1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 #include <linux/quotaops.h> 31 32 #include <cluster/masklog.h> 33 34 #include "ocfs2.h" 35 36 #include "alloc.h" 37 #include "aops.h" 38 #include "dlmglue.h" 39 #include "extent_map.h" 40 #include "file.h" 41 #include "inode.h" 42 #include "journal.h" 43 #include "suballoc.h" 44 #include "super.h" 45 #include "symlink.h" 46 #include "refcounttree.h" 47 #include "ocfs2_trace.h" 48 49 #include "buffer_head_io.h" 50 51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 52 struct buffer_head *bh_result, int create) 53 { 54 int err = -EIO; 55 int status; 56 struct ocfs2_dinode *fe = NULL; 57 struct buffer_head *bh = NULL; 58 struct buffer_head *buffer_cache_bh = NULL; 59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 60 void *kaddr; 61 62 trace_ocfs2_symlink_get_block( 63 (unsigned long long)OCFS2_I(inode)->ip_blkno, 64 (unsigned long long)iblock, bh_result, create); 65 66 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 67 68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 70 (unsigned long long)iblock); 71 goto bail; 72 } 73 74 status = ocfs2_read_inode_block(inode, &bh); 75 if (status < 0) { 76 mlog_errno(status); 77 goto bail; 78 } 79 fe = (struct ocfs2_dinode *) bh->b_data; 80 81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 82 le32_to_cpu(fe->i_clusters))) { 83 mlog(ML_ERROR, "block offset is outside the allocated size: " 84 "%llu\n", (unsigned long long)iblock); 85 goto bail; 86 } 87 88 /* We don't use the page cache to create symlink data, so if 89 * need be, copy it over from the buffer cache. */ 90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 92 iblock; 93 buffer_cache_bh = sb_getblk(osb->sb, blkno); 94 if (!buffer_cache_bh) { 95 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 96 goto bail; 97 } 98 99 /* we haven't locked out transactions, so a commit 100 * could've happened. Since we've got a reference on 101 * the bh, even if it commits while we're doing the 102 * copy, the data is still good. */ 103 if (buffer_jbd(buffer_cache_bh) 104 && ocfs2_inode_is_new(inode)) { 105 kaddr = kmap_atomic(bh_result->b_page); 106 if (!kaddr) { 107 mlog(ML_ERROR, "couldn't kmap!\n"); 108 goto bail; 109 } 110 memcpy(kaddr + (bh_result->b_size * iblock), 111 buffer_cache_bh->b_data, 112 bh_result->b_size); 113 kunmap_atomic(kaddr); 114 set_buffer_uptodate(bh_result); 115 } 116 brelse(buffer_cache_bh); 117 } 118 119 map_bh(bh_result, inode->i_sb, 120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 121 122 err = 0; 123 124 bail: 125 brelse(bh); 126 127 return err; 128 } 129 130 int ocfs2_get_block(struct inode *inode, sector_t iblock, 131 struct buffer_head *bh_result, int create) 132 { 133 int err = 0; 134 unsigned int ext_flags; 135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 136 u64 p_blkno, count, past_eof; 137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 138 139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 140 (unsigned long long)iblock, bh_result, create); 141 142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 144 inode, inode->i_ino); 145 146 if (S_ISLNK(inode->i_mode)) { 147 /* this always does I/O for some reason. */ 148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 149 goto bail; 150 } 151 152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 153 &ext_flags); 154 if (err) { 155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 157 (unsigned long long)p_blkno); 158 goto bail; 159 } 160 161 if (max_blocks < count) 162 count = max_blocks; 163 164 /* 165 * ocfs2 never allocates in this function - the only time we 166 * need to use BH_New is when we're extending i_size on a file 167 * system which doesn't support holes, in which case BH_New 168 * allows __block_write_begin() to zero. 169 * 170 * If we see this on a sparse file system, then a truncate has 171 * raced us and removed the cluster. In this case, we clear 172 * the buffers dirty and uptodate bits and let the buffer code 173 * ignore it as a hole. 174 */ 175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 176 clear_buffer_dirty(bh_result); 177 clear_buffer_uptodate(bh_result); 178 goto bail; 179 } 180 181 /* Treat the unwritten extent as a hole for zeroing purposes. */ 182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 183 map_bh(bh_result, inode->i_sb, p_blkno); 184 185 bh_result->b_size = count << inode->i_blkbits; 186 187 if (!ocfs2_sparse_alloc(osb)) { 188 if (p_blkno == 0) { 189 err = -EIO; 190 mlog(ML_ERROR, 191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 192 (unsigned long long)iblock, 193 (unsigned long long)p_blkno, 194 (unsigned long long)OCFS2_I(inode)->ip_blkno); 195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 196 dump_stack(); 197 goto bail; 198 } 199 } 200 201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 202 203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 204 (unsigned long long)past_eof); 205 if (create && (iblock >= past_eof)) 206 set_buffer_new(bh_result); 207 208 bail: 209 if (err < 0) 210 err = -EIO; 211 212 return err; 213 } 214 215 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 216 struct buffer_head *di_bh) 217 { 218 void *kaddr; 219 loff_t size; 220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 221 222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag", 224 (unsigned long long)OCFS2_I(inode)->ip_blkno); 225 return -EROFS; 226 } 227 228 size = i_size_read(inode); 229 230 if (size > PAGE_CACHE_SIZE || 231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 232 ocfs2_error(inode->i_sb, 233 "Inode %llu has with inline data has bad size: %Lu", 234 (unsigned long long)OCFS2_I(inode)->ip_blkno, 235 (unsigned long long)size); 236 return -EROFS; 237 } 238 239 kaddr = kmap_atomic(page); 240 if (size) 241 memcpy(kaddr, di->id2.i_data.id_data, size); 242 /* Clear the remaining part of the page */ 243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); 244 flush_dcache_page(page); 245 kunmap_atomic(kaddr); 246 247 SetPageUptodate(page); 248 249 return 0; 250 } 251 252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 253 { 254 int ret; 255 struct buffer_head *di_bh = NULL; 256 257 BUG_ON(!PageLocked(page)); 258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 259 260 ret = ocfs2_read_inode_block(inode, &di_bh); 261 if (ret) { 262 mlog_errno(ret); 263 goto out; 264 } 265 266 ret = ocfs2_read_inline_data(inode, page, di_bh); 267 out: 268 unlock_page(page); 269 270 brelse(di_bh); 271 return ret; 272 } 273 274 static int ocfs2_readpage(struct file *file, struct page *page) 275 { 276 struct inode *inode = page->mapping->host; 277 struct ocfs2_inode_info *oi = OCFS2_I(inode); 278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; 279 int ret, unlock = 1; 280 281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 282 (page ? page->index : 0)); 283 284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 285 if (ret != 0) { 286 if (ret == AOP_TRUNCATED_PAGE) 287 unlock = 0; 288 mlog_errno(ret); 289 goto out; 290 } 291 292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 293 /* 294 * Unlock the page and cycle ip_alloc_sem so that we don't 295 * busyloop waiting for ip_alloc_sem to unlock 296 */ 297 ret = AOP_TRUNCATED_PAGE; 298 unlock_page(page); 299 unlock = 0; 300 down_read(&oi->ip_alloc_sem); 301 up_read(&oi->ip_alloc_sem); 302 goto out_inode_unlock; 303 } 304 305 /* 306 * i_size might have just been updated as we grabed the meta lock. We 307 * might now be discovering a truncate that hit on another node. 308 * block_read_full_page->get_block freaks out if it is asked to read 309 * beyond the end of a file, so we check here. Callers 310 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 311 * and notice that the page they just read isn't needed. 312 * 313 * XXX sys_readahead() seems to get that wrong? 314 */ 315 if (start >= i_size_read(inode)) { 316 zero_user(page, 0, PAGE_SIZE); 317 SetPageUptodate(page); 318 ret = 0; 319 goto out_alloc; 320 } 321 322 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 323 ret = ocfs2_readpage_inline(inode, page); 324 else 325 ret = block_read_full_page(page, ocfs2_get_block); 326 unlock = 0; 327 328 out_alloc: 329 up_read(&OCFS2_I(inode)->ip_alloc_sem); 330 out_inode_unlock: 331 ocfs2_inode_unlock(inode, 0); 332 out: 333 if (unlock) 334 unlock_page(page); 335 return ret; 336 } 337 338 /* 339 * This is used only for read-ahead. Failures or difficult to handle 340 * situations are safe to ignore. 341 * 342 * Right now, we don't bother with BH_Boundary - in-inode extent lists 343 * are quite large (243 extents on 4k blocks), so most inodes don't 344 * grow out to a tree. If need be, detecting boundary extents could 345 * trivially be added in a future version of ocfs2_get_block(). 346 */ 347 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 348 struct list_head *pages, unsigned nr_pages) 349 { 350 int ret, err = -EIO; 351 struct inode *inode = mapping->host; 352 struct ocfs2_inode_info *oi = OCFS2_I(inode); 353 loff_t start; 354 struct page *last; 355 356 /* 357 * Use the nonblocking flag for the dlm code to avoid page 358 * lock inversion, but don't bother with retrying. 359 */ 360 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 361 if (ret) 362 return err; 363 364 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 365 ocfs2_inode_unlock(inode, 0); 366 return err; 367 } 368 369 /* 370 * Don't bother with inline-data. There isn't anything 371 * to read-ahead in that case anyway... 372 */ 373 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 374 goto out_unlock; 375 376 /* 377 * Check whether a remote node truncated this file - we just 378 * drop out in that case as it's not worth handling here. 379 */ 380 last = list_entry(pages->prev, struct page, lru); 381 start = (loff_t)last->index << PAGE_CACHE_SHIFT; 382 if (start >= i_size_read(inode)) 383 goto out_unlock; 384 385 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 386 387 out_unlock: 388 up_read(&oi->ip_alloc_sem); 389 ocfs2_inode_unlock(inode, 0); 390 391 return err; 392 } 393 394 /* Note: Because we don't support holes, our allocation has 395 * already happened (allocation writes zeros to the file data) 396 * so we don't have to worry about ordered writes in 397 * ocfs2_writepage. 398 * 399 * ->writepage is called during the process of invalidating the page cache 400 * during blocked lock processing. It can't block on any cluster locks 401 * to during block mapping. It's relying on the fact that the block 402 * mapping can't have disappeared under the dirty pages that it is 403 * being asked to write back. 404 */ 405 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 406 { 407 trace_ocfs2_writepage( 408 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 409 page->index); 410 411 return block_write_full_page(page, ocfs2_get_block, wbc); 412 } 413 414 /* Taken from ext3. We don't necessarily need the full blown 415 * functionality yet, but IMHO it's better to cut and paste the whole 416 * thing so we can avoid introducing our own bugs (and easily pick up 417 * their fixes when they happen) --Mark */ 418 int walk_page_buffers( handle_t *handle, 419 struct buffer_head *head, 420 unsigned from, 421 unsigned to, 422 int *partial, 423 int (*fn)( handle_t *handle, 424 struct buffer_head *bh)) 425 { 426 struct buffer_head *bh; 427 unsigned block_start, block_end; 428 unsigned blocksize = head->b_size; 429 int err, ret = 0; 430 struct buffer_head *next; 431 432 for ( bh = head, block_start = 0; 433 ret == 0 && (bh != head || !block_start); 434 block_start = block_end, bh = next) 435 { 436 next = bh->b_this_page; 437 block_end = block_start + blocksize; 438 if (block_end <= from || block_start >= to) { 439 if (partial && !buffer_uptodate(bh)) 440 *partial = 1; 441 continue; 442 } 443 err = (*fn)(handle, bh); 444 if (!ret) 445 ret = err; 446 } 447 return ret; 448 } 449 450 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 451 { 452 sector_t status; 453 u64 p_blkno = 0; 454 int err = 0; 455 struct inode *inode = mapping->host; 456 457 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 458 (unsigned long long)block); 459 460 /* We don't need to lock journal system files, since they aren't 461 * accessed concurrently from multiple nodes. 462 */ 463 if (!INODE_JOURNAL(inode)) { 464 err = ocfs2_inode_lock(inode, NULL, 0); 465 if (err) { 466 if (err != -ENOENT) 467 mlog_errno(err); 468 goto bail; 469 } 470 down_read(&OCFS2_I(inode)->ip_alloc_sem); 471 } 472 473 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 474 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 475 NULL); 476 477 if (!INODE_JOURNAL(inode)) { 478 up_read(&OCFS2_I(inode)->ip_alloc_sem); 479 ocfs2_inode_unlock(inode, 0); 480 } 481 482 if (err) { 483 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 484 (unsigned long long)block); 485 mlog_errno(err); 486 goto bail; 487 } 488 489 bail: 490 status = err ? 0 : p_blkno; 491 492 return status; 493 } 494 495 /* 496 * TODO: Make this into a generic get_blocks function. 497 * 498 * From do_direct_io in direct-io.c: 499 * "So what we do is to permit the ->get_blocks function to populate 500 * bh.b_size with the size of IO which is permitted at this offset and 501 * this i_blkbits." 502 * 503 * This function is called directly from get_more_blocks in direct-io.c. 504 * 505 * called like this: dio->get_blocks(dio->inode, fs_startblk, 506 * fs_count, map_bh, dio->rw == WRITE); 507 * 508 * Note that we never bother to allocate blocks here, and thus ignore the 509 * create argument. 510 */ 511 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, 512 struct buffer_head *bh_result, int create) 513 { 514 int ret; 515 u64 p_blkno, inode_blocks, contig_blocks; 516 unsigned int ext_flags; 517 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 518 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; 519 520 /* This function won't even be called if the request isn't all 521 * nicely aligned and of the right size, so there's no need 522 * for us to check any of that. */ 523 524 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 525 526 /* This figures out the size of the next contiguous block, and 527 * our logical offset */ 528 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 529 &contig_blocks, &ext_flags); 530 if (ret) { 531 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 532 (unsigned long long)iblock); 533 ret = -EIO; 534 goto bail; 535 } 536 537 /* We should already CoW the refcounted extent in case of create. */ 538 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED)); 539 540 /* 541 * get_more_blocks() expects us to describe a hole by clearing 542 * the mapped bit on bh_result(). 543 * 544 * Consider an unwritten extent as a hole. 545 */ 546 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 547 map_bh(bh_result, inode->i_sb, p_blkno); 548 else 549 clear_buffer_mapped(bh_result); 550 551 /* make sure we don't map more than max_blocks blocks here as 552 that's all the kernel will handle at this point. */ 553 if (max_blocks < contig_blocks) 554 contig_blocks = max_blocks; 555 bh_result->b_size = contig_blocks << blocksize_bits; 556 bail: 557 return ret; 558 } 559 560 /* 561 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 562 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 563 * to protect io on one node from truncation on another. 564 */ 565 static void ocfs2_dio_end_io(struct kiocb *iocb, 566 loff_t offset, 567 ssize_t bytes, 568 void *private) 569 { 570 struct inode *inode = file_inode(iocb->ki_filp); 571 int level; 572 wait_queue_head_t *wq = ocfs2_ioend_wq(inode); 573 574 /* this io's submitter should not have unlocked this before we could */ 575 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 576 577 if (ocfs2_iocb_is_sem_locked(iocb)) 578 ocfs2_iocb_clear_sem_locked(iocb); 579 580 if (ocfs2_iocb_is_unaligned_aio(iocb)) { 581 ocfs2_iocb_clear_unaligned_aio(iocb); 582 583 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) && 584 waitqueue_active(wq)) { 585 wake_up_all(wq); 586 } 587 } 588 589 ocfs2_iocb_clear_rw_locked(iocb); 590 591 level = ocfs2_iocb_rw_locked_level(iocb); 592 ocfs2_rw_unlock(inode, level); 593 } 594 595 /* 596 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen 597 * from ext3. PageChecked() bits have been removed as OCFS2 does not 598 * do journalled data. 599 */ 600 static void ocfs2_invalidatepage(struct page *page, unsigned int offset, 601 unsigned int length) 602 { 603 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 604 605 jbd2_journal_invalidatepage(journal, page, offset, length); 606 } 607 608 static int ocfs2_releasepage(struct page *page, gfp_t wait) 609 { 610 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 611 612 if (!page_has_buffers(page)) 613 return 0; 614 return jbd2_journal_try_to_free_buffers(journal, page, wait); 615 } 616 617 static ssize_t ocfs2_direct_IO(int rw, 618 struct kiocb *iocb, 619 const struct iovec *iov, 620 loff_t offset, 621 unsigned long nr_segs) 622 { 623 struct file *file = iocb->ki_filp; 624 struct inode *inode = file_inode(file)->i_mapping->host; 625 626 /* 627 * Fallback to buffered I/O if we see an inode without 628 * extents. 629 */ 630 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 631 return 0; 632 633 /* Fallback to buffered I/O if we are appending. */ 634 if (i_size_read(inode) <= offset) 635 return 0; 636 637 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, 638 iov, offset, nr_segs, 639 ocfs2_direct_IO_get_blocks, 640 ocfs2_dio_end_io, NULL, 0); 641 } 642 643 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 644 u32 cpos, 645 unsigned int *start, 646 unsigned int *end) 647 { 648 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; 649 650 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { 651 unsigned int cpp; 652 653 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); 654 655 cluster_start = cpos % cpp; 656 cluster_start = cluster_start << osb->s_clustersize_bits; 657 658 cluster_end = cluster_start + osb->s_clustersize; 659 } 660 661 BUG_ON(cluster_start > PAGE_SIZE); 662 BUG_ON(cluster_end > PAGE_SIZE); 663 664 if (start) 665 *start = cluster_start; 666 if (end) 667 *end = cluster_end; 668 } 669 670 /* 671 * 'from' and 'to' are the region in the page to avoid zeroing. 672 * 673 * If pagesize > clustersize, this function will avoid zeroing outside 674 * of the cluster boundary. 675 * 676 * from == to == 0 is code for "zero the entire cluster region" 677 */ 678 static void ocfs2_clear_page_regions(struct page *page, 679 struct ocfs2_super *osb, u32 cpos, 680 unsigned from, unsigned to) 681 { 682 void *kaddr; 683 unsigned int cluster_start, cluster_end; 684 685 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 686 687 kaddr = kmap_atomic(page); 688 689 if (from || to) { 690 if (from > cluster_start) 691 memset(kaddr + cluster_start, 0, from - cluster_start); 692 if (to < cluster_end) 693 memset(kaddr + to, 0, cluster_end - to); 694 } else { 695 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 696 } 697 698 kunmap_atomic(kaddr); 699 } 700 701 /* 702 * Nonsparse file systems fully allocate before we get to the write 703 * code. This prevents ocfs2_write() from tagging the write as an 704 * allocating one, which means ocfs2_map_page_blocks() might try to 705 * read-in the blocks at the tail of our file. Avoid reading them by 706 * testing i_size against each block offset. 707 */ 708 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 709 unsigned int block_start) 710 { 711 u64 offset = page_offset(page) + block_start; 712 713 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 714 return 1; 715 716 if (i_size_read(inode) > offset) 717 return 1; 718 719 return 0; 720 } 721 722 /* 723 * Some of this taken from __block_write_begin(). We already have our 724 * mapping by now though, and the entire write will be allocating or 725 * it won't, so not much need to use BH_New. 726 * 727 * This will also skip zeroing, which is handled externally. 728 */ 729 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 730 struct inode *inode, unsigned int from, 731 unsigned int to, int new) 732 { 733 int ret = 0; 734 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 735 unsigned int block_end, block_start; 736 unsigned int bsize = 1 << inode->i_blkbits; 737 738 if (!page_has_buffers(page)) 739 create_empty_buffers(page, bsize, 0); 740 741 head = page_buffers(page); 742 for (bh = head, block_start = 0; bh != head || !block_start; 743 bh = bh->b_this_page, block_start += bsize) { 744 block_end = block_start + bsize; 745 746 clear_buffer_new(bh); 747 748 /* 749 * Ignore blocks outside of our i/o range - 750 * they may belong to unallocated clusters. 751 */ 752 if (block_start >= to || block_end <= from) { 753 if (PageUptodate(page)) 754 set_buffer_uptodate(bh); 755 continue; 756 } 757 758 /* 759 * For an allocating write with cluster size >= page 760 * size, we always write the entire page. 761 */ 762 if (new) 763 set_buffer_new(bh); 764 765 if (!buffer_mapped(bh)) { 766 map_bh(bh, inode->i_sb, *p_blkno); 767 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 768 } 769 770 if (PageUptodate(page)) { 771 if (!buffer_uptodate(bh)) 772 set_buffer_uptodate(bh); 773 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 774 !buffer_new(bh) && 775 ocfs2_should_read_blk(inode, page, block_start) && 776 (block_start < from || block_end > to)) { 777 ll_rw_block(READ, 1, &bh); 778 *wait_bh++=bh; 779 } 780 781 *p_blkno = *p_blkno + 1; 782 } 783 784 /* 785 * If we issued read requests - let them complete. 786 */ 787 while(wait_bh > wait) { 788 wait_on_buffer(*--wait_bh); 789 if (!buffer_uptodate(*wait_bh)) 790 ret = -EIO; 791 } 792 793 if (ret == 0 || !new) 794 return ret; 795 796 /* 797 * If we get -EIO above, zero out any newly allocated blocks 798 * to avoid exposing stale data. 799 */ 800 bh = head; 801 block_start = 0; 802 do { 803 block_end = block_start + bsize; 804 if (block_end <= from) 805 goto next_bh; 806 if (block_start >= to) 807 break; 808 809 zero_user(page, block_start, bh->b_size); 810 set_buffer_uptodate(bh); 811 mark_buffer_dirty(bh); 812 813 next_bh: 814 block_start = block_end; 815 bh = bh->b_this_page; 816 } while (bh != head); 817 818 return ret; 819 } 820 821 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 822 #define OCFS2_MAX_CTXT_PAGES 1 823 #else 824 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) 825 #endif 826 827 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) 828 829 /* 830 * Describe the state of a single cluster to be written to. 831 */ 832 struct ocfs2_write_cluster_desc { 833 u32 c_cpos; 834 u32 c_phys; 835 /* 836 * Give this a unique field because c_phys eventually gets 837 * filled. 838 */ 839 unsigned c_new; 840 unsigned c_unwritten; 841 unsigned c_needs_zero; 842 }; 843 844 struct ocfs2_write_ctxt { 845 /* Logical cluster position / len of write */ 846 u32 w_cpos; 847 u32 w_clen; 848 849 /* First cluster allocated in a nonsparse extend */ 850 u32 w_first_new_cpos; 851 852 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 853 854 /* 855 * This is true if page_size > cluster_size. 856 * 857 * It triggers a set of special cases during write which might 858 * have to deal with allocating writes to partial pages. 859 */ 860 unsigned int w_large_pages; 861 862 /* 863 * Pages involved in this write. 864 * 865 * w_target_page is the page being written to by the user. 866 * 867 * w_pages is an array of pages which always contains 868 * w_target_page, and in the case of an allocating write with 869 * page_size < cluster size, it will contain zero'd and mapped 870 * pages adjacent to w_target_page which need to be written 871 * out in so that future reads from that region will get 872 * zero's. 873 */ 874 unsigned int w_num_pages; 875 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 876 struct page *w_target_page; 877 878 /* 879 * w_target_locked is used for page_mkwrite path indicating no unlocking 880 * against w_target_page in ocfs2_write_end_nolock. 881 */ 882 unsigned int w_target_locked:1; 883 884 /* 885 * ocfs2_write_end() uses this to know what the real range to 886 * write in the target should be. 887 */ 888 unsigned int w_target_from; 889 unsigned int w_target_to; 890 891 /* 892 * We could use journal_current_handle() but this is cleaner, 893 * IMHO -Mark 894 */ 895 handle_t *w_handle; 896 897 struct buffer_head *w_di_bh; 898 899 struct ocfs2_cached_dealloc_ctxt w_dealloc; 900 }; 901 902 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 903 { 904 int i; 905 906 for(i = 0; i < num_pages; i++) { 907 if (pages[i]) { 908 unlock_page(pages[i]); 909 mark_page_accessed(pages[i]); 910 page_cache_release(pages[i]); 911 } 912 } 913 } 914 915 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) 916 { 917 int i; 918 919 /* 920 * w_target_locked is only set to true in the page_mkwrite() case. 921 * The intent is to allow us to lock the target page from write_begin() 922 * to write_end(). The caller must hold a ref on w_target_page. 923 */ 924 if (wc->w_target_locked) { 925 BUG_ON(!wc->w_target_page); 926 for (i = 0; i < wc->w_num_pages; i++) { 927 if (wc->w_target_page == wc->w_pages[i]) { 928 wc->w_pages[i] = NULL; 929 break; 930 } 931 } 932 mark_page_accessed(wc->w_target_page); 933 page_cache_release(wc->w_target_page); 934 } 935 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 936 937 brelse(wc->w_di_bh); 938 kfree(wc); 939 } 940 941 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 942 struct ocfs2_super *osb, loff_t pos, 943 unsigned len, struct buffer_head *di_bh) 944 { 945 u32 cend; 946 struct ocfs2_write_ctxt *wc; 947 948 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 949 if (!wc) 950 return -ENOMEM; 951 952 wc->w_cpos = pos >> osb->s_clustersize_bits; 953 wc->w_first_new_cpos = UINT_MAX; 954 cend = (pos + len - 1) >> osb->s_clustersize_bits; 955 wc->w_clen = cend - wc->w_cpos + 1; 956 get_bh(di_bh); 957 wc->w_di_bh = di_bh; 958 959 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) 960 wc->w_large_pages = 1; 961 else 962 wc->w_large_pages = 0; 963 964 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 965 966 *wcp = wc; 967 968 return 0; 969 } 970 971 /* 972 * If a page has any new buffers, zero them out here, and mark them uptodate 973 * and dirty so they'll be written out (in order to prevent uninitialised 974 * block data from leaking). And clear the new bit. 975 */ 976 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 977 { 978 unsigned int block_start, block_end; 979 struct buffer_head *head, *bh; 980 981 BUG_ON(!PageLocked(page)); 982 if (!page_has_buffers(page)) 983 return; 984 985 bh = head = page_buffers(page); 986 block_start = 0; 987 do { 988 block_end = block_start + bh->b_size; 989 990 if (buffer_new(bh)) { 991 if (block_end > from && block_start < to) { 992 if (!PageUptodate(page)) { 993 unsigned start, end; 994 995 start = max(from, block_start); 996 end = min(to, block_end); 997 998 zero_user_segment(page, start, end); 999 set_buffer_uptodate(bh); 1000 } 1001 1002 clear_buffer_new(bh); 1003 mark_buffer_dirty(bh); 1004 } 1005 } 1006 1007 block_start = block_end; 1008 bh = bh->b_this_page; 1009 } while (bh != head); 1010 } 1011 1012 /* 1013 * Only called when we have a failure during allocating write to write 1014 * zero's to the newly allocated region. 1015 */ 1016 static void ocfs2_write_failure(struct inode *inode, 1017 struct ocfs2_write_ctxt *wc, 1018 loff_t user_pos, unsigned user_len) 1019 { 1020 int i; 1021 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), 1022 to = user_pos + user_len; 1023 struct page *tmppage; 1024 1025 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 1026 1027 for(i = 0; i < wc->w_num_pages; i++) { 1028 tmppage = wc->w_pages[i]; 1029 1030 if (page_has_buffers(tmppage)) { 1031 if (ocfs2_should_order_data(inode)) 1032 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1033 1034 block_commit_write(tmppage, from, to); 1035 } 1036 } 1037 } 1038 1039 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 1040 struct ocfs2_write_ctxt *wc, 1041 struct page *page, u32 cpos, 1042 loff_t user_pos, unsigned user_len, 1043 int new) 1044 { 1045 int ret; 1046 unsigned int map_from = 0, map_to = 0; 1047 unsigned int cluster_start, cluster_end; 1048 unsigned int user_data_from = 0, user_data_to = 0; 1049 1050 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 1051 &cluster_start, &cluster_end); 1052 1053 /* treat the write as new if the a hole/lseek spanned across 1054 * the page boundary. 1055 */ 1056 new = new | ((i_size_read(inode) <= page_offset(page)) && 1057 (page_offset(page) <= user_pos)); 1058 1059 if (page == wc->w_target_page) { 1060 map_from = user_pos & (PAGE_CACHE_SIZE - 1); 1061 map_to = map_from + user_len; 1062 1063 if (new) 1064 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1065 cluster_start, cluster_end, 1066 new); 1067 else 1068 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1069 map_from, map_to, new); 1070 if (ret) { 1071 mlog_errno(ret); 1072 goto out; 1073 } 1074 1075 user_data_from = map_from; 1076 user_data_to = map_to; 1077 if (new) { 1078 map_from = cluster_start; 1079 map_to = cluster_end; 1080 } 1081 } else { 1082 /* 1083 * If we haven't allocated the new page yet, we 1084 * shouldn't be writing it out without copying user 1085 * data. This is likely a math error from the caller. 1086 */ 1087 BUG_ON(!new); 1088 1089 map_from = cluster_start; 1090 map_to = cluster_end; 1091 1092 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1093 cluster_start, cluster_end, new); 1094 if (ret) { 1095 mlog_errno(ret); 1096 goto out; 1097 } 1098 } 1099 1100 /* 1101 * Parts of newly allocated pages need to be zero'd. 1102 * 1103 * Above, we have also rewritten 'to' and 'from' - as far as 1104 * the rest of the function is concerned, the entire cluster 1105 * range inside of a page needs to be written. 1106 * 1107 * We can skip this if the page is up to date - it's already 1108 * been zero'd from being read in as a hole. 1109 */ 1110 if (new && !PageUptodate(page)) 1111 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1112 cpos, user_data_from, user_data_to); 1113 1114 flush_dcache_page(page); 1115 1116 out: 1117 return ret; 1118 } 1119 1120 /* 1121 * This function will only grab one clusters worth of pages. 1122 */ 1123 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1124 struct ocfs2_write_ctxt *wc, 1125 u32 cpos, loff_t user_pos, 1126 unsigned user_len, int new, 1127 struct page *mmap_page) 1128 { 1129 int ret = 0, i; 1130 unsigned long start, target_index, end_index, index; 1131 struct inode *inode = mapping->host; 1132 loff_t last_byte; 1133 1134 target_index = user_pos >> PAGE_CACHE_SHIFT; 1135 1136 /* 1137 * Figure out how many pages we'll be manipulating here. For 1138 * non allocating write, we just change the one 1139 * page. Otherwise, we'll need a whole clusters worth. If we're 1140 * writing past i_size, we only need enough pages to cover the 1141 * last page of the write. 1142 */ 1143 if (new) { 1144 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1145 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1146 /* 1147 * We need the index *past* the last page we could possibly 1148 * touch. This is the page past the end of the write or 1149 * i_size, whichever is greater. 1150 */ 1151 last_byte = max(user_pos + user_len, i_size_read(inode)); 1152 BUG_ON(last_byte < 1); 1153 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1; 1154 if ((start + wc->w_num_pages) > end_index) 1155 wc->w_num_pages = end_index - start; 1156 } else { 1157 wc->w_num_pages = 1; 1158 start = target_index; 1159 } 1160 1161 for(i = 0; i < wc->w_num_pages; i++) { 1162 index = start + i; 1163 1164 if (index == target_index && mmap_page) { 1165 /* 1166 * ocfs2_pagemkwrite() is a little different 1167 * and wants us to directly use the page 1168 * passed in. 1169 */ 1170 lock_page(mmap_page); 1171 1172 /* Exit and let the caller retry */ 1173 if (mmap_page->mapping != mapping) { 1174 WARN_ON(mmap_page->mapping); 1175 unlock_page(mmap_page); 1176 ret = -EAGAIN; 1177 goto out; 1178 } 1179 1180 page_cache_get(mmap_page); 1181 wc->w_pages[i] = mmap_page; 1182 wc->w_target_locked = true; 1183 } else { 1184 wc->w_pages[i] = find_or_create_page(mapping, index, 1185 GFP_NOFS); 1186 if (!wc->w_pages[i]) { 1187 ret = -ENOMEM; 1188 mlog_errno(ret); 1189 goto out; 1190 } 1191 } 1192 wait_for_stable_page(wc->w_pages[i]); 1193 1194 if (index == target_index) 1195 wc->w_target_page = wc->w_pages[i]; 1196 } 1197 out: 1198 if (ret) 1199 wc->w_target_locked = false; 1200 return ret; 1201 } 1202 1203 /* 1204 * Prepare a single cluster for write one cluster into the file. 1205 */ 1206 static int ocfs2_write_cluster(struct address_space *mapping, 1207 u32 phys, unsigned int unwritten, 1208 unsigned int should_zero, 1209 struct ocfs2_alloc_context *data_ac, 1210 struct ocfs2_alloc_context *meta_ac, 1211 struct ocfs2_write_ctxt *wc, u32 cpos, 1212 loff_t user_pos, unsigned user_len) 1213 { 1214 int ret, i, new; 1215 u64 v_blkno, p_blkno; 1216 struct inode *inode = mapping->host; 1217 struct ocfs2_extent_tree et; 1218 1219 new = phys == 0 ? 1 : 0; 1220 if (new) { 1221 u32 tmp_pos; 1222 1223 /* 1224 * This is safe to call with the page locks - it won't take 1225 * any additional semaphores or cluster locks. 1226 */ 1227 tmp_pos = cpos; 1228 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1229 &tmp_pos, 1, 0, wc->w_di_bh, 1230 wc->w_handle, data_ac, 1231 meta_ac, NULL); 1232 /* 1233 * This shouldn't happen because we must have already 1234 * calculated the correct meta data allocation required. The 1235 * internal tree allocation code should know how to increase 1236 * transaction credits itself. 1237 * 1238 * If need be, we could handle -EAGAIN for a 1239 * RESTART_TRANS here. 1240 */ 1241 mlog_bug_on_msg(ret == -EAGAIN, 1242 "Inode %llu: EAGAIN return during allocation.\n", 1243 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1244 if (ret < 0) { 1245 mlog_errno(ret); 1246 goto out; 1247 } 1248 } else if (unwritten) { 1249 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1250 wc->w_di_bh); 1251 ret = ocfs2_mark_extent_written(inode, &et, 1252 wc->w_handle, cpos, 1, phys, 1253 meta_ac, &wc->w_dealloc); 1254 if (ret < 0) { 1255 mlog_errno(ret); 1256 goto out; 1257 } 1258 } 1259 1260 if (should_zero) 1261 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); 1262 else 1263 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; 1264 1265 /* 1266 * The only reason this should fail is due to an inability to 1267 * find the extent added. 1268 */ 1269 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, 1270 NULL); 1271 if (ret < 0) { 1272 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, " 1273 "at logical block %llu", 1274 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1275 (unsigned long long)v_blkno); 1276 goto out; 1277 } 1278 1279 BUG_ON(p_blkno == 0); 1280 1281 for(i = 0; i < wc->w_num_pages; i++) { 1282 int tmpret; 1283 1284 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1285 wc->w_pages[i], cpos, 1286 user_pos, user_len, 1287 should_zero); 1288 if (tmpret) { 1289 mlog_errno(tmpret); 1290 if (ret == 0) 1291 ret = tmpret; 1292 } 1293 } 1294 1295 /* 1296 * We only have cleanup to do in case of allocating write. 1297 */ 1298 if (ret && new) 1299 ocfs2_write_failure(inode, wc, user_pos, user_len); 1300 1301 out: 1302 1303 return ret; 1304 } 1305 1306 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1307 struct ocfs2_alloc_context *data_ac, 1308 struct ocfs2_alloc_context *meta_ac, 1309 struct ocfs2_write_ctxt *wc, 1310 loff_t pos, unsigned len) 1311 { 1312 int ret, i; 1313 loff_t cluster_off; 1314 unsigned int local_len = len; 1315 struct ocfs2_write_cluster_desc *desc; 1316 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1317 1318 for (i = 0; i < wc->w_clen; i++) { 1319 desc = &wc->w_desc[i]; 1320 1321 /* 1322 * We have to make sure that the total write passed in 1323 * doesn't extend past a single cluster. 1324 */ 1325 local_len = len; 1326 cluster_off = pos & (osb->s_clustersize - 1); 1327 if ((cluster_off + local_len) > osb->s_clustersize) 1328 local_len = osb->s_clustersize - cluster_off; 1329 1330 ret = ocfs2_write_cluster(mapping, desc->c_phys, 1331 desc->c_unwritten, 1332 desc->c_needs_zero, 1333 data_ac, meta_ac, 1334 wc, desc->c_cpos, pos, local_len); 1335 if (ret) { 1336 mlog_errno(ret); 1337 goto out; 1338 } 1339 1340 len -= local_len; 1341 pos += local_len; 1342 } 1343 1344 ret = 0; 1345 out: 1346 return ret; 1347 } 1348 1349 /* 1350 * ocfs2_write_end() wants to know which parts of the target page it 1351 * should complete the write on. It's easiest to compute them ahead of 1352 * time when a more complete view of the write is available. 1353 */ 1354 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1355 struct ocfs2_write_ctxt *wc, 1356 loff_t pos, unsigned len, int alloc) 1357 { 1358 struct ocfs2_write_cluster_desc *desc; 1359 1360 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); 1361 wc->w_target_to = wc->w_target_from + len; 1362 1363 if (alloc == 0) 1364 return; 1365 1366 /* 1367 * Allocating write - we may have different boundaries based 1368 * on page size and cluster size. 1369 * 1370 * NOTE: We can no longer compute one value from the other as 1371 * the actual write length and user provided length may be 1372 * different. 1373 */ 1374 1375 if (wc->w_large_pages) { 1376 /* 1377 * We only care about the 1st and last cluster within 1378 * our range and whether they should be zero'd or not. Either 1379 * value may be extended out to the start/end of a 1380 * newly allocated cluster. 1381 */ 1382 desc = &wc->w_desc[0]; 1383 if (desc->c_needs_zero) 1384 ocfs2_figure_cluster_boundaries(osb, 1385 desc->c_cpos, 1386 &wc->w_target_from, 1387 NULL); 1388 1389 desc = &wc->w_desc[wc->w_clen - 1]; 1390 if (desc->c_needs_zero) 1391 ocfs2_figure_cluster_boundaries(osb, 1392 desc->c_cpos, 1393 NULL, 1394 &wc->w_target_to); 1395 } else { 1396 wc->w_target_from = 0; 1397 wc->w_target_to = PAGE_CACHE_SIZE; 1398 } 1399 } 1400 1401 /* 1402 * Populate each single-cluster write descriptor in the write context 1403 * with information about the i/o to be done. 1404 * 1405 * Returns the number of clusters that will have to be allocated, as 1406 * well as a worst case estimate of the number of extent records that 1407 * would have to be created during a write to an unwritten region. 1408 */ 1409 static int ocfs2_populate_write_desc(struct inode *inode, 1410 struct ocfs2_write_ctxt *wc, 1411 unsigned int *clusters_to_alloc, 1412 unsigned int *extents_to_split) 1413 { 1414 int ret; 1415 struct ocfs2_write_cluster_desc *desc; 1416 unsigned int num_clusters = 0; 1417 unsigned int ext_flags = 0; 1418 u32 phys = 0; 1419 int i; 1420 1421 *clusters_to_alloc = 0; 1422 *extents_to_split = 0; 1423 1424 for (i = 0; i < wc->w_clen; i++) { 1425 desc = &wc->w_desc[i]; 1426 desc->c_cpos = wc->w_cpos + i; 1427 1428 if (num_clusters == 0) { 1429 /* 1430 * Need to look up the next extent record. 1431 */ 1432 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1433 &num_clusters, &ext_flags); 1434 if (ret) { 1435 mlog_errno(ret); 1436 goto out; 1437 } 1438 1439 /* We should already CoW the refcountd extent. */ 1440 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1441 1442 /* 1443 * Assume worst case - that we're writing in 1444 * the middle of the extent. 1445 * 1446 * We can assume that the write proceeds from 1447 * left to right, in which case the extent 1448 * insert code is smart enough to coalesce the 1449 * next splits into the previous records created. 1450 */ 1451 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1452 *extents_to_split = *extents_to_split + 2; 1453 } else if (phys) { 1454 /* 1455 * Only increment phys if it doesn't describe 1456 * a hole. 1457 */ 1458 phys++; 1459 } 1460 1461 /* 1462 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1463 * file that got extended. w_first_new_cpos tells us 1464 * where the newly allocated clusters are so we can 1465 * zero them. 1466 */ 1467 if (desc->c_cpos >= wc->w_first_new_cpos) { 1468 BUG_ON(phys == 0); 1469 desc->c_needs_zero = 1; 1470 } 1471 1472 desc->c_phys = phys; 1473 if (phys == 0) { 1474 desc->c_new = 1; 1475 desc->c_needs_zero = 1; 1476 *clusters_to_alloc = *clusters_to_alloc + 1; 1477 } 1478 1479 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1480 desc->c_unwritten = 1; 1481 desc->c_needs_zero = 1; 1482 } 1483 1484 num_clusters--; 1485 } 1486 1487 ret = 0; 1488 out: 1489 return ret; 1490 } 1491 1492 static int ocfs2_write_begin_inline(struct address_space *mapping, 1493 struct inode *inode, 1494 struct ocfs2_write_ctxt *wc) 1495 { 1496 int ret; 1497 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1498 struct page *page; 1499 handle_t *handle; 1500 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1501 1502 page = find_or_create_page(mapping, 0, GFP_NOFS); 1503 if (!page) { 1504 ret = -ENOMEM; 1505 mlog_errno(ret); 1506 goto out; 1507 } 1508 /* 1509 * If we don't set w_num_pages then this page won't get unlocked 1510 * and freed on cleanup of the write context. 1511 */ 1512 wc->w_pages[0] = wc->w_target_page = page; 1513 wc->w_num_pages = 1; 1514 1515 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1516 if (IS_ERR(handle)) { 1517 ret = PTR_ERR(handle); 1518 mlog_errno(ret); 1519 goto out; 1520 } 1521 1522 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1523 OCFS2_JOURNAL_ACCESS_WRITE); 1524 if (ret) { 1525 ocfs2_commit_trans(osb, handle); 1526 1527 mlog_errno(ret); 1528 goto out; 1529 } 1530 1531 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1532 ocfs2_set_inode_data_inline(inode, di); 1533 1534 if (!PageUptodate(page)) { 1535 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1536 if (ret) { 1537 ocfs2_commit_trans(osb, handle); 1538 1539 goto out; 1540 } 1541 } 1542 1543 wc->w_handle = handle; 1544 out: 1545 return ret; 1546 } 1547 1548 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1549 { 1550 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1551 1552 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1553 return 1; 1554 return 0; 1555 } 1556 1557 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1558 struct inode *inode, loff_t pos, 1559 unsigned len, struct page *mmap_page, 1560 struct ocfs2_write_ctxt *wc) 1561 { 1562 int ret, written = 0; 1563 loff_t end = pos + len; 1564 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1565 struct ocfs2_dinode *di = NULL; 1566 1567 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1568 len, (unsigned long long)pos, 1569 oi->ip_dyn_features); 1570 1571 /* 1572 * Handle inodes which already have inline data 1st. 1573 */ 1574 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1575 if (mmap_page == NULL && 1576 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1577 goto do_inline_write; 1578 1579 /* 1580 * The write won't fit - we have to give this inode an 1581 * inline extent list now. 1582 */ 1583 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1584 if (ret) 1585 mlog_errno(ret); 1586 goto out; 1587 } 1588 1589 /* 1590 * Check whether the inode can accept inline data. 1591 */ 1592 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1593 return 0; 1594 1595 /* 1596 * Check whether the write can fit. 1597 */ 1598 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1599 if (mmap_page || 1600 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1601 return 0; 1602 1603 do_inline_write: 1604 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1605 if (ret) { 1606 mlog_errno(ret); 1607 goto out; 1608 } 1609 1610 /* 1611 * This signals to the caller that the data can be written 1612 * inline. 1613 */ 1614 written = 1; 1615 out: 1616 return written ? written : ret; 1617 } 1618 1619 /* 1620 * This function only does anything for file systems which can't 1621 * handle sparse files. 1622 * 1623 * What we want to do here is fill in any hole between the current end 1624 * of allocation and the end of our write. That way the rest of the 1625 * write path can treat it as an non-allocating write, which has no 1626 * special case code for sparse/nonsparse files. 1627 */ 1628 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1629 struct buffer_head *di_bh, 1630 loff_t pos, unsigned len, 1631 struct ocfs2_write_ctxt *wc) 1632 { 1633 int ret; 1634 loff_t newsize = pos + len; 1635 1636 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1637 1638 if (newsize <= i_size_read(inode)) 1639 return 0; 1640 1641 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1642 if (ret) 1643 mlog_errno(ret); 1644 1645 wc->w_first_new_cpos = 1646 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1647 1648 return ret; 1649 } 1650 1651 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1652 loff_t pos) 1653 { 1654 int ret = 0; 1655 1656 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1657 if (pos > i_size_read(inode)) 1658 ret = ocfs2_zero_extend(inode, di_bh, pos); 1659 1660 return ret; 1661 } 1662 1663 /* 1664 * Try to flush truncate logs if we can free enough clusters from it. 1665 * As for return value, "< 0" means error, "0" no space and "1" means 1666 * we have freed enough spaces and let the caller try to allocate again. 1667 */ 1668 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 1669 unsigned int needed) 1670 { 1671 tid_t target; 1672 int ret = 0; 1673 unsigned int truncated_clusters; 1674 1675 mutex_lock(&osb->osb_tl_inode->i_mutex); 1676 truncated_clusters = osb->truncated_clusters; 1677 mutex_unlock(&osb->osb_tl_inode->i_mutex); 1678 1679 /* 1680 * Check whether we can succeed in allocating if we free 1681 * the truncate log. 1682 */ 1683 if (truncated_clusters < needed) 1684 goto out; 1685 1686 ret = ocfs2_flush_truncate_log(osb); 1687 if (ret) { 1688 mlog_errno(ret); 1689 goto out; 1690 } 1691 1692 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 1693 jbd2_log_wait_commit(osb->journal->j_journal, target); 1694 ret = 1; 1695 } 1696 out: 1697 return ret; 1698 } 1699 1700 int ocfs2_write_begin_nolock(struct file *filp, 1701 struct address_space *mapping, 1702 loff_t pos, unsigned len, unsigned flags, 1703 struct page **pagep, void **fsdata, 1704 struct buffer_head *di_bh, struct page *mmap_page) 1705 { 1706 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1707 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1708 struct ocfs2_write_ctxt *wc; 1709 struct inode *inode = mapping->host; 1710 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1711 struct ocfs2_dinode *di; 1712 struct ocfs2_alloc_context *data_ac = NULL; 1713 struct ocfs2_alloc_context *meta_ac = NULL; 1714 handle_t *handle; 1715 struct ocfs2_extent_tree et; 1716 int try_free = 1, ret1; 1717 1718 try_again: 1719 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); 1720 if (ret) { 1721 mlog_errno(ret); 1722 return ret; 1723 } 1724 1725 if (ocfs2_supports_inline_data(osb)) { 1726 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1727 mmap_page, wc); 1728 if (ret == 1) { 1729 ret = 0; 1730 goto success; 1731 } 1732 if (ret < 0) { 1733 mlog_errno(ret); 1734 goto out; 1735 } 1736 } 1737 1738 if (ocfs2_sparse_alloc(osb)) 1739 ret = ocfs2_zero_tail(inode, di_bh, pos); 1740 else 1741 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len, 1742 wc); 1743 if (ret) { 1744 mlog_errno(ret); 1745 goto out; 1746 } 1747 1748 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1749 if (ret < 0) { 1750 mlog_errno(ret); 1751 goto out; 1752 } else if (ret == 1) { 1753 clusters_need = wc->w_clen; 1754 ret = ocfs2_refcount_cow(inode, di_bh, 1755 wc->w_cpos, wc->w_clen, UINT_MAX); 1756 if (ret) { 1757 mlog_errno(ret); 1758 goto out; 1759 } 1760 } 1761 1762 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1763 &extents_to_split); 1764 if (ret) { 1765 mlog_errno(ret); 1766 goto out; 1767 } 1768 clusters_need += clusters_to_alloc; 1769 1770 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1771 1772 trace_ocfs2_write_begin_nolock( 1773 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1774 (long long)i_size_read(inode), 1775 le32_to_cpu(di->i_clusters), 1776 pos, len, flags, mmap_page, 1777 clusters_to_alloc, extents_to_split); 1778 1779 /* 1780 * We set w_target_from, w_target_to here so that 1781 * ocfs2_write_end() knows which range in the target page to 1782 * write out. An allocation requires that we write the entire 1783 * cluster range. 1784 */ 1785 if (clusters_to_alloc || extents_to_split) { 1786 /* 1787 * XXX: We are stretching the limits of 1788 * ocfs2_lock_allocators(). It greatly over-estimates 1789 * the work to be done. 1790 */ 1791 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1792 wc->w_di_bh); 1793 ret = ocfs2_lock_allocators(inode, &et, 1794 clusters_to_alloc, extents_to_split, 1795 &data_ac, &meta_ac); 1796 if (ret) { 1797 mlog_errno(ret); 1798 goto out; 1799 } 1800 1801 if (data_ac) 1802 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1803 1804 credits = ocfs2_calc_extend_credits(inode->i_sb, 1805 &di->id2.i_list, 1806 clusters_to_alloc); 1807 1808 } 1809 1810 /* 1811 * We have to zero sparse allocated clusters, unwritten extent clusters, 1812 * and non-sparse clusters we just extended. For non-sparse writes, 1813 * we know zeros will only be needed in the first and/or last cluster. 1814 */ 1815 if (clusters_to_alloc || extents_to_split || 1816 (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1817 wc->w_desc[wc->w_clen - 1].c_needs_zero))) 1818 cluster_of_pages = 1; 1819 else 1820 cluster_of_pages = 0; 1821 1822 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1823 1824 handle = ocfs2_start_trans(osb, credits); 1825 if (IS_ERR(handle)) { 1826 ret = PTR_ERR(handle); 1827 mlog_errno(ret); 1828 goto out; 1829 } 1830 1831 wc->w_handle = handle; 1832 1833 if (clusters_to_alloc) { 1834 ret = dquot_alloc_space_nodirty(inode, 1835 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1836 if (ret) 1837 goto out_commit; 1838 } 1839 /* 1840 * We don't want this to fail in ocfs2_write_end(), so do it 1841 * here. 1842 */ 1843 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1844 OCFS2_JOURNAL_ACCESS_WRITE); 1845 if (ret) { 1846 mlog_errno(ret); 1847 goto out_quota; 1848 } 1849 1850 /* 1851 * Fill our page array first. That way we've grabbed enough so 1852 * that we can zero and flush if we error after adding the 1853 * extent. 1854 */ 1855 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1856 cluster_of_pages, mmap_page); 1857 if (ret && ret != -EAGAIN) { 1858 mlog_errno(ret); 1859 goto out_quota; 1860 } 1861 1862 /* 1863 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 1864 * the target page. In this case, we exit with no error and no target 1865 * page. This will trigger the caller, page_mkwrite(), to re-try 1866 * the operation. 1867 */ 1868 if (ret == -EAGAIN) { 1869 BUG_ON(wc->w_target_page); 1870 ret = 0; 1871 goto out_quota; 1872 } 1873 1874 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1875 len); 1876 if (ret) { 1877 mlog_errno(ret); 1878 goto out_quota; 1879 } 1880 1881 if (data_ac) 1882 ocfs2_free_alloc_context(data_ac); 1883 if (meta_ac) 1884 ocfs2_free_alloc_context(meta_ac); 1885 1886 success: 1887 *pagep = wc->w_target_page; 1888 *fsdata = wc; 1889 return 0; 1890 out_quota: 1891 if (clusters_to_alloc) 1892 dquot_free_space(inode, 1893 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1894 out_commit: 1895 ocfs2_commit_trans(osb, handle); 1896 1897 out: 1898 ocfs2_free_write_ctxt(wc); 1899 1900 if (data_ac) 1901 ocfs2_free_alloc_context(data_ac); 1902 if (meta_ac) 1903 ocfs2_free_alloc_context(meta_ac); 1904 1905 if (ret == -ENOSPC && try_free) { 1906 /* 1907 * Try to free some truncate log so that we can have enough 1908 * clusters to allocate. 1909 */ 1910 try_free = 0; 1911 1912 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1913 if (ret1 == 1) 1914 goto try_again; 1915 1916 if (ret1 < 0) 1917 mlog_errno(ret1); 1918 } 1919 1920 return ret; 1921 } 1922 1923 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1924 loff_t pos, unsigned len, unsigned flags, 1925 struct page **pagep, void **fsdata) 1926 { 1927 int ret; 1928 struct buffer_head *di_bh = NULL; 1929 struct inode *inode = mapping->host; 1930 1931 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1932 if (ret) { 1933 mlog_errno(ret); 1934 return ret; 1935 } 1936 1937 /* 1938 * Take alloc sem here to prevent concurrent lookups. That way 1939 * the mapping, zeroing and tree manipulation within 1940 * ocfs2_write() will be safe against ->readpage(). This 1941 * should also serve to lock out allocation from a shared 1942 * writeable region. 1943 */ 1944 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1945 1946 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep, 1947 fsdata, di_bh, NULL); 1948 if (ret) { 1949 mlog_errno(ret); 1950 goto out_fail; 1951 } 1952 1953 brelse(di_bh); 1954 1955 return 0; 1956 1957 out_fail: 1958 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1959 1960 brelse(di_bh); 1961 ocfs2_inode_unlock(inode, 1); 1962 1963 return ret; 1964 } 1965 1966 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1967 unsigned len, unsigned *copied, 1968 struct ocfs2_dinode *di, 1969 struct ocfs2_write_ctxt *wc) 1970 { 1971 void *kaddr; 1972 1973 if (unlikely(*copied < len)) { 1974 if (!PageUptodate(wc->w_target_page)) { 1975 *copied = 0; 1976 return; 1977 } 1978 } 1979 1980 kaddr = kmap_atomic(wc->w_target_page); 1981 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1982 kunmap_atomic(kaddr); 1983 1984 trace_ocfs2_write_end_inline( 1985 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1986 (unsigned long long)pos, *copied, 1987 le16_to_cpu(di->id2.i_data.id_count), 1988 le16_to_cpu(di->i_dyn_features)); 1989 } 1990 1991 int ocfs2_write_end_nolock(struct address_space *mapping, 1992 loff_t pos, unsigned len, unsigned copied, 1993 struct page *page, void *fsdata) 1994 { 1995 int i; 1996 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); 1997 struct inode *inode = mapping->host; 1998 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1999 struct ocfs2_write_ctxt *wc = fsdata; 2000 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 2001 handle_t *handle = wc->w_handle; 2002 struct page *tmppage; 2003 2004 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2005 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 2006 goto out_write_size; 2007 } 2008 2009 if (unlikely(copied < len)) { 2010 if (!PageUptodate(wc->w_target_page)) 2011 copied = 0; 2012 2013 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 2014 start+len); 2015 } 2016 flush_dcache_page(wc->w_target_page); 2017 2018 for(i = 0; i < wc->w_num_pages; i++) { 2019 tmppage = wc->w_pages[i]; 2020 2021 if (tmppage == wc->w_target_page) { 2022 from = wc->w_target_from; 2023 to = wc->w_target_to; 2024 2025 BUG_ON(from > PAGE_CACHE_SIZE || 2026 to > PAGE_CACHE_SIZE || 2027 to < from); 2028 } else { 2029 /* 2030 * Pages adjacent to the target (if any) imply 2031 * a hole-filling write in which case we want 2032 * to flush their entire range. 2033 */ 2034 from = 0; 2035 to = PAGE_CACHE_SIZE; 2036 } 2037 2038 if (page_has_buffers(tmppage)) { 2039 if (ocfs2_should_order_data(inode)) 2040 ocfs2_jbd2_file_inode(wc->w_handle, inode); 2041 block_commit_write(tmppage, from, to); 2042 } 2043 } 2044 2045 out_write_size: 2046 pos += copied; 2047 if (pos > i_size_read(inode)) { 2048 i_size_write(inode, pos); 2049 mark_inode_dirty(inode); 2050 } 2051 inode->i_blocks = ocfs2_inode_sector_count(inode); 2052 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2053 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2054 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2055 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2056 ocfs2_journal_dirty(handle, wc->w_di_bh); 2057 2058 ocfs2_commit_trans(osb, handle); 2059 2060 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2061 2062 ocfs2_free_write_ctxt(wc); 2063 2064 return copied; 2065 } 2066 2067 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2068 loff_t pos, unsigned len, unsigned copied, 2069 struct page *page, void *fsdata) 2070 { 2071 int ret; 2072 struct inode *inode = mapping->host; 2073 2074 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 2075 2076 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2077 ocfs2_inode_unlock(inode, 1); 2078 2079 return ret; 2080 } 2081 2082 const struct address_space_operations ocfs2_aops = { 2083 .readpage = ocfs2_readpage, 2084 .readpages = ocfs2_readpages, 2085 .writepage = ocfs2_writepage, 2086 .write_begin = ocfs2_write_begin, 2087 .write_end = ocfs2_write_end, 2088 .bmap = ocfs2_bmap, 2089 .direct_IO = ocfs2_direct_IO, 2090 .invalidatepage = ocfs2_invalidatepage, 2091 .releasepage = ocfs2_releasepage, 2092 .migratepage = buffer_migrate_page, 2093 .is_partially_uptodate = block_is_partially_uptodate, 2094 .error_remove_page = generic_error_remove_page, 2095 }; 2096