xref: /openbmc/linux/fs/ocfs2/aops.c (revision e8e0929d)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
48 
49 #include "buffer_head_io.h"
50 
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 				   struct buffer_head *bh_result, int create)
53 {
54 	int err = -EIO;
55 	int status;
56 	struct ocfs2_dinode *fe = NULL;
57 	struct buffer_head *bh = NULL;
58 	struct buffer_head *buffer_cache_bh = NULL;
59 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 	void *kaddr;
61 
62 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63 		   (unsigned long long)iblock, bh_result, create);
64 
65 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66 
67 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69 		     (unsigned long long)iblock);
70 		goto bail;
71 	}
72 
73 	status = ocfs2_read_inode_block(inode, &bh);
74 	if (status < 0) {
75 		mlog_errno(status);
76 		goto bail;
77 	}
78 	fe = (struct ocfs2_dinode *) bh->b_data;
79 
80 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81 						    le32_to_cpu(fe->i_clusters))) {
82 		mlog(ML_ERROR, "block offset is outside the allocated size: "
83 		     "%llu\n", (unsigned long long)iblock);
84 		goto bail;
85 	}
86 
87 	/* We don't use the page cache to create symlink data, so if
88 	 * need be, copy it over from the buffer cache. */
89 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91 			    iblock;
92 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
93 		if (!buffer_cache_bh) {
94 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95 			goto bail;
96 		}
97 
98 		/* we haven't locked out transactions, so a commit
99 		 * could've happened. Since we've got a reference on
100 		 * the bh, even if it commits while we're doing the
101 		 * copy, the data is still good. */
102 		if (buffer_jbd(buffer_cache_bh)
103 		    && ocfs2_inode_is_new(inode)) {
104 			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105 			if (!kaddr) {
106 				mlog(ML_ERROR, "couldn't kmap!\n");
107 				goto bail;
108 			}
109 			memcpy(kaddr + (bh_result->b_size * iblock),
110 			       buffer_cache_bh->b_data,
111 			       bh_result->b_size);
112 			kunmap_atomic(kaddr, KM_USER0);
113 			set_buffer_uptodate(bh_result);
114 		}
115 		brelse(buffer_cache_bh);
116 	}
117 
118 	map_bh(bh_result, inode->i_sb,
119 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
120 
121 	err = 0;
122 
123 bail:
124 	brelse(bh);
125 
126 	mlog_exit(err);
127 	return err;
128 }
129 
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 		    struct buffer_head *bh_result, int create)
132 {
133 	int err = 0;
134 	unsigned int ext_flags;
135 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 	u64 p_blkno, count, past_eof;
137 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138 
139 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140 		   (unsigned long long)iblock, bh_result, create);
141 
142 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 		     inode, inode->i_ino);
145 
146 	if (S_ISLNK(inode->i_mode)) {
147 		/* this always does I/O for some reason. */
148 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 		goto bail;
150 	}
151 
152 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 					  &ext_flags);
154 	if (err) {
155 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 		     (unsigned long long)p_blkno);
158 		goto bail;
159 	}
160 
161 	if (max_blocks < count)
162 		count = max_blocks;
163 
164 	/*
165 	 * ocfs2 never allocates in this function - the only time we
166 	 * need to use BH_New is when we're extending i_size on a file
167 	 * system which doesn't support holes, in which case BH_New
168 	 * allows block_prepare_write() to zero.
169 	 *
170 	 * If we see this on a sparse file system, then a truncate has
171 	 * raced us and removed the cluster. In this case, we clear
172 	 * the buffers dirty and uptodate bits and let the buffer code
173 	 * ignore it as a hole.
174 	 */
175 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 		clear_buffer_dirty(bh_result);
177 		clear_buffer_uptodate(bh_result);
178 		goto bail;
179 	}
180 
181 	/* Treat the unwritten extent as a hole for zeroing purposes. */
182 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 		map_bh(bh_result, inode->i_sb, p_blkno);
184 
185 	bh_result->b_size = count << inode->i_blkbits;
186 
187 	if (!ocfs2_sparse_alloc(osb)) {
188 		if (p_blkno == 0) {
189 			err = -EIO;
190 			mlog(ML_ERROR,
191 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 			     (unsigned long long)iblock,
193 			     (unsigned long long)p_blkno,
194 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 			dump_stack();
197 			goto bail;
198 		}
199 
200 		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
201 		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
202 		     (unsigned long long)past_eof);
203 
204 		if (create && (iblock >= past_eof))
205 			set_buffer_new(bh_result);
206 	}
207 
208 bail:
209 	if (err < 0)
210 		err = -EIO;
211 
212 	mlog_exit(err);
213 	return err;
214 }
215 
216 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
217 			   struct buffer_head *di_bh)
218 {
219 	void *kaddr;
220 	loff_t size;
221 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
222 
223 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
224 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
225 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
226 		return -EROFS;
227 	}
228 
229 	size = i_size_read(inode);
230 
231 	if (size > PAGE_CACHE_SIZE ||
232 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
233 		ocfs2_error(inode->i_sb,
234 			    "Inode %llu has with inline data has bad size: %Lu",
235 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
236 			    (unsigned long long)size);
237 		return -EROFS;
238 	}
239 
240 	kaddr = kmap_atomic(page, KM_USER0);
241 	if (size)
242 		memcpy(kaddr, di->id2.i_data.id_data, size);
243 	/* Clear the remaining part of the page */
244 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
245 	flush_dcache_page(page);
246 	kunmap_atomic(kaddr, KM_USER0);
247 
248 	SetPageUptodate(page);
249 
250 	return 0;
251 }
252 
253 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
254 {
255 	int ret;
256 	struct buffer_head *di_bh = NULL;
257 
258 	BUG_ON(!PageLocked(page));
259 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
260 
261 	ret = ocfs2_read_inode_block(inode, &di_bh);
262 	if (ret) {
263 		mlog_errno(ret);
264 		goto out;
265 	}
266 
267 	ret = ocfs2_read_inline_data(inode, page, di_bh);
268 out:
269 	unlock_page(page);
270 
271 	brelse(di_bh);
272 	return ret;
273 }
274 
275 static int ocfs2_readpage(struct file *file, struct page *page)
276 {
277 	struct inode *inode = page->mapping->host;
278 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
279 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
280 	int ret, unlock = 1;
281 
282 	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
283 
284 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 	if (ret != 0) {
286 		if (ret == AOP_TRUNCATED_PAGE)
287 			unlock = 0;
288 		mlog_errno(ret);
289 		goto out;
290 	}
291 
292 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293 		ret = AOP_TRUNCATED_PAGE;
294 		goto out_inode_unlock;
295 	}
296 
297 	/*
298 	 * i_size might have just been updated as we grabed the meta lock.  We
299 	 * might now be discovering a truncate that hit on another node.
300 	 * block_read_full_page->get_block freaks out if it is asked to read
301 	 * beyond the end of a file, so we check here.  Callers
302 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303 	 * and notice that the page they just read isn't needed.
304 	 *
305 	 * XXX sys_readahead() seems to get that wrong?
306 	 */
307 	if (start >= i_size_read(inode)) {
308 		zero_user(page, 0, PAGE_SIZE);
309 		SetPageUptodate(page);
310 		ret = 0;
311 		goto out_alloc;
312 	}
313 
314 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315 		ret = ocfs2_readpage_inline(inode, page);
316 	else
317 		ret = block_read_full_page(page, ocfs2_get_block);
318 	unlock = 0;
319 
320 out_alloc:
321 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
322 out_inode_unlock:
323 	ocfs2_inode_unlock(inode, 0);
324 out:
325 	if (unlock)
326 		unlock_page(page);
327 	mlog_exit(ret);
328 	return ret;
329 }
330 
331 /*
332  * This is used only for read-ahead. Failures or difficult to handle
333  * situations are safe to ignore.
334  *
335  * Right now, we don't bother with BH_Boundary - in-inode extent lists
336  * are quite large (243 extents on 4k blocks), so most inodes don't
337  * grow out to a tree. If need be, detecting boundary extents could
338  * trivially be added in a future version of ocfs2_get_block().
339  */
340 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
341 			   struct list_head *pages, unsigned nr_pages)
342 {
343 	int ret, err = -EIO;
344 	struct inode *inode = mapping->host;
345 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
346 	loff_t start;
347 	struct page *last;
348 
349 	/*
350 	 * Use the nonblocking flag for the dlm code to avoid page
351 	 * lock inversion, but don't bother with retrying.
352 	 */
353 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
354 	if (ret)
355 		return err;
356 
357 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
358 		ocfs2_inode_unlock(inode, 0);
359 		return err;
360 	}
361 
362 	/*
363 	 * Don't bother with inline-data. There isn't anything
364 	 * to read-ahead in that case anyway...
365 	 */
366 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
367 		goto out_unlock;
368 
369 	/*
370 	 * Check whether a remote node truncated this file - we just
371 	 * drop out in that case as it's not worth handling here.
372 	 */
373 	last = list_entry(pages->prev, struct page, lru);
374 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
375 	if (start >= i_size_read(inode))
376 		goto out_unlock;
377 
378 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
379 
380 out_unlock:
381 	up_read(&oi->ip_alloc_sem);
382 	ocfs2_inode_unlock(inode, 0);
383 
384 	return err;
385 }
386 
387 /* Note: Because we don't support holes, our allocation has
388  * already happened (allocation writes zeros to the file data)
389  * so we don't have to worry about ordered writes in
390  * ocfs2_writepage.
391  *
392  * ->writepage is called during the process of invalidating the page cache
393  * during blocked lock processing.  It can't block on any cluster locks
394  * to during block mapping.  It's relying on the fact that the block
395  * mapping can't have disappeared under the dirty pages that it is
396  * being asked to write back.
397  */
398 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
399 {
400 	int ret;
401 
402 	mlog_entry("(0x%p)\n", page);
403 
404 	ret = block_write_full_page(page, ocfs2_get_block, wbc);
405 
406 	mlog_exit(ret);
407 
408 	return ret;
409 }
410 
411 /*
412  * This is called from ocfs2_write_zero_page() which has handled it's
413  * own cluster locking and has ensured allocation exists for those
414  * blocks to be written.
415  */
416 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
417 			       unsigned from, unsigned to)
418 {
419 	int ret;
420 
421 	ret = block_prepare_write(page, from, to, ocfs2_get_block);
422 
423 	return ret;
424 }
425 
426 /* Taken from ext3. We don't necessarily need the full blown
427  * functionality yet, but IMHO it's better to cut and paste the whole
428  * thing so we can avoid introducing our own bugs (and easily pick up
429  * their fixes when they happen) --Mark */
430 int walk_page_buffers(	handle_t *handle,
431 			struct buffer_head *head,
432 			unsigned from,
433 			unsigned to,
434 			int *partial,
435 			int (*fn)(	handle_t *handle,
436 					struct buffer_head *bh))
437 {
438 	struct buffer_head *bh;
439 	unsigned block_start, block_end;
440 	unsigned blocksize = head->b_size;
441 	int err, ret = 0;
442 	struct buffer_head *next;
443 
444 	for (	bh = head, block_start = 0;
445 		ret == 0 && (bh != head || !block_start);
446 	    	block_start = block_end, bh = next)
447 	{
448 		next = bh->b_this_page;
449 		block_end = block_start + blocksize;
450 		if (block_end <= from || block_start >= to) {
451 			if (partial && !buffer_uptodate(bh))
452 				*partial = 1;
453 			continue;
454 		}
455 		err = (*fn)(handle, bh);
456 		if (!ret)
457 			ret = err;
458 	}
459 	return ret;
460 }
461 
462 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
463 							 struct page *page,
464 							 unsigned from,
465 							 unsigned to)
466 {
467 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
468 	handle_t *handle;
469 	int ret = 0;
470 
471 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
472 	if (IS_ERR(handle)) {
473 		ret = -ENOMEM;
474 		mlog_errno(ret);
475 		goto out;
476 	}
477 
478 	if (ocfs2_should_order_data(inode)) {
479 		ret = ocfs2_jbd2_file_inode(handle, inode);
480 		if (ret < 0)
481 			mlog_errno(ret);
482 	}
483 out:
484 	if (ret) {
485 		if (!IS_ERR(handle))
486 			ocfs2_commit_trans(osb, handle);
487 		handle = ERR_PTR(ret);
488 	}
489 	return handle;
490 }
491 
492 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
493 {
494 	sector_t status;
495 	u64 p_blkno = 0;
496 	int err = 0;
497 	struct inode *inode = mapping->host;
498 
499 	mlog_entry("(block = %llu)\n", (unsigned long long)block);
500 
501 	/* We don't need to lock journal system files, since they aren't
502 	 * accessed concurrently from multiple nodes.
503 	 */
504 	if (!INODE_JOURNAL(inode)) {
505 		err = ocfs2_inode_lock(inode, NULL, 0);
506 		if (err) {
507 			if (err != -ENOENT)
508 				mlog_errno(err);
509 			goto bail;
510 		}
511 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
512 	}
513 
514 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
515 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
516 						  NULL);
517 
518 	if (!INODE_JOURNAL(inode)) {
519 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
520 		ocfs2_inode_unlock(inode, 0);
521 	}
522 
523 	if (err) {
524 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
525 		     (unsigned long long)block);
526 		mlog_errno(err);
527 		goto bail;
528 	}
529 
530 bail:
531 	status = err ? 0 : p_blkno;
532 
533 	mlog_exit((int)status);
534 
535 	return status;
536 }
537 
538 /*
539  * TODO: Make this into a generic get_blocks function.
540  *
541  * From do_direct_io in direct-io.c:
542  *  "So what we do is to permit the ->get_blocks function to populate
543  *   bh.b_size with the size of IO which is permitted at this offset and
544  *   this i_blkbits."
545  *
546  * This function is called directly from get_more_blocks in direct-io.c.
547  *
548  * called like this: dio->get_blocks(dio->inode, fs_startblk,
549  * 					fs_count, map_bh, dio->rw == WRITE);
550  */
551 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
552 				     struct buffer_head *bh_result, int create)
553 {
554 	int ret;
555 	u64 p_blkno, inode_blocks, contig_blocks;
556 	unsigned int ext_flags;
557 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
558 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
559 
560 	/* This function won't even be called if the request isn't all
561 	 * nicely aligned and of the right size, so there's no need
562 	 * for us to check any of that. */
563 
564 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
565 
566 	/*
567 	 * Any write past EOF is not allowed because we'd be extending.
568 	 */
569 	if (create && (iblock + max_blocks) > inode_blocks) {
570 		ret = -EIO;
571 		goto bail;
572 	}
573 
574 	/* This figures out the size of the next contiguous block, and
575 	 * our logical offset */
576 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
577 					  &contig_blocks, &ext_flags);
578 	if (ret) {
579 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
580 		     (unsigned long long)iblock);
581 		ret = -EIO;
582 		goto bail;
583 	}
584 
585 	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
586 		ocfs2_error(inode->i_sb,
587 			    "Inode %llu has a hole at block %llu\n",
588 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
589 			    (unsigned long long)iblock);
590 		ret = -EROFS;
591 		goto bail;
592 	}
593 
594 	/* We should already CoW the refcounted extent. */
595 	BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
596 	/*
597 	 * get_more_blocks() expects us to describe a hole by clearing
598 	 * the mapped bit on bh_result().
599 	 *
600 	 * Consider an unwritten extent as a hole.
601 	 */
602 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
603 		map_bh(bh_result, inode->i_sb, p_blkno);
604 	else {
605 		/*
606 		 * ocfs2_prepare_inode_for_write() should have caught
607 		 * the case where we'd be filling a hole and triggered
608 		 * a buffered write instead.
609 		 */
610 		if (create) {
611 			ret = -EIO;
612 			mlog_errno(ret);
613 			goto bail;
614 		}
615 
616 		clear_buffer_mapped(bh_result);
617 	}
618 
619 	/* make sure we don't map more than max_blocks blocks here as
620 	   that's all the kernel will handle at this point. */
621 	if (max_blocks < contig_blocks)
622 		contig_blocks = max_blocks;
623 	bh_result->b_size = contig_blocks << blocksize_bits;
624 bail:
625 	return ret;
626 }
627 
628 /*
629  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
630  * particularly interested in the aio/dio case.  Like the core uses
631  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
632  * truncation on another.
633  */
634 static void ocfs2_dio_end_io(struct kiocb *iocb,
635 			     loff_t offset,
636 			     ssize_t bytes,
637 			     void *private)
638 {
639 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
640 	int level;
641 
642 	/* this io's submitter should not have unlocked this before we could */
643 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
644 
645 	ocfs2_iocb_clear_rw_locked(iocb);
646 
647 	level = ocfs2_iocb_rw_locked_level(iocb);
648 	if (!level)
649 		up_read(&inode->i_alloc_sem);
650 	ocfs2_rw_unlock(inode, level);
651 }
652 
653 /*
654  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
655  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
656  * do journalled data.
657  */
658 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
659 {
660 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
661 
662 	jbd2_journal_invalidatepage(journal, page, offset);
663 }
664 
665 static int ocfs2_releasepage(struct page *page, gfp_t wait)
666 {
667 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
668 
669 	if (!page_has_buffers(page))
670 		return 0;
671 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
672 }
673 
674 static ssize_t ocfs2_direct_IO(int rw,
675 			       struct kiocb *iocb,
676 			       const struct iovec *iov,
677 			       loff_t offset,
678 			       unsigned long nr_segs)
679 {
680 	struct file *file = iocb->ki_filp;
681 	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
682 	int ret;
683 
684 	mlog_entry_void();
685 
686 	/*
687 	 * Fallback to buffered I/O if we see an inode without
688 	 * extents.
689 	 */
690 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
691 		return 0;
692 
693 	/* Fallback to buffered I/O if we are appending. */
694 	if (i_size_read(inode) <= offset)
695 		return 0;
696 
697 	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
698 					    inode->i_sb->s_bdev, iov, offset,
699 					    nr_segs,
700 					    ocfs2_direct_IO_get_blocks,
701 					    ocfs2_dio_end_io);
702 
703 	mlog_exit(ret);
704 	return ret;
705 }
706 
707 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
708 					    u32 cpos,
709 					    unsigned int *start,
710 					    unsigned int *end)
711 {
712 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
713 
714 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
715 		unsigned int cpp;
716 
717 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
718 
719 		cluster_start = cpos % cpp;
720 		cluster_start = cluster_start << osb->s_clustersize_bits;
721 
722 		cluster_end = cluster_start + osb->s_clustersize;
723 	}
724 
725 	BUG_ON(cluster_start > PAGE_SIZE);
726 	BUG_ON(cluster_end > PAGE_SIZE);
727 
728 	if (start)
729 		*start = cluster_start;
730 	if (end)
731 		*end = cluster_end;
732 }
733 
734 /*
735  * 'from' and 'to' are the region in the page to avoid zeroing.
736  *
737  * If pagesize > clustersize, this function will avoid zeroing outside
738  * of the cluster boundary.
739  *
740  * from == to == 0 is code for "zero the entire cluster region"
741  */
742 static void ocfs2_clear_page_regions(struct page *page,
743 				     struct ocfs2_super *osb, u32 cpos,
744 				     unsigned from, unsigned to)
745 {
746 	void *kaddr;
747 	unsigned int cluster_start, cluster_end;
748 
749 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
750 
751 	kaddr = kmap_atomic(page, KM_USER0);
752 
753 	if (from || to) {
754 		if (from > cluster_start)
755 			memset(kaddr + cluster_start, 0, from - cluster_start);
756 		if (to < cluster_end)
757 			memset(kaddr + to, 0, cluster_end - to);
758 	} else {
759 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
760 	}
761 
762 	kunmap_atomic(kaddr, KM_USER0);
763 }
764 
765 /*
766  * Nonsparse file systems fully allocate before we get to the write
767  * code. This prevents ocfs2_write() from tagging the write as an
768  * allocating one, which means ocfs2_map_page_blocks() might try to
769  * read-in the blocks at the tail of our file. Avoid reading them by
770  * testing i_size against each block offset.
771  */
772 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
773 				 unsigned int block_start)
774 {
775 	u64 offset = page_offset(page) + block_start;
776 
777 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
778 		return 1;
779 
780 	if (i_size_read(inode) > offset)
781 		return 1;
782 
783 	return 0;
784 }
785 
786 /*
787  * Some of this taken from block_prepare_write(). We already have our
788  * mapping by now though, and the entire write will be allocating or
789  * it won't, so not much need to use BH_New.
790  *
791  * This will also skip zeroing, which is handled externally.
792  */
793 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
794 			  struct inode *inode, unsigned int from,
795 			  unsigned int to, int new)
796 {
797 	int ret = 0;
798 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
799 	unsigned int block_end, block_start;
800 	unsigned int bsize = 1 << inode->i_blkbits;
801 
802 	if (!page_has_buffers(page))
803 		create_empty_buffers(page, bsize, 0);
804 
805 	head = page_buffers(page);
806 	for (bh = head, block_start = 0; bh != head || !block_start;
807 	     bh = bh->b_this_page, block_start += bsize) {
808 		block_end = block_start + bsize;
809 
810 		clear_buffer_new(bh);
811 
812 		/*
813 		 * Ignore blocks outside of our i/o range -
814 		 * they may belong to unallocated clusters.
815 		 */
816 		if (block_start >= to || block_end <= from) {
817 			if (PageUptodate(page))
818 				set_buffer_uptodate(bh);
819 			continue;
820 		}
821 
822 		/*
823 		 * For an allocating write with cluster size >= page
824 		 * size, we always write the entire page.
825 		 */
826 		if (new)
827 			set_buffer_new(bh);
828 
829 		if (!buffer_mapped(bh)) {
830 			map_bh(bh, inode->i_sb, *p_blkno);
831 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
832 		}
833 
834 		if (PageUptodate(page)) {
835 			if (!buffer_uptodate(bh))
836 				set_buffer_uptodate(bh);
837 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
838 			   !buffer_new(bh) &&
839 			   ocfs2_should_read_blk(inode, page, block_start) &&
840 			   (block_start < from || block_end > to)) {
841 			ll_rw_block(READ, 1, &bh);
842 			*wait_bh++=bh;
843 		}
844 
845 		*p_blkno = *p_blkno + 1;
846 	}
847 
848 	/*
849 	 * If we issued read requests - let them complete.
850 	 */
851 	while(wait_bh > wait) {
852 		wait_on_buffer(*--wait_bh);
853 		if (!buffer_uptodate(*wait_bh))
854 			ret = -EIO;
855 	}
856 
857 	if (ret == 0 || !new)
858 		return ret;
859 
860 	/*
861 	 * If we get -EIO above, zero out any newly allocated blocks
862 	 * to avoid exposing stale data.
863 	 */
864 	bh = head;
865 	block_start = 0;
866 	do {
867 		block_end = block_start + bsize;
868 		if (block_end <= from)
869 			goto next_bh;
870 		if (block_start >= to)
871 			break;
872 
873 		zero_user(page, block_start, bh->b_size);
874 		set_buffer_uptodate(bh);
875 		mark_buffer_dirty(bh);
876 
877 next_bh:
878 		block_start = block_end;
879 		bh = bh->b_this_page;
880 	} while (bh != head);
881 
882 	return ret;
883 }
884 
885 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
886 #define OCFS2_MAX_CTXT_PAGES	1
887 #else
888 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
889 #endif
890 
891 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
892 
893 /*
894  * Describe the state of a single cluster to be written to.
895  */
896 struct ocfs2_write_cluster_desc {
897 	u32		c_cpos;
898 	u32		c_phys;
899 	/*
900 	 * Give this a unique field because c_phys eventually gets
901 	 * filled.
902 	 */
903 	unsigned	c_new;
904 	unsigned	c_unwritten;
905 	unsigned	c_needs_zero;
906 };
907 
908 struct ocfs2_write_ctxt {
909 	/* Logical cluster position / len of write */
910 	u32				w_cpos;
911 	u32				w_clen;
912 
913 	/* First cluster allocated in a nonsparse extend */
914 	u32				w_first_new_cpos;
915 
916 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
917 
918 	/*
919 	 * This is true if page_size > cluster_size.
920 	 *
921 	 * It triggers a set of special cases during write which might
922 	 * have to deal with allocating writes to partial pages.
923 	 */
924 	unsigned int			w_large_pages;
925 
926 	/*
927 	 * Pages involved in this write.
928 	 *
929 	 * w_target_page is the page being written to by the user.
930 	 *
931 	 * w_pages is an array of pages which always contains
932 	 * w_target_page, and in the case of an allocating write with
933 	 * page_size < cluster size, it will contain zero'd and mapped
934 	 * pages adjacent to w_target_page which need to be written
935 	 * out in so that future reads from that region will get
936 	 * zero's.
937 	 */
938 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
939 	unsigned int			w_num_pages;
940 	struct page			*w_target_page;
941 
942 	/*
943 	 * ocfs2_write_end() uses this to know what the real range to
944 	 * write in the target should be.
945 	 */
946 	unsigned int			w_target_from;
947 	unsigned int			w_target_to;
948 
949 	/*
950 	 * We could use journal_current_handle() but this is cleaner,
951 	 * IMHO -Mark
952 	 */
953 	handle_t			*w_handle;
954 
955 	struct buffer_head		*w_di_bh;
956 
957 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
958 };
959 
960 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
961 {
962 	int i;
963 
964 	for(i = 0; i < num_pages; i++) {
965 		if (pages[i]) {
966 			unlock_page(pages[i]);
967 			mark_page_accessed(pages[i]);
968 			page_cache_release(pages[i]);
969 		}
970 	}
971 }
972 
973 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
974 {
975 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
976 
977 	brelse(wc->w_di_bh);
978 	kfree(wc);
979 }
980 
981 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
982 				  struct ocfs2_super *osb, loff_t pos,
983 				  unsigned len, struct buffer_head *di_bh)
984 {
985 	u32 cend;
986 	struct ocfs2_write_ctxt *wc;
987 
988 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
989 	if (!wc)
990 		return -ENOMEM;
991 
992 	wc->w_cpos = pos >> osb->s_clustersize_bits;
993 	wc->w_first_new_cpos = UINT_MAX;
994 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
995 	wc->w_clen = cend - wc->w_cpos + 1;
996 	get_bh(di_bh);
997 	wc->w_di_bh = di_bh;
998 
999 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1000 		wc->w_large_pages = 1;
1001 	else
1002 		wc->w_large_pages = 0;
1003 
1004 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1005 
1006 	*wcp = wc;
1007 
1008 	return 0;
1009 }
1010 
1011 /*
1012  * If a page has any new buffers, zero them out here, and mark them uptodate
1013  * and dirty so they'll be written out (in order to prevent uninitialised
1014  * block data from leaking). And clear the new bit.
1015  */
1016 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1017 {
1018 	unsigned int block_start, block_end;
1019 	struct buffer_head *head, *bh;
1020 
1021 	BUG_ON(!PageLocked(page));
1022 	if (!page_has_buffers(page))
1023 		return;
1024 
1025 	bh = head = page_buffers(page);
1026 	block_start = 0;
1027 	do {
1028 		block_end = block_start + bh->b_size;
1029 
1030 		if (buffer_new(bh)) {
1031 			if (block_end > from && block_start < to) {
1032 				if (!PageUptodate(page)) {
1033 					unsigned start, end;
1034 
1035 					start = max(from, block_start);
1036 					end = min(to, block_end);
1037 
1038 					zero_user_segment(page, start, end);
1039 					set_buffer_uptodate(bh);
1040 				}
1041 
1042 				clear_buffer_new(bh);
1043 				mark_buffer_dirty(bh);
1044 			}
1045 		}
1046 
1047 		block_start = block_end;
1048 		bh = bh->b_this_page;
1049 	} while (bh != head);
1050 }
1051 
1052 /*
1053  * Only called when we have a failure during allocating write to write
1054  * zero's to the newly allocated region.
1055  */
1056 static void ocfs2_write_failure(struct inode *inode,
1057 				struct ocfs2_write_ctxt *wc,
1058 				loff_t user_pos, unsigned user_len)
1059 {
1060 	int i;
1061 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1062 		to = user_pos + user_len;
1063 	struct page *tmppage;
1064 
1065 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1066 
1067 	for(i = 0; i < wc->w_num_pages; i++) {
1068 		tmppage = wc->w_pages[i];
1069 
1070 		if (page_has_buffers(tmppage)) {
1071 			if (ocfs2_should_order_data(inode))
1072 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1073 
1074 			block_commit_write(tmppage, from, to);
1075 		}
1076 	}
1077 }
1078 
1079 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1080 					struct ocfs2_write_ctxt *wc,
1081 					struct page *page, u32 cpos,
1082 					loff_t user_pos, unsigned user_len,
1083 					int new)
1084 {
1085 	int ret;
1086 	unsigned int map_from = 0, map_to = 0;
1087 	unsigned int cluster_start, cluster_end;
1088 	unsigned int user_data_from = 0, user_data_to = 0;
1089 
1090 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1091 					&cluster_start, &cluster_end);
1092 
1093 	if (page == wc->w_target_page) {
1094 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1095 		map_to = map_from + user_len;
1096 
1097 		if (new)
1098 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1099 						    cluster_start, cluster_end,
1100 						    new);
1101 		else
1102 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1103 						    map_from, map_to, new);
1104 		if (ret) {
1105 			mlog_errno(ret);
1106 			goto out;
1107 		}
1108 
1109 		user_data_from = map_from;
1110 		user_data_to = map_to;
1111 		if (new) {
1112 			map_from = cluster_start;
1113 			map_to = cluster_end;
1114 		}
1115 	} else {
1116 		/*
1117 		 * If we haven't allocated the new page yet, we
1118 		 * shouldn't be writing it out without copying user
1119 		 * data. This is likely a math error from the caller.
1120 		 */
1121 		BUG_ON(!new);
1122 
1123 		map_from = cluster_start;
1124 		map_to = cluster_end;
1125 
1126 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1127 					    cluster_start, cluster_end, new);
1128 		if (ret) {
1129 			mlog_errno(ret);
1130 			goto out;
1131 		}
1132 	}
1133 
1134 	/*
1135 	 * Parts of newly allocated pages need to be zero'd.
1136 	 *
1137 	 * Above, we have also rewritten 'to' and 'from' - as far as
1138 	 * the rest of the function is concerned, the entire cluster
1139 	 * range inside of a page needs to be written.
1140 	 *
1141 	 * We can skip this if the page is up to date - it's already
1142 	 * been zero'd from being read in as a hole.
1143 	 */
1144 	if (new && !PageUptodate(page))
1145 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1146 					 cpos, user_data_from, user_data_to);
1147 
1148 	flush_dcache_page(page);
1149 
1150 out:
1151 	return ret;
1152 }
1153 
1154 /*
1155  * This function will only grab one clusters worth of pages.
1156  */
1157 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1158 				      struct ocfs2_write_ctxt *wc,
1159 				      u32 cpos, loff_t user_pos, int new,
1160 				      struct page *mmap_page)
1161 {
1162 	int ret = 0, i;
1163 	unsigned long start, target_index, index;
1164 	struct inode *inode = mapping->host;
1165 
1166 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1167 
1168 	/*
1169 	 * Figure out how many pages we'll be manipulating here. For
1170 	 * non allocating write, we just change the one
1171 	 * page. Otherwise, we'll need a whole clusters worth.
1172 	 */
1173 	if (new) {
1174 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1175 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1176 	} else {
1177 		wc->w_num_pages = 1;
1178 		start = target_index;
1179 	}
1180 
1181 	for(i = 0; i < wc->w_num_pages; i++) {
1182 		index = start + i;
1183 
1184 		if (index == target_index && mmap_page) {
1185 			/*
1186 			 * ocfs2_pagemkwrite() is a little different
1187 			 * and wants us to directly use the page
1188 			 * passed in.
1189 			 */
1190 			lock_page(mmap_page);
1191 
1192 			if (mmap_page->mapping != mapping) {
1193 				unlock_page(mmap_page);
1194 				/*
1195 				 * Sanity check - the locking in
1196 				 * ocfs2_pagemkwrite() should ensure
1197 				 * that this code doesn't trigger.
1198 				 */
1199 				ret = -EINVAL;
1200 				mlog_errno(ret);
1201 				goto out;
1202 			}
1203 
1204 			page_cache_get(mmap_page);
1205 			wc->w_pages[i] = mmap_page;
1206 		} else {
1207 			wc->w_pages[i] = find_or_create_page(mapping, index,
1208 							     GFP_NOFS);
1209 			if (!wc->w_pages[i]) {
1210 				ret = -ENOMEM;
1211 				mlog_errno(ret);
1212 				goto out;
1213 			}
1214 		}
1215 
1216 		if (index == target_index)
1217 			wc->w_target_page = wc->w_pages[i];
1218 	}
1219 out:
1220 	return ret;
1221 }
1222 
1223 /*
1224  * Prepare a single cluster for write one cluster into the file.
1225  */
1226 static int ocfs2_write_cluster(struct address_space *mapping,
1227 			       u32 phys, unsigned int unwritten,
1228 			       unsigned int should_zero,
1229 			       struct ocfs2_alloc_context *data_ac,
1230 			       struct ocfs2_alloc_context *meta_ac,
1231 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1232 			       loff_t user_pos, unsigned user_len)
1233 {
1234 	int ret, i, new;
1235 	u64 v_blkno, p_blkno;
1236 	struct inode *inode = mapping->host;
1237 	struct ocfs2_extent_tree et;
1238 
1239 	new = phys == 0 ? 1 : 0;
1240 	if (new) {
1241 		u32 tmp_pos;
1242 
1243 		/*
1244 		 * This is safe to call with the page locks - it won't take
1245 		 * any additional semaphores or cluster locks.
1246 		 */
1247 		tmp_pos = cpos;
1248 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1249 					   &tmp_pos, 1, 0, wc->w_di_bh,
1250 					   wc->w_handle, data_ac,
1251 					   meta_ac, NULL);
1252 		/*
1253 		 * This shouldn't happen because we must have already
1254 		 * calculated the correct meta data allocation required. The
1255 		 * internal tree allocation code should know how to increase
1256 		 * transaction credits itself.
1257 		 *
1258 		 * If need be, we could handle -EAGAIN for a
1259 		 * RESTART_TRANS here.
1260 		 */
1261 		mlog_bug_on_msg(ret == -EAGAIN,
1262 				"Inode %llu: EAGAIN return during allocation.\n",
1263 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1264 		if (ret < 0) {
1265 			mlog_errno(ret);
1266 			goto out;
1267 		}
1268 	} else if (unwritten) {
1269 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1270 					      wc->w_di_bh);
1271 		ret = ocfs2_mark_extent_written(inode, &et,
1272 						wc->w_handle, cpos, 1, phys,
1273 						meta_ac, &wc->w_dealloc);
1274 		if (ret < 0) {
1275 			mlog_errno(ret);
1276 			goto out;
1277 		}
1278 	}
1279 
1280 	if (should_zero)
1281 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1282 	else
1283 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1284 
1285 	/*
1286 	 * The only reason this should fail is due to an inability to
1287 	 * find the extent added.
1288 	 */
1289 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1290 					  NULL);
1291 	if (ret < 0) {
1292 		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1293 			    "at logical block %llu",
1294 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1295 			    (unsigned long long)v_blkno);
1296 		goto out;
1297 	}
1298 
1299 	BUG_ON(p_blkno == 0);
1300 
1301 	for(i = 0; i < wc->w_num_pages; i++) {
1302 		int tmpret;
1303 
1304 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1305 						      wc->w_pages[i], cpos,
1306 						      user_pos, user_len,
1307 						      should_zero);
1308 		if (tmpret) {
1309 			mlog_errno(tmpret);
1310 			if (ret == 0)
1311 				ret = tmpret;
1312 		}
1313 	}
1314 
1315 	/*
1316 	 * We only have cleanup to do in case of allocating write.
1317 	 */
1318 	if (ret && new)
1319 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1320 
1321 out:
1322 
1323 	return ret;
1324 }
1325 
1326 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1327 				       struct ocfs2_alloc_context *data_ac,
1328 				       struct ocfs2_alloc_context *meta_ac,
1329 				       struct ocfs2_write_ctxt *wc,
1330 				       loff_t pos, unsigned len)
1331 {
1332 	int ret, i;
1333 	loff_t cluster_off;
1334 	unsigned int local_len = len;
1335 	struct ocfs2_write_cluster_desc *desc;
1336 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1337 
1338 	for (i = 0; i < wc->w_clen; i++) {
1339 		desc = &wc->w_desc[i];
1340 
1341 		/*
1342 		 * We have to make sure that the total write passed in
1343 		 * doesn't extend past a single cluster.
1344 		 */
1345 		local_len = len;
1346 		cluster_off = pos & (osb->s_clustersize - 1);
1347 		if ((cluster_off + local_len) > osb->s_clustersize)
1348 			local_len = osb->s_clustersize - cluster_off;
1349 
1350 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1351 					  desc->c_unwritten,
1352 					  desc->c_needs_zero,
1353 					  data_ac, meta_ac,
1354 					  wc, desc->c_cpos, pos, local_len);
1355 		if (ret) {
1356 			mlog_errno(ret);
1357 			goto out;
1358 		}
1359 
1360 		len -= local_len;
1361 		pos += local_len;
1362 	}
1363 
1364 	ret = 0;
1365 out:
1366 	return ret;
1367 }
1368 
1369 /*
1370  * ocfs2_write_end() wants to know which parts of the target page it
1371  * should complete the write on. It's easiest to compute them ahead of
1372  * time when a more complete view of the write is available.
1373  */
1374 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1375 					struct ocfs2_write_ctxt *wc,
1376 					loff_t pos, unsigned len, int alloc)
1377 {
1378 	struct ocfs2_write_cluster_desc *desc;
1379 
1380 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1381 	wc->w_target_to = wc->w_target_from + len;
1382 
1383 	if (alloc == 0)
1384 		return;
1385 
1386 	/*
1387 	 * Allocating write - we may have different boundaries based
1388 	 * on page size and cluster size.
1389 	 *
1390 	 * NOTE: We can no longer compute one value from the other as
1391 	 * the actual write length and user provided length may be
1392 	 * different.
1393 	 */
1394 
1395 	if (wc->w_large_pages) {
1396 		/*
1397 		 * We only care about the 1st and last cluster within
1398 		 * our range and whether they should be zero'd or not. Either
1399 		 * value may be extended out to the start/end of a
1400 		 * newly allocated cluster.
1401 		 */
1402 		desc = &wc->w_desc[0];
1403 		if (desc->c_needs_zero)
1404 			ocfs2_figure_cluster_boundaries(osb,
1405 							desc->c_cpos,
1406 							&wc->w_target_from,
1407 							NULL);
1408 
1409 		desc = &wc->w_desc[wc->w_clen - 1];
1410 		if (desc->c_needs_zero)
1411 			ocfs2_figure_cluster_boundaries(osb,
1412 							desc->c_cpos,
1413 							NULL,
1414 							&wc->w_target_to);
1415 	} else {
1416 		wc->w_target_from = 0;
1417 		wc->w_target_to = PAGE_CACHE_SIZE;
1418 	}
1419 }
1420 
1421 /*
1422  * Populate each single-cluster write descriptor in the write context
1423  * with information about the i/o to be done.
1424  *
1425  * Returns the number of clusters that will have to be allocated, as
1426  * well as a worst case estimate of the number of extent records that
1427  * would have to be created during a write to an unwritten region.
1428  */
1429 static int ocfs2_populate_write_desc(struct inode *inode,
1430 				     struct ocfs2_write_ctxt *wc,
1431 				     unsigned int *clusters_to_alloc,
1432 				     unsigned int *extents_to_split)
1433 {
1434 	int ret;
1435 	struct ocfs2_write_cluster_desc *desc;
1436 	unsigned int num_clusters = 0;
1437 	unsigned int ext_flags = 0;
1438 	u32 phys = 0;
1439 	int i;
1440 
1441 	*clusters_to_alloc = 0;
1442 	*extents_to_split = 0;
1443 
1444 	for (i = 0; i < wc->w_clen; i++) {
1445 		desc = &wc->w_desc[i];
1446 		desc->c_cpos = wc->w_cpos + i;
1447 
1448 		if (num_clusters == 0) {
1449 			/*
1450 			 * Need to look up the next extent record.
1451 			 */
1452 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1453 						 &num_clusters, &ext_flags);
1454 			if (ret) {
1455 				mlog_errno(ret);
1456 				goto out;
1457 			}
1458 
1459 			/* We should already CoW the refcountd extent. */
1460 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1461 
1462 			/*
1463 			 * Assume worst case - that we're writing in
1464 			 * the middle of the extent.
1465 			 *
1466 			 * We can assume that the write proceeds from
1467 			 * left to right, in which case the extent
1468 			 * insert code is smart enough to coalesce the
1469 			 * next splits into the previous records created.
1470 			 */
1471 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1472 				*extents_to_split = *extents_to_split + 2;
1473 		} else if (phys) {
1474 			/*
1475 			 * Only increment phys if it doesn't describe
1476 			 * a hole.
1477 			 */
1478 			phys++;
1479 		}
1480 
1481 		/*
1482 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1483 		 * file that got extended.  w_first_new_cpos tells us
1484 		 * where the newly allocated clusters are so we can
1485 		 * zero them.
1486 		 */
1487 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1488 			BUG_ON(phys == 0);
1489 			desc->c_needs_zero = 1;
1490 		}
1491 
1492 		desc->c_phys = phys;
1493 		if (phys == 0) {
1494 			desc->c_new = 1;
1495 			desc->c_needs_zero = 1;
1496 			*clusters_to_alloc = *clusters_to_alloc + 1;
1497 		}
1498 
1499 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1500 			desc->c_unwritten = 1;
1501 			desc->c_needs_zero = 1;
1502 		}
1503 
1504 		num_clusters--;
1505 	}
1506 
1507 	ret = 0;
1508 out:
1509 	return ret;
1510 }
1511 
1512 static int ocfs2_write_begin_inline(struct address_space *mapping,
1513 				    struct inode *inode,
1514 				    struct ocfs2_write_ctxt *wc)
1515 {
1516 	int ret;
1517 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1518 	struct page *page;
1519 	handle_t *handle;
1520 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1521 
1522 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1523 	if (!page) {
1524 		ret = -ENOMEM;
1525 		mlog_errno(ret);
1526 		goto out;
1527 	}
1528 	/*
1529 	 * If we don't set w_num_pages then this page won't get unlocked
1530 	 * and freed on cleanup of the write context.
1531 	 */
1532 	wc->w_pages[0] = wc->w_target_page = page;
1533 	wc->w_num_pages = 1;
1534 
1535 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1536 	if (IS_ERR(handle)) {
1537 		ret = PTR_ERR(handle);
1538 		mlog_errno(ret);
1539 		goto out;
1540 	}
1541 
1542 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1543 				      OCFS2_JOURNAL_ACCESS_WRITE);
1544 	if (ret) {
1545 		ocfs2_commit_trans(osb, handle);
1546 
1547 		mlog_errno(ret);
1548 		goto out;
1549 	}
1550 
1551 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1552 		ocfs2_set_inode_data_inline(inode, di);
1553 
1554 	if (!PageUptodate(page)) {
1555 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1556 		if (ret) {
1557 			ocfs2_commit_trans(osb, handle);
1558 
1559 			goto out;
1560 		}
1561 	}
1562 
1563 	wc->w_handle = handle;
1564 out:
1565 	return ret;
1566 }
1567 
1568 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1569 {
1570 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1571 
1572 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1573 		return 1;
1574 	return 0;
1575 }
1576 
1577 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1578 					  struct inode *inode, loff_t pos,
1579 					  unsigned len, struct page *mmap_page,
1580 					  struct ocfs2_write_ctxt *wc)
1581 {
1582 	int ret, written = 0;
1583 	loff_t end = pos + len;
1584 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1585 	struct ocfs2_dinode *di = NULL;
1586 
1587 	mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1588 	     (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1589 	     oi->ip_dyn_features);
1590 
1591 	/*
1592 	 * Handle inodes which already have inline data 1st.
1593 	 */
1594 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1595 		if (mmap_page == NULL &&
1596 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1597 			goto do_inline_write;
1598 
1599 		/*
1600 		 * The write won't fit - we have to give this inode an
1601 		 * inline extent list now.
1602 		 */
1603 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1604 		if (ret)
1605 			mlog_errno(ret);
1606 		goto out;
1607 	}
1608 
1609 	/*
1610 	 * Check whether the inode can accept inline data.
1611 	 */
1612 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1613 		return 0;
1614 
1615 	/*
1616 	 * Check whether the write can fit.
1617 	 */
1618 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1619 	if (mmap_page ||
1620 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1621 		return 0;
1622 
1623 do_inline_write:
1624 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1625 	if (ret) {
1626 		mlog_errno(ret);
1627 		goto out;
1628 	}
1629 
1630 	/*
1631 	 * This signals to the caller that the data can be written
1632 	 * inline.
1633 	 */
1634 	written = 1;
1635 out:
1636 	return written ? written : ret;
1637 }
1638 
1639 /*
1640  * This function only does anything for file systems which can't
1641  * handle sparse files.
1642  *
1643  * What we want to do here is fill in any hole between the current end
1644  * of allocation and the end of our write. That way the rest of the
1645  * write path can treat it as an non-allocating write, which has no
1646  * special case code for sparse/nonsparse files.
1647  */
1648 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1649 					unsigned len,
1650 					struct ocfs2_write_ctxt *wc)
1651 {
1652 	int ret;
1653 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1654 	loff_t newsize = pos + len;
1655 
1656 	if (ocfs2_sparse_alloc(osb))
1657 		return 0;
1658 
1659 	if (newsize <= i_size_read(inode))
1660 		return 0;
1661 
1662 	ret = ocfs2_extend_no_holes(inode, newsize, pos);
1663 	if (ret)
1664 		mlog_errno(ret);
1665 
1666 	wc->w_first_new_cpos =
1667 		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1668 
1669 	return ret;
1670 }
1671 
1672 int ocfs2_write_begin_nolock(struct address_space *mapping,
1673 			     loff_t pos, unsigned len, unsigned flags,
1674 			     struct page **pagep, void **fsdata,
1675 			     struct buffer_head *di_bh, struct page *mmap_page)
1676 {
1677 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1678 	unsigned int clusters_to_alloc, extents_to_split;
1679 	struct ocfs2_write_ctxt *wc;
1680 	struct inode *inode = mapping->host;
1681 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1682 	struct ocfs2_dinode *di;
1683 	struct ocfs2_alloc_context *data_ac = NULL;
1684 	struct ocfs2_alloc_context *meta_ac = NULL;
1685 	handle_t *handle;
1686 	struct ocfs2_extent_tree et;
1687 
1688 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1689 	if (ret) {
1690 		mlog_errno(ret);
1691 		return ret;
1692 	}
1693 
1694 	if (ocfs2_supports_inline_data(osb)) {
1695 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1696 						     mmap_page, wc);
1697 		if (ret == 1) {
1698 			ret = 0;
1699 			goto success;
1700 		}
1701 		if (ret < 0) {
1702 			mlog_errno(ret);
1703 			goto out;
1704 		}
1705 	}
1706 
1707 	ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1708 	if (ret) {
1709 		mlog_errno(ret);
1710 		goto out;
1711 	}
1712 
1713 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1714 	if (ret < 0) {
1715 		mlog_errno(ret);
1716 		goto out;
1717 	} else if (ret == 1) {
1718 		ret = ocfs2_refcount_cow(inode, di_bh,
1719 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1720 		if (ret) {
1721 			mlog_errno(ret);
1722 			goto out;
1723 		}
1724 	}
1725 
1726 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1727 					&extents_to_split);
1728 	if (ret) {
1729 		mlog_errno(ret);
1730 		goto out;
1731 	}
1732 
1733 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1734 
1735 	/*
1736 	 * We set w_target_from, w_target_to here so that
1737 	 * ocfs2_write_end() knows which range in the target page to
1738 	 * write out. An allocation requires that we write the entire
1739 	 * cluster range.
1740 	 */
1741 	if (clusters_to_alloc || extents_to_split) {
1742 		/*
1743 		 * XXX: We are stretching the limits of
1744 		 * ocfs2_lock_allocators(). It greatly over-estimates
1745 		 * the work to be done.
1746 		 */
1747 		mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1748 		     " clusters_to_add = %u, extents_to_split = %u\n",
1749 		     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1750 		     (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1751 		     clusters_to_alloc, extents_to_split);
1752 
1753 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1754 					      wc->w_di_bh);
1755 		ret = ocfs2_lock_allocators(inode, &et,
1756 					    clusters_to_alloc, extents_to_split,
1757 					    &data_ac, &meta_ac);
1758 		if (ret) {
1759 			mlog_errno(ret);
1760 			goto out;
1761 		}
1762 
1763 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1764 						    &di->id2.i_list,
1765 						    clusters_to_alloc);
1766 
1767 	}
1768 
1769 	/*
1770 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1771 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1772 	 * we know zeros will only be needed in the first and/or last cluster.
1773 	 */
1774 	if (clusters_to_alloc || extents_to_split ||
1775 	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1776 			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1777 		cluster_of_pages = 1;
1778 	else
1779 		cluster_of_pages = 0;
1780 
1781 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1782 
1783 	handle = ocfs2_start_trans(osb, credits);
1784 	if (IS_ERR(handle)) {
1785 		ret = PTR_ERR(handle);
1786 		mlog_errno(ret);
1787 		goto out;
1788 	}
1789 
1790 	wc->w_handle = handle;
1791 
1792 	if (clusters_to_alloc && vfs_dq_alloc_space_nodirty(inode,
1793 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc))) {
1794 		ret = -EDQUOT;
1795 		goto out_commit;
1796 	}
1797 	/*
1798 	 * We don't want this to fail in ocfs2_write_end(), so do it
1799 	 * here.
1800 	 */
1801 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1802 				      OCFS2_JOURNAL_ACCESS_WRITE);
1803 	if (ret) {
1804 		mlog_errno(ret);
1805 		goto out_quota;
1806 	}
1807 
1808 	/*
1809 	 * Fill our page array first. That way we've grabbed enough so
1810 	 * that we can zero and flush if we error after adding the
1811 	 * extent.
1812 	 */
1813 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1814 					 cluster_of_pages, mmap_page);
1815 	if (ret) {
1816 		mlog_errno(ret);
1817 		goto out_quota;
1818 	}
1819 
1820 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1821 					  len);
1822 	if (ret) {
1823 		mlog_errno(ret);
1824 		goto out_quota;
1825 	}
1826 
1827 	if (data_ac)
1828 		ocfs2_free_alloc_context(data_ac);
1829 	if (meta_ac)
1830 		ocfs2_free_alloc_context(meta_ac);
1831 
1832 success:
1833 	*pagep = wc->w_target_page;
1834 	*fsdata = wc;
1835 	return 0;
1836 out_quota:
1837 	if (clusters_to_alloc)
1838 		vfs_dq_free_space(inode,
1839 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1840 out_commit:
1841 	ocfs2_commit_trans(osb, handle);
1842 
1843 out:
1844 	ocfs2_free_write_ctxt(wc);
1845 
1846 	if (data_ac)
1847 		ocfs2_free_alloc_context(data_ac);
1848 	if (meta_ac)
1849 		ocfs2_free_alloc_context(meta_ac);
1850 	return ret;
1851 }
1852 
1853 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1854 			     loff_t pos, unsigned len, unsigned flags,
1855 			     struct page **pagep, void **fsdata)
1856 {
1857 	int ret;
1858 	struct buffer_head *di_bh = NULL;
1859 	struct inode *inode = mapping->host;
1860 
1861 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1862 	if (ret) {
1863 		mlog_errno(ret);
1864 		return ret;
1865 	}
1866 
1867 	/*
1868 	 * Take alloc sem here to prevent concurrent lookups. That way
1869 	 * the mapping, zeroing and tree manipulation within
1870 	 * ocfs2_write() will be safe against ->readpage(). This
1871 	 * should also serve to lock out allocation from a shared
1872 	 * writeable region.
1873 	 */
1874 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1875 
1876 	ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1877 				       fsdata, di_bh, NULL);
1878 	if (ret) {
1879 		mlog_errno(ret);
1880 		goto out_fail;
1881 	}
1882 
1883 	brelse(di_bh);
1884 
1885 	return 0;
1886 
1887 out_fail:
1888 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1889 
1890 	brelse(di_bh);
1891 	ocfs2_inode_unlock(inode, 1);
1892 
1893 	return ret;
1894 }
1895 
1896 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1897 				   unsigned len, unsigned *copied,
1898 				   struct ocfs2_dinode *di,
1899 				   struct ocfs2_write_ctxt *wc)
1900 {
1901 	void *kaddr;
1902 
1903 	if (unlikely(*copied < len)) {
1904 		if (!PageUptodate(wc->w_target_page)) {
1905 			*copied = 0;
1906 			return;
1907 		}
1908 	}
1909 
1910 	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1911 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1912 	kunmap_atomic(kaddr, KM_USER0);
1913 
1914 	mlog(0, "Data written to inode at offset %llu. "
1915 	     "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1916 	     (unsigned long long)pos, *copied,
1917 	     le16_to_cpu(di->id2.i_data.id_count),
1918 	     le16_to_cpu(di->i_dyn_features));
1919 }
1920 
1921 int ocfs2_write_end_nolock(struct address_space *mapping,
1922 			   loff_t pos, unsigned len, unsigned copied,
1923 			   struct page *page, void *fsdata)
1924 {
1925 	int i;
1926 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1927 	struct inode *inode = mapping->host;
1928 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1929 	struct ocfs2_write_ctxt *wc = fsdata;
1930 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1931 	handle_t *handle = wc->w_handle;
1932 	struct page *tmppage;
1933 
1934 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1935 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1936 		goto out_write_size;
1937 	}
1938 
1939 	if (unlikely(copied < len)) {
1940 		if (!PageUptodate(wc->w_target_page))
1941 			copied = 0;
1942 
1943 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1944 				       start+len);
1945 	}
1946 	flush_dcache_page(wc->w_target_page);
1947 
1948 	for(i = 0; i < wc->w_num_pages; i++) {
1949 		tmppage = wc->w_pages[i];
1950 
1951 		if (tmppage == wc->w_target_page) {
1952 			from = wc->w_target_from;
1953 			to = wc->w_target_to;
1954 
1955 			BUG_ON(from > PAGE_CACHE_SIZE ||
1956 			       to > PAGE_CACHE_SIZE ||
1957 			       to < from);
1958 		} else {
1959 			/*
1960 			 * Pages adjacent to the target (if any) imply
1961 			 * a hole-filling write in which case we want
1962 			 * to flush their entire range.
1963 			 */
1964 			from = 0;
1965 			to = PAGE_CACHE_SIZE;
1966 		}
1967 
1968 		if (page_has_buffers(tmppage)) {
1969 			if (ocfs2_should_order_data(inode))
1970 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1971 			block_commit_write(tmppage, from, to);
1972 		}
1973 	}
1974 
1975 out_write_size:
1976 	pos += copied;
1977 	if (pos > inode->i_size) {
1978 		i_size_write(inode, pos);
1979 		mark_inode_dirty(inode);
1980 	}
1981 	inode->i_blocks = ocfs2_inode_sector_count(inode);
1982 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1983 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1984 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1985 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1986 	ocfs2_journal_dirty(handle, wc->w_di_bh);
1987 
1988 	ocfs2_commit_trans(osb, handle);
1989 
1990 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
1991 
1992 	ocfs2_free_write_ctxt(wc);
1993 
1994 	return copied;
1995 }
1996 
1997 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1998 			   loff_t pos, unsigned len, unsigned copied,
1999 			   struct page *page, void *fsdata)
2000 {
2001 	int ret;
2002 	struct inode *inode = mapping->host;
2003 
2004 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2005 
2006 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2007 	ocfs2_inode_unlock(inode, 1);
2008 
2009 	return ret;
2010 }
2011 
2012 const struct address_space_operations ocfs2_aops = {
2013 	.readpage		= ocfs2_readpage,
2014 	.readpages		= ocfs2_readpages,
2015 	.writepage		= ocfs2_writepage,
2016 	.write_begin		= ocfs2_write_begin,
2017 	.write_end		= ocfs2_write_end,
2018 	.bmap			= ocfs2_bmap,
2019 	.sync_page		= block_sync_page,
2020 	.direct_IO		= ocfs2_direct_IO,
2021 	.invalidatepage		= ocfs2_invalidatepage,
2022 	.releasepage		= ocfs2_releasepage,
2023 	.migratepage		= buffer_migrate_page,
2024 	.is_partially_uptodate	= block_is_partially_uptodate,
2025 	.error_remove_page	= generic_error_remove_page,
2026 };
2027