1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 #include <linux/quotaops.h> 31 32 #define MLOG_MASK_PREFIX ML_FILE_IO 33 #include <cluster/masklog.h> 34 35 #include "ocfs2.h" 36 37 #include "alloc.h" 38 #include "aops.h" 39 #include "dlmglue.h" 40 #include "extent_map.h" 41 #include "file.h" 42 #include "inode.h" 43 #include "journal.h" 44 #include "suballoc.h" 45 #include "super.h" 46 #include "symlink.h" 47 #include "refcounttree.h" 48 49 #include "buffer_head_io.h" 50 51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 52 struct buffer_head *bh_result, int create) 53 { 54 int err = -EIO; 55 int status; 56 struct ocfs2_dinode *fe = NULL; 57 struct buffer_head *bh = NULL; 58 struct buffer_head *buffer_cache_bh = NULL; 59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 60 void *kaddr; 61 62 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, 63 (unsigned long long)iblock, bh_result, create); 64 65 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 66 67 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 68 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 69 (unsigned long long)iblock); 70 goto bail; 71 } 72 73 status = ocfs2_read_inode_block(inode, &bh); 74 if (status < 0) { 75 mlog_errno(status); 76 goto bail; 77 } 78 fe = (struct ocfs2_dinode *) bh->b_data; 79 80 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 81 le32_to_cpu(fe->i_clusters))) { 82 mlog(ML_ERROR, "block offset is outside the allocated size: " 83 "%llu\n", (unsigned long long)iblock); 84 goto bail; 85 } 86 87 /* We don't use the page cache to create symlink data, so if 88 * need be, copy it over from the buffer cache. */ 89 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 90 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 91 iblock; 92 buffer_cache_bh = sb_getblk(osb->sb, blkno); 93 if (!buffer_cache_bh) { 94 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 95 goto bail; 96 } 97 98 /* we haven't locked out transactions, so a commit 99 * could've happened. Since we've got a reference on 100 * the bh, even if it commits while we're doing the 101 * copy, the data is still good. */ 102 if (buffer_jbd(buffer_cache_bh) 103 && ocfs2_inode_is_new(inode)) { 104 kaddr = kmap_atomic(bh_result->b_page, KM_USER0); 105 if (!kaddr) { 106 mlog(ML_ERROR, "couldn't kmap!\n"); 107 goto bail; 108 } 109 memcpy(kaddr + (bh_result->b_size * iblock), 110 buffer_cache_bh->b_data, 111 bh_result->b_size); 112 kunmap_atomic(kaddr, KM_USER0); 113 set_buffer_uptodate(bh_result); 114 } 115 brelse(buffer_cache_bh); 116 } 117 118 map_bh(bh_result, inode->i_sb, 119 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 120 121 err = 0; 122 123 bail: 124 brelse(bh); 125 126 mlog_exit(err); 127 return err; 128 } 129 130 int ocfs2_get_block(struct inode *inode, sector_t iblock, 131 struct buffer_head *bh_result, int create) 132 { 133 int err = 0; 134 unsigned int ext_flags; 135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 136 u64 p_blkno, count, past_eof; 137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 138 139 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, 140 (unsigned long long)iblock, bh_result, create); 141 142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 144 inode, inode->i_ino); 145 146 if (S_ISLNK(inode->i_mode)) { 147 /* this always does I/O for some reason. */ 148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 149 goto bail; 150 } 151 152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 153 &ext_flags); 154 if (err) { 155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 157 (unsigned long long)p_blkno); 158 goto bail; 159 } 160 161 if (max_blocks < count) 162 count = max_blocks; 163 164 /* 165 * ocfs2 never allocates in this function - the only time we 166 * need to use BH_New is when we're extending i_size on a file 167 * system which doesn't support holes, in which case BH_New 168 * allows block_prepare_write() to zero. 169 * 170 * If we see this on a sparse file system, then a truncate has 171 * raced us and removed the cluster. In this case, we clear 172 * the buffers dirty and uptodate bits and let the buffer code 173 * ignore it as a hole. 174 */ 175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 176 clear_buffer_dirty(bh_result); 177 clear_buffer_uptodate(bh_result); 178 goto bail; 179 } 180 181 /* Treat the unwritten extent as a hole for zeroing purposes. */ 182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 183 map_bh(bh_result, inode->i_sb, p_blkno); 184 185 bh_result->b_size = count << inode->i_blkbits; 186 187 if (!ocfs2_sparse_alloc(osb)) { 188 if (p_blkno == 0) { 189 err = -EIO; 190 mlog(ML_ERROR, 191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 192 (unsigned long long)iblock, 193 (unsigned long long)p_blkno, 194 (unsigned long long)OCFS2_I(inode)->ip_blkno); 195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 196 dump_stack(); 197 goto bail; 198 } 199 200 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 201 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino, 202 (unsigned long long)past_eof); 203 204 if (create && (iblock >= past_eof)) 205 set_buffer_new(bh_result); 206 } 207 208 bail: 209 if (err < 0) 210 err = -EIO; 211 212 mlog_exit(err); 213 return err; 214 } 215 216 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 217 struct buffer_head *di_bh) 218 { 219 void *kaddr; 220 loff_t size; 221 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 222 223 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 224 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag", 225 (unsigned long long)OCFS2_I(inode)->ip_blkno); 226 return -EROFS; 227 } 228 229 size = i_size_read(inode); 230 231 if (size > PAGE_CACHE_SIZE || 232 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 233 ocfs2_error(inode->i_sb, 234 "Inode %llu has with inline data has bad size: %Lu", 235 (unsigned long long)OCFS2_I(inode)->ip_blkno, 236 (unsigned long long)size); 237 return -EROFS; 238 } 239 240 kaddr = kmap_atomic(page, KM_USER0); 241 if (size) 242 memcpy(kaddr, di->id2.i_data.id_data, size); 243 /* Clear the remaining part of the page */ 244 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); 245 flush_dcache_page(page); 246 kunmap_atomic(kaddr, KM_USER0); 247 248 SetPageUptodate(page); 249 250 return 0; 251 } 252 253 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 254 { 255 int ret; 256 struct buffer_head *di_bh = NULL; 257 258 BUG_ON(!PageLocked(page)); 259 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 260 261 ret = ocfs2_read_inode_block(inode, &di_bh); 262 if (ret) { 263 mlog_errno(ret); 264 goto out; 265 } 266 267 ret = ocfs2_read_inline_data(inode, page, di_bh); 268 out: 269 unlock_page(page); 270 271 brelse(di_bh); 272 return ret; 273 } 274 275 static int ocfs2_readpage(struct file *file, struct page *page) 276 { 277 struct inode *inode = page->mapping->host; 278 struct ocfs2_inode_info *oi = OCFS2_I(inode); 279 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; 280 int ret, unlock = 1; 281 282 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0)); 283 284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 285 if (ret != 0) { 286 if (ret == AOP_TRUNCATED_PAGE) 287 unlock = 0; 288 mlog_errno(ret); 289 goto out; 290 } 291 292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 293 ret = AOP_TRUNCATED_PAGE; 294 goto out_inode_unlock; 295 } 296 297 /* 298 * i_size might have just been updated as we grabed the meta lock. We 299 * might now be discovering a truncate that hit on another node. 300 * block_read_full_page->get_block freaks out if it is asked to read 301 * beyond the end of a file, so we check here. Callers 302 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 303 * and notice that the page they just read isn't needed. 304 * 305 * XXX sys_readahead() seems to get that wrong? 306 */ 307 if (start >= i_size_read(inode)) { 308 zero_user(page, 0, PAGE_SIZE); 309 SetPageUptodate(page); 310 ret = 0; 311 goto out_alloc; 312 } 313 314 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 315 ret = ocfs2_readpage_inline(inode, page); 316 else 317 ret = block_read_full_page(page, ocfs2_get_block); 318 unlock = 0; 319 320 out_alloc: 321 up_read(&OCFS2_I(inode)->ip_alloc_sem); 322 out_inode_unlock: 323 ocfs2_inode_unlock(inode, 0); 324 out: 325 if (unlock) 326 unlock_page(page); 327 mlog_exit(ret); 328 return ret; 329 } 330 331 /* 332 * This is used only for read-ahead. Failures or difficult to handle 333 * situations are safe to ignore. 334 * 335 * Right now, we don't bother with BH_Boundary - in-inode extent lists 336 * are quite large (243 extents on 4k blocks), so most inodes don't 337 * grow out to a tree. If need be, detecting boundary extents could 338 * trivially be added in a future version of ocfs2_get_block(). 339 */ 340 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 341 struct list_head *pages, unsigned nr_pages) 342 { 343 int ret, err = -EIO; 344 struct inode *inode = mapping->host; 345 struct ocfs2_inode_info *oi = OCFS2_I(inode); 346 loff_t start; 347 struct page *last; 348 349 /* 350 * Use the nonblocking flag for the dlm code to avoid page 351 * lock inversion, but don't bother with retrying. 352 */ 353 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 354 if (ret) 355 return err; 356 357 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 358 ocfs2_inode_unlock(inode, 0); 359 return err; 360 } 361 362 /* 363 * Don't bother with inline-data. There isn't anything 364 * to read-ahead in that case anyway... 365 */ 366 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 367 goto out_unlock; 368 369 /* 370 * Check whether a remote node truncated this file - we just 371 * drop out in that case as it's not worth handling here. 372 */ 373 last = list_entry(pages->prev, struct page, lru); 374 start = (loff_t)last->index << PAGE_CACHE_SHIFT; 375 if (start >= i_size_read(inode)) 376 goto out_unlock; 377 378 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 379 380 out_unlock: 381 up_read(&oi->ip_alloc_sem); 382 ocfs2_inode_unlock(inode, 0); 383 384 return err; 385 } 386 387 /* Note: Because we don't support holes, our allocation has 388 * already happened (allocation writes zeros to the file data) 389 * so we don't have to worry about ordered writes in 390 * ocfs2_writepage. 391 * 392 * ->writepage is called during the process of invalidating the page cache 393 * during blocked lock processing. It can't block on any cluster locks 394 * to during block mapping. It's relying on the fact that the block 395 * mapping can't have disappeared under the dirty pages that it is 396 * being asked to write back. 397 */ 398 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 399 { 400 int ret; 401 402 mlog_entry("(0x%p)\n", page); 403 404 ret = block_write_full_page(page, ocfs2_get_block, wbc); 405 406 mlog_exit(ret); 407 408 return ret; 409 } 410 411 /* 412 * This is called from ocfs2_write_zero_page() which has handled it's 413 * own cluster locking and has ensured allocation exists for those 414 * blocks to be written. 415 */ 416 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page, 417 unsigned from, unsigned to) 418 { 419 int ret; 420 421 ret = block_prepare_write(page, from, to, ocfs2_get_block); 422 423 return ret; 424 } 425 426 /* Taken from ext3. We don't necessarily need the full blown 427 * functionality yet, but IMHO it's better to cut and paste the whole 428 * thing so we can avoid introducing our own bugs (and easily pick up 429 * their fixes when they happen) --Mark */ 430 int walk_page_buffers( handle_t *handle, 431 struct buffer_head *head, 432 unsigned from, 433 unsigned to, 434 int *partial, 435 int (*fn)( handle_t *handle, 436 struct buffer_head *bh)) 437 { 438 struct buffer_head *bh; 439 unsigned block_start, block_end; 440 unsigned blocksize = head->b_size; 441 int err, ret = 0; 442 struct buffer_head *next; 443 444 for ( bh = head, block_start = 0; 445 ret == 0 && (bh != head || !block_start); 446 block_start = block_end, bh = next) 447 { 448 next = bh->b_this_page; 449 block_end = block_start + blocksize; 450 if (block_end <= from || block_start >= to) { 451 if (partial && !buffer_uptodate(bh)) 452 *partial = 1; 453 continue; 454 } 455 err = (*fn)(handle, bh); 456 if (!ret) 457 ret = err; 458 } 459 return ret; 460 } 461 462 handle_t *ocfs2_start_walk_page_trans(struct inode *inode, 463 struct page *page, 464 unsigned from, 465 unsigned to) 466 { 467 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 468 handle_t *handle; 469 int ret = 0; 470 471 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 472 if (IS_ERR(handle)) { 473 ret = -ENOMEM; 474 mlog_errno(ret); 475 goto out; 476 } 477 478 if (ocfs2_should_order_data(inode)) { 479 ret = ocfs2_jbd2_file_inode(handle, inode); 480 if (ret < 0) 481 mlog_errno(ret); 482 } 483 out: 484 if (ret) { 485 if (!IS_ERR(handle)) 486 ocfs2_commit_trans(osb, handle); 487 handle = ERR_PTR(ret); 488 } 489 return handle; 490 } 491 492 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 493 { 494 sector_t status; 495 u64 p_blkno = 0; 496 int err = 0; 497 struct inode *inode = mapping->host; 498 499 mlog_entry("(block = %llu)\n", (unsigned long long)block); 500 501 /* We don't need to lock journal system files, since they aren't 502 * accessed concurrently from multiple nodes. 503 */ 504 if (!INODE_JOURNAL(inode)) { 505 err = ocfs2_inode_lock(inode, NULL, 0); 506 if (err) { 507 if (err != -ENOENT) 508 mlog_errno(err); 509 goto bail; 510 } 511 down_read(&OCFS2_I(inode)->ip_alloc_sem); 512 } 513 514 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 515 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 516 NULL); 517 518 if (!INODE_JOURNAL(inode)) { 519 up_read(&OCFS2_I(inode)->ip_alloc_sem); 520 ocfs2_inode_unlock(inode, 0); 521 } 522 523 if (err) { 524 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 525 (unsigned long long)block); 526 mlog_errno(err); 527 goto bail; 528 } 529 530 bail: 531 status = err ? 0 : p_blkno; 532 533 mlog_exit((int)status); 534 535 return status; 536 } 537 538 /* 539 * TODO: Make this into a generic get_blocks function. 540 * 541 * From do_direct_io in direct-io.c: 542 * "So what we do is to permit the ->get_blocks function to populate 543 * bh.b_size with the size of IO which is permitted at this offset and 544 * this i_blkbits." 545 * 546 * This function is called directly from get_more_blocks in direct-io.c. 547 * 548 * called like this: dio->get_blocks(dio->inode, fs_startblk, 549 * fs_count, map_bh, dio->rw == WRITE); 550 */ 551 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, 552 struct buffer_head *bh_result, int create) 553 { 554 int ret; 555 u64 p_blkno, inode_blocks, contig_blocks; 556 unsigned int ext_flags; 557 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 558 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; 559 560 /* This function won't even be called if the request isn't all 561 * nicely aligned and of the right size, so there's no need 562 * for us to check any of that. */ 563 564 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 565 566 /* 567 * Any write past EOF is not allowed because we'd be extending. 568 */ 569 if (create && (iblock + max_blocks) > inode_blocks) { 570 ret = -EIO; 571 goto bail; 572 } 573 574 /* This figures out the size of the next contiguous block, and 575 * our logical offset */ 576 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 577 &contig_blocks, &ext_flags); 578 if (ret) { 579 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 580 (unsigned long long)iblock); 581 ret = -EIO; 582 goto bail; 583 } 584 585 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) { 586 ocfs2_error(inode->i_sb, 587 "Inode %llu has a hole at block %llu\n", 588 (unsigned long long)OCFS2_I(inode)->ip_blkno, 589 (unsigned long long)iblock); 590 ret = -EROFS; 591 goto bail; 592 } 593 594 /* We should already CoW the refcounted extent. */ 595 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 596 /* 597 * get_more_blocks() expects us to describe a hole by clearing 598 * the mapped bit on bh_result(). 599 * 600 * Consider an unwritten extent as a hole. 601 */ 602 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 603 map_bh(bh_result, inode->i_sb, p_blkno); 604 else { 605 /* 606 * ocfs2_prepare_inode_for_write() should have caught 607 * the case where we'd be filling a hole and triggered 608 * a buffered write instead. 609 */ 610 if (create) { 611 ret = -EIO; 612 mlog_errno(ret); 613 goto bail; 614 } 615 616 clear_buffer_mapped(bh_result); 617 } 618 619 /* make sure we don't map more than max_blocks blocks here as 620 that's all the kernel will handle at this point. */ 621 if (max_blocks < contig_blocks) 622 contig_blocks = max_blocks; 623 bh_result->b_size = contig_blocks << blocksize_bits; 624 bail: 625 return ret; 626 } 627 628 /* 629 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 630 * particularly interested in the aio/dio case. Like the core uses 631 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from 632 * truncation on another. 633 */ 634 static void ocfs2_dio_end_io(struct kiocb *iocb, 635 loff_t offset, 636 ssize_t bytes, 637 void *private) 638 { 639 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 640 int level; 641 642 /* this io's submitter should not have unlocked this before we could */ 643 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 644 645 ocfs2_iocb_clear_rw_locked(iocb); 646 647 level = ocfs2_iocb_rw_locked_level(iocb); 648 if (!level) 649 up_read(&inode->i_alloc_sem); 650 ocfs2_rw_unlock(inode, level); 651 } 652 653 /* 654 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen 655 * from ext3. PageChecked() bits have been removed as OCFS2 does not 656 * do journalled data. 657 */ 658 static void ocfs2_invalidatepage(struct page *page, unsigned long offset) 659 { 660 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 661 662 jbd2_journal_invalidatepage(journal, page, offset); 663 } 664 665 static int ocfs2_releasepage(struct page *page, gfp_t wait) 666 { 667 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 668 669 if (!page_has_buffers(page)) 670 return 0; 671 return jbd2_journal_try_to_free_buffers(journal, page, wait); 672 } 673 674 static ssize_t ocfs2_direct_IO(int rw, 675 struct kiocb *iocb, 676 const struct iovec *iov, 677 loff_t offset, 678 unsigned long nr_segs) 679 { 680 struct file *file = iocb->ki_filp; 681 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host; 682 int ret; 683 684 mlog_entry_void(); 685 686 /* 687 * Fallback to buffered I/O if we see an inode without 688 * extents. 689 */ 690 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 691 return 0; 692 693 /* Fallback to buffered I/O if we are appending. */ 694 if (i_size_read(inode) <= offset) 695 return 0; 696 697 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, 698 inode->i_sb->s_bdev, iov, offset, 699 nr_segs, 700 ocfs2_direct_IO_get_blocks, 701 ocfs2_dio_end_io); 702 703 mlog_exit(ret); 704 return ret; 705 } 706 707 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 708 u32 cpos, 709 unsigned int *start, 710 unsigned int *end) 711 { 712 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; 713 714 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { 715 unsigned int cpp; 716 717 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); 718 719 cluster_start = cpos % cpp; 720 cluster_start = cluster_start << osb->s_clustersize_bits; 721 722 cluster_end = cluster_start + osb->s_clustersize; 723 } 724 725 BUG_ON(cluster_start > PAGE_SIZE); 726 BUG_ON(cluster_end > PAGE_SIZE); 727 728 if (start) 729 *start = cluster_start; 730 if (end) 731 *end = cluster_end; 732 } 733 734 /* 735 * 'from' and 'to' are the region in the page to avoid zeroing. 736 * 737 * If pagesize > clustersize, this function will avoid zeroing outside 738 * of the cluster boundary. 739 * 740 * from == to == 0 is code for "zero the entire cluster region" 741 */ 742 static void ocfs2_clear_page_regions(struct page *page, 743 struct ocfs2_super *osb, u32 cpos, 744 unsigned from, unsigned to) 745 { 746 void *kaddr; 747 unsigned int cluster_start, cluster_end; 748 749 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 750 751 kaddr = kmap_atomic(page, KM_USER0); 752 753 if (from || to) { 754 if (from > cluster_start) 755 memset(kaddr + cluster_start, 0, from - cluster_start); 756 if (to < cluster_end) 757 memset(kaddr + to, 0, cluster_end - to); 758 } else { 759 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 760 } 761 762 kunmap_atomic(kaddr, KM_USER0); 763 } 764 765 /* 766 * Nonsparse file systems fully allocate before we get to the write 767 * code. This prevents ocfs2_write() from tagging the write as an 768 * allocating one, which means ocfs2_map_page_blocks() might try to 769 * read-in the blocks at the tail of our file. Avoid reading them by 770 * testing i_size against each block offset. 771 */ 772 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 773 unsigned int block_start) 774 { 775 u64 offset = page_offset(page) + block_start; 776 777 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 778 return 1; 779 780 if (i_size_read(inode) > offset) 781 return 1; 782 783 return 0; 784 } 785 786 /* 787 * Some of this taken from block_prepare_write(). We already have our 788 * mapping by now though, and the entire write will be allocating or 789 * it won't, so not much need to use BH_New. 790 * 791 * This will also skip zeroing, which is handled externally. 792 */ 793 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 794 struct inode *inode, unsigned int from, 795 unsigned int to, int new) 796 { 797 int ret = 0; 798 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 799 unsigned int block_end, block_start; 800 unsigned int bsize = 1 << inode->i_blkbits; 801 802 if (!page_has_buffers(page)) 803 create_empty_buffers(page, bsize, 0); 804 805 head = page_buffers(page); 806 for (bh = head, block_start = 0; bh != head || !block_start; 807 bh = bh->b_this_page, block_start += bsize) { 808 block_end = block_start + bsize; 809 810 clear_buffer_new(bh); 811 812 /* 813 * Ignore blocks outside of our i/o range - 814 * they may belong to unallocated clusters. 815 */ 816 if (block_start >= to || block_end <= from) { 817 if (PageUptodate(page)) 818 set_buffer_uptodate(bh); 819 continue; 820 } 821 822 /* 823 * For an allocating write with cluster size >= page 824 * size, we always write the entire page. 825 */ 826 if (new) 827 set_buffer_new(bh); 828 829 if (!buffer_mapped(bh)) { 830 map_bh(bh, inode->i_sb, *p_blkno); 831 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 832 } 833 834 if (PageUptodate(page)) { 835 if (!buffer_uptodate(bh)) 836 set_buffer_uptodate(bh); 837 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 838 !buffer_new(bh) && 839 ocfs2_should_read_blk(inode, page, block_start) && 840 (block_start < from || block_end > to)) { 841 ll_rw_block(READ, 1, &bh); 842 *wait_bh++=bh; 843 } 844 845 *p_blkno = *p_blkno + 1; 846 } 847 848 /* 849 * If we issued read requests - let them complete. 850 */ 851 while(wait_bh > wait) { 852 wait_on_buffer(*--wait_bh); 853 if (!buffer_uptodate(*wait_bh)) 854 ret = -EIO; 855 } 856 857 if (ret == 0 || !new) 858 return ret; 859 860 /* 861 * If we get -EIO above, zero out any newly allocated blocks 862 * to avoid exposing stale data. 863 */ 864 bh = head; 865 block_start = 0; 866 do { 867 block_end = block_start + bsize; 868 if (block_end <= from) 869 goto next_bh; 870 if (block_start >= to) 871 break; 872 873 zero_user(page, block_start, bh->b_size); 874 set_buffer_uptodate(bh); 875 mark_buffer_dirty(bh); 876 877 next_bh: 878 block_start = block_end; 879 bh = bh->b_this_page; 880 } while (bh != head); 881 882 return ret; 883 } 884 885 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 886 #define OCFS2_MAX_CTXT_PAGES 1 887 #else 888 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) 889 #endif 890 891 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) 892 893 /* 894 * Describe the state of a single cluster to be written to. 895 */ 896 struct ocfs2_write_cluster_desc { 897 u32 c_cpos; 898 u32 c_phys; 899 /* 900 * Give this a unique field because c_phys eventually gets 901 * filled. 902 */ 903 unsigned c_new; 904 unsigned c_unwritten; 905 unsigned c_needs_zero; 906 }; 907 908 struct ocfs2_write_ctxt { 909 /* Logical cluster position / len of write */ 910 u32 w_cpos; 911 u32 w_clen; 912 913 /* First cluster allocated in a nonsparse extend */ 914 u32 w_first_new_cpos; 915 916 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 917 918 /* 919 * This is true if page_size > cluster_size. 920 * 921 * It triggers a set of special cases during write which might 922 * have to deal with allocating writes to partial pages. 923 */ 924 unsigned int w_large_pages; 925 926 /* 927 * Pages involved in this write. 928 * 929 * w_target_page is the page being written to by the user. 930 * 931 * w_pages is an array of pages which always contains 932 * w_target_page, and in the case of an allocating write with 933 * page_size < cluster size, it will contain zero'd and mapped 934 * pages adjacent to w_target_page which need to be written 935 * out in so that future reads from that region will get 936 * zero's. 937 */ 938 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 939 unsigned int w_num_pages; 940 struct page *w_target_page; 941 942 /* 943 * ocfs2_write_end() uses this to know what the real range to 944 * write in the target should be. 945 */ 946 unsigned int w_target_from; 947 unsigned int w_target_to; 948 949 /* 950 * We could use journal_current_handle() but this is cleaner, 951 * IMHO -Mark 952 */ 953 handle_t *w_handle; 954 955 struct buffer_head *w_di_bh; 956 957 struct ocfs2_cached_dealloc_ctxt w_dealloc; 958 }; 959 960 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 961 { 962 int i; 963 964 for(i = 0; i < num_pages; i++) { 965 if (pages[i]) { 966 unlock_page(pages[i]); 967 mark_page_accessed(pages[i]); 968 page_cache_release(pages[i]); 969 } 970 } 971 } 972 973 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) 974 { 975 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 976 977 brelse(wc->w_di_bh); 978 kfree(wc); 979 } 980 981 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 982 struct ocfs2_super *osb, loff_t pos, 983 unsigned len, struct buffer_head *di_bh) 984 { 985 u32 cend; 986 struct ocfs2_write_ctxt *wc; 987 988 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 989 if (!wc) 990 return -ENOMEM; 991 992 wc->w_cpos = pos >> osb->s_clustersize_bits; 993 wc->w_first_new_cpos = UINT_MAX; 994 cend = (pos + len - 1) >> osb->s_clustersize_bits; 995 wc->w_clen = cend - wc->w_cpos + 1; 996 get_bh(di_bh); 997 wc->w_di_bh = di_bh; 998 999 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) 1000 wc->w_large_pages = 1; 1001 else 1002 wc->w_large_pages = 0; 1003 1004 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 1005 1006 *wcp = wc; 1007 1008 return 0; 1009 } 1010 1011 /* 1012 * If a page has any new buffers, zero them out here, and mark them uptodate 1013 * and dirty so they'll be written out (in order to prevent uninitialised 1014 * block data from leaking). And clear the new bit. 1015 */ 1016 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1017 { 1018 unsigned int block_start, block_end; 1019 struct buffer_head *head, *bh; 1020 1021 BUG_ON(!PageLocked(page)); 1022 if (!page_has_buffers(page)) 1023 return; 1024 1025 bh = head = page_buffers(page); 1026 block_start = 0; 1027 do { 1028 block_end = block_start + bh->b_size; 1029 1030 if (buffer_new(bh)) { 1031 if (block_end > from && block_start < to) { 1032 if (!PageUptodate(page)) { 1033 unsigned start, end; 1034 1035 start = max(from, block_start); 1036 end = min(to, block_end); 1037 1038 zero_user_segment(page, start, end); 1039 set_buffer_uptodate(bh); 1040 } 1041 1042 clear_buffer_new(bh); 1043 mark_buffer_dirty(bh); 1044 } 1045 } 1046 1047 block_start = block_end; 1048 bh = bh->b_this_page; 1049 } while (bh != head); 1050 } 1051 1052 /* 1053 * Only called when we have a failure during allocating write to write 1054 * zero's to the newly allocated region. 1055 */ 1056 static void ocfs2_write_failure(struct inode *inode, 1057 struct ocfs2_write_ctxt *wc, 1058 loff_t user_pos, unsigned user_len) 1059 { 1060 int i; 1061 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), 1062 to = user_pos + user_len; 1063 struct page *tmppage; 1064 1065 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 1066 1067 for(i = 0; i < wc->w_num_pages; i++) { 1068 tmppage = wc->w_pages[i]; 1069 1070 if (page_has_buffers(tmppage)) { 1071 if (ocfs2_should_order_data(inode)) 1072 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1073 1074 block_commit_write(tmppage, from, to); 1075 } 1076 } 1077 } 1078 1079 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 1080 struct ocfs2_write_ctxt *wc, 1081 struct page *page, u32 cpos, 1082 loff_t user_pos, unsigned user_len, 1083 int new) 1084 { 1085 int ret; 1086 unsigned int map_from = 0, map_to = 0; 1087 unsigned int cluster_start, cluster_end; 1088 unsigned int user_data_from = 0, user_data_to = 0; 1089 1090 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 1091 &cluster_start, &cluster_end); 1092 1093 if (page == wc->w_target_page) { 1094 map_from = user_pos & (PAGE_CACHE_SIZE - 1); 1095 map_to = map_from + user_len; 1096 1097 if (new) 1098 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1099 cluster_start, cluster_end, 1100 new); 1101 else 1102 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1103 map_from, map_to, new); 1104 if (ret) { 1105 mlog_errno(ret); 1106 goto out; 1107 } 1108 1109 user_data_from = map_from; 1110 user_data_to = map_to; 1111 if (new) { 1112 map_from = cluster_start; 1113 map_to = cluster_end; 1114 } 1115 } else { 1116 /* 1117 * If we haven't allocated the new page yet, we 1118 * shouldn't be writing it out without copying user 1119 * data. This is likely a math error from the caller. 1120 */ 1121 BUG_ON(!new); 1122 1123 map_from = cluster_start; 1124 map_to = cluster_end; 1125 1126 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1127 cluster_start, cluster_end, new); 1128 if (ret) { 1129 mlog_errno(ret); 1130 goto out; 1131 } 1132 } 1133 1134 /* 1135 * Parts of newly allocated pages need to be zero'd. 1136 * 1137 * Above, we have also rewritten 'to' and 'from' - as far as 1138 * the rest of the function is concerned, the entire cluster 1139 * range inside of a page needs to be written. 1140 * 1141 * We can skip this if the page is up to date - it's already 1142 * been zero'd from being read in as a hole. 1143 */ 1144 if (new && !PageUptodate(page)) 1145 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1146 cpos, user_data_from, user_data_to); 1147 1148 flush_dcache_page(page); 1149 1150 out: 1151 return ret; 1152 } 1153 1154 /* 1155 * This function will only grab one clusters worth of pages. 1156 */ 1157 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1158 struct ocfs2_write_ctxt *wc, 1159 u32 cpos, loff_t user_pos, int new, 1160 struct page *mmap_page) 1161 { 1162 int ret = 0, i; 1163 unsigned long start, target_index, index; 1164 struct inode *inode = mapping->host; 1165 1166 target_index = user_pos >> PAGE_CACHE_SHIFT; 1167 1168 /* 1169 * Figure out how many pages we'll be manipulating here. For 1170 * non allocating write, we just change the one 1171 * page. Otherwise, we'll need a whole clusters worth. 1172 */ 1173 if (new) { 1174 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1175 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1176 } else { 1177 wc->w_num_pages = 1; 1178 start = target_index; 1179 } 1180 1181 for(i = 0; i < wc->w_num_pages; i++) { 1182 index = start + i; 1183 1184 if (index == target_index && mmap_page) { 1185 /* 1186 * ocfs2_pagemkwrite() is a little different 1187 * and wants us to directly use the page 1188 * passed in. 1189 */ 1190 lock_page(mmap_page); 1191 1192 if (mmap_page->mapping != mapping) { 1193 unlock_page(mmap_page); 1194 /* 1195 * Sanity check - the locking in 1196 * ocfs2_pagemkwrite() should ensure 1197 * that this code doesn't trigger. 1198 */ 1199 ret = -EINVAL; 1200 mlog_errno(ret); 1201 goto out; 1202 } 1203 1204 page_cache_get(mmap_page); 1205 wc->w_pages[i] = mmap_page; 1206 } else { 1207 wc->w_pages[i] = find_or_create_page(mapping, index, 1208 GFP_NOFS); 1209 if (!wc->w_pages[i]) { 1210 ret = -ENOMEM; 1211 mlog_errno(ret); 1212 goto out; 1213 } 1214 } 1215 1216 if (index == target_index) 1217 wc->w_target_page = wc->w_pages[i]; 1218 } 1219 out: 1220 return ret; 1221 } 1222 1223 /* 1224 * Prepare a single cluster for write one cluster into the file. 1225 */ 1226 static int ocfs2_write_cluster(struct address_space *mapping, 1227 u32 phys, unsigned int unwritten, 1228 unsigned int should_zero, 1229 struct ocfs2_alloc_context *data_ac, 1230 struct ocfs2_alloc_context *meta_ac, 1231 struct ocfs2_write_ctxt *wc, u32 cpos, 1232 loff_t user_pos, unsigned user_len) 1233 { 1234 int ret, i, new; 1235 u64 v_blkno, p_blkno; 1236 struct inode *inode = mapping->host; 1237 struct ocfs2_extent_tree et; 1238 1239 new = phys == 0 ? 1 : 0; 1240 if (new) { 1241 u32 tmp_pos; 1242 1243 /* 1244 * This is safe to call with the page locks - it won't take 1245 * any additional semaphores or cluster locks. 1246 */ 1247 tmp_pos = cpos; 1248 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1249 &tmp_pos, 1, 0, wc->w_di_bh, 1250 wc->w_handle, data_ac, 1251 meta_ac, NULL); 1252 /* 1253 * This shouldn't happen because we must have already 1254 * calculated the correct meta data allocation required. The 1255 * internal tree allocation code should know how to increase 1256 * transaction credits itself. 1257 * 1258 * If need be, we could handle -EAGAIN for a 1259 * RESTART_TRANS here. 1260 */ 1261 mlog_bug_on_msg(ret == -EAGAIN, 1262 "Inode %llu: EAGAIN return during allocation.\n", 1263 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1264 if (ret < 0) { 1265 mlog_errno(ret); 1266 goto out; 1267 } 1268 } else if (unwritten) { 1269 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1270 wc->w_di_bh); 1271 ret = ocfs2_mark_extent_written(inode, &et, 1272 wc->w_handle, cpos, 1, phys, 1273 meta_ac, &wc->w_dealloc); 1274 if (ret < 0) { 1275 mlog_errno(ret); 1276 goto out; 1277 } 1278 } 1279 1280 if (should_zero) 1281 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); 1282 else 1283 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; 1284 1285 /* 1286 * The only reason this should fail is due to an inability to 1287 * find the extent added. 1288 */ 1289 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, 1290 NULL); 1291 if (ret < 0) { 1292 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, " 1293 "at logical block %llu", 1294 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1295 (unsigned long long)v_blkno); 1296 goto out; 1297 } 1298 1299 BUG_ON(p_blkno == 0); 1300 1301 for(i = 0; i < wc->w_num_pages; i++) { 1302 int tmpret; 1303 1304 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1305 wc->w_pages[i], cpos, 1306 user_pos, user_len, 1307 should_zero); 1308 if (tmpret) { 1309 mlog_errno(tmpret); 1310 if (ret == 0) 1311 ret = tmpret; 1312 } 1313 } 1314 1315 /* 1316 * We only have cleanup to do in case of allocating write. 1317 */ 1318 if (ret && new) 1319 ocfs2_write_failure(inode, wc, user_pos, user_len); 1320 1321 out: 1322 1323 return ret; 1324 } 1325 1326 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1327 struct ocfs2_alloc_context *data_ac, 1328 struct ocfs2_alloc_context *meta_ac, 1329 struct ocfs2_write_ctxt *wc, 1330 loff_t pos, unsigned len) 1331 { 1332 int ret, i; 1333 loff_t cluster_off; 1334 unsigned int local_len = len; 1335 struct ocfs2_write_cluster_desc *desc; 1336 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1337 1338 for (i = 0; i < wc->w_clen; i++) { 1339 desc = &wc->w_desc[i]; 1340 1341 /* 1342 * We have to make sure that the total write passed in 1343 * doesn't extend past a single cluster. 1344 */ 1345 local_len = len; 1346 cluster_off = pos & (osb->s_clustersize - 1); 1347 if ((cluster_off + local_len) > osb->s_clustersize) 1348 local_len = osb->s_clustersize - cluster_off; 1349 1350 ret = ocfs2_write_cluster(mapping, desc->c_phys, 1351 desc->c_unwritten, 1352 desc->c_needs_zero, 1353 data_ac, meta_ac, 1354 wc, desc->c_cpos, pos, local_len); 1355 if (ret) { 1356 mlog_errno(ret); 1357 goto out; 1358 } 1359 1360 len -= local_len; 1361 pos += local_len; 1362 } 1363 1364 ret = 0; 1365 out: 1366 return ret; 1367 } 1368 1369 /* 1370 * ocfs2_write_end() wants to know which parts of the target page it 1371 * should complete the write on. It's easiest to compute them ahead of 1372 * time when a more complete view of the write is available. 1373 */ 1374 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1375 struct ocfs2_write_ctxt *wc, 1376 loff_t pos, unsigned len, int alloc) 1377 { 1378 struct ocfs2_write_cluster_desc *desc; 1379 1380 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); 1381 wc->w_target_to = wc->w_target_from + len; 1382 1383 if (alloc == 0) 1384 return; 1385 1386 /* 1387 * Allocating write - we may have different boundaries based 1388 * on page size and cluster size. 1389 * 1390 * NOTE: We can no longer compute one value from the other as 1391 * the actual write length and user provided length may be 1392 * different. 1393 */ 1394 1395 if (wc->w_large_pages) { 1396 /* 1397 * We only care about the 1st and last cluster within 1398 * our range and whether they should be zero'd or not. Either 1399 * value may be extended out to the start/end of a 1400 * newly allocated cluster. 1401 */ 1402 desc = &wc->w_desc[0]; 1403 if (desc->c_needs_zero) 1404 ocfs2_figure_cluster_boundaries(osb, 1405 desc->c_cpos, 1406 &wc->w_target_from, 1407 NULL); 1408 1409 desc = &wc->w_desc[wc->w_clen - 1]; 1410 if (desc->c_needs_zero) 1411 ocfs2_figure_cluster_boundaries(osb, 1412 desc->c_cpos, 1413 NULL, 1414 &wc->w_target_to); 1415 } else { 1416 wc->w_target_from = 0; 1417 wc->w_target_to = PAGE_CACHE_SIZE; 1418 } 1419 } 1420 1421 /* 1422 * Populate each single-cluster write descriptor in the write context 1423 * with information about the i/o to be done. 1424 * 1425 * Returns the number of clusters that will have to be allocated, as 1426 * well as a worst case estimate of the number of extent records that 1427 * would have to be created during a write to an unwritten region. 1428 */ 1429 static int ocfs2_populate_write_desc(struct inode *inode, 1430 struct ocfs2_write_ctxt *wc, 1431 unsigned int *clusters_to_alloc, 1432 unsigned int *extents_to_split) 1433 { 1434 int ret; 1435 struct ocfs2_write_cluster_desc *desc; 1436 unsigned int num_clusters = 0; 1437 unsigned int ext_flags = 0; 1438 u32 phys = 0; 1439 int i; 1440 1441 *clusters_to_alloc = 0; 1442 *extents_to_split = 0; 1443 1444 for (i = 0; i < wc->w_clen; i++) { 1445 desc = &wc->w_desc[i]; 1446 desc->c_cpos = wc->w_cpos + i; 1447 1448 if (num_clusters == 0) { 1449 /* 1450 * Need to look up the next extent record. 1451 */ 1452 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1453 &num_clusters, &ext_flags); 1454 if (ret) { 1455 mlog_errno(ret); 1456 goto out; 1457 } 1458 1459 /* We should already CoW the refcountd extent. */ 1460 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1461 1462 /* 1463 * Assume worst case - that we're writing in 1464 * the middle of the extent. 1465 * 1466 * We can assume that the write proceeds from 1467 * left to right, in which case the extent 1468 * insert code is smart enough to coalesce the 1469 * next splits into the previous records created. 1470 */ 1471 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1472 *extents_to_split = *extents_to_split + 2; 1473 } else if (phys) { 1474 /* 1475 * Only increment phys if it doesn't describe 1476 * a hole. 1477 */ 1478 phys++; 1479 } 1480 1481 /* 1482 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1483 * file that got extended. w_first_new_cpos tells us 1484 * where the newly allocated clusters are so we can 1485 * zero them. 1486 */ 1487 if (desc->c_cpos >= wc->w_first_new_cpos) { 1488 BUG_ON(phys == 0); 1489 desc->c_needs_zero = 1; 1490 } 1491 1492 desc->c_phys = phys; 1493 if (phys == 0) { 1494 desc->c_new = 1; 1495 desc->c_needs_zero = 1; 1496 *clusters_to_alloc = *clusters_to_alloc + 1; 1497 } 1498 1499 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1500 desc->c_unwritten = 1; 1501 desc->c_needs_zero = 1; 1502 } 1503 1504 num_clusters--; 1505 } 1506 1507 ret = 0; 1508 out: 1509 return ret; 1510 } 1511 1512 static int ocfs2_write_begin_inline(struct address_space *mapping, 1513 struct inode *inode, 1514 struct ocfs2_write_ctxt *wc) 1515 { 1516 int ret; 1517 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1518 struct page *page; 1519 handle_t *handle; 1520 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1521 1522 page = find_or_create_page(mapping, 0, GFP_NOFS); 1523 if (!page) { 1524 ret = -ENOMEM; 1525 mlog_errno(ret); 1526 goto out; 1527 } 1528 /* 1529 * If we don't set w_num_pages then this page won't get unlocked 1530 * and freed on cleanup of the write context. 1531 */ 1532 wc->w_pages[0] = wc->w_target_page = page; 1533 wc->w_num_pages = 1; 1534 1535 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1536 if (IS_ERR(handle)) { 1537 ret = PTR_ERR(handle); 1538 mlog_errno(ret); 1539 goto out; 1540 } 1541 1542 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1543 OCFS2_JOURNAL_ACCESS_WRITE); 1544 if (ret) { 1545 ocfs2_commit_trans(osb, handle); 1546 1547 mlog_errno(ret); 1548 goto out; 1549 } 1550 1551 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1552 ocfs2_set_inode_data_inline(inode, di); 1553 1554 if (!PageUptodate(page)) { 1555 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1556 if (ret) { 1557 ocfs2_commit_trans(osb, handle); 1558 1559 goto out; 1560 } 1561 } 1562 1563 wc->w_handle = handle; 1564 out: 1565 return ret; 1566 } 1567 1568 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1569 { 1570 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1571 1572 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1573 return 1; 1574 return 0; 1575 } 1576 1577 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1578 struct inode *inode, loff_t pos, 1579 unsigned len, struct page *mmap_page, 1580 struct ocfs2_write_ctxt *wc) 1581 { 1582 int ret, written = 0; 1583 loff_t end = pos + len; 1584 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1585 struct ocfs2_dinode *di = NULL; 1586 1587 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n", 1588 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos, 1589 oi->ip_dyn_features); 1590 1591 /* 1592 * Handle inodes which already have inline data 1st. 1593 */ 1594 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1595 if (mmap_page == NULL && 1596 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1597 goto do_inline_write; 1598 1599 /* 1600 * The write won't fit - we have to give this inode an 1601 * inline extent list now. 1602 */ 1603 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1604 if (ret) 1605 mlog_errno(ret); 1606 goto out; 1607 } 1608 1609 /* 1610 * Check whether the inode can accept inline data. 1611 */ 1612 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1613 return 0; 1614 1615 /* 1616 * Check whether the write can fit. 1617 */ 1618 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1619 if (mmap_page || 1620 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1621 return 0; 1622 1623 do_inline_write: 1624 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1625 if (ret) { 1626 mlog_errno(ret); 1627 goto out; 1628 } 1629 1630 /* 1631 * This signals to the caller that the data can be written 1632 * inline. 1633 */ 1634 written = 1; 1635 out: 1636 return written ? written : ret; 1637 } 1638 1639 /* 1640 * This function only does anything for file systems which can't 1641 * handle sparse files. 1642 * 1643 * What we want to do here is fill in any hole between the current end 1644 * of allocation and the end of our write. That way the rest of the 1645 * write path can treat it as an non-allocating write, which has no 1646 * special case code for sparse/nonsparse files. 1647 */ 1648 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos, 1649 unsigned len, 1650 struct ocfs2_write_ctxt *wc) 1651 { 1652 int ret; 1653 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1654 loff_t newsize = pos + len; 1655 1656 if (ocfs2_sparse_alloc(osb)) 1657 return 0; 1658 1659 if (newsize <= i_size_read(inode)) 1660 return 0; 1661 1662 ret = ocfs2_extend_no_holes(inode, newsize, pos); 1663 if (ret) 1664 mlog_errno(ret); 1665 1666 wc->w_first_new_cpos = 1667 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1668 1669 return ret; 1670 } 1671 1672 int ocfs2_write_begin_nolock(struct address_space *mapping, 1673 loff_t pos, unsigned len, unsigned flags, 1674 struct page **pagep, void **fsdata, 1675 struct buffer_head *di_bh, struct page *mmap_page) 1676 { 1677 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1678 unsigned int clusters_to_alloc, extents_to_split; 1679 struct ocfs2_write_ctxt *wc; 1680 struct inode *inode = mapping->host; 1681 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1682 struct ocfs2_dinode *di; 1683 struct ocfs2_alloc_context *data_ac = NULL; 1684 struct ocfs2_alloc_context *meta_ac = NULL; 1685 handle_t *handle; 1686 struct ocfs2_extent_tree et; 1687 1688 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); 1689 if (ret) { 1690 mlog_errno(ret); 1691 return ret; 1692 } 1693 1694 if (ocfs2_supports_inline_data(osb)) { 1695 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1696 mmap_page, wc); 1697 if (ret == 1) { 1698 ret = 0; 1699 goto success; 1700 } 1701 if (ret < 0) { 1702 mlog_errno(ret); 1703 goto out; 1704 } 1705 } 1706 1707 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc); 1708 if (ret) { 1709 mlog_errno(ret); 1710 goto out; 1711 } 1712 1713 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1714 if (ret < 0) { 1715 mlog_errno(ret); 1716 goto out; 1717 } else if (ret == 1) { 1718 ret = ocfs2_refcount_cow(inode, di_bh, 1719 wc->w_cpos, wc->w_clen, UINT_MAX); 1720 if (ret) { 1721 mlog_errno(ret); 1722 goto out; 1723 } 1724 } 1725 1726 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1727 &extents_to_split); 1728 if (ret) { 1729 mlog_errno(ret); 1730 goto out; 1731 } 1732 1733 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1734 1735 /* 1736 * We set w_target_from, w_target_to here so that 1737 * ocfs2_write_end() knows which range in the target page to 1738 * write out. An allocation requires that we write the entire 1739 * cluster range. 1740 */ 1741 if (clusters_to_alloc || extents_to_split) { 1742 /* 1743 * XXX: We are stretching the limits of 1744 * ocfs2_lock_allocators(). It greatly over-estimates 1745 * the work to be done. 1746 */ 1747 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u," 1748 " clusters_to_add = %u, extents_to_split = %u\n", 1749 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1750 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters), 1751 clusters_to_alloc, extents_to_split); 1752 1753 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1754 wc->w_di_bh); 1755 ret = ocfs2_lock_allocators(inode, &et, 1756 clusters_to_alloc, extents_to_split, 1757 &data_ac, &meta_ac); 1758 if (ret) { 1759 mlog_errno(ret); 1760 goto out; 1761 } 1762 1763 credits = ocfs2_calc_extend_credits(inode->i_sb, 1764 &di->id2.i_list, 1765 clusters_to_alloc); 1766 1767 } 1768 1769 /* 1770 * We have to zero sparse allocated clusters, unwritten extent clusters, 1771 * and non-sparse clusters we just extended. For non-sparse writes, 1772 * we know zeros will only be needed in the first and/or last cluster. 1773 */ 1774 if (clusters_to_alloc || extents_to_split || 1775 (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1776 wc->w_desc[wc->w_clen - 1].c_needs_zero))) 1777 cluster_of_pages = 1; 1778 else 1779 cluster_of_pages = 0; 1780 1781 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1782 1783 handle = ocfs2_start_trans(osb, credits); 1784 if (IS_ERR(handle)) { 1785 ret = PTR_ERR(handle); 1786 mlog_errno(ret); 1787 goto out; 1788 } 1789 1790 wc->w_handle = handle; 1791 1792 if (clusters_to_alloc && vfs_dq_alloc_space_nodirty(inode, 1793 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc))) { 1794 ret = -EDQUOT; 1795 goto out_commit; 1796 } 1797 /* 1798 * We don't want this to fail in ocfs2_write_end(), so do it 1799 * here. 1800 */ 1801 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1802 OCFS2_JOURNAL_ACCESS_WRITE); 1803 if (ret) { 1804 mlog_errno(ret); 1805 goto out_quota; 1806 } 1807 1808 /* 1809 * Fill our page array first. That way we've grabbed enough so 1810 * that we can zero and flush if we error after adding the 1811 * extent. 1812 */ 1813 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, 1814 cluster_of_pages, mmap_page); 1815 if (ret) { 1816 mlog_errno(ret); 1817 goto out_quota; 1818 } 1819 1820 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1821 len); 1822 if (ret) { 1823 mlog_errno(ret); 1824 goto out_quota; 1825 } 1826 1827 if (data_ac) 1828 ocfs2_free_alloc_context(data_ac); 1829 if (meta_ac) 1830 ocfs2_free_alloc_context(meta_ac); 1831 1832 success: 1833 *pagep = wc->w_target_page; 1834 *fsdata = wc; 1835 return 0; 1836 out_quota: 1837 if (clusters_to_alloc) 1838 vfs_dq_free_space(inode, 1839 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1840 out_commit: 1841 ocfs2_commit_trans(osb, handle); 1842 1843 out: 1844 ocfs2_free_write_ctxt(wc); 1845 1846 if (data_ac) 1847 ocfs2_free_alloc_context(data_ac); 1848 if (meta_ac) 1849 ocfs2_free_alloc_context(meta_ac); 1850 return ret; 1851 } 1852 1853 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1854 loff_t pos, unsigned len, unsigned flags, 1855 struct page **pagep, void **fsdata) 1856 { 1857 int ret; 1858 struct buffer_head *di_bh = NULL; 1859 struct inode *inode = mapping->host; 1860 1861 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1862 if (ret) { 1863 mlog_errno(ret); 1864 return ret; 1865 } 1866 1867 /* 1868 * Take alloc sem here to prevent concurrent lookups. That way 1869 * the mapping, zeroing and tree manipulation within 1870 * ocfs2_write() will be safe against ->readpage(). This 1871 * should also serve to lock out allocation from a shared 1872 * writeable region. 1873 */ 1874 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1875 1876 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep, 1877 fsdata, di_bh, NULL); 1878 if (ret) { 1879 mlog_errno(ret); 1880 goto out_fail; 1881 } 1882 1883 brelse(di_bh); 1884 1885 return 0; 1886 1887 out_fail: 1888 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1889 1890 brelse(di_bh); 1891 ocfs2_inode_unlock(inode, 1); 1892 1893 return ret; 1894 } 1895 1896 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1897 unsigned len, unsigned *copied, 1898 struct ocfs2_dinode *di, 1899 struct ocfs2_write_ctxt *wc) 1900 { 1901 void *kaddr; 1902 1903 if (unlikely(*copied < len)) { 1904 if (!PageUptodate(wc->w_target_page)) { 1905 *copied = 0; 1906 return; 1907 } 1908 } 1909 1910 kaddr = kmap_atomic(wc->w_target_page, KM_USER0); 1911 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1912 kunmap_atomic(kaddr, KM_USER0); 1913 1914 mlog(0, "Data written to inode at offset %llu. " 1915 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n", 1916 (unsigned long long)pos, *copied, 1917 le16_to_cpu(di->id2.i_data.id_count), 1918 le16_to_cpu(di->i_dyn_features)); 1919 } 1920 1921 int ocfs2_write_end_nolock(struct address_space *mapping, 1922 loff_t pos, unsigned len, unsigned copied, 1923 struct page *page, void *fsdata) 1924 { 1925 int i; 1926 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); 1927 struct inode *inode = mapping->host; 1928 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1929 struct ocfs2_write_ctxt *wc = fsdata; 1930 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1931 handle_t *handle = wc->w_handle; 1932 struct page *tmppage; 1933 1934 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1935 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1936 goto out_write_size; 1937 } 1938 1939 if (unlikely(copied < len)) { 1940 if (!PageUptodate(wc->w_target_page)) 1941 copied = 0; 1942 1943 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1944 start+len); 1945 } 1946 flush_dcache_page(wc->w_target_page); 1947 1948 for(i = 0; i < wc->w_num_pages; i++) { 1949 tmppage = wc->w_pages[i]; 1950 1951 if (tmppage == wc->w_target_page) { 1952 from = wc->w_target_from; 1953 to = wc->w_target_to; 1954 1955 BUG_ON(from > PAGE_CACHE_SIZE || 1956 to > PAGE_CACHE_SIZE || 1957 to < from); 1958 } else { 1959 /* 1960 * Pages adjacent to the target (if any) imply 1961 * a hole-filling write in which case we want 1962 * to flush their entire range. 1963 */ 1964 from = 0; 1965 to = PAGE_CACHE_SIZE; 1966 } 1967 1968 if (page_has_buffers(tmppage)) { 1969 if (ocfs2_should_order_data(inode)) 1970 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1971 block_commit_write(tmppage, from, to); 1972 } 1973 } 1974 1975 out_write_size: 1976 pos += copied; 1977 if (pos > inode->i_size) { 1978 i_size_write(inode, pos); 1979 mark_inode_dirty(inode); 1980 } 1981 inode->i_blocks = ocfs2_inode_sector_count(inode); 1982 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 1983 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1984 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 1985 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 1986 ocfs2_journal_dirty(handle, wc->w_di_bh); 1987 1988 ocfs2_commit_trans(osb, handle); 1989 1990 ocfs2_run_deallocs(osb, &wc->w_dealloc); 1991 1992 ocfs2_free_write_ctxt(wc); 1993 1994 return copied; 1995 } 1996 1997 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 1998 loff_t pos, unsigned len, unsigned copied, 1999 struct page *page, void *fsdata) 2000 { 2001 int ret; 2002 struct inode *inode = mapping->host; 2003 2004 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 2005 2006 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2007 ocfs2_inode_unlock(inode, 1); 2008 2009 return ret; 2010 } 2011 2012 const struct address_space_operations ocfs2_aops = { 2013 .readpage = ocfs2_readpage, 2014 .readpages = ocfs2_readpages, 2015 .writepage = ocfs2_writepage, 2016 .write_begin = ocfs2_write_begin, 2017 .write_end = ocfs2_write_end, 2018 .bmap = ocfs2_bmap, 2019 .sync_page = block_sync_page, 2020 .direct_IO = ocfs2_direct_IO, 2021 .invalidatepage = ocfs2_invalidatepage, 2022 .releasepage = ocfs2_releasepage, 2023 .migratepage = buffer_migrate_page, 2024 .is_partially_uptodate = block_is_partially_uptodate, 2025 .error_remove_page = generic_error_remove_page, 2026 }; 2027