1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 #include <linux/quotaops.h> 31 #include <linux/blkdev.h> 32 #include <linux/uio.h> 33 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "dlmglue.h" 41 #include "extent_map.h" 42 #include "file.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "suballoc.h" 46 #include "super.h" 47 #include "symlink.h" 48 #include "refcounttree.h" 49 #include "ocfs2_trace.h" 50 51 #include "buffer_head_io.h" 52 #include "dir.h" 53 #include "namei.h" 54 #include "sysfile.h" 55 56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 57 struct buffer_head *bh_result, int create) 58 { 59 int err = -EIO; 60 int status; 61 struct ocfs2_dinode *fe = NULL; 62 struct buffer_head *bh = NULL; 63 struct buffer_head *buffer_cache_bh = NULL; 64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 65 void *kaddr; 66 67 trace_ocfs2_symlink_get_block( 68 (unsigned long long)OCFS2_I(inode)->ip_blkno, 69 (unsigned long long)iblock, bh_result, create); 70 71 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 72 73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 75 (unsigned long long)iblock); 76 goto bail; 77 } 78 79 status = ocfs2_read_inode_block(inode, &bh); 80 if (status < 0) { 81 mlog_errno(status); 82 goto bail; 83 } 84 fe = (struct ocfs2_dinode *) bh->b_data; 85 86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 87 le32_to_cpu(fe->i_clusters))) { 88 err = -ENOMEM; 89 mlog(ML_ERROR, "block offset is outside the allocated size: " 90 "%llu\n", (unsigned long long)iblock); 91 goto bail; 92 } 93 94 /* We don't use the page cache to create symlink data, so if 95 * need be, copy it over from the buffer cache. */ 96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 98 iblock; 99 buffer_cache_bh = sb_getblk(osb->sb, blkno); 100 if (!buffer_cache_bh) { 101 err = -ENOMEM; 102 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 103 goto bail; 104 } 105 106 /* we haven't locked out transactions, so a commit 107 * could've happened. Since we've got a reference on 108 * the bh, even if it commits while we're doing the 109 * copy, the data is still good. */ 110 if (buffer_jbd(buffer_cache_bh) 111 && ocfs2_inode_is_new(inode)) { 112 kaddr = kmap_atomic(bh_result->b_page); 113 if (!kaddr) { 114 mlog(ML_ERROR, "couldn't kmap!\n"); 115 goto bail; 116 } 117 memcpy(kaddr + (bh_result->b_size * iblock), 118 buffer_cache_bh->b_data, 119 bh_result->b_size); 120 kunmap_atomic(kaddr); 121 set_buffer_uptodate(bh_result); 122 } 123 brelse(buffer_cache_bh); 124 } 125 126 map_bh(bh_result, inode->i_sb, 127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 128 129 err = 0; 130 131 bail: 132 brelse(bh); 133 134 return err; 135 } 136 137 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock, 138 struct buffer_head *bh_result, int create) 139 { 140 int ret = 0; 141 struct ocfs2_inode_info *oi = OCFS2_I(inode); 142 143 down_read(&oi->ip_alloc_sem); 144 ret = ocfs2_get_block(inode, iblock, bh_result, create); 145 up_read(&oi->ip_alloc_sem); 146 147 return ret; 148 } 149 150 int ocfs2_get_block(struct inode *inode, sector_t iblock, 151 struct buffer_head *bh_result, int create) 152 { 153 int err = 0; 154 unsigned int ext_flags; 155 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 156 u64 p_blkno, count, past_eof; 157 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 158 159 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 160 (unsigned long long)iblock, bh_result, create); 161 162 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 163 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 164 inode, inode->i_ino); 165 166 if (S_ISLNK(inode->i_mode)) { 167 /* this always does I/O for some reason. */ 168 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 169 goto bail; 170 } 171 172 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 173 &ext_flags); 174 if (err) { 175 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 176 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 177 (unsigned long long)p_blkno); 178 goto bail; 179 } 180 181 if (max_blocks < count) 182 count = max_blocks; 183 184 /* 185 * ocfs2 never allocates in this function - the only time we 186 * need to use BH_New is when we're extending i_size on a file 187 * system which doesn't support holes, in which case BH_New 188 * allows __block_write_begin() to zero. 189 * 190 * If we see this on a sparse file system, then a truncate has 191 * raced us and removed the cluster. In this case, we clear 192 * the buffers dirty and uptodate bits and let the buffer code 193 * ignore it as a hole. 194 */ 195 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 196 clear_buffer_dirty(bh_result); 197 clear_buffer_uptodate(bh_result); 198 goto bail; 199 } 200 201 /* Treat the unwritten extent as a hole for zeroing purposes. */ 202 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 203 map_bh(bh_result, inode->i_sb, p_blkno); 204 205 bh_result->b_size = count << inode->i_blkbits; 206 207 if (!ocfs2_sparse_alloc(osb)) { 208 if (p_blkno == 0) { 209 err = -EIO; 210 mlog(ML_ERROR, 211 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 212 (unsigned long long)iblock, 213 (unsigned long long)p_blkno, 214 (unsigned long long)OCFS2_I(inode)->ip_blkno); 215 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 216 dump_stack(); 217 goto bail; 218 } 219 } 220 221 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 222 223 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 224 (unsigned long long)past_eof); 225 if (create && (iblock >= past_eof)) 226 set_buffer_new(bh_result); 227 228 bail: 229 if (err < 0) 230 err = -EIO; 231 232 return err; 233 } 234 235 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 236 struct buffer_head *di_bh) 237 { 238 void *kaddr; 239 loff_t size; 240 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 241 242 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 243 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 244 (unsigned long long)OCFS2_I(inode)->ip_blkno); 245 return -EROFS; 246 } 247 248 size = i_size_read(inode); 249 250 if (size > PAGE_SIZE || 251 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 252 ocfs2_error(inode->i_sb, 253 "Inode %llu has with inline data has bad size: %Lu\n", 254 (unsigned long long)OCFS2_I(inode)->ip_blkno, 255 (unsigned long long)size); 256 return -EROFS; 257 } 258 259 kaddr = kmap_atomic(page); 260 if (size) 261 memcpy(kaddr, di->id2.i_data.id_data, size); 262 /* Clear the remaining part of the page */ 263 memset(kaddr + size, 0, PAGE_SIZE - size); 264 flush_dcache_page(page); 265 kunmap_atomic(kaddr); 266 267 SetPageUptodate(page); 268 269 return 0; 270 } 271 272 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 273 { 274 int ret; 275 struct buffer_head *di_bh = NULL; 276 277 BUG_ON(!PageLocked(page)); 278 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 279 280 ret = ocfs2_read_inode_block(inode, &di_bh); 281 if (ret) { 282 mlog_errno(ret); 283 goto out; 284 } 285 286 ret = ocfs2_read_inline_data(inode, page, di_bh); 287 out: 288 unlock_page(page); 289 290 brelse(di_bh); 291 return ret; 292 } 293 294 static int ocfs2_readpage(struct file *file, struct page *page) 295 { 296 struct inode *inode = page->mapping->host; 297 struct ocfs2_inode_info *oi = OCFS2_I(inode); 298 loff_t start = (loff_t)page->index << PAGE_SHIFT; 299 int ret, unlock = 1; 300 301 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 302 (page ? page->index : 0)); 303 304 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 305 if (ret != 0) { 306 if (ret == AOP_TRUNCATED_PAGE) 307 unlock = 0; 308 mlog_errno(ret); 309 goto out; 310 } 311 312 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 313 /* 314 * Unlock the page and cycle ip_alloc_sem so that we don't 315 * busyloop waiting for ip_alloc_sem to unlock 316 */ 317 ret = AOP_TRUNCATED_PAGE; 318 unlock_page(page); 319 unlock = 0; 320 down_read(&oi->ip_alloc_sem); 321 up_read(&oi->ip_alloc_sem); 322 goto out_inode_unlock; 323 } 324 325 /* 326 * i_size might have just been updated as we grabed the meta lock. We 327 * might now be discovering a truncate that hit on another node. 328 * block_read_full_page->get_block freaks out if it is asked to read 329 * beyond the end of a file, so we check here. Callers 330 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 331 * and notice that the page they just read isn't needed. 332 * 333 * XXX sys_readahead() seems to get that wrong? 334 */ 335 if (start >= i_size_read(inode)) { 336 zero_user(page, 0, PAGE_SIZE); 337 SetPageUptodate(page); 338 ret = 0; 339 goto out_alloc; 340 } 341 342 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 343 ret = ocfs2_readpage_inline(inode, page); 344 else 345 ret = block_read_full_page(page, ocfs2_get_block); 346 unlock = 0; 347 348 out_alloc: 349 up_read(&oi->ip_alloc_sem); 350 out_inode_unlock: 351 ocfs2_inode_unlock(inode, 0); 352 out: 353 if (unlock) 354 unlock_page(page); 355 return ret; 356 } 357 358 /* 359 * This is used only for read-ahead. Failures or difficult to handle 360 * situations are safe to ignore. 361 * 362 * Right now, we don't bother with BH_Boundary - in-inode extent lists 363 * are quite large (243 extents on 4k blocks), so most inodes don't 364 * grow out to a tree. If need be, detecting boundary extents could 365 * trivially be added in a future version of ocfs2_get_block(). 366 */ 367 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 368 struct list_head *pages, unsigned nr_pages) 369 { 370 int ret, err = -EIO; 371 struct inode *inode = mapping->host; 372 struct ocfs2_inode_info *oi = OCFS2_I(inode); 373 loff_t start; 374 struct page *last; 375 376 /* 377 * Use the nonblocking flag for the dlm code to avoid page 378 * lock inversion, but don't bother with retrying. 379 */ 380 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 381 if (ret) 382 return err; 383 384 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 385 ocfs2_inode_unlock(inode, 0); 386 return err; 387 } 388 389 /* 390 * Don't bother with inline-data. There isn't anything 391 * to read-ahead in that case anyway... 392 */ 393 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 394 goto out_unlock; 395 396 /* 397 * Check whether a remote node truncated this file - we just 398 * drop out in that case as it's not worth handling here. 399 */ 400 last = list_entry(pages->prev, struct page, lru); 401 start = (loff_t)last->index << PAGE_SHIFT; 402 if (start >= i_size_read(inode)) 403 goto out_unlock; 404 405 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 406 407 out_unlock: 408 up_read(&oi->ip_alloc_sem); 409 ocfs2_inode_unlock(inode, 0); 410 411 return err; 412 } 413 414 /* Note: Because we don't support holes, our allocation has 415 * already happened (allocation writes zeros to the file data) 416 * so we don't have to worry about ordered writes in 417 * ocfs2_writepage. 418 * 419 * ->writepage is called during the process of invalidating the page cache 420 * during blocked lock processing. It can't block on any cluster locks 421 * to during block mapping. It's relying on the fact that the block 422 * mapping can't have disappeared under the dirty pages that it is 423 * being asked to write back. 424 */ 425 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 426 { 427 trace_ocfs2_writepage( 428 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 429 page->index); 430 431 return block_write_full_page(page, ocfs2_get_block, wbc); 432 } 433 434 /* Taken from ext3. We don't necessarily need the full blown 435 * functionality yet, but IMHO it's better to cut and paste the whole 436 * thing so we can avoid introducing our own bugs (and easily pick up 437 * their fixes when they happen) --Mark */ 438 int walk_page_buffers( handle_t *handle, 439 struct buffer_head *head, 440 unsigned from, 441 unsigned to, 442 int *partial, 443 int (*fn)( handle_t *handle, 444 struct buffer_head *bh)) 445 { 446 struct buffer_head *bh; 447 unsigned block_start, block_end; 448 unsigned blocksize = head->b_size; 449 int err, ret = 0; 450 struct buffer_head *next; 451 452 for ( bh = head, block_start = 0; 453 ret == 0 && (bh != head || !block_start); 454 block_start = block_end, bh = next) 455 { 456 next = bh->b_this_page; 457 block_end = block_start + blocksize; 458 if (block_end <= from || block_start >= to) { 459 if (partial && !buffer_uptodate(bh)) 460 *partial = 1; 461 continue; 462 } 463 err = (*fn)(handle, bh); 464 if (!ret) 465 ret = err; 466 } 467 return ret; 468 } 469 470 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 471 { 472 sector_t status; 473 u64 p_blkno = 0; 474 int err = 0; 475 struct inode *inode = mapping->host; 476 477 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 478 (unsigned long long)block); 479 480 /* 481 * The swap code (ab-)uses ->bmap to get a block mapping and then 482 * bypasseѕ the file system for actual I/O. We really can't allow 483 * that on refcounted inodes, so we have to skip out here. And yes, 484 * 0 is the magic code for a bmap error.. 485 */ 486 if (ocfs2_is_refcount_inode(inode)) 487 return 0; 488 489 /* We don't need to lock journal system files, since they aren't 490 * accessed concurrently from multiple nodes. 491 */ 492 if (!INODE_JOURNAL(inode)) { 493 err = ocfs2_inode_lock(inode, NULL, 0); 494 if (err) { 495 if (err != -ENOENT) 496 mlog_errno(err); 497 goto bail; 498 } 499 down_read(&OCFS2_I(inode)->ip_alloc_sem); 500 } 501 502 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 503 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 504 NULL); 505 506 if (!INODE_JOURNAL(inode)) { 507 up_read(&OCFS2_I(inode)->ip_alloc_sem); 508 ocfs2_inode_unlock(inode, 0); 509 } 510 511 if (err) { 512 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 513 (unsigned long long)block); 514 mlog_errno(err); 515 goto bail; 516 } 517 518 bail: 519 status = err ? 0 : p_blkno; 520 521 return status; 522 } 523 524 static int ocfs2_releasepage(struct page *page, gfp_t wait) 525 { 526 if (!page_has_buffers(page)) 527 return 0; 528 return try_to_free_buffers(page); 529 } 530 531 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 532 u32 cpos, 533 unsigned int *start, 534 unsigned int *end) 535 { 536 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE; 537 538 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) { 539 unsigned int cpp; 540 541 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits); 542 543 cluster_start = cpos % cpp; 544 cluster_start = cluster_start << osb->s_clustersize_bits; 545 546 cluster_end = cluster_start + osb->s_clustersize; 547 } 548 549 BUG_ON(cluster_start > PAGE_SIZE); 550 BUG_ON(cluster_end > PAGE_SIZE); 551 552 if (start) 553 *start = cluster_start; 554 if (end) 555 *end = cluster_end; 556 } 557 558 /* 559 * 'from' and 'to' are the region in the page to avoid zeroing. 560 * 561 * If pagesize > clustersize, this function will avoid zeroing outside 562 * of the cluster boundary. 563 * 564 * from == to == 0 is code for "zero the entire cluster region" 565 */ 566 static void ocfs2_clear_page_regions(struct page *page, 567 struct ocfs2_super *osb, u32 cpos, 568 unsigned from, unsigned to) 569 { 570 void *kaddr; 571 unsigned int cluster_start, cluster_end; 572 573 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 574 575 kaddr = kmap_atomic(page); 576 577 if (from || to) { 578 if (from > cluster_start) 579 memset(kaddr + cluster_start, 0, from - cluster_start); 580 if (to < cluster_end) 581 memset(kaddr + to, 0, cluster_end - to); 582 } else { 583 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 584 } 585 586 kunmap_atomic(kaddr); 587 } 588 589 /* 590 * Nonsparse file systems fully allocate before we get to the write 591 * code. This prevents ocfs2_write() from tagging the write as an 592 * allocating one, which means ocfs2_map_page_blocks() might try to 593 * read-in the blocks at the tail of our file. Avoid reading them by 594 * testing i_size against each block offset. 595 */ 596 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 597 unsigned int block_start) 598 { 599 u64 offset = page_offset(page) + block_start; 600 601 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 602 return 1; 603 604 if (i_size_read(inode) > offset) 605 return 1; 606 607 return 0; 608 } 609 610 /* 611 * Some of this taken from __block_write_begin(). We already have our 612 * mapping by now though, and the entire write will be allocating or 613 * it won't, so not much need to use BH_New. 614 * 615 * This will also skip zeroing, which is handled externally. 616 */ 617 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 618 struct inode *inode, unsigned int from, 619 unsigned int to, int new) 620 { 621 int ret = 0; 622 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 623 unsigned int block_end, block_start; 624 unsigned int bsize = i_blocksize(inode); 625 626 if (!page_has_buffers(page)) 627 create_empty_buffers(page, bsize, 0); 628 629 head = page_buffers(page); 630 for (bh = head, block_start = 0; bh != head || !block_start; 631 bh = bh->b_this_page, block_start += bsize) { 632 block_end = block_start + bsize; 633 634 clear_buffer_new(bh); 635 636 /* 637 * Ignore blocks outside of our i/o range - 638 * they may belong to unallocated clusters. 639 */ 640 if (block_start >= to || block_end <= from) { 641 if (PageUptodate(page)) 642 set_buffer_uptodate(bh); 643 continue; 644 } 645 646 /* 647 * For an allocating write with cluster size >= page 648 * size, we always write the entire page. 649 */ 650 if (new) 651 set_buffer_new(bh); 652 653 if (!buffer_mapped(bh)) { 654 map_bh(bh, inode->i_sb, *p_blkno); 655 clean_bdev_bh_alias(bh); 656 } 657 658 if (PageUptodate(page)) { 659 if (!buffer_uptodate(bh)) 660 set_buffer_uptodate(bh); 661 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 662 !buffer_new(bh) && 663 ocfs2_should_read_blk(inode, page, block_start) && 664 (block_start < from || block_end > to)) { 665 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 666 *wait_bh++=bh; 667 } 668 669 *p_blkno = *p_blkno + 1; 670 } 671 672 /* 673 * If we issued read requests - let them complete. 674 */ 675 while(wait_bh > wait) { 676 wait_on_buffer(*--wait_bh); 677 if (!buffer_uptodate(*wait_bh)) 678 ret = -EIO; 679 } 680 681 if (ret == 0 || !new) 682 return ret; 683 684 /* 685 * If we get -EIO above, zero out any newly allocated blocks 686 * to avoid exposing stale data. 687 */ 688 bh = head; 689 block_start = 0; 690 do { 691 block_end = block_start + bsize; 692 if (block_end <= from) 693 goto next_bh; 694 if (block_start >= to) 695 break; 696 697 zero_user(page, block_start, bh->b_size); 698 set_buffer_uptodate(bh); 699 mark_buffer_dirty(bh); 700 701 next_bh: 702 block_start = block_end; 703 bh = bh->b_this_page; 704 } while (bh != head); 705 706 return ret; 707 } 708 709 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 710 #define OCFS2_MAX_CTXT_PAGES 1 711 #else 712 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE) 713 #endif 714 715 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE) 716 717 struct ocfs2_unwritten_extent { 718 struct list_head ue_node; 719 struct list_head ue_ip_node; 720 u32 ue_cpos; 721 u32 ue_phys; 722 }; 723 724 /* 725 * Describe the state of a single cluster to be written to. 726 */ 727 struct ocfs2_write_cluster_desc { 728 u32 c_cpos; 729 u32 c_phys; 730 /* 731 * Give this a unique field because c_phys eventually gets 732 * filled. 733 */ 734 unsigned c_new; 735 unsigned c_clear_unwritten; 736 unsigned c_needs_zero; 737 }; 738 739 struct ocfs2_write_ctxt { 740 /* Logical cluster position / len of write */ 741 u32 w_cpos; 742 u32 w_clen; 743 744 /* First cluster allocated in a nonsparse extend */ 745 u32 w_first_new_cpos; 746 747 /* Type of caller. Must be one of buffer, mmap, direct. */ 748 ocfs2_write_type_t w_type; 749 750 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 751 752 /* 753 * This is true if page_size > cluster_size. 754 * 755 * It triggers a set of special cases during write which might 756 * have to deal with allocating writes to partial pages. 757 */ 758 unsigned int w_large_pages; 759 760 /* 761 * Pages involved in this write. 762 * 763 * w_target_page is the page being written to by the user. 764 * 765 * w_pages is an array of pages which always contains 766 * w_target_page, and in the case of an allocating write with 767 * page_size < cluster size, it will contain zero'd and mapped 768 * pages adjacent to w_target_page which need to be written 769 * out in so that future reads from that region will get 770 * zero's. 771 */ 772 unsigned int w_num_pages; 773 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 774 struct page *w_target_page; 775 776 /* 777 * w_target_locked is used for page_mkwrite path indicating no unlocking 778 * against w_target_page in ocfs2_write_end_nolock. 779 */ 780 unsigned int w_target_locked:1; 781 782 /* 783 * ocfs2_write_end() uses this to know what the real range to 784 * write in the target should be. 785 */ 786 unsigned int w_target_from; 787 unsigned int w_target_to; 788 789 /* 790 * We could use journal_current_handle() but this is cleaner, 791 * IMHO -Mark 792 */ 793 handle_t *w_handle; 794 795 struct buffer_head *w_di_bh; 796 797 struct ocfs2_cached_dealloc_ctxt w_dealloc; 798 799 struct list_head w_unwritten_list; 800 unsigned int w_unwritten_count; 801 }; 802 803 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 804 { 805 int i; 806 807 for(i = 0; i < num_pages; i++) { 808 if (pages[i]) { 809 unlock_page(pages[i]); 810 mark_page_accessed(pages[i]); 811 put_page(pages[i]); 812 } 813 } 814 } 815 816 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 817 { 818 int i; 819 820 /* 821 * w_target_locked is only set to true in the page_mkwrite() case. 822 * The intent is to allow us to lock the target page from write_begin() 823 * to write_end(). The caller must hold a ref on w_target_page. 824 */ 825 if (wc->w_target_locked) { 826 BUG_ON(!wc->w_target_page); 827 for (i = 0; i < wc->w_num_pages; i++) { 828 if (wc->w_target_page == wc->w_pages[i]) { 829 wc->w_pages[i] = NULL; 830 break; 831 } 832 } 833 mark_page_accessed(wc->w_target_page); 834 put_page(wc->w_target_page); 835 } 836 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 837 } 838 839 static void ocfs2_free_unwritten_list(struct inode *inode, 840 struct list_head *head) 841 { 842 struct ocfs2_inode_info *oi = OCFS2_I(inode); 843 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL; 844 845 list_for_each_entry_safe(ue, tmp, head, ue_node) { 846 list_del(&ue->ue_node); 847 spin_lock(&oi->ip_lock); 848 list_del(&ue->ue_ip_node); 849 spin_unlock(&oi->ip_lock); 850 kfree(ue); 851 } 852 } 853 854 static void ocfs2_free_write_ctxt(struct inode *inode, 855 struct ocfs2_write_ctxt *wc) 856 { 857 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list); 858 ocfs2_unlock_pages(wc); 859 brelse(wc->w_di_bh); 860 kfree(wc); 861 } 862 863 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 864 struct ocfs2_super *osb, loff_t pos, 865 unsigned len, ocfs2_write_type_t type, 866 struct buffer_head *di_bh) 867 { 868 u32 cend; 869 struct ocfs2_write_ctxt *wc; 870 871 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 872 if (!wc) 873 return -ENOMEM; 874 875 wc->w_cpos = pos >> osb->s_clustersize_bits; 876 wc->w_first_new_cpos = UINT_MAX; 877 cend = (pos + len - 1) >> osb->s_clustersize_bits; 878 wc->w_clen = cend - wc->w_cpos + 1; 879 get_bh(di_bh); 880 wc->w_di_bh = di_bh; 881 wc->w_type = type; 882 883 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) 884 wc->w_large_pages = 1; 885 else 886 wc->w_large_pages = 0; 887 888 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 889 INIT_LIST_HEAD(&wc->w_unwritten_list); 890 891 *wcp = wc; 892 893 return 0; 894 } 895 896 /* 897 * If a page has any new buffers, zero them out here, and mark them uptodate 898 * and dirty so they'll be written out (in order to prevent uninitialised 899 * block data from leaking). And clear the new bit. 900 */ 901 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 902 { 903 unsigned int block_start, block_end; 904 struct buffer_head *head, *bh; 905 906 BUG_ON(!PageLocked(page)); 907 if (!page_has_buffers(page)) 908 return; 909 910 bh = head = page_buffers(page); 911 block_start = 0; 912 do { 913 block_end = block_start + bh->b_size; 914 915 if (buffer_new(bh)) { 916 if (block_end > from && block_start < to) { 917 if (!PageUptodate(page)) { 918 unsigned start, end; 919 920 start = max(from, block_start); 921 end = min(to, block_end); 922 923 zero_user_segment(page, start, end); 924 set_buffer_uptodate(bh); 925 } 926 927 clear_buffer_new(bh); 928 mark_buffer_dirty(bh); 929 } 930 } 931 932 block_start = block_end; 933 bh = bh->b_this_page; 934 } while (bh != head); 935 } 936 937 /* 938 * Only called when we have a failure during allocating write to write 939 * zero's to the newly allocated region. 940 */ 941 static void ocfs2_write_failure(struct inode *inode, 942 struct ocfs2_write_ctxt *wc, 943 loff_t user_pos, unsigned user_len) 944 { 945 int i; 946 unsigned from = user_pos & (PAGE_SIZE - 1), 947 to = user_pos + user_len; 948 struct page *tmppage; 949 950 if (wc->w_target_page) 951 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 952 953 for(i = 0; i < wc->w_num_pages; i++) { 954 tmppage = wc->w_pages[i]; 955 956 if (tmppage && page_has_buffers(tmppage)) { 957 if (ocfs2_should_order_data(inode)) 958 ocfs2_jbd2_file_inode(wc->w_handle, inode); 959 960 block_commit_write(tmppage, from, to); 961 } 962 } 963 } 964 965 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 966 struct ocfs2_write_ctxt *wc, 967 struct page *page, u32 cpos, 968 loff_t user_pos, unsigned user_len, 969 int new) 970 { 971 int ret; 972 unsigned int map_from = 0, map_to = 0; 973 unsigned int cluster_start, cluster_end; 974 unsigned int user_data_from = 0, user_data_to = 0; 975 976 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 977 &cluster_start, &cluster_end); 978 979 /* treat the write as new if the a hole/lseek spanned across 980 * the page boundary. 981 */ 982 new = new | ((i_size_read(inode) <= page_offset(page)) && 983 (page_offset(page) <= user_pos)); 984 985 if (page == wc->w_target_page) { 986 map_from = user_pos & (PAGE_SIZE - 1); 987 map_to = map_from + user_len; 988 989 if (new) 990 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 991 cluster_start, cluster_end, 992 new); 993 else 994 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 995 map_from, map_to, new); 996 if (ret) { 997 mlog_errno(ret); 998 goto out; 999 } 1000 1001 user_data_from = map_from; 1002 user_data_to = map_to; 1003 if (new) { 1004 map_from = cluster_start; 1005 map_to = cluster_end; 1006 } 1007 } else { 1008 /* 1009 * If we haven't allocated the new page yet, we 1010 * shouldn't be writing it out without copying user 1011 * data. This is likely a math error from the caller. 1012 */ 1013 BUG_ON(!new); 1014 1015 map_from = cluster_start; 1016 map_to = cluster_end; 1017 1018 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1019 cluster_start, cluster_end, new); 1020 if (ret) { 1021 mlog_errno(ret); 1022 goto out; 1023 } 1024 } 1025 1026 /* 1027 * Parts of newly allocated pages need to be zero'd. 1028 * 1029 * Above, we have also rewritten 'to' and 'from' - as far as 1030 * the rest of the function is concerned, the entire cluster 1031 * range inside of a page needs to be written. 1032 * 1033 * We can skip this if the page is up to date - it's already 1034 * been zero'd from being read in as a hole. 1035 */ 1036 if (new && !PageUptodate(page)) 1037 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1038 cpos, user_data_from, user_data_to); 1039 1040 flush_dcache_page(page); 1041 1042 out: 1043 return ret; 1044 } 1045 1046 /* 1047 * This function will only grab one clusters worth of pages. 1048 */ 1049 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1050 struct ocfs2_write_ctxt *wc, 1051 u32 cpos, loff_t user_pos, 1052 unsigned user_len, int new, 1053 struct page *mmap_page) 1054 { 1055 int ret = 0, i; 1056 unsigned long start, target_index, end_index, index; 1057 struct inode *inode = mapping->host; 1058 loff_t last_byte; 1059 1060 target_index = user_pos >> PAGE_SHIFT; 1061 1062 /* 1063 * Figure out how many pages we'll be manipulating here. For 1064 * non allocating write, we just change the one 1065 * page. Otherwise, we'll need a whole clusters worth. If we're 1066 * writing past i_size, we only need enough pages to cover the 1067 * last page of the write. 1068 */ 1069 if (new) { 1070 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1071 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1072 /* 1073 * We need the index *past* the last page we could possibly 1074 * touch. This is the page past the end of the write or 1075 * i_size, whichever is greater. 1076 */ 1077 last_byte = max(user_pos + user_len, i_size_read(inode)); 1078 BUG_ON(last_byte < 1); 1079 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1; 1080 if ((start + wc->w_num_pages) > end_index) 1081 wc->w_num_pages = end_index - start; 1082 } else { 1083 wc->w_num_pages = 1; 1084 start = target_index; 1085 } 1086 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT; 1087 1088 for(i = 0; i < wc->w_num_pages; i++) { 1089 index = start + i; 1090 1091 if (index >= target_index && index <= end_index && 1092 wc->w_type == OCFS2_WRITE_MMAP) { 1093 /* 1094 * ocfs2_pagemkwrite() is a little different 1095 * and wants us to directly use the page 1096 * passed in. 1097 */ 1098 lock_page(mmap_page); 1099 1100 /* Exit and let the caller retry */ 1101 if (mmap_page->mapping != mapping) { 1102 WARN_ON(mmap_page->mapping); 1103 unlock_page(mmap_page); 1104 ret = -EAGAIN; 1105 goto out; 1106 } 1107 1108 get_page(mmap_page); 1109 wc->w_pages[i] = mmap_page; 1110 wc->w_target_locked = true; 1111 } else if (index >= target_index && index <= end_index && 1112 wc->w_type == OCFS2_WRITE_DIRECT) { 1113 /* Direct write has no mapping page. */ 1114 wc->w_pages[i] = NULL; 1115 continue; 1116 } else { 1117 wc->w_pages[i] = find_or_create_page(mapping, index, 1118 GFP_NOFS); 1119 if (!wc->w_pages[i]) { 1120 ret = -ENOMEM; 1121 mlog_errno(ret); 1122 goto out; 1123 } 1124 } 1125 wait_for_stable_page(wc->w_pages[i]); 1126 1127 if (index == target_index) 1128 wc->w_target_page = wc->w_pages[i]; 1129 } 1130 out: 1131 if (ret) 1132 wc->w_target_locked = false; 1133 return ret; 1134 } 1135 1136 /* 1137 * Prepare a single cluster for write one cluster into the file. 1138 */ 1139 static int ocfs2_write_cluster(struct address_space *mapping, 1140 u32 *phys, unsigned int new, 1141 unsigned int clear_unwritten, 1142 unsigned int should_zero, 1143 struct ocfs2_alloc_context *data_ac, 1144 struct ocfs2_alloc_context *meta_ac, 1145 struct ocfs2_write_ctxt *wc, u32 cpos, 1146 loff_t user_pos, unsigned user_len) 1147 { 1148 int ret, i; 1149 u64 p_blkno; 1150 struct inode *inode = mapping->host; 1151 struct ocfs2_extent_tree et; 1152 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); 1153 1154 if (new) { 1155 u32 tmp_pos; 1156 1157 /* 1158 * This is safe to call with the page locks - it won't take 1159 * any additional semaphores or cluster locks. 1160 */ 1161 tmp_pos = cpos; 1162 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1163 &tmp_pos, 1, !clear_unwritten, 1164 wc->w_di_bh, wc->w_handle, 1165 data_ac, meta_ac, NULL); 1166 /* 1167 * This shouldn't happen because we must have already 1168 * calculated the correct meta data allocation required. The 1169 * internal tree allocation code should know how to increase 1170 * transaction credits itself. 1171 * 1172 * If need be, we could handle -EAGAIN for a 1173 * RESTART_TRANS here. 1174 */ 1175 mlog_bug_on_msg(ret == -EAGAIN, 1176 "Inode %llu: EAGAIN return during allocation.\n", 1177 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1178 if (ret < 0) { 1179 mlog_errno(ret); 1180 goto out; 1181 } 1182 } else if (clear_unwritten) { 1183 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1184 wc->w_di_bh); 1185 ret = ocfs2_mark_extent_written(inode, &et, 1186 wc->w_handle, cpos, 1, *phys, 1187 meta_ac, &wc->w_dealloc); 1188 if (ret < 0) { 1189 mlog_errno(ret); 1190 goto out; 1191 } 1192 } 1193 1194 /* 1195 * The only reason this should fail is due to an inability to 1196 * find the extent added. 1197 */ 1198 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL); 1199 if (ret < 0) { 1200 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1201 "at logical cluster %u", 1202 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 1203 goto out; 1204 } 1205 1206 BUG_ON(*phys == 0); 1207 1208 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys); 1209 if (!should_zero) 1210 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1); 1211 1212 for(i = 0; i < wc->w_num_pages; i++) { 1213 int tmpret; 1214 1215 /* This is the direct io target page. */ 1216 if (wc->w_pages[i] == NULL) { 1217 p_blkno++; 1218 continue; 1219 } 1220 1221 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1222 wc->w_pages[i], cpos, 1223 user_pos, user_len, 1224 should_zero); 1225 if (tmpret) { 1226 mlog_errno(tmpret); 1227 if (ret == 0) 1228 ret = tmpret; 1229 } 1230 } 1231 1232 /* 1233 * We only have cleanup to do in case of allocating write. 1234 */ 1235 if (ret && new) 1236 ocfs2_write_failure(inode, wc, user_pos, user_len); 1237 1238 out: 1239 1240 return ret; 1241 } 1242 1243 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1244 struct ocfs2_alloc_context *data_ac, 1245 struct ocfs2_alloc_context *meta_ac, 1246 struct ocfs2_write_ctxt *wc, 1247 loff_t pos, unsigned len) 1248 { 1249 int ret, i; 1250 loff_t cluster_off; 1251 unsigned int local_len = len; 1252 struct ocfs2_write_cluster_desc *desc; 1253 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1254 1255 for (i = 0; i < wc->w_clen; i++) { 1256 desc = &wc->w_desc[i]; 1257 1258 /* 1259 * We have to make sure that the total write passed in 1260 * doesn't extend past a single cluster. 1261 */ 1262 local_len = len; 1263 cluster_off = pos & (osb->s_clustersize - 1); 1264 if ((cluster_off + local_len) > osb->s_clustersize) 1265 local_len = osb->s_clustersize - cluster_off; 1266 1267 ret = ocfs2_write_cluster(mapping, &desc->c_phys, 1268 desc->c_new, 1269 desc->c_clear_unwritten, 1270 desc->c_needs_zero, 1271 data_ac, meta_ac, 1272 wc, desc->c_cpos, pos, local_len); 1273 if (ret) { 1274 mlog_errno(ret); 1275 goto out; 1276 } 1277 1278 len -= local_len; 1279 pos += local_len; 1280 } 1281 1282 ret = 0; 1283 out: 1284 return ret; 1285 } 1286 1287 /* 1288 * ocfs2_write_end() wants to know which parts of the target page it 1289 * should complete the write on. It's easiest to compute them ahead of 1290 * time when a more complete view of the write is available. 1291 */ 1292 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1293 struct ocfs2_write_ctxt *wc, 1294 loff_t pos, unsigned len, int alloc) 1295 { 1296 struct ocfs2_write_cluster_desc *desc; 1297 1298 wc->w_target_from = pos & (PAGE_SIZE - 1); 1299 wc->w_target_to = wc->w_target_from + len; 1300 1301 if (alloc == 0) 1302 return; 1303 1304 /* 1305 * Allocating write - we may have different boundaries based 1306 * on page size and cluster size. 1307 * 1308 * NOTE: We can no longer compute one value from the other as 1309 * the actual write length and user provided length may be 1310 * different. 1311 */ 1312 1313 if (wc->w_large_pages) { 1314 /* 1315 * We only care about the 1st and last cluster within 1316 * our range and whether they should be zero'd or not. Either 1317 * value may be extended out to the start/end of a 1318 * newly allocated cluster. 1319 */ 1320 desc = &wc->w_desc[0]; 1321 if (desc->c_needs_zero) 1322 ocfs2_figure_cluster_boundaries(osb, 1323 desc->c_cpos, 1324 &wc->w_target_from, 1325 NULL); 1326 1327 desc = &wc->w_desc[wc->w_clen - 1]; 1328 if (desc->c_needs_zero) 1329 ocfs2_figure_cluster_boundaries(osb, 1330 desc->c_cpos, 1331 NULL, 1332 &wc->w_target_to); 1333 } else { 1334 wc->w_target_from = 0; 1335 wc->w_target_to = PAGE_SIZE; 1336 } 1337 } 1338 1339 /* 1340 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to 1341 * do the zero work. And should not to clear UNWRITTEN since it will be cleared 1342 * by the direct io procedure. 1343 * If this is a new extent that allocated by direct io, we should mark it in 1344 * the ip_unwritten_list. 1345 */ 1346 static int ocfs2_unwritten_check(struct inode *inode, 1347 struct ocfs2_write_ctxt *wc, 1348 struct ocfs2_write_cluster_desc *desc) 1349 { 1350 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1351 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL; 1352 int ret = 0; 1353 1354 if (!desc->c_needs_zero) 1355 return 0; 1356 1357 retry: 1358 spin_lock(&oi->ip_lock); 1359 /* Needs not to zero no metter buffer or direct. The one who is zero 1360 * the cluster is doing zero. And he will clear unwritten after all 1361 * cluster io finished. */ 1362 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) { 1363 if (desc->c_cpos == ue->ue_cpos) { 1364 BUG_ON(desc->c_new); 1365 desc->c_needs_zero = 0; 1366 desc->c_clear_unwritten = 0; 1367 goto unlock; 1368 } 1369 } 1370 1371 if (wc->w_type != OCFS2_WRITE_DIRECT) 1372 goto unlock; 1373 1374 if (new == NULL) { 1375 spin_unlock(&oi->ip_lock); 1376 new = kmalloc(sizeof(struct ocfs2_unwritten_extent), 1377 GFP_NOFS); 1378 if (new == NULL) { 1379 ret = -ENOMEM; 1380 goto out; 1381 } 1382 goto retry; 1383 } 1384 /* This direct write will doing zero. */ 1385 new->ue_cpos = desc->c_cpos; 1386 new->ue_phys = desc->c_phys; 1387 desc->c_clear_unwritten = 0; 1388 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list); 1389 list_add_tail(&new->ue_node, &wc->w_unwritten_list); 1390 wc->w_unwritten_count++; 1391 new = NULL; 1392 unlock: 1393 spin_unlock(&oi->ip_lock); 1394 out: 1395 kfree(new); 1396 return ret; 1397 } 1398 1399 /* 1400 * Populate each single-cluster write descriptor in the write context 1401 * with information about the i/o to be done. 1402 * 1403 * Returns the number of clusters that will have to be allocated, as 1404 * well as a worst case estimate of the number of extent records that 1405 * would have to be created during a write to an unwritten region. 1406 */ 1407 static int ocfs2_populate_write_desc(struct inode *inode, 1408 struct ocfs2_write_ctxt *wc, 1409 unsigned int *clusters_to_alloc, 1410 unsigned int *extents_to_split) 1411 { 1412 int ret; 1413 struct ocfs2_write_cluster_desc *desc; 1414 unsigned int num_clusters = 0; 1415 unsigned int ext_flags = 0; 1416 u32 phys = 0; 1417 int i; 1418 1419 *clusters_to_alloc = 0; 1420 *extents_to_split = 0; 1421 1422 for (i = 0; i < wc->w_clen; i++) { 1423 desc = &wc->w_desc[i]; 1424 desc->c_cpos = wc->w_cpos + i; 1425 1426 if (num_clusters == 0) { 1427 /* 1428 * Need to look up the next extent record. 1429 */ 1430 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1431 &num_clusters, &ext_flags); 1432 if (ret) { 1433 mlog_errno(ret); 1434 goto out; 1435 } 1436 1437 /* We should already CoW the refcountd extent. */ 1438 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1439 1440 /* 1441 * Assume worst case - that we're writing in 1442 * the middle of the extent. 1443 * 1444 * We can assume that the write proceeds from 1445 * left to right, in which case the extent 1446 * insert code is smart enough to coalesce the 1447 * next splits into the previous records created. 1448 */ 1449 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1450 *extents_to_split = *extents_to_split + 2; 1451 } else if (phys) { 1452 /* 1453 * Only increment phys if it doesn't describe 1454 * a hole. 1455 */ 1456 phys++; 1457 } 1458 1459 /* 1460 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1461 * file that got extended. w_first_new_cpos tells us 1462 * where the newly allocated clusters are so we can 1463 * zero them. 1464 */ 1465 if (desc->c_cpos >= wc->w_first_new_cpos) { 1466 BUG_ON(phys == 0); 1467 desc->c_needs_zero = 1; 1468 } 1469 1470 desc->c_phys = phys; 1471 if (phys == 0) { 1472 desc->c_new = 1; 1473 desc->c_needs_zero = 1; 1474 desc->c_clear_unwritten = 1; 1475 *clusters_to_alloc = *clusters_to_alloc + 1; 1476 } 1477 1478 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1479 desc->c_clear_unwritten = 1; 1480 desc->c_needs_zero = 1; 1481 } 1482 1483 ret = ocfs2_unwritten_check(inode, wc, desc); 1484 if (ret) { 1485 mlog_errno(ret); 1486 goto out; 1487 } 1488 1489 num_clusters--; 1490 } 1491 1492 ret = 0; 1493 out: 1494 return ret; 1495 } 1496 1497 static int ocfs2_write_begin_inline(struct address_space *mapping, 1498 struct inode *inode, 1499 struct ocfs2_write_ctxt *wc) 1500 { 1501 int ret; 1502 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1503 struct page *page; 1504 handle_t *handle; 1505 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1506 1507 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1508 if (IS_ERR(handle)) { 1509 ret = PTR_ERR(handle); 1510 mlog_errno(ret); 1511 goto out; 1512 } 1513 1514 page = find_or_create_page(mapping, 0, GFP_NOFS); 1515 if (!page) { 1516 ocfs2_commit_trans(osb, handle); 1517 ret = -ENOMEM; 1518 mlog_errno(ret); 1519 goto out; 1520 } 1521 /* 1522 * If we don't set w_num_pages then this page won't get unlocked 1523 * and freed on cleanup of the write context. 1524 */ 1525 wc->w_pages[0] = wc->w_target_page = page; 1526 wc->w_num_pages = 1; 1527 1528 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1529 OCFS2_JOURNAL_ACCESS_WRITE); 1530 if (ret) { 1531 ocfs2_commit_trans(osb, handle); 1532 1533 mlog_errno(ret); 1534 goto out; 1535 } 1536 1537 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1538 ocfs2_set_inode_data_inline(inode, di); 1539 1540 if (!PageUptodate(page)) { 1541 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1542 if (ret) { 1543 ocfs2_commit_trans(osb, handle); 1544 1545 goto out; 1546 } 1547 } 1548 1549 wc->w_handle = handle; 1550 out: 1551 return ret; 1552 } 1553 1554 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1555 { 1556 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1557 1558 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1559 return 1; 1560 return 0; 1561 } 1562 1563 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1564 struct inode *inode, loff_t pos, 1565 unsigned len, struct page *mmap_page, 1566 struct ocfs2_write_ctxt *wc) 1567 { 1568 int ret, written = 0; 1569 loff_t end = pos + len; 1570 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1571 struct ocfs2_dinode *di = NULL; 1572 1573 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1574 len, (unsigned long long)pos, 1575 oi->ip_dyn_features); 1576 1577 /* 1578 * Handle inodes which already have inline data 1st. 1579 */ 1580 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1581 if (mmap_page == NULL && 1582 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1583 goto do_inline_write; 1584 1585 /* 1586 * The write won't fit - we have to give this inode an 1587 * inline extent list now. 1588 */ 1589 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1590 if (ret) 1591 mlog_errno(ret); 1592 goto out; 1593 } 1594 1595 /* 1596 * Check whether the inode can accept inline data. 1597 */ 1598 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1599 return 0; 1600 1601 /* 1602 * Check whether the write can fit. 1603 */ 1604 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1605 if (mmap_page || 1606 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1607 return 0; 1608 1609 do_inline_write: 1610 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1611 if (ret) { 1612 mlog_errno(ret); 1613 goto out; 1614 } 1615 1616 /* 1617 * This signals to the caller that the data can be written 1618 * inline. 1619 */ 1620 written = 1; 1621 out: 1622 return written ? written : ret; 1623 } 1624 1625 /* 1626 * This function only does anything for file systems which can't 1627 * handle sparse files. 1628 * 1629 * What we want to do here is fill in any hole between the current end 1630 * of allocation and the end of our write. That way the rest of the 1631 * write path can treat it as an non-allocating write, which has no 1632 * special case code for sparse/nonsparse files. 1633 */ 1634 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1635 struct buffer_head *di_bh, 1636 loff_t pos, unsigned len, 1637 struct ocfs2_write_ctxt *wc) 1638 { 1639 int ret; 1640 loff_t newsize = pos + len; 1641 1642 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1643 1644 if (newsize <= i_size_read(inode)) 1645 return 0; 1646 1647 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1648 if (ret) 1649 mlog_errno(ret); 1650 1651 /* There is no wc if this is call from direct. */ 1652 if (wc) 1653 wc->w_first_new_cpos = 1654 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1655 1656 return ret; 1657 } 1658 1659 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1660 loff_t pos) 1661 { 1662 int ret = 0; 1663 1664 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1665 if (pos > i_size_read(inode)) 1666 ret = ocfs2_zero_extend(inode, di_bh, pos); 1667 1668 return ret; 1669 } 1670 1671 int ocfs2_write_begin_nolock(struct address_space *mapping, 1672 loff_t pos, unsigned len, ocfs2_write_type_t type, 1673 struct page **pagep, void **fsdata, 1674 struct buffer_head *di_bh, struct page *mmap_page) 1675 { 1676 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1677 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1678 struct ocfs2_write_ctxt *wc; 1679 struct inode *inode = mapping->host; 1680 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1681 struct ocfs2_dinode *di; 1682 struct ocfs2_alloc_context *data_ac = NULL; 1683 struct ocfs2_alloc_context *meta_ac = NULL; 1684 handle_t *handle; 1685 struct ocfs2_extent_tree et; 1686 int try_free = 1, ret1; 1687 1688 try_again: 1689 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh); 1690 if (ret) { 1691 mlog_errno(ret); 1692 return ret; 1693 } 1694 1695 if (ocfs2_supports_inline_data(osb)) { 1696 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1697 mmap_page, wc); 1698 if (ret == 1) { 1699 ret = 0; 1700 goto success; 1701 } 1702 if (ret < 0) { 1703 mlog_errno(ret); 1704 goto out; 1705 } 1706 } 1707 1708 /* Direct io change i_size late, should not zero tail here. */ 1709 if (type != OCFS2_WRITE_DIRECT) { 1710 if (ocfs2_sparse_alloc(osb)) 1711 ret = ocfs2_zero_tail(inode, di_bh, pos); 1712 else 1713 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 1714 len, wc); 1715 if (ret) { 1716 mlog_errno(ret); 1717 goto out; 1718 } 1719 } 1720 1721 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1722 if (ret < 0) { 1723 mlog_errno(ret); 1724 goto out; 1725 } else if (ret == 1) { 1726 clusters_need = wc->w_clen; 1727 ret = ocfs2_refcount_cow(inode, di_bh, 1728 wc->w_cpos, wc->w_clen, UINT_MAX); 1729 if (ret) { 1730 mlog_errno(ret); 1731 goto out; 1732 } 1733 } 1734 1735 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1736 &extents_to_split); 1737 if (ret) { 1738 mlog_errno(ret); 1739 goto out; 1740 } 1741 clusters_need += clusters_to_alloc; 1742 1743 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1744 1745 trace_ocfs2_write_begin_nolock( 1746 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1747 (long long)i_size_read(inode), 1748 le32_to_cpu(di->i_clusters), 1749 pos, len, type, mmap_page, 1750 clusters_to_alloc, extents_to_split); 1751 1752 /* 1753 * We set w_target_from, w_target_to here so that 1754 * ocfs2_write_end() knows which range in the target page to 1755 * write out. An allocation requires that we write the entire 1756 * cluster range. 1757 */ 1758 if (clusters_to_alloc || extents_to_split) { 1759 /* 1760 * XXX: We are stretching the limits of 1761 * ocfs2_lock_allocators(). It greatly over-estimates 1762 * the work to be done. 1763 */ 1764 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1765 wc->w_di_bh); 1766 ret = ocfs2_lock_allocators(inode, &et, 1767 clusters_to_alloc, extents_to_split, 1768 &data_ac, &meta_ac); 1769 if (ret) { 1770 mlog_errno(ret); 1771 goto out; 1772 } 1773 1774 if (data_ac) 1775 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1776 1777 credits = ocfs2_calc_extend_credits(inode->i_sb, 1778 &di->id2.i_list); 1779 } else if (type == OCFS2_WRITE_DIRECT) 1780 /* direct write needs not to start trans if no extents alloc. */ 1781 goto success; 1782 1783 /* 1784 * We have to zero sparse allocated clusters, unwritten extent clusters, 1785 * and non-sparse clusters we just extended. For non-sparse writes, 1786 * we know zeros will only be needed in the first and/or last cluster. 1787 */ 1788 if (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1789 wc->w_desc[wc->w_clen - 1].c_needs_zero)) 1790 cluster_of_pages = 1; 1791 else 1792 cluster_of_pages = 0; 1793 1794 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1795 1796 handle = ocfs2_start_trans(osb, credits); 1797 if (IS_ERR(handle)) { 1798 ret = PTR_ERR(handle); 1799 mlog_errno(ret); 1800 goto out; 1801 } 1802 1803 wc->w_handle = handle; 1804 1805 if (clusters_to_alloc) { 1806 ret = dquot_alloc_space_nodirty(inode, 1807 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1808 if (ret) 1809 goto out_commit; 1810 } 1811 1812 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1813 OCFS2_JOURNAL_ACCESS_WRITE); 1814 if (ret) { 1815 mlog_errno(ret); 1816 goto out_quota; 1817 } 1818 1819 /* 1820 * Fill our page array first. That way we've grabbed enough so 1821 * that we can zero and flush if we error after adding the 1822 * extent. 1823 */ 1824 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1825 cluster_of_pages, mmap_page); 1826 if (ret && ret != -EAGAIN) { 1827 mlog_errno(ret); 1828 goto out_quota; 1829 } 1830 1831 /* 1832 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 1833 * the target page. In this case, we exit with no error and no target 1834 * page. This will trigger the caller, page_mkwrite(), to re-try 1835 * the operation. 1836 */ 1837 if (ret == -EAGAIN) { 1838 BUG_ON(wc->w_target_page); 1839 ret = 0; 1840 goto out_quota; 1841 } 1842 1843 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1844 len); 1845 if (ret) { 1846 mlog_errno(ret); 1847 goto out_quota; 1848 } 1849 1850 if (data_ac) 1851 ocfs2_free_alloc_context(data_ac); 1852 if (meta_ac) 1853 ocfs2_free_alloc_context(meta_ac); 1854 1855 success: 1856 if (pagep) 1857 *pagep = wc->w_target_page; 1858 *fsdata = wc; 1859 return 0; 1860 out_quota: 1861 if (clusters_to_alloc) 1862 dquot_free_space(inode, 1863 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1864 out_commit: 1865 ocfs2_commit_trans(osb, handle); 1866 1867 out: 1868 /* 1869 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(), 1870 * even in case of error here like ENOSPC and ENOMEM. So, we need 1871 * to unlock the target page manually to prevent deadlocks when 1872 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED 1873 * to VM code. 1874 */ 1875 if (wc->w_target_locked) 1876 unlock_page(mmap_page); 1877 1878 ocfs2_free_write_ctxt(inode, wc); 1879 1880 if (data_ac) { 1881 ocfs2_free_alloc_context(data_ac); 1882 data_ac = NULL; 1883 } 1884 if (meta_ac) { 1885 ocfs2_free_alloc_context(meta_ac); 1886 meta_ac = NULL; 1887 } 1888 1889 if (ret == -ENOSPC && try_free) { 1890 /* 1891 * Try to free some truncate log so that we can have enough 1892 * clusters to allocate. 1893 */ 1894 try_free = 0; 1895 1896 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1897 if (ret1 == 1) 1898 goto try_again; 1899 1900 if (ret1 < 0) 1901 mlog_errno(ret1); 1902 } 1903 1904 return ret; 1905 } 1906 1907 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1908 loff_t pos, unsigned len, unsigned flags, 1909 struct page **pagep, void **fsdata) 1910 { 1911 int ret; 1912 struct buffer_head *di_bh = NULL; 1913 struct inode *inode = mapping->host; 1914 1915 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1916 if (ret) { 1917 mlog_errno(ret); 1918 return ret; 1919 } 1920 1921 /* 1922 * Take alloc sem here to prevent concurrent lookups. That way 1923 * the mapping, zeroing and tree manipulation within 1924 * ocfs2_write() will be safe against ->readpage(). This 1925 * should also serve to lock out allocation from a shared 1926 * writeable region. 1927 */ 1928 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1929 1930 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER, 1931 pagep, fsdata, di_bh, NULL); 1932 if (ret) { 1933 mlog_errno(ret); 1934 goto out_fail; 1935 } 1936 1937 brelse(di_bh); 1938 1939 return 0; 1940 1941 out_fail: 1942 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1943 1944 brelse(di_bh); 1945 ocfs2_inode_unlock(inode, 1); 1946 1947 return ret; 1948 } 1949 1950 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1951 unsigned len, unsigned *copied, 1952 struct ocfs2_dinode *di, 1953 struct ocfs2_write_ctxt *wc) 1954 { 1955 void *kaddr; 1956 1957 if (unlikely(*copied < len)) { 1958 if (!PageUptodate(wc->w_target_page)) { 1959 *copied = 0; 1960 return; 1961 } 1962 } 1963 1964 kaddr = kmap_atomic(wc->w_target_page); 1965 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1966 kunmap_atomic(kaddr); 1967 1968 trace_ocfs2_write_end_inline( 1969 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1970 (unsigned long long)pos, *copied, 1971 le16_to_cpu(di->id2.i_data.id_count), 1972 le16_to_cpu(di->i_dyn_features)); 1973 } 1974 1975 int ocfs2_write_end_nolock(struct address_space *mapping, 1976 loff_t pos, unsigned len, unsigned copied, void *fsdata) 1977 { 1978 int i, ret; 1979 unsigned from, to, start = pos & (PAGE_SIZE - 1); 1980 struct inode *inode = mapping->host; 1981 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1982 struct ocfs2_write_ctxt *wc = fsdata; 1983 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1984 handle_t *handle = wc->w_handle; 1985 struct page *tmppage; 1986 1987 BUG_ON(!list_empty(&wc->w_unwritten_list)); 1988 1989 if (handle) { 1990 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), 1991 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); 1992 if (ret) { 1993 copied = ret; 1994 mlog_errno(ret); 1995 goto out; 1996 } 1997 } 1998 1999 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2000 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 2001 goto out_write_size; 2002 } 2003 2004 if (unlikely(copied < len) && wc->w_target_page) { 2005 if (!PageUptodate(wc->w_target_page)) 2006 copied = 0; 2007 2008 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 2009 start+len); 2010 } 2011 if (wc->w_target_page) 2012 flush_dcache_page(wc->w_target_page); 2013 2014 for(i = 0; i < wc->w_num_pages; i++) { 2015 tmppage = wc->w_pages[i]; 2016 2017 /* This is the direct io target page. */ 2018 if (tmppage == NULL) 2019 continue; 2020 2021 if (tmppage == wc->w_target_page) { 2022 from = wc->w_target_from; 2023 to = wc->w_target_to; 2024 2025 BUG_ON(from > PAGE_SIZE || 2026 to > PAGE_SIZE || 2027 to < from); 2028 } else { 2029 /* 2030 * Pages adjacent to the target (if any) imply 2031 * a hole-filling write in which case we want 2032 * to flush their entire range. 2033 */ 2034 from = 0; 2035 to = PAGE_SIZE; 2036 } 2037 2038 if (page_has_buffers(tmppage)) { 2039 if (handle && ocfs2_should_order_data(inode)) 2040 ocfs2_jbd2_file_inode(handle, inode); 2041 block_commit_write(tmppage, from, to); 2042 } 2043 } 2044 2045 out_write_size: 2046 /* Direct io do not update i_size here. */ 2047 if (wc->w_type != OCFS2_WRITE_DIRECT) { 2048 pos += copied; 2049 if (pos > i_size_read(inode)) { 2050 i_size_write(inode, pos); 2051 mark_inode_dirty(inode); 2052 } 2053 inode->i_blocks = ocfs2_inode_sector_count(inode); 2054 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2055 inode->i_mtime = inode->i_ctime = current_time(inode); 2056 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2057 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2058 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2059 } 2060 if (handle) 2061 ocfs2_journal_dirty(handle, wc->w_di_bh); 2062 2063 out: 2064 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2065 * lock, or it will cause a deadlock since journal commit threads holds 2066 * this lock and will ask for the page lock when flushing the data. 2067 * put it here to preserve the unlock order. 2068 */ 2069 ocfs2_unlock_pages(wc); 2070 2071 if (handle) 2072 ocfs2_commit_trans(osb, handle); 2073 2074 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2075 2076 brelse(wc->w_di_bh); 2077 kfree(wc); 2078 2079 return copied; 2080 } 2081 2082 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2083 loff_t pos, unsigned len, unsigned copied, 2084 struct page *page, void *fsdata) 2085 { 2086 int ret; 2087 struct inode *inode = mapping->host; 2088 2089 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata); 2090 2091 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2092 ocfs2_inode_unlock(inode, 1); 2093 2094 return ret; 2095 } 2096 2097 struct ocfs2_dio_write_ctxt { 2098 struct list_head dw_zero_list; 2099 unsigned dw_zero_count; 2100 int dw_orphaned; 2101 pid_t dw_writer_pid; 2102 }; 2103 2104 static struct ocfs2_dio_write_ctxt * 2105 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc) 2106 { 2107 struct ocfs2_dio_write_ctxt *dwc = NULL; 2108 2109 if (bh->b_private) 2110 return bh->b_private; 2111 2112 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS); 2113 if (dwc == NULL) 2114 return NULL; 2115 INIT_LIST_HEAD(&dwc->dw_zero_list); 2116 dwc->dw_zero_count = 0; 2117 dwc->dw_orphaned = 0; 2118 dwc->dw_writer_pid = task_pid_nr(current); 2119 bh->b_private = dwc; 2120 *alloc = 1; 2121 2122 return dwc; 2123 } 2124 2125 static void ocfs2_dio_free_write_ctx(struct inode *inode, 2126 struct ocfs2_dio_write_ctxt *dwc) 2127 { 2128 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list); 2129 kfree(dwc); 2130 } 2131 2132 /* 2133 * TODO: Make this into a generic get_blocks function. 2134 * 2135 * From do_direct_io in direct-io.c: 2136 * "So what we do is to permit the ->get_blocks function to populate 2137 * bh.b_size with the size of IO which is permitted at this offset and 2138 * this i_blkbits." 2139 * 2140 * This function is called directly from get_more_blocks in direct-io.c. 2141 * 2142 * called like this: dio->get_blocks(dio->inode, fs_startblk, 2143 * fs_count, map_bh, dio->rw == WRITE); 2144 */ 2145 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock, 2146 struct buffer_head *bh_result, int create) 2147 { 2148 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2149 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2150 struct ocfs2_write_ctxt *wc; 2151 struct ocfs2_write_cluster_desc *desc = NULL; 2152 struct ocfs2_dio_write_ctxt *dwc = NULL; 2153 struct buffer_head *di_bh = NULL; 2154 u64 p_blkno; 2155 loff_t pos = iblock << inode->i_sb->s_blocksize_bits; 2156 unsigned len, total_len = bh_result->b_size; 2157 int ret = 0, first_get_block = 0; 2158 2159 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1)); 2160 len = min(total_len, len); 2161 2162 mlog(0, "get block of %lu at %llu:%u req %u\n", 2163 inode->i_ino, pos, len, total_len); 2164 2165 /* 2166 * Because we need to change file size in ocfs2_dio_end_io_write(), or 2167 * we may need to add it to orphan dir. So can not fall to fast path 2168 * while file size will be changed. 2169 */ 2170 if (pos + total_len <= i_size_read(inode)) { 2171 2172 /* This is the fast path for re-write. */ 2173 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create); 2174 if (buffer_mapped(bh_result) && 2175 !buffer_new(bh_result) && 2176 ret == 0) 2177 goto out; 2178 2179 /* Clear state set by ocfs2_get_block. */ 2180 bh_result->b_state = 0; 2181 } 2182 2183 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block); 2184 if (unlikely(dwc == NULL)) { 2185 ret = -ENOMEM; 2186 mlog_errno(ret); 2187 goto out; 2188 } 2189 2190 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) > 2191 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) && 2192 !dwc->dw_orphaned) { 2193 /* 2194 * when we are going to alloc extents beyond file size, add the 2195 * inode to orphan dir, so we can recall those spaces when 2196 * system crashed during write. 2197 */ 2198 ret = ocfs2_add_inode_to_orphan(osb, inode); 2199 if (ret < 0) { 2200 mlog_errno(ret); 2201 goto out; 2202 } 2203 dwc->dw_orphaned = 1; 2204 } 2205 2206 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2207 if (ret) { 2208 mlog_errno(ret); 2209 goto out; 2210 } 2211 2212 down_write(&oi->ip_alloc_sem); 2213 2214 if (first_get_block) { 2215 if (ocfs2_sparse_alloc(osb)) 2216 ret = ocfs2_zero_tail(inode, di_bh, pos); 2217 else 2218 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 2219 total_len, NULL); 2220 if (ret < 0) { 2221 mlog_errno(ret); 2222 goto unlock; 2223 } 2224 } 2225 2226 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len, 2227 OCFS2_WRITE_DIRECT, NULL, 2228 (void **)&wc, di_bh, NULL); 2229 if (ret) { 2230 mlog_errno(ret); 2231 goto unlock; 2232 } 2233 2234 desc = &wc->w_desc[0]; 2235 2236 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys); 2237 BUG_ON(p_blkno == 0); 2238 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1); 2239 2240 map_bh(bh_result, inode->i_sb, p_blkno); 2241 bh_result->b_size = len; 2242 if (desc->c_needs_zero) 2243 set_buffer_new(bh_result); 2244 2245 /* May sleep in end_io. It should not happen in a irq context. So defer 2246 * it to dio work queue. */ 2247 set_buffer_defer_completion(bh_result); 2248 2249 if (!list_empty(&wc->w_unwritten_list)) { 2250 struct ocfs2_unwritten_extent *ue = NULL; 2251 2252 ue = list_first_entry(&wc->w_unwritten_list, 2253 struct ocfs2_unwritten_extent, 2254 ue_node); 2255 BUG_ON(ue->ue_cpos != desc->c_cpos); 2256 /* The physical address may be 0, fill it. */ 2257 ue->ue_phys = desc->c_phys; 2258 2259 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list); 2260 dwc->dw_zero_count += wc->w_unwritten_count; 2261 } 2262 2263 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc); 2264 BUG_ON(ret != len); 2265 ret = 0; 2266 unlock: 2267 up_write(&oi->ip_alloc_sem); 2268 ocfs2_inode_unlock(inode, 1); 2269 brelse(di_bh); 2270 out: 2271 if (ret < 0) 2272 ret = -EIO; 2273 return ret; 2274 } 2275 2276 static int ocfs2_dio_end_io_write(struct inode *inode, 2277 struct ocfs2_dio_write_ctxt *dwc, 2278 loff_t offset, 2279 ssize_t bytes) 2280 { 2281 struct ocfs2_cached_dealloc_ctxt dealloc; 2282 struct ocfs2_extent_tree et; 2283 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2284 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2285 struct ocfs2_unwritten_extent *ue = NULL; 2286 struct buffer_head *di_bh = NULL; 2287 struct ocfs2_dinode *di; 2288 struct ocfs2_alloc_context *data_ac = NULL; 2289 struct ocfs2_alloc_context *meta_ac = NULL; 2290 handle_t *handle = NULL; 2291 loff_t end = offset + bytes; 2292 int ret = 0, credits = 0, locked = 0; 2293 2294 ocfs2_init_dealloc_ctxt(&dealloc); 2295 2296 /* We do clear unwritten, delete orphan, change i_size here. If neither 2297 * of these happen, we can skip all this. */ 2298 if (list_empty(&dwc->dw_zero_list) && 2299 end <= i_size_read(inode) && 2300 !dwc->dw_orphaned) 2301 goto out; 2302 2303 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we 2304 * are in that context. */ 2305 if (dwc->dw_writer_pid != task_pid_nr(current)) { 2306 inode_lock(inode); 2307 locked = 1; 2308 } 2309 2310 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2311 if (ret < 0) { 2312 mlog_errno(ret); 2313 goto out; 2314 } 2315 2316 down_write(&oi->ip_alloc_sem); 2317 2318 /* Delete orphan before acquire i_mutex. */ 2319 if (dwc->dw_orphaned) { 2320 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current)); 2321 2322 end = end > i_size_read(inode) ? end : 0; 2323 2324 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 2325 !!end, end); 2326 if (ret < 0) 2327 mlog_errno(ret); 2328 } 2329 2330 di = (struct ocfs2_dinode *)di_bh->b_data; 2331 2332 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 2333 2334 /* Attach dealloc with extent tree in case that we may reuse extents 2335 * which are already unlinked from current extent tree due to extent 2336 * rotation and merging. 2337 */ 2338 et.et_dealloc = &dealloc; 2339 2340 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2, 2341 &data_ac, &meta_ac); 2342 if (ret) { 2343 mlog_errno(ret); 2344 goto unlock; 2345 } 2346 2347 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list); 2348 2349 handle = ocfs2_start_trans(osb, credits); 2350 if (IS_ERR(handle)) { 2351 ret = PTR_ERR(handle); 2352 mlog_errno(ret); 2353 goto unlock; 2354 } 2355 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 2356 OCFS2_JOURNAL_ACCESS_WRITE); 2357 if (ret) { 2358 mlog_errno(ret); 2359 goto commit; 2360 } 2361 2362 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) { 2363 ret = ocfs2_mark_extent_written(inode, &et, handle, 2364 ue->ue_cpos, 1, 2365 ue->ue_phys, 2366 meta_ac, &dealloc); 2367 if (ret < 0) { 2368 mlog_errno(ret); 2369 break; 2370 } 2371 } 2372 2373 if (end > i_size_read(inode)) { 2374 ret = ocfs2_set_inode_size(handle, inode, di_bh, end); 2375 if (ret < 0) 2376 mlog_errno(ret); 2377 } 2378 commit: 2379 ocfs2_commit_trans(osb, handle); 2380 unlock: 2381 up_write(&oi->ip_alloc_sem); 2382 ocfs2_inode_unlock(inode, 1); 2383 brelse(di_bh); 2384 out: 2385 if (data_ac) 2386 ocfs2_free_alloc_context(data_ac); 2387 if (meta_ac) 2388 ocfs2_free_alloc_context(meta_ac); 2389 ocfs2_run_deallocs(osb, &dealloc); 2390 if (locked) 2391 inode_unlock(inode); 2392 ocfs2_dio_free_write_ctx(inode, dwc); 2393 2394 return ret; 2395 } 2396 2397 /* 2398 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 2399 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 2400 * to protect io on one node from truncation on another. 2401 */ 2402 static int ocfs2_dio_end_io(struct kiocb *iocb, 2403 loff_t offset, 2404 ssize_t bytes, 2405 void *private) 2406 { 2407 struct inode *inode = file_inode(iocb->ki_filp); 2408 int level; 2409 int ret = 0; 2410 2411 /* this io's submitter should not have unlocked this before we could */ 2412 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 2413 2414 if (bytes > 0 && private) 2415 ret = ocfs2_dio_end_io_write(inode, private, offset, bytes); 2416 2417 ocfs2_iocb_clear_rw_locked(iocb); 2418 2419 level = ocfs2_iocb_rw_locked_level(iocb); 2420 ocfs2_rw_unlock(inode, level); 2421 return ret; 2422 } 2423 2424 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2425 { 2426 struct file *file = iocb->ki_filp; 2427 struct inode *inode = file->f_mapping->host; 2428 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2429 get_block_t *get_block; 2430 2431 /* 2432 * Fallback to buffered I/O if we see an inode without 2433 * extents. 2434 */ 2435 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2436 return 0; 2437 2438 /* Fallback to buffered I/O if we do not support append dio. */ 2439 if (iocb->ki_pos + iter->count > i_size_read(inode) && 2440 !ocfs2_supports_append_dio(osb)) 2441 return 0; 2442 2443 if (iov_iter_rw(iter) == READ) 2444 get_block = ocfs2_lock_get_block; 2445 else 2446 get_block = ocfs2_dio_wr_get_block; 2447 2448 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2449 iter, get_block, 2450 ocfs2_dio_end_io, NULL, 0); 2451 } 2452 2453 const struct address_space_operations ocfs2_aops = { 2454 .readpage = ocfs2_readpage, 2455 .readpages = ocfs2_readpages, 2456 .writepage = ocfs2_writepage, 2457 .write_begin = ocfs2_write_begin, 2458 .write_end = ocfs2_write_end, 2459 .bmap = ocfs2_bmap, 2460 .direct_IO = ocfs2_direct_IO, 2461 .invalidatepage = block_invalidatepage, 2462 .releasepage = ocfs2_releasepage, 2463 .migratepage = buffer_migrate_page, 2464 .is_partially_uptodate = block_is_partially_uptodate, 2465 .error_remove_page = generic_error_remove_page, 2466 }; 2467