xref: /openbmc/linux/fs/ocfs2/aops.c (revision e23feb16)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 
32 #include <cluster/masklog.h>
33 
34 #include "ocfs2.h"
35 
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
48 
49 #include "buffer_head_io.h"
50 
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 				   struct buffer_head *bh_result, int create)
53 {
54 	int err = -EIO;
55 	int status;
56 	struct ocfs2_dinode *fe = NULL;
57 	struct buffer_head *bh = NULL;
58 	struct buffer_head *buffer_cache_bh = NULL;
59 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 	void *kaddr;
61 
62 	trace_ocfs2_symlink_get_block(
63 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
64 			(unsigned long long)iblock, bh_result, create);
65 
66 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67 
68 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 		     (unsigned long long)iblock);
71 		goto bail;
72 	}
73 
74 	status = ocfs2_read_inode_block(inode, &bh);
75 	if (status < 0) {
76 		mlog_errno(status);
77 		goto bail;
78 	}
79 	fe = (struct ocfs2_dinode *) bh->b_data;
80 
81 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 						    le32_to_cpu(fe->i_clusters))) {
83 		mlog(ML_ERROR, "block offset is outside the allocated size: "
84 		     "%llu\n", (unsigned long long)iblock);
85 		goto bail;
86 	}
87 
88 	/* We don't use the page cache to create symlink data, so if
89 	 * need be, copy it over from the buffer cache. */
90 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 			    iblock;
93 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 		if (!buffer_cache_bh) {
95 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 			goto bail;
97 		}
98 
99 		/* we haven't locked out transactions, so a commit
100 		 * could've happened. Since we've got a reference on
101 		 * the bh, even if it commits while we're doing the
102 		 * copy, the data is still good. */
103 		if (buffer_jbd(buffer_cache_bh)
104 		    && ocfs2_inode_is_new(inode)) {
105 			kaddr = kmap_atomic(bh_result->b_page);
106 			if (!kaddr) {
107 				mlog(ML_ERROR, "couldn't kmap!\n");
108 				goto bail;
109 			}
110 			memcpy(kaddr + (bh_result->b_size * iblock),
111 			       buffer_cache_bh->b_data,
112 			       bh_result->b_size);
113 			kunmap_atomic(kaddr);
114 			set_buffer_uptodate(bh_result);
115 		}
116 		brelse(buffer_cache_bh);
117 	}
118 
119 	map_bh(bh_result, inode->i_sb,
120 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121 
122 	err = 0;
123 
124 bail:
125 	brelse(bh);
126 
127 	return err;
128 }
129 
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 		    struct buffer_head *bh_result, int create)
132 {
133 	int err = 0;
134 	unsigned int ext_flags;
135 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 	u64 p_blkno, count, past_eof;
137 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138 
139 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 			      (unsigned long long)iblock, bh_result, create);
141 
142 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 		     inode, inode->i_ino);
145 
146 	if (S_ISLNK(inode->i_mode)) {
147 		/* this always does I/O for some reason. */
148 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 		goto bail;
150 	}
151 
152 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 					  &ext_flags);
154 	if (err) {
155 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 		     (unsigned long long)p_blkno);
158 		goto bail;
159 	}
160 
161 	if (max_blocks < count)
162 		count = max_blocks;
163 
164 	/*
165 	 * ocfs2 never allocates in this function - the only time we
166 	 * need to use BH_New is when we're extending i_size on a file
167 	 * system which doesn't support holes, in which case BH_New
168 	 * allows __block_write_begin() to zero.
169 	 *
170 	 * If we see this on a sparse file system, then a truncate has
171 	 * raced us and removed the cluster. In this case, we clear
172 	 * the buffers dirty and uptodate bits and let the buffer code
173 	 * ignore it as a hole.
174 	 */
175 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 		clear_buffer_dirty(bh_result);
177 		clear_buffer_uptodate(bh_result);
178 		goto bail;
179 	}
180 
181 	/* Treat the unwritten extent as a hole for zeroing purposes. */
182 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 		map_bh(bh_result, inode->i_sb, p_blkno);
184 
185 	bh_result->b_size = count << inode->i_blkbits;
186 
187 	if (!ocfs2_sparse_alloc(osb)) {
188 		if (p_blkno == 0) {
189 			err = -EIO;
190 			mlog(ML_ERROR,
191 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 			     (unsigned long long)iblock,
193 			     (unsigned long long)p_blkno,
194 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 			dump_stack();
197 			goto bail;
198 		}
199 	}
200 
201 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202 
203 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 				  (unsigned long long)past_eof);
205 	if (create && (iblock >= past_eof))
206 		set_buffer_new(bh_result);
207 
208 bail:
209 	if (err < 0)
210 		err = -EIO;
211 
212 	return err;
213 }
214 
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 			   struct buffer_head *di_bh)
217 {
218 	void *kaddr;
219 	loff_t size;
220 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221 
222 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 		return -EROFS;
226 	}
227 
228 	size = i_size_read(inode);
229 
230 	if (size > PAGE_CACHE_SIZE ||
231 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 		ocfs2_error(inode->i_sb,
233 			    "Inode %llu has with inline data has bad size: %Lu",
234 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 			    (unsigned long long)size);
236 		return -EROFS;
237 	}
238 
239 	kaddr = kmap_atomic(page);
240 	if (size)
241 		memcpy(kaddr, di->id2.i_data.id_data, size);
242 	/* Clear the remaining part of the page */
243 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 	flush_dcache_page(page);
245 	kunmap_atomic(kaddr);
246 
247 	SetPageUptodate(page);
248 
249 	return 0;
250 }
251 
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253 {
254 	int ret;
255 	struct buffer_head *di_bh = NULL;
256 
257 	BUG_ON(!PageLocked(page));
258 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259 
260 	ret = ocfs2_read_inode_block(inode, &di_bh);
261 	if (ret) {
262 		mlog_errno(ret);
263 		goto out;
264 	}
265 
266 	ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268 	unlock_page(page);
269 
270 	brelse(di_bh);
271 	return ret;
272 }
273 
274 static int ocfs2_readpage(struct file *file, struct page *page)
275 {
276 	struct inode *inode = page->mapping->host;
277 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 	int ret, unlock = 1;
280 
281 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 			     (page ? page->index : 0));
283 
284 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 	if (ret != 0) {
286 		if (ret == AOP_TRUNCATED_PAGE)
287 			unlock = 0;
288 		mlog_errno(ret);
289 		goto out;
290 	}
291 
292 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293 		/*
294 		 * Unlock the page and cycle ip_alloc_sem so that we don't
295 		 * busyloop waiting for ip_alloc_sem to unlock
296 		 */
297 		ret = AOP_TRUNCATED_PAGE;
298 		unlock_page(page);
299 		unlock = 0;
300 		down_read(&oi->ip_alloc_sem);
301 		up_read(&oi->ip_alloc_sem);
302 		goto out_inode_unlock;
303 	}
304 
305 	/*
306 	 * i_size might have just been updated as we grabed the meta lock.  We
307 	 * might now be discovering a truncate that hit on another node.
308 	 * block_read_full_page->get_block freaks out if it is asked to read
309 	 * beyond the end of a file, so we check here.  Callers
310 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
311 	 * and notice that the page they just read isn't needed.
312 	 *
313 	 * XXX sys_readahead() seems to get that wrong?
314 	 */
315 	if (start >= i_size_read(inode)) {
316 		zero_user(page, 0, PAGE_SIZE);
317 		SetPageUptodate(page);
318 		ret = 0;
319 		goto out_alloc;
320 	}
321 
322 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
323 		ret = ocfs2_readpage_inline(inode, page);
324 	else
325 		ret = block_read_full_page(page, ocfs2_get_block);
326 	unlock = 0;
327 
328 out_alloc:
329 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
330 out_inode_unlock:
331 	ocfs2_inode_unlock(inode, 0);
332 out:
333 	if (unlock)
334 		unlock_page(page);
335 	return ret;
336 }
337 
338 /*
339  * This is used only for read-ahead. Failures or difficult to handle
340  * situations are safe to ignore.
341  *
342  * Right now, we don't bother with BH_Boundary - in-inode extent lists
343  * are quite large (243 extents on 4k blocks), so most inodes don't
344  * grow out to a tree. If need be, detecting boundary extents could
345  * trivially be added in a future version of ocfs2_get_block().
346  */
347 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
348 			   struct list_head *pages, unsigned nr_pages)
349 {
350 	int ret, err = -EIO;
351 	struct inode *inode = mapping->host;
352 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
353 	loff_t start;
354 	struct page *last;
355 
356 	/*
357 	 * Use the nonblocking flag for the dlm code to avoid page
358 	 * lock inversion, but don't bother with retrying.
359 	 */
360 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361 	if (ret)
362 		return err;
363 
364 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
365 		ocfs2_inode_unlock(inode, 0);
366 		return err;
367 	}
368 
369 	/*
370 	 * Don't bother with inline-data. There isn't anything
371 	 * to read-ahead in that case anyway...
372 	 */
373 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
374 		goto out_unlock;
375 
376 	/*
377 	 * Check whether a remote node truncated this file - we just
378 	 * drop out in that case as it's not worth handling here.
379 	 */
380 	last = list_entry(pages->prev, struct page, lru);
381 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
382 	if (start >= i_size_read(inode))
383 		goto out_unlock;
384 
385 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
386 
387 out_unlock:
388 	up_read(&oi->ip_alloc_sem);
389 	ocfs2_inode_unlock(inode, 0);
390 
391 	return err;
392 }
393 
394 /* Note: Because we don't support holes, our allocation has
395  * already happened (allocation writes zeros to the file data)
396  * so we don't have to worry about ordered writes in
397  * ocfs2_writepage.
398  *
399  * ->writepage is called during the process of invalidating the page cache
400  * during blocked lock processing.  It can't block on any cluster locks
401  * to during block mapping.  It's relying on the fact that the block
402  * mapping can't have disappeared under the dirty pages that it is
403  * being asked to write back.
404  */
405 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
406 {
407 	trace_ocfs2_writepage(
408 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
409 		page->index);
410 
411 	return block_write_full_page(page, ocfs2_get_block, wbc);
412 }
413 
414 /* Taken from ext3. We don't necessarily need the full blown
415  * functionality yet, but IMHO it's better to cut and paste the whole
416  * thing so we can avoid introducing our own bugs (and easily pick up
417  * their fixes when they happen) --Mark */
418 int walk_page_buffers(	handle_t *handle,
419 			struct buffer_head *head,
420 			unsigned from,
421 			unsigned to,
422 			int *partial,
423 			int (*fn)(	handle_t *handle,
424 					struct buffer_head *bh))
425 {
426 	struct buffer_head *bh;
427 	unsigned block_start, block_end;
428 	unsigned blocksize = head->b_size;
429 	int err, ret = 0;
430 	struct buffer_head *next;
431 
432 	for (	bh = head, block_start = 0;
433 		ret == 0 && (bh != head || !block_start);
434 	    	block_start = block_end, bh = next)
435 	{
436 		next = bh->b_this_page;
437 		block_end = block_start + blocksize;
438 		if (block_end <= from || block_start >= to) {
439 			if (partial && !buffer_uptodate(bh))
440 				*partial = 1;
441 			continue;
442 		}
443 		err = (*fn)(handle, bh);
444 		if (!ret)
445 			ret = err;
446 	}
447 	return ret;
448 }
449 
450 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
451 {
452 	sector_t status;
453 	u64 p_blkno = 0;
454 	int err = 0;
455 	struct inode *inode = mapping->host;
456 
457 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
458 			 (unsigned long long)block);
459 
460 	/* We don't need to lock journal system files, since they aren't
461 	 * accessed concurrently from multiple nodes.
462 	 */
463 	if (!INODE_JOURNAL(inode)) {
464 		err = ocfs2_inode_lock(inode, NULL, 0);
465 		if (err) {
466 			if (err != -ENOENT)
467 				mlog_errno(err);
468 			goto bail;
469 		}
470 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
471 	}
472 
473 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
474 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
475 						  NULL);
476 
477 	if (!INODE_JOURNAL(inode)) {
478 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
479 		ocfs2_inode_unlock(inode, 0);
480 	}
481 
482 	if (err) {
483 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
484 		     (unsigned long long)block);
485 		mlog_errno(err);
486 		goto bail;
487 	}
488 
489 bail:
490 	status = err ? 0 : p_blkno;
491 
492 	return status;
493 }
494 
495 /*
496  * TODO: Make this into a generic get_blocks function.
497  *
498  * From do_direct_io in direct-io.c:
499  *  "So what we do is to permit the ->get_blocks function to populate
500  *   bh.b_size with the size of IO which is permitted at this offset and
501  *   this i_blkbits."
502  *
503  * This function is called directly from get_more_blocks in direct-io.c.
504  *
505  * called like this: dio->get_blocks(dio->inode, fs_startblk,
506  * 					fs_count, map_bh, dio->rw == WRITE);
507  *
508  * Note that we never bother to allocate blocks here, and thus ignore the
509  * create argument.
510  */
511 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
512 				     struct buffer_head *bh_result, int create)
513 {
514 	int ret;
515 	u64 p_blkno, inode_blocks, contig_blocks;
516 	unsigned int ext_flags;
517 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
518 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
519 
520 	/* This function won't even be called if the request isn't all
521 	 * nicely aligned and of the right size, so there's no need
522 	 * for us to check any of that. */
523 
524 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
525 
526 	/* This figures out the size of the next contiguous block, and
527 	 * our logical offset */
528 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
529 					  &contig_blocks, &ext_flags);
530 	if (ret) {
531 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
532 		     (unsigned long long)iblock);
533 		ret = -EIO;
534 		goto bail;
535 	}
536 
537 	/* We should already CoW the refcounted extent in case of create. */
538 	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
539 
540 	/*
541 	 * get_more_blocks() expects us to describe a hole by clearing
542 	 * the mapped bit on bh_result().
543 	 *
544 	 * Consider an unwritten extent as a hole.
545 	 */
546 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
547 		map_bh(bh_result, inode->i_sb, p_blkno);
548 	else
549 		clear_buffer_mapped(bh_result);
550 
551 	/* make sure we don't map more than max_blocks blocks here as
552 	   that's all the kernel will handle at this point. */
553 	if (max_blocks < contig_blocks)
554 		contig_blocks = max_blocks;
555 	bh_result->b_size = contig_blocks << blocksize_bits;
556 bail:
557 	return ret;
558 }
559 
560 /*
561  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
562  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
563  * to protect io on one node from truncation on another.
564  */
565 static void ocfs2_dio_end_io(struct kiocb *iocb,
566 			     loff_t offset,
567 			     ssize_t bytes,
568 			     void *private)
569 {
570 	struct inode *inode = file_inode(iocb->ki_filp);
571 	int level;
572 	wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
573 
574 	/* this io's submitter should not have unlocked this before we could */
575 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
576 
577 	if (ocfs2_iocb_is_sem_locked(iocb))
578 		ocfs2_iocb_clear_sem_locked(iocb);
579 
580 	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
581 		ocfs2_iocb_clear_unaligned_aio(iocb);
582 
583 		if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
584 		    waitqueue_active(wq)) {
585 			wake_up_all(wq);
586 		}
587 	}
588 
589 	ocfs2_iocb_clear_rw_locked(iocb);
590 
591 	level = ocfs2_iocb_rw_locked_level(iocb);
592 	ocfs2_rw_unlock(inode, level);
593 }
594 
595 /*
596  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
597  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
598  * do journalled data.
599  */
600 static void ocfs2_invalidatepage(struct page *page, unsigned int offset,
601 				 unsigned int length)
602 {
603 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
604 
605 	jbd2_journal_invalidatepage(journal, page, offset, length);
606 }
607 
608 static int ocfs2_releasepage(struct page *page, gfp_t wait)
609 {
610 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
611 
612 	if (!page_has_buffers(page))
613 		return 0;
614 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
615 }
616 
617 static ssize_t ocfs2_direct_IO(int rw,
618 			       struct kiocb *iocb,
619 			       const struct iovec *iov,
620 			       loff_t offset,
621 			       unsigned long nr_segs)
622 {
623 	struct file *file = iocb->ki_filp;
624 	struct inode *inode = file_inode(file)->i_mapping->host;
625 
626 	/*
627 	 * Fallback to buffered I/O if we see an inode without
628 	 * extents.
629 	 */
630 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
631 		return 0;
632 
633 	/* Fallback to buffered I/O if we are appending. */
634 	if (i_size_read(inode) <= offset)
635 		return 0;
636 
637 	return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
638 				    iov, offset, nr_segs,
639 				    ocfs2_direct_IO_get_blocks,
640 				    ocfs2_dio_end_io, NULL, 0);
641 }
642 
643 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
644 					    u32 cpos,
645 					    unsigned int *start,
646 					    unsigned int *end)
647 {
648 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
649 
650 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
651 		unsigned int cpp;
652 
653 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
654 
655 		cluster_start = cpos % cpp;
656 		cluster_start = cluster_start << osb->s_clustersize_bits;
657 
658 		cluster_end = cluster_start + osb->s_clustersize;
659 	}
660 
661 	BUG_ON(cluster_start > PAGE_SIZE);
662 	BUG_ON(cluster_end > PAGE_SIZE);
663 
664 	if (start)
665 		*start = cluster_start;
666 	if (end)
667 		*end = cluster_end;
668 }
669 
670 /*
671  * 'from' and 'to' are the region in the page to avoid zeroing.
672  *
673  * If pagesize > clustersize, this function will avoid zeroing outside
674  * of the cluster boundary.
675  *
676  * from == to == 0 is code for "zero the entire cluster region"
677  */
678 static void ocfs2_clear_page_regions(struct page *page,
679 				     struct ocfs2_super *osb, u32 cpos,
680 				     unsigned from, unsigned to)
681 {
682 	void *kaddr;
683 	unsigned int cluster_start, cluster_end;
684 
685 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
686 
687 	kaddr = kmap_atomic(page);
688 
689 	if (from || to) {
690 		if (from > cluster_start)
691 			memset(kaddr + cluster_start, 0, from - cluster_start);
692 		if (to < cluster_end)
693 			memset(kaddr + to, 0, cluster_end - to);
694 	} else {
695 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
696 	}
697 
698 	kunmap_atomic(kaddr);
699 }
700 
701 /*
702  * Nonsparse file systems fully allocate before we get to the write
703  * code. This prevents ocfs2_write() from tagging the write as an
704  * allocating one, which means ocfs2_map_page_blocks() might try to
705  * read-in the blocks at the tail of our file. Avoid reading them by
706  * testing i_size against each block offset.
707  */
708 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
709 				 unsigned int block_start)
710 {
711 	u64 offset = page_offset(page) + block_start;
712 
713 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
714 		return 1;
715 
716 	if (i_size_read(inode) > offset)
717 		return 1;
718 
719 	return 0;
720 }
721 
722 /*
723  * Some of this taken from __block_write_begin(). We already have our
724  * mapping by now though, and the entire write will be allocating or
725  * it won't, so not much need to use BH_New.
726  *
727  * This will also skip zeroing, which is handled externally.
728  */
729 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
730 			  struct inode *inode, unsigned int from,
731 			  unsigned int to, int new)
732 {
733 	int ret = 0;
734 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
735 	unsigned int block_end, block_start;
736 	unsigned int bsize = 1 << inode->i_blkbits;
737 
738 	if (!page_has_buffers(page))
739 		create_empty_buffers(page, bsize, 0);
740 
741 	head = page_buffers(page);
742 	for (bh = head, block_start = 0; bh != head || !block_start;
743 	     bh = bh->b_this_page, block_start += bsize) {
744 		block_end = block_start + bsize;
745 
746 		clear_buffer_new(bh);
747 
748 		/*
749 		 * Ignore blocks outside of our i/o range -
750 		 * they may belong to unallocated clusters.
751 		 */
752 		if (block_start >= to || block_end <= from) {
753 			if (PageUptodate(page))
754 				set_buffer_uptodate(bh);
755 			continue;
756 		}
757 
758 		/*
759 		 * For an allocating write with cluster size >= page
760 		 * size, we always write the entire page.
761 		 */
762 		if (new)
763 			set_buffer_new(bh);
764 
765 		if (!buffer_mapped(bh)) {
766 			map_bh(bh, inode->i_sb, *p_blkno);
767 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
768 		}
769 
770 		if (PageUptodate(page)) {
771 			if (!buffer_uptodate(bh))
772 				set_buffer_uptodate(bh);
773 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
774 			   !buffer_new(bh) &&
775 			   ocfs2_should_read_blk(inode, page, block_start) &&
776 			   (block_start < from || block_end > to)) {
777 			ll_rw_block(READ, 1, &bh);
778 			*wait_bh++=bh;
779 		}
780 
781 		*p_blkno = *p_blkno + 1;
782 	}
783 
784 	/*
785 	 * If we issued read requests - let them complete.
786 	 */
787 	while(wait_bh > wait) {
788 		wait_on_buffer(*--wait_bh);
789 		if (!buffer_uptodate(*wait_bh))
790 			ret = -EIO;
791 	}
792 
793 	if (ret == 0 || !new)
794 		return ret;
795 
796 	/*
797 	 * If we get -EIO above, zero out any newly allocated blocks
798 	 * to avoid exposing stale data.
799 	 */
800 	bh = head;
801 	block_start = 0;
802 	do {
803 		block_end = block_start + bsize;
804 		if (block_end <= from)
805 			goto next_bh;
806 		if (block_start >= to)
807 			break;
808 
809 		zero_user(page, block_start, bh->b_size);
810 		set_buffer_uptodate(bh);
811 		mark_buffer_dirty(bh);
812 
813 next_bh:
814 		block_start = block_end;
815 		bh = bh->b_this_page;
816 	} while (bh != head);
817 
818 	return ret;
819 }
820 
821 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
822 #define OCFS2_MAX_CTXT_PAGES	1
823 #else
824 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
825 #endif
826 
827 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
828 
829 /*
830  * Describe the state of a single cluster to be written to.
831  */
832 struct ocfs2_write_cluster_desc {
833 	u32		c_cpos;
834 	u32		c_phys;
835 	/*
836 	 * Give this a unique field because c_phys eventually gets
837 	 * filled.
838 	 */
839 	unsigned	c_new;
840 	unsigned	c_unwritten;
841 	unsigned	c_needs_zero;
842 };
843 
844 struct ocfs2_write_ctxt {
845 	/* Logical cluster position / len of write */
846 	u32				w_cpos;
847 	u32				w_clen;
848 
849 	/* First cluster allocated in a nonsparse extend */
850 	u32				w_first_new_cpos;
851 
852 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
853 
854 	/*
855 	 * This is true if page_size > cluster_size.
856 	 *
857 	 * It triggers a set of special cases during write which might
858 	 * have to deal with allocating writes to partial pages.
859 	 */
860 	unsigned int			w_large_pages;
861 
862 	/*
863 	 * Pages involved in this write.
864 	 *
865 	 * w_target_page is the page being written to by the user.
866 	 *
867 	 * w_pages is an array of pages which always contains
868 	 * w_target_page, and in the case of an allocating write with
869 	 * page_size < cluster size, it will contain zero'd and mapped
870 	 * pages adjacent to w_target_page which need to be written
871 	 * out in so that future reads from that region will get
872 	 * zero's.
873 	 */
874 	unsigned int			w_num_pages;
875 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
876 	struct page			*w_target_page;
877 
878 	/*
879 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
880 	 * against w_target_page in ocfs2_write_end_nolock.
881 	 */
882 	unsigned int			w_target_locked:1;
883 
884 	/*
885 	 * ocfs2_write_end() uses this to know what the real range to
886 	 * write in the target should be.
887 	 */
888 	unsigned int			w_target_from;
889 	unsigned int			w_target_to;
890 
891 	/*
892 	 * We could use journal_current_handle() but this is cleaner,
893 	 * IMHO -Mark
894 	 */
895 	handle_t			*w_handle;
896 
897 	struct buffer_head		*w_di_bh;
898 
899 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
900 };
901 
902 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
903 {
904 	int i;
905 
906 	for(i = 0; i < num_pages; i++) {
907 		if (pages[i]) {
908 			unlock_page(pages[i]);
909 			mark_page_accessed(pages[i]);
910 			page_cache_release(pages[i]);
911 		}
912 	}
913 }
914 
915 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
916 {
917 	int i;
918 
919 	/*
920 	 * w_target_locked is only set to true in the page_mkwrite() case.
921 	 * The intent is to allow us to lock the target page from write_begin()
922 	 * to write_end(). The caller must hold a ref on w_target_page.
923 	 */
924 	if (wc->w_target_locked) {
925 		BUG_ON(!wc->w_target_page);
926 		for (i = 0; i < wc->w_num_pages; i++) {
927 			if (wc->w_target_page == wc->w_pages[i]) {
928 				wc->w_pages[i] = NULL;
929 				break;
930 			}
931 		}
932 		mark_page_accessed(wc->w_target_page);
933 		page_cache_release(wc->w_target_page);
934 	}
935 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
936 
937 	brelse(wc->w_di_bh);
938 	kfree(wc);
939 }
940 
941 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
942 				  struct ocfs2_super *osb, loff_t pos,
943 				  unsigned len, struct buffer_head *di_bh)
944 {
945 	u32 cend;
946 	struct ocfs2_write_ctxt *wc;
947 
948 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
949 	if (!wc)
950 		return -ENOMEM;
951 
952 	wc->w_cpos = pos >> osb->s_clustersize_bits;
953 	wc->w_first_new_cpos = UINT_MAX;
954 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
955 	wc->w_clen = cend - wc->w_cpos + 1;
956 	get_bh(di_bh);
957 	wc->w_di_bh = di_bh;
958 
959 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
960 		wc->w_large_pages = 1;
961 	else
962 		wc->w_large_pages = 0;
963 
964 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
965 
966 	*wcp = wc;
967 
968 	return 0;
969 }
970 
971 /*
972  * If a page has any new buffers, zero them out here, and mark them uptodate
973  * and dirty so they'll be written out (in order to prevent uninitialised
974  * block data from leaking). And clear the new bit.
975  */
976 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
977 {
978 	unsigned int block_start, block_end;
979 	struct buffer_head *head, *bh;
980 
981 	BUG_ON(!PageLocked(page));
982 	if (!page_has_buffers(page))
983 		return;
984 
985 	bh = head = page_buffers(page);
986 	block_start = 0;
987 	do {
988 		block_end = block_start + bh->b_size;
989 
990 		if (buffer_new(bh)) {
991 			if (block_end > from && block_start < to) {
992 				if (!PageUptodate(page)) {
993 					unsigned start, end;
994 
995 					start = max(from, block_start);
996 					end = min(to, block_end);
997 
998 					zero_user_segment(page, start, end);
999 					set_buffer_uptodate(bh);
1000 				}
1001 
1002 				clear_buffer_new(bh);
1003 				mark_buffer_dirty(bh);
1004 			}
1005 		}
1006 
1007 		block_start = block_end;
1008 		bh = bh->b_this_page;
1009 	} while (bh != head);
1010 }
1011 
1012 /*
1013  * Only called when we have a failure during allocating write to write
1014  * zero's to the newly allocated region.
1015  */
1016 static void ocfs2_write_failure(struct inode *inode,
1017 				struct ocfs2_write_ctxt *wc,
1018 				loff_t user_pos, unsigned user_len)
1019 {
1020 	int i;
1021 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1022 		to = user_pos + user_len;
1023 	struct page *tmppage;
1024 
1025 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1026 
1027 	for(i = 0; i < wc->w_num_pages; i++) {
1028 		tmppage = wc->w_pages[i];
1029 
1030 		if (page_has_buffers(tmppage)) {
1031 			if (ocfs2_should_order_data(inode))
1032 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1033 
1034 			block_commit_write(tmppage, from, to);
1035 		}
1036 	}
1037 }
1038 
1039 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1040 					struct ocfs2_write_ctxt *wc,
1041 					struct page *page, u32 cpos,
1042 					loff_t user_pos, unsigned user_len,
1043 					int new)
1044 {
1045 	int ret;
1046 	unsigned int map_from = 0, map_to = 0;
1047 	unsigned int cluster_start, cluster_end;
1048 	unsigned int user_data_from = 0, user_data_to = 0;
1049 
1050 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1051 					&cluster_start, &cluster_end);
1052 
1053 	/* treat the write as new if the a hole/lseek spanned across
1054 	 * the page boundary.
1055 	 */
1056 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1057 			(page_offset(page) <= user_pos));
1058 
1059 	if (page == wc->w_target_page) {
1060 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1061 		map_to = map_from + user_len;
1062 
1063 		if (new)
1064 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1065 						    cluster_start, cluster_end,
1066 						    new);
1067 		else
1068 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1069 						    map_from, map_to, new);
1070 		if (ret) {
1071 			mlog_errno(ret);
1072 			goto out;
1073 		}
1074 
1075 		user_data_from = map_from;
1076 		user_data_to = map_to;
1077 		if (new) {
1078 			map_from = cluster_start;
1079 			map_to = cluster_end;
1080 		}
1081 	} else {
1082 		/*
1083 		 * If we haven't allocated the new page yet, we
1084 		 * shouldn't be writing it out without copying user
1085 		 * data. This is likely a math error from the caller.
1086 		 */
1087 		BUG_ON(!new);
1088 
1089 		map_from = cluster_start;
1090 		map_to = cluster_end;
1091 
1092 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1093 					    cluster_start, cluster_end, new);
1094 		if (ret) {
1095 			mlog_errno(ret);
1096 			goto out;
1097 		}
1098 	}
1099 
1100 	/*
1101 	 * Parts of newly allocated pages need to be zero'd.
1102 	 *
1103 	 * Above, we have also rewritten 'to' and 'from' - as far as
1104 	 * the rest of the function is concerned, the entire cluster
1105 	 * range inside of a page needs to be written.
1106 	 *
1107 	 * We can skip this if the page is up to date - it's already
1108 	 * been zero'd from being read in as a hole.
1109 	 */
1110 	if (new && !PageUptodate(page))
1111 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1112 					 cpos, user_data_from, user_data_to);
1113 
1114 	flush_dcache_page(page);
1115 
1116 out:
1117 	return ret;
1118 }
1119 
1120 /*
1121  * This function will only grab one clusters worth of pages.
1122  */
1123 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1124 				      struct ocfs2_write_ctxt *wc,
1125 				      u32 cpos, loff_t user_pos,
1126 				      unsigned user_len, int new,
1127 				      struct page *mmap_page)
1128 {
1129 	int ret = 0, i;
1130 	unsigned long start, target_index, end_index, index;
1131 	struct inode *inode = mapping->host;
1132 	loff_t last_byte;
1133 
1134 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1135 
1136 	/*
1137 	 * Figure out how many pages we'll be manipulating here. For
1138 	 * non allocating write, we just change the one
1139 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1140 	 * writing past i_size, we only need enough pages to cover the
1141 	 * last page of the write.
1142 	 */
1143 	if (new) {
1144 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1145 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1146 		/*
1147 		 * We need the index *past* the last page we could possibly
1148 		 * touch.  This is the page past the end of the write or
1149 		 * i_size, whichever is greater.
1150 		 */
1151 		last_byte = max(user_pos + user_len, i_size_read(inode));
1152 		BUG_ON(last_byte < 1);
1153 		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1154 		if ((start + wc->w_num_pages) > end_index)
1155 			wc->w_num_pages = end_index - start;
1156 	} else {
1157 		wc->w_num_pages = 1;
1158 		start = target_index;
1159 	}
1160 
1161 	for(i = 0; i < wc->w_num_pages; i++) {
1162 		index = start + i;
1163 
1164 		if (index == target_index && mmap_page) {
1165 			/*
1166 			 * ocfs2_pagemkwrite() is a little different
1167 			 * and wants us to directly use the page
1168 			 * passed in.
1169 			 */
1170 			lock_page(mmap_page);
1171 
1172 			/* Exit and let the caller retry */
1173 			if (mmap_page->mapping != mapping) {
1174 				WARN_ON(mmap_page->mapping);
1175 				unlock_page(mmap_page);
1176 				ret = -EAGAIN;
1177 				goto out;
1178 			}
1179 
1180 			page_cache_get(mmap_page);
1181 			wc->w_pages[i] = mmap_page;
1182 			wc->w_target_locked = true;
1183 		} else {
1184 			wc->w_pages[i] = find_or_create_page(mapping, index,
1185 							     GFP_NOFS);
1186 			if (!wc->w_pages[i]) {
1187 				ret = -ENOMEM;
1188 				mlog_errno(ret);
1189 				goto out;
1190 			}
1191 		}
1192 		wait_for_stable_page(wc->w_pages[i]);
1193 
1194 		if (index == target_index)
1195 			wc->w_target_page = wc->w_pages[i];
1196 	}
1197 out:
1198 	if (ret)
1199 		wc->w_target_locked = false;
1200 	return ret;
1201 }
1202 
1203 /*
1204  * Prepare a single cluster for write one cluster into the file.
1205  */
1206 static int ocfs2_write_cluster(struct address_space *mapping,
1207 			       u32 phys, unsigned int unwritten,
1208 			       unsigned int should_zero,
1209 			       struct ocfs2_alloc_context *data_ac,
1210 			       struct ocfs2_alloc_context *meta_ac,
1211 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1212 			       loff_t user_pos, unsigned user_len)
1213 {
1214 	int ret, i, new;
1215 	u64 v_blkno, p_blkno;
1216 	struct inode *inode = mapping->host;
1217 	struct ocfs2_extent_tree et;
1218 
1219 	new = phys == 0 ? 1 : 0;
1220 	if (new) {
1221 		u32 tmp_pos;
1222 
1223 		/*
1224 		 * This is safe to call with the page locks - it won't take
1225 		 * any additional semaphores or cluster locks.
1226 		 */
1227 		tmp_pos = cpos;
1228 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1229 					   &tmp_pos, 1, 0, wc->w_di_bh,
1230 					   wc->w_handle, data_ac,
1231 					   meta_ac, NULL);
1232 		/*
1233 		 * This shouldn't happen because we must have already
1234 		 * calculated the correct meta data allocation required. The
1235 		 * internal tree allocation code should know how to increase
1236 		 * transaction credits itself.
1237 		 *
1238 		 * If need be, we could handle -EAGAIN for a
1239 		 * RESTART_TRANS here.
1240 		 */
1241 		mlog_bug_on_msg(ret == -EAGAIN,
1242 				"Inode %llu: EAGAIN return during allocation.\n",
1243 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1244 		if (ret < 0) {
1245 			mlog_errno(ret);
1246 			goto out;
1247 		}
1248 	} else if (unwritten) {
1249 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1250 					      wc->w_di_bh);
1251 		ret = ocfs2_mark_extent_written(inode, &et,
1252 						wc->w_handle, cpos, 1, phys,
1253 						meta_ac, &wc->w_dealloc);
1254 		if (ret < 0) {
1255 			mlog_errno(ret);
1256 			goto out;
1257 		}
1258 	}
1259 
1260 	if (should_zero)
1261 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1262 	else
1263 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1264 
1265 	/*
1266 	 * The only reason this should fail is due to an inability to
1267 	 * find the extent added.
1268 	 */
1269 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1270 					  NULL);
1271 	if (ret < 0) {
1272 		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1273 			    "at logical block %llu",
1274 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1275 			    (unsigned long long)v_blkno);
1276 		goto out;
1277 	}
1278 
1279 	BUG_ON(p_blkno == 0);
1280 
1281 	for(i = 0; i < wc->w_num_pages; i++) {
1282 		int tmpret;
1283 
1284 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1285 						      wc->w_pages[i], cpos,
1286 						      user_pos, user_len,
1287 						      should_zero);
1288 		if (tmpret) {
1289 			mlog_errno(tmpret);
1290 			if (ret == 0)
1291 				ret = tmpret;
1292 		}
1293 	}
1294 
1295 	/*
1296 	 * We only have cleanup to do in case of allocating write.
1297 	 */
1298 	if (ret && new)
1299 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1300 
1301 out:
1302 
1303 	return ret;
1304 }
1305 
1306 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1307 				       struct ocfs2_alloc_context *data_ac,
1308 				       struct ocfs2_alloc_context *meta_ac,
1309 				       struct ocfs2_write_ctxt *wc,
1310 				       loff_t pos, unsigned len)
1311 {
1312 	int ret, i;
1313 	loff_t cluster_off;
1314 	unsigned int local_len = len;
1315 	struct ocfs2_write_cluster_desc *desc;
1316 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1317 
1318 	for (i = 0; i < wc->w_clen; i++) {
1319 		desc = &wc->w_desc[i];
1320 
1321 		/*
1322 		 * We have to make sure that the total write passed in
1323 		 * doesn't extend past a single cluster.
1324 		 */
1325 		local_len = len;
1326 		cluster_off = pos & (osb->s_clustersize - 1);
1327 		if ((cluster_off + local_len) > osb->s_clustersize)
1328 			local_len = osb->s_clustersize - cluster_off;
1329 
1330 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1331 					  desc->c_unwritten,
1332 					  desc->c_needs_zero,
1333 					  data_ac, meta_ac,
1334 					  wc, desc->c_cpos, pos, local_len);
1335 		if (ret) {
1336 			mlog_errno(ret);
1337 			goto out;
1338 		}
1339 
1340 		len -= local_len;
1341 		pos += local_len;
1342 	}
1343 
1344 	ret = 0;
1345 out:
1346 	return ret;
1347 }
1348 
1349 /*
1350  * ocfs2_write_end() wants to know which parts of the target page it
1351  * should complete the write on. It's easiest to compute them ahead of
1352  * time when a more complete view of the write is available.
1353  */
1354 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1355 					struct ocfs2_write_ctxt *wc,
1356 					loff_t pos, unsigned len, int alloc)
1357 {
1358 	struct ocfs2_write_cluster_desc *desc;
1359 
1360 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1361 	wc->w_target_to = wc->w_target_from + len;
1362 
1363 	if (alloc == 0)
1364 		return;
1365 
1366 	/*
1367 	 * Allocating write - we may have different boundaries based
1368 	 * on page size and cluster size.
1369 	 *
1370 	 * NOTE: We can no longer compute one value from the other as
1371 	 * the actual write length and user provided length may be
1372 	 * different.
1373 	 */
1374 
1375 	if (wc->w_large_pages) {
1376 		/*
1377 		 * We only care about the 1st and last cluster within
1378 		 * our range and whether they should be zero'd or not. Either
1379 		 * value may be extended out to the start/end of a
1380 		 * newly allocated cluster.
1381 		 */
1382 		desc = &wc->w_desc[0];
1383 		if (desc->c_needs_zero)
1384 			ocfs2_figure_cluster_boundaries(osb,
1385 							desc->c_cpos,
1386 							&wc->w_target_from,
1387 							NULL);
1388 
1389 		desc = &wc->w_desc[wc->w_clen - 1];
1390 		if (desc->c_needs_zero)
1391 			ocfs2_figure_cluster_boundaries(osb,
1392 							desc->c_cpos,
1393 							NULL,
1394 							&wc->w_target_to);
1395 	} else {
1396 		wc->w_target_from = 0;
1397 		wc->w_target_to = PAGE_CACHE_SIZE;
1398 	}
1399 }
1400 
1401 /*
1402  * Populate each single-cluster write descriptor in the write context
1403  * with information about the i/o to be done.
1404  *
1405  * Returns the number of clusters that will have to be allocated, as
1406  * well as a worst case estimate of the number of extent records that
1407  * would have to be created during a write to an unwritten region.
1408  */
1409 static int ocfs2_populate_write_desc(struct inode *inode,
1410 				     struct ocfs2_write_ctxt *wc,
1411 				     unsigned int *clusters_to_alloc,
1412 				     unsigned int *extents_to_split)
1413 {
1414 	int ret;
1415 	struct ocfs2_write_cluster_desc *desc;
1416 	unsigned int num_clusters = 0;
1417 	unsigned int ext_flags = 0;
1418 	u32 phys = 0;
1419 	int i;
1420 
1421 	*clusters_to_alloc = 0;
1422 	*extents_to_split = 0;
1423 
1424 	for (i = 0; i < wc->w_clen; i++) {
1425 		desc = &wc->w_desc[i];
1426 		desc->c_cpos = wc->w_cpos + i;
1427 
1428 		if (num_clusters == 0) {
1429 			/*
1430 			 * Need to look up the next extent record.
1431 			 */
1432 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1433 						 &num_clusters, &ext_flags);
1434 			if (ret) {
1435 				mlog_errno(ret);
1436 				goto out;
1437 			}
1438 
1439 			/* We should already CoW the refcountd extent. */
1440 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1441 
1442 			/*
1443 			 * Assume worst case - that we're writing in
1444 			 * the middle of the extent.
1445 			 *
1446 			 * We can assume that the write proceeds from
1447 			 * left to right, in which case the extent
1448 			 * insert code is smart enough to coalesce the
1449 			 * next splits into the previous records created.
1450 			 */
1451 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1452 				*extents_to_split = *extents_to_split + 2;
1453 		} else if (phys) {
1454 			/*
1455 			 * Only increment phys if it doesn't describe
1456 			 * a hole.
1457 			 */
1458 			phys++;
1459 		}
1460 
1461 		/*
1462 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1463 		 * file that got extended.  w_first_new_cpos tells us
1464 		 * where the newly allocated clusters are so we can
1465 		 * zero them.
1466 		 */
1467 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1468 			BUG_ON(phys == 0);
1469 			desc->c_needs_zero = 1;
1470 		}
1471 
1472 		desc->c_phys = phys;
1473 		if (phys == 0) {
1474 			desc->c_new = 1;
1475 			desc->c_needs_zero = 1;
1476 			*clusters_to_alloc = *clusters_to_alloc + 1;
1477 		}
1478 
1479 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1480 			desc->c_unwritten = 1;
1481 			desc->c_needs_zero = 1;
1482 		}
1483 
1484 		num_clusters--;
1485 	}
1486 
1487 	ret = 0;
1488 out:
1489 	return ret;
1490 }
1491 
1492 static int ocfs2_write_begin_inline(struct address_space *mapping,
1493 				    struct inode *inode,
1494 				    struct ocfs2_write_ctxt *wc)
1495 {
1496 	int ret;
1497 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1498 	struct page *page;
1499 	handle_t *handle;
1500 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1501 
1502 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1503 	if (!page) {
1504 		ret = -ENOMEM;
1505 		mlog_errno(ret);
1506 		goto out;
1507 	}
1508 	/*
1509 	 * If we don't set w_num_pages then this page won't get unlocked
1510 	 * and freed on cleanup of the write context.
1511 	 */
1512 	wc->w_pages[0] = wc->w_target_page = page;
1513 	wc->w_num_pages = 1;
1514 
1515 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1516 	if (IS_ERR(handle)) {
1517 		ret = PTR_ERR(handle);
1518 		mlog_errno(ret);
1519 		goto out;
1520 	}
1521 
1522 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1523 				      OCFS2_JOURNAL_ACCESS_WRITE);
1524 	if (ret) {
1525 		ocfs2_commit_trans(osb, handle);
1526 
1527 		mlog_errno(ret);
1528 		goto out;
1529 	}
1530 
1531 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1532 		ocfs2_set_inode_data_inline(inode, di);
1533 
1534 	if (!PageUptodate(page)) {
1535 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1536 		if (ret) {
1537 			ocfs2_commit_trans(osb, handle);
1538 
1539 			goto out;
1540 		}
1541 	}
1542 
1543 	wc->w_handle = handle;
1544 out:
1545 	return ret;
1546 }
1547 
1548 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1549 {
1550 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1551 
1552 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1553 		return 1;
1554 	return 0;
1555 }
1556 
1557 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1558 					  struct inode *inode, loff_t pos,
1559 					  unsigned len, struct page *mmap_page,
1560 					  struct ocfs2_write_ctxt *wc)
1561 {
1562 	int ret, written = 0;
1563 	loff_t end = pos + len;
1564 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1565 	struct ocfs2_dinode *di = NULL;
1566 
1567 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1568 					     len, (unsigned long long)pos,
1569 					     oi->ip_dyn_features);
1570 
1571 	/*
1572 	 * Handle inodes which already have inline data 1st.
1573 	 */
1574 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1575 		if (mmap_page == NULL &&
1576 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1577 			goto do_inline_write;
1578 
1579 		/*
1580 		 * The write won't fit - we have to give this inode an
1581 		 * inline extent list now.
1582 		 */
1583 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1584 		if (ret)
1585 			mlog_errno(ret);
1586 		goto out;
1587 	}
1588 
1589 	/*
1590 	 * Check whether the inode can accept inline data.
1591 	 */
1592 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1593 		return 0;
1594 
1595 	/*
1596 	 * Check whether the write can fit.
1597 	 */
1598 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1599 	if (mmap_page ||
1600 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1601 		return 0;
1602 
1603 do_inline_write:
1604 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1605 	if (ret) {
1606 		mlog_errno(ret);
1607 		goto out;
1608 	}
1609 
1610 	/*
1611 	 * This signals to the caller that the data can be written
1612 	 * inline.
1613 	 */
1614 	written = 1;
1615 out:
1616 	return written ? written : ret;
1617 }
1618 
1619 /*
1620  * This function only does anything for file systems which can't
1621  * handle sparse files.
1622  *
1623  * What we want to do here is fill in any hole between the current end
1624  * of allocation and the end of our write. That way the rest of the
1625  * write path can treat it as an non-allocating write, which has no
1626  * special case code for sparse/nonsparse files.
1627  */
1628 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1629 					struct buffer_head *di_bh,
1630 					loff_t pos, unsigned len,
1631 					struct ocfs2_write_ctxt *wc)
1632 {
1633 	int ret;
1634 	loff_t newsize = pos + len;
1635 
1636 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1637 
1638 	if (newsize <= i_size_read(inode))
1639 		return 0;
1640 
1641 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1642 	if (ret)
1643 		mlog_errno(ret);
1644 
1645 	wc->w_first_new_cpos =
1646 		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1647 
1648 	return ret;
1649 }
1650 
1651 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1652 			   loff_t pos)
1653 {
1654 	int ret = 0;
1655 
1656 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1657 	if (pos > i_size_read(inode))
1658 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1659 
1660 	return ret;
1661 }
1662 
1663 /*
1664  * Try to flush truncate logs if we can free enough clusters from it.
1665  * As for return value, "< 0" means error, "0" no space and "1" means
1666  * we have freed enough spaces and let the caller try to allocate again.
1667  */
1668 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1669 					  unsigned int needed)
1670 {
1671 	tid_t target;
1672 	int ret = 0;
1673 	unsigned int truncated_clusters;
1674 
1675 	mutex_lock(&osb->osb_tl_inode->i_mutex);
1676 	truncated_clusters = osb->truncated_clusters;
1677 	mutex_unlock(&osb->osb_tl_inode->i_mutex);
1678 
1679 	/*
1680 	 * Check whether we can succeed in allocating if we free
1681 	 * the truncate log.
1682 	 */
1683 	if (truncated_clusters < needed)
1684 		goto out;
1685 
1686 	ret = ocfs2_flush_truncate_log(osb);
1687 	if (ret) {
1688 		mlog_errno(ret);
1689 		goto out;
1690 	}
1691 
1692 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1693 		jbd2_log_wait_commit(osb->journal->j_journal, target);
1694 		ret = 1;
1695 	}
1696 out:
1697 	return ret;
1698 }
1699 
1700 int ocfs2_write_begin_nolock(struct file *filp,
1701 			     struct address_space *mapping,
1702 			     loff_t pos, unsigned len, unsigned flags,
1703 			     struct page **pagep, void **fsdata,
1704 			     struct buffer_head *di_bh, struct page *mmap_page)
1705 {
1706 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1707 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1708 	struct ocfs2_write_ctxt *wc;
1709 	struct inode *inode = mapping->host;
1710 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1711 	struct ocfs2_dinode *di;
1712 	struct ocfs2_alloc_context *data_ac = NULL;
1713 	struct ocfs2_alloc_context *meta_ac = NULL;
1714 	handle_t *handle;
1715 	struct ocfs2_extent_tree et;
1716 	int try_free = 1, ret1;
1717 
1718 try_again:
1719 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1720 	if (ret) {
1721 		mlog_errno(ret);
1722 		return ret;
1723 	}
1724 
1725 	if (ocfs2_supports_inline_data(osb)) {
1726 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1727 						     mmap_page, wc);
1728 		if (ret == 1) {
1729 			ret = 0;
1730 			goto success;
1731 		}
1732 		if (ret < 0) {
1733 			mlog_errno(ret);
1734 			goto out;
1735 		}
1736 	}
1737 
1738 	if (ocfs2_sparse_alloc(osb))
1739 		ret = ocfs2_zero_tail(inode, di_bh, pos);
1740 	else
1741 		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1742 						   wc);
1743 	if (ret) {
1744 		mlog_errno(ret);
1745 		goto out;
1746 	}
1747 
1748 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1749 	if (ret < 0) {
1750 		mlog_errno(ret);
1751 		goto out;
1752 	} else if (ret == 1) {
1753 		clusters_need = wc->w_clen;
1754 		ret = ocfs2_refcount_cow(inode, di_bh,
1755 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1756 		if (ret) {
1757 			mlog_errno(ret);
1758 			goto out;
1759 		}
1760 	}
1761 
1762 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1763 					&extents_to_split);
1764 	if (ret) {
1765 		mlog_errno(ret);
1766 		goto out;
1767 	}
1768 	clusters_need += clusters_to_alloc;
1769 
1770 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1771 
1772 	trace_ocfs2_write_begin_nolock(
1773 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1774 			(long long)i_size_read(inode),
1775 			le32_to_cpu(di->i_clusters),
1776 			pos, len, flags, mmap_page,
1777 			clusters_to_alloc, extents_to_split);
1778 
1779 	/*
1780 	 * We set w_target_from, w_target_to here so that
1781 	 * ocfs2_write_end() knows which range in the target page to
1782 	 * write out. An allocation requires that we write the entire
1783 	 * cluster range.
1784 	 */
1785 	if (clusters_to_alloc || extents_to_split) {
1786 		/*
1787 		 * XXX: We are stretching the limits of
1788 		 * ocfs2_lock_allocators(). It greatly over-estimates
1789 		 * the work to be done.
1790 		 */
1791 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1792 					      wc->w_di_bh);
1793 		ret = ocfs2_lock_allocators(inode, &et,
1794 					    clusters_to_alloc, extents_to_split,
1795 					    &data_ac, &meta_ac);
1796 		if (ret) {
1797 			mlog_errno(ret);
1798 			goto out;
1799 		}
1800 
1801 		if (data_ac)
1802 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1803 
1804 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1805 						    &di->id2.i_list,
1806 						    clusters_to_alloc);
1807 
1808 	}
1809 
1810 	/*
1811 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1812 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1813 	 * we know zeros will only be needed in the first and/or last cluster.
1814 	 */
1815 	if (clusters_to_alloc || extents_to_split ||
1816 	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1817 			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1818 		cluster_of_pages = 1;
1819 	else
1820 		cluster_of_pages = 0;
1821 
1822 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1823 
1824 	handle = ocfs2_start_trans(osb, credits);
1825 	if (IS_ERR(handle)) {
1826 		ret = PTR_ERR(handle);
1827 		mlog_errno(ret);
1828 		goto out;
1829 	}
1830 
1831 	wc->w_handle = handle;
1832 
1833 	if (clusters_to_alloc) {
1834 		ret = dquot_alloc_space_nodirty(inode,
1835 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1836 		if (ret)
1837 			goto out_commit;
1838 	}
1839 	/*
1840 	 * We don't want this to fail in ocfs2_write_end(), so do it
1841 	 * here.
1842 	 */
1843 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1844 				      OCFS2_JOURNAL_ACCESS_WRITE);
1845 	if (ret) {
1846 		mlog_errno(ret);
1847 		goto out_quota;
1848 	}
1849 
1850 	/*
1851 	 * Fill our page array first. That way we've grabbed enough so
1852 	 * that we can zero and flush if we error after adding the
1853 	 * extent.
1854 	 */
1855 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1856 					 cluster_of_pages, mmap_page);
1857 	if (ret && ret != -EAGAIN) {
1858 		mlog_errno(ret);
1859 		goto out_quota;
1860 	}
1861 
1862 	/*
1863 	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1864 	 * the target page. In this case, we exit with no error and no target
1865 	 * page. This will trigger the caller, page_mkwrite(), to re-try
1866 	 * the operation.
1867 	 */
1868 	if (ret == -EAGAIN) {
1869 		BUG_ON(wc->w_target_page);
1870 		ret = 0;
1871 		goto out_quota;
1872 	}
1873 
1874 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1875 					  len);
1876 	if (ret) {
1877 		mlog_errno(ret);
1878 		goto out_quota;
1879 	}
1880 
1881 	if (data_ac)
1882 		ocfs2_free_alloc_context(data_ac);
1883 	if (meta_ac)
1884 		ocfs2_free_alloc_context(meta_ac);
1885 
1886 success:
1887 	*pagep = wc->w_target_page;
1888 	*fsdata = wc;
1889 	return 0;
1890 out_quota:
1891 	if (clusters_to_alloc)
1892 		dquot_free_space(inode,
1893 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1894 out_commit:
1895 	ocfs2_commit_trans(osb, handle);
1896 
1897 out:
1898 	ocfs2_free_write_ctxt(wc);
1899 
1900 	if (data_ac)
1901 		ocfs2_free_alloc_context(data_ac);
1902 	if (meta_ac)
1903 		ocfs2_free_alloc_context(meta_ac);
1904 
1905 	if (ret == -ENOSPC && try_free) {
1906 		/*
1907 		 * Try to free some truncate log so that we can have enough
1908 		 * clusters to allocate.
1909 		 */
1910 		try_free = 0;
1911 
1912 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1913 		if (ret1 == 1)
1914 			goto try_again;
1915 
1916 		if (ret1 < 0)
1917 			mlog_errno(ret1);
1918 	}
1919 
1920 	return ret;
1921 }
1922 
1923 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1924 			     loff_t pos, unsigned len, unsigned flags,
1925 			     struct page **pagep, void **fsdata)
1926 {
1927 	int ret;
1928 	struct buffer_head *di_bh = NULL;
1929 	struct inode *inode = mapping->host;
1930 
1931 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1932 	if (ret) {
1933 		mlog_errno(ret);
1934 		return ret;
1935 	}
1936 
1937 	/*
1938 	 * Take alloc sem here to prevent concurrent lookups. That way
1939 	 * the mapping, zeroing and tree manipulation within
1940 	 * ocfs2_write() will be safe against ->readpage(). This
1941 	 * should also serve to lock out allocation from a shared
1942 	 * writeable region.
1943 	 */
1944 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1945 
1946 	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1947 				       fsdata, di_bh, NULL);
1948 	if (ret) {
1949 		mlog_errno(ret);
1950 		goto out_fail;
1951 	}
1952 
1953 	brelse(di_bh);
1954 
1955 	return 0;
1956 
1957 out_fail:
1958 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1959 
1960 	brelse(di_bh);
1961 	ocfs2_inode_unlock(inode, 1);
1962 
1963 	return ret;
1964 }
1965 
1966 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1967 				   unsigned len, unsigned *copied,
1968 				   struct ocfs2_dinode *di,
1969 				   struct ocfs2_write_ctxt *wc)
1970 {
1971 	void *kaddr;
1972 
1973 	if (unlikely(*copied < len)) {
1974 		if (!PageUptodate(wc->w_target_page)) {
1975 			*copied = 0;
1976 			return;
1977 		}
1978 	}
1979 
1980 	kaddr = kmap_atomic(wc->w_target_page);
1981 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1982 	kunmap_atomic(kaddr);
1983 
1984 	trace_ocfs2_write_end_inline(
1985 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1986 	     (unsigned long long)pos, *copied,
1987 	     le16_to_cpu(di->id2.i_data.id_count),
1988 	     le16_to_cpu(di->i_dyn_features));
1989 }
1990 
1991 int ocfs2_write_end_nolock(struct address_space *mapping,
1992 			   loff_t pos, unsigned len, unsigned copied,
1993 			   struct page *page, void *fsdata)
1994 {
1995 	int i;
1996 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1997 	struct inode *inode = mapping->host;
1998 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1999 	struct ocfs2_write_ctxt *wc = fsdata;
2000 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2001 	handle_t *handle = wc->w_handle;
2002 	struct page *tmppage;
2003 
2004 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2005 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2006 		goto out_write_size;
2007 	}
2008 
2009 	if (unlikely(copied < len)) {
2010 		if (!PageUptodate(wc->w_target_page))
2011 			copied = 0;
2012 
2013 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2014 				       start+len);
2015 	}
2016 	flush_dcache_page(wc->w_target_page);
2017 
2018 	for(i = 0; i < wc->w_num_pages; i++) {
2019 		tmppage = wc->w_pages[i];
2020 
2021 		if (tmppage == wc->w_target_page) {
2022 			from = wc->w_target_from;
2023 			to = wc->w_target_to;
2024 
2025 			BUG_ON(from > PAGE_CACHE_SIZE ||
2026 			       to > PAGE_CACHE_SIZE ||
2027 			       to < from);
2028 		} else {
2029 			/*
2030 			 * Pages adjacent to the target (if any) imply
2031 			 * a hole-filling write in which case we want
2032 			 * to flush their entire range.
2033 			 */
2034 			from = 0;
2035 			to = PAGE_CACHE_SIZE;
2036 		}
2037 
2038 		if (page_has_buffers(tmppage)) {
2039 			if (ocfs2_should_order_data(inode))
2040 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
2041 			block_commit_write(tmppage, from, to);
2042 		}
2043 	}
2044 
2045 out_write_size:
2046 	pos += copied;
2047 	if (pos > i_size_read(inode)) {
2048 		i_size_write(inode, pos);
2049 		mark_inode_dirty(inode);
2050 	}
2051 	inode->i_blocks = ocfs2_inode_sector_count(inode);
2052 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2053 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2054 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2055 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2056 	ocfs2_journal_dirty(handle, wc->w_di_bh);
2057 
2058 	ocfs2_commit_trans(osb, handle);
2059 
2060 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2061 
2062 	ocfs2_free_write_ctxt(wc);
2063 
2064 	return copied;
2065 }
2066 
2067 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2068 			   loff_t pos, unsigned len, unsigned copied,
2069 			   struct page *page, void *fsdata)
2070 {
2071 	int ret;
2072 	struct inode *inode = mapping->host;
2073 
2074 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2075 
2076 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2077 	ocfs2_inode_unlock(inode, 1);
2078 
2079 	return ret;
2080 }
2081 
2082 const struct address_space_operations ocfs2_aops = {
2083 	.readpage		= ocfs2_readpage,
2084 	.readpages		= ocfs2_readpages,
2085 	.writepage		= ocfs2_writepage,
2086 	.write_begin		= ocfs2_write_begin,
2087 	.write_end		= ocfs2_write_end,
2088 	.bmap			= ocfs2_bmap,
2089 	.direct_IO		= ocfs2_direct_IO,
2090 	.invalidatepage		= ocfs2_invalidatepage,
2091 	.releasepage		= ocfs2_releasepage,
2092 	.migratepage		= buffer_migrate_page,
2093 	.is_partially_uptodate	= block_is_partially_uptodate,
2094 	.error_remove_page	= generic_error_remove_page,
2095 };
2096