 	return ret;
1830 }
1831 
1832 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1833 				   unsigned len, unsigned *copied,
1834 				   struct ocfs2_dinode *di,
1835 				   struct ocfs2_write_ctxt *wc)
1836 {
1837 	void *kaddr;
1838 
1839 	if (unlikely(*copied < len)) {
1840 		if (!PageUptodate(wc->w_target_page)) {
1841 			*copied = 0;
1842 			return;
1843 		}
1844 	}
1845 
1846 	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1847 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1848 	kunmap_atomic(kaddr, KM_USER0);
1849 
1850 	mlog(0, "Data written to inode at offset %llu. "
1851 	     "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1852 	     (unsigned long long)pos, *copied,
1853 	     le16_to_cpu(di->id2.i_data.id_count),
1854 	     le16_to_cpu(di->i_dyn_features));
1855 }
1856 
1857 int ocfs2_write_end_nolock(struct address_space *mapping,
1858 			   loff_t pos, unsigned len, unsigned copied,
1859 			   struct page *page, void *fsdata)
1860 {
1861 	int i;
1862 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1863 	struct inode *inode = mapping->host;
1864 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1865 	struct ocfs2_write_ctxt *wc = fsdata;
1866 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1867 	handle_t *handle = wc->w_handle;
1868 	struct page *tmppage;
1869 
1870 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1871 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1872 		goto out_write_size;
1873 	}
1874 
1875 	if (unlikely(copied < len)) {
1876 		if (!PageUptodate(wc->w_target_page))
1877 			copied = 0;
1878 
1879 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1880 				       start+len);
1881 	}
1882 	flush_dcache_page(wc->w_target_page);
1883 
1884 	for(i = 0; i < wc->w_num_pages; i++) {
1885 		tmppage = wc->w_pages[i];
1886 
1887 		if (tmppage == wc->w_target_page) {
1888 			from = wc->w_target_from;
1889 			to = wc->w_target_to;
1890 
1891 			BUG_ON(from > PAGE_CACHE_SIZE ||
1892 			       to > PAGE_CACHE_SIZE ||
1893 			       to < from);
1894 		} else {
1895 			/*
1896 			 * Pages adjacent to the target (if any) imply
1897 			 * a hole-filling write in which case we want
1898 			 * to flush their entire range.
1899 			 */
1900 			from = 0;
1901 			to = PAGE_CACHE_SIZE;
1902 		}
1903 
1904 		if (ocfs2_should_order_data(inode))
1905 			walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1906 					  from, to, NULL,
1907 					  ocfs2_journal_dirty_data);
1908 
1909 		block_commit_write(tmppage, from, to);
1910 	}
1911 
1912 out_write_size:
1913 	pos += copied;
1914 	if (pos > inode->i_size) {
1915 		i_size_write(inode, pos);
1916 		mark_inode_dirty(inode);
1917 	}
1918 	inode->i_blocks = ocfs2_inode_sector_count(inode);
1919 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1920 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1921 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1922 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1923 	ocfs2_journal_dirty(handle, wc->w_di_bh);
1924 
1925 	ocfs2_commit_trans(osb, handle);
1926 
1927 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
1928 
1929 	ocfs2_free_write_ctxt(wc);
1930 
1931 	return copied;
1932 }
1933 
1934 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1935 			   loff_t pos, unsigned len, unsigned copied,
1936 			   struct page *page, void *fsdata)
1937 {
1938 	int ret;
1939 	struct inode *inode = mapping->host;
1940 
1941 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1942 
1943 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1944 	ocfs2_inode_unlock(inode, 1);
1945 
1946 	return ret;
1947 }
1948 
1949 const struct address_space_operations ocfs2_aops = {
1950 	.readpage	= ocfs2_readpage,
1951 	.readpages	= ocfs2_readpages,
1952 	.writepage	= ocfs2_writepage,
1953 	.write_begin	= ocfs2_write_begin,
1954 	.write_end	= ocfs2_write_end,
1955 	.bmap		= ocfs2_bmap,
1956 	.sync_page	= block_sync_page,
1957 	.direct_IO	= ocfs2_direct_IO,
1958 	.invalidatepage	= ocfs2_invalidatepage,
1959 	.releasepage	= ocfs2_releasepage,
1960 	.migratepage	= buffer_migrate_page,
1961 };
1962