xref: /openbmc/linux/fs/ocfs2/aops.c (revision d7a3d85e)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33 
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50 
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55 
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 				   struct buffer_head *bh_result, int create)
58 {
59 	int err = -EIO;
60 	int status;
61 	struct ocfs2_dinode *fe = NULL;
62 	struct buffer_head *bh = NULL;
63 	struct buffer_head *buffer_cache_bh = NULL;
64 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 	void *kaddr;
66 
67 	trace_ocfs2_symlink_get_block(
68 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
69 			(unsigned long long)iblock, bh_result, create);
70 
71 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72 
73 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 		     (unsigned long long)iblock);
76 		goto bail;
77 	}
78 
79 	status = ocfs2_read_inode_block(inode, &bh);
80 	if (status < 0) {
81 		mlog_errno(status);
82 		goto bail;
83 	}
84 	fe = (struct ocfs2_dinode *) bh->b_data;
85 
86 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 						    le32_to_cpu(fe->i_clusters))) {
88 		err = -ENOMEM;
89 		mlog(ML_ERROR, "block offset is outside the allocated size: "
90 		     "%llu\n", (unsigned long long)iblock);
91 		goto bail;
92 	}
93 
94 	/* We don't use the page cache to create symlink data, so if
95 	 * need be, copy it over from the buffer cache. */
96 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 			    iblock;
99 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 		if (!buffer_cache_bh) {
101 			err = -ENOMEM;
102 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 			goto bail;
104 		}
105 
106 		/* we haven't locked out transactions, so a commit
107 		 * could've happened. Since we've got a reference on
108 		 * the bh, even if it commits while we're doing the
109 		 * copy, the data is still good. */
110 		if (buffer_jbd(buffer_cache_bh)
111 		    && ocfs2_inode_is_new(inode)) {
112 			kaddr = kmap_atomic(bh_result->b_page);
113 			if (!kaddr) {
114 				mlog(ML_ERROR, "couldn't kmap!\n");
115 				goto bail;
116 			}
117 			memcpy(kaddr + (bh_result->b_size * iblock),
118 			       buffer_cache_bh->b_data,
119 			       bh_result->b_size);
120 			kunmap_atomic(kaddr);
121 			set_buffer_uptodate(bh_result);
122 		}
123 		brelse(buffer_cache_bh);
124 	}
125 
126 	map_bh(bh_result, inode->i_sb,
127 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128 
129 	err = 0;
130 
131 bail:
132 	brelse(bh);
133 
134 	return err;
135 }
136 
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 		    struct buffer_head *bh_result, int create)
139 {
140 	int err = 0;
141 	unsigned int ext_flags;
142 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 	u64 p_blkno, count, past_eof;
144 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145 
146 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 			      (unsigned long long)iblock, bh_result, create);
148 
149 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 		     inode, inode->i_ino);
152 
153 	if (S_ISLNK(inode->i_mode)) {
154 		/* this always does I/O for some reason. */
155 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 		goto bail;
157 	}
158 
159 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 					  &ext_flags);
161 	if (err) {
162 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 		     (unsigned long long)p_blkno);
165 		goto bail;
166 	}
167 
168 	if (max_blocks < count)
169 		count = max_blocks;
170 
171 	/*
172 	 * ocfs2 never allocates in this function - the only time we
173 	 * need to use BH_New is when we're extending i_size on a file
174 	 * system which doesn't support holes, in which case BH_New
175 	 * allows __block_write_begin() to zero.
176 	 *
177 	 * If we see this on a sparse file system, then a truncate has
178 	 * raced us and removed the cluster. In this case, we clear
179 	 * the buffers dirty and uptodate bits and let the buffer code
180 	 * ignore it as a hole.
181 	 */
182 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 		clear_buffer_dirty(bh_result);
184 		clear_buffer_uptodate(bh_result);
185 		goto bail;
186 	}
187 
188 	/* Treat the unwritten extent as a hole for zeroing purposes. */
189 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190 		map_bh(bh_result, inode->i_sb, p_blkno);
191 
192 	bh_result->b_size = count << inode->i_blkbits;
193 
194 	if (!ocfs2_sparse_alloc(osb)) {
195 		if (p_blkno == 0) {
196 			err = -EIO;
197 			mlog(ML_ERROR,
198 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 			     (unsigned long long)iblock,
200 			     (unsigned long long)p_blkno,
201 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 			dump_stack();
204 			goto bail;
205 		}
206 	}
207 
208 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209 
210 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 				  (unsigned long long)past_eof);
212 	if (create && (iblock >= past_eof))
213 		set_buffer_new(bh_result);
214 
215 bail:
216 	if (err < 0)
217 		err = -EIO;
218 
219 	return err;
220 }
221 
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 			   struct buffer_head *di_bh)
224 {
225 	void *kaddr;
226 	loff_t size;
227 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228 
229 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 		return -EROFS;
233 	}
234 
235 	size = i_size_read(inode);
236 
237 	if (size > PAGE_CACHE_SIZE ||
238 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239 		ocfs2_error(inode->i_sb,
240 			    "Inode %llu has with inline data has bad size: %Lu",
241 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 			    (unsigned long long)size);
243 		return -EROFS;
244 	}
245 
246 	kaddr = kmap_atomic(page);
247 	if (size)
248 		memcpy(kaddr, di->id2.i_data.id_data, size);
249 	/* Clear the remaining part of the page */
250 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251 	flush_dcache_page(page);
252 	kunmap_atomic(kaddr);
253 
254 	SetPageUptodate(page);
255 
256 	return 0;
257 }
258 
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261 	int ret;
262 	struct buffer_head *di_bh = NULL;
263 
264 	BUG_ON(!PageLocked(page));
265 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266 
267 	ret = ocfs2_read_inode_block(inode, &di_bh);
268 	if (ret) {
269 		mlog_errno(ret);
270 		goto out;
271 	}
272 
273 	ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275 	unlock_page(page);
276 
277 	brelse(di_bh);
278 	return ret;
279 }
280 
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283 	struct inode *inode = page->mapping->host;
284 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
285 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 	int ret, unlock = 1;
287 
288 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 			     (page ? page->index : 0));
290 
291 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292 	if (ret != 0) {
293 		if (ret == AOP_TRUNCATED_PAGE)
294 			unlock = 0;
295 		mlog_errno(ret);
296 		goto out;
297 	}
298 
299 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300 		/*
301 		 * Unlock the page and cycle ip_alloc_sem so that we don't
302 		 * busyloop waiting for ip_alloc_sem to unlock
303 		 */
304 		ret = AOP_TRUNCATED_PAGE;
305 		unlock_page(page);
306 		unlock = 0;
307 		down_read(&oi->ip_alloc_sem);
308 		up_read(&oi->ip_alloc_sem);
309 		goto out_inode_unlock;
310 	}
311 
312 	/*
313 	 * i_size might have just been updated as we grabed the meta lock.  We
314 	 * might now be discovering a truncate that hit on another node.
315 	 * block_read_full_page->get_block freaks out if it is asked to read
316 	 * beyond the end of a file, so we check here.  Callers
317 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 	 * and notice that the page they just read isn't needed.
319 	 *
320 	 * XXX sys_readahead() seems to get that wrong?
321 	 */
322 	if (start >= i_size_read(inode)) {
323 		zero_user(page, 0, PAGE_SIZE);
324 		SetPageUptodate(page);
325 		ret = 0;
326 		goto out_alloc;
327 	}
328 
329 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 		ret = ocfs2_readpage_inline(inode, page);
331 	else
332 		ret = block_read_full_page(page, ocfs2_get_block);
333 	unlock = 0;
334 
335 out_alloc:
336 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338 	ocfs2_inode_unlock(inode, 0);
339 out:
340 	if (unlock)
341 		unlock_page(page);
342 	return ret;
343 }
344 
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 			   struct list_head *pages, unsigned nr_pages)
356 {
357 	int ret, err = -EIO;
358 	struct inode *inode = mapping->host;
359 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 	loff_t start;
361 	struct page *last;
362 
363 	/*
364 	 * Use the nonblocking flag for the dlm code to avoid page
365 	 * lock inversion, but don't bother with retrying.
366 	 */
367 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 	if (ret)
369 		return err;
370 
371 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 		ocfs2_inode_unlock(inode, 0);
373 		return err;
374 	}
375 
376 	/*
377 	 * Don't bother with inline-data. There isn't anything
378 	 * to read-ahead in that case anyway...
379 	 */
380 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 		goto out_unlock;
382 
383 	/*
384 	 * Check whether a remote node truncated this file - we just
385 	 * drop out in that case as it's not worth handling here.
386 	 */
387 	last = list_entry(pages->prev, struct page, lru);
388 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389 	if (start >= i_size_read(inode))
390 		goto out_unlock;
391 
392 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393 
394 out_unlock:
395 	up_read(&oi->ip_alloc_sem);
396 	ocfs2_inode_unlock(inode, 0);
397 
398 	return err;
399 }
400 
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414 	trace_ocfs2_writepage(
415 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 		page->index);
417 
418 	return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420 
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(	handle_t *handle,
426 			struct buffer_head *head,
427 			unsigned from,
428 			unsigned to,
429 			int *partial,
430 			int (*fn)(	handle_t *handle,
431 					struct buffer_head *bh))
432 {
433 	struct buffer_head *bh;
434 	unsigned block_start, block_end;
435 	unsigned blocksize = head->b_size;
436 	int err, ret = 0;
437 	struct buffer_head *next;
438 
439 	for (	bh = head, block_start = 0;
440 		ret == 0 && (bh != head || !block_start);
441 	    	block_start = block_end, bh = next)
442 	{
443 		next = bh->b_this_page;
444 		block_end = block_start + blocksize;
445 		if (block_end <= from || block_start >= to) {
446 			if (partial && !buffer_uptodate(bh))
447 				*partial = 1;
448 			continue;
449 		}
450 		err = (*fn)(handle, bh);
451 		if (!ret)
452 			ret = err;
453 	}
454 	return ret;
455 }
456 
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459 	sector_t status;
460 	u64 p_blkno = 0;
461 	int err = 0;
462 	struct inode *inode = mapping->host;
463 
464 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 			 (unsigned long long)block);
466 
467 	/* We don't need to lock journal system files, since they aren't
468 	 * accessed concurrently from multiple nodes.
469 	 */
470 	if (!INODE_JOURNAL(inode)) {
471 		err = ocfs2_inode_lock(inode, NULL, 0);
472 		if (err) {
473 			if (err != -ENOENT)
474 				mlog_errno(err);
475 			goto bail;
476 		}
477 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 	}
479 
480 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 						  NULL);
483 
484 	if (!INODE_JOURNAL(inode)) {
485 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
486 		ocfs2_inode_unlock(inode, 0);
487 	}
488 
489 	if (err) {
490 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 		     (unsigned long long)block);
492 		mlog_errno(err);
493 		goto bail;
494 	}
495 
496 bail:
497 	status = err ? 0 : p_blkno;
498 
499 	return status;
500 }
501 
502 /*
503  * TODO: Make this into a generic get_blocks function.
504  *
505  * From do_direct_io in direct-io.c:
506  *  "So what we do is to permit the ->get_blocks function to populate
507  *   bh.b_size with the size of IO which is permitted at this offset and
508  *   this i_blkbits."
509  *
510  * This function is called directly from get_more_blocks in direct-io.c.
511  *
512  * called like this: dio->get_blocks(dio->inode, fs_startblk,
513  * 					fs_count, map_bh, dio->rw == WRITE);
514  */
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516 				     struct buffer_head *bh_result, int create)
517 {
518 	int ret;
519 	u32 cpos = 0;
520 	int alloc_locked = 0;
521 	u64 p_blkno, inode_blocks, contig_blocks;
522 	unsigned int ext_flags;
523 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525 	unsigned long len = bh_result->b_size;
526 	unsigned int clusters_to_alloc = 0;
527 
528 	cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529 
530 	/* This function won't even be called if the request isn't all
531 	 * nicely aligned and of the right size, so there's no need
532 	 * for us to check any of that. */
533 
534 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535 
536 	/* This figures out the size of the next contiguous block, and
537 	 * our logical offset */
538 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
539 					  &contig_blocks, &ext_flags);
540 	if (ret) {
541 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542 		     (unsigned long long)iblock);
543 		ret = -EIO;
544 		goto bail;
545 	}
546 
547 	/* We should already CoW the refcounted extent in case of create. */
548 	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
549 
550 	/* allocate blocks if no p_blkno is found, and create == 1 */
551 	if (!p_blkno && create) {
552 		ret = ocfs2_inode_lock(inode, NULL, 1);
553 		if (ret < 0) {
554 			mlog_errno(ret);
555 			goto bail;
556 		}
557 
558 		alloc_locked = 1;
559 
560 		/* fill hole, allocate blocks can't be larger than the size
561 		 * of the hole */
562 		clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
563 		if (clusters_to_alloc > contig_blocks)
564 			clusters_to_alloc = contig_blocks;
565 
566 		/* allocate extent and insert them into the extent tree */
567 		ret = ocfs2_extend_allocation(inode, cpos,
568 				clusters_to_alloc, 0);
569 		if (ret < 0) {
570 			mlog_errno(ret);
571 			goto bail;
572 		}
573 
574 		ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
575 				&contig_blocks, &ext_flags);
576 		if (ret < 0) {
577 			mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
578 					(unsigned long long)iblock);
579 			ret = -EIO;
580 			goto bail;
581 		}
582 	}
583 
584 	/*
585 	 * get_more_blocks() expects us to describe a hole by clearing
586 	 * the mapped bit on bh_result().
587 	 *
588 	 * Consider an unwritten extent as a hole.
589 	 */
590 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
591 		map_bh(bh_result, inode->i_sb, p_blkno);
592 	else
593 		clear_buffer_mapped(bh_result);
594 
595 	/* make sure we don't map more than max_blocks blocks here as
596 	   that's all the kernel will handle at this point. */
597 	if (max_blocks < contig_blocks)
598 		contig_blocks = max_blocks;
599 	bh_result->b_size = contig_blocks << blocksize_bits;
600 bail:
601 	if (alloc_locked)
602 		ocfs2_inode_unlock(inode, 1);
603 	return ret;
604 }
605 
606 /*
607  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
608  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
609  * to protect io on one node from truncation on another.
610  */
611 static void ocfs2_dio_end_io(struct kiocb *iocb,
612 			     loff_t offset,
613 			     ssize_t bytes,
614 			     void *private)
615 {
616 	struct inode *inode = file_inode(iocb->ki_filp);
617 	int level;
618 
619 	/* this io's submitter should not have unlocked this before we could */
620 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
621 
622 	if (ocfs2_iocb_is_sem_locked(iocb))
623 		ocfs2_iocb_clear_sem_locked(iocb);
624 
625 	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
626 		ocfs2_iocb_clear_unaligned_aio(iocb);
627 
628 		mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
629 	}
630 
631 	ocfs2_iocb_clear_rw_locked(iocb);
632 
633 	level = ocfs2_iocb_rw_locked_level(iocb);
634 	ocfs2_rw_unlock(inode, level);
635 }
636 
637 static int ocfs2_releasepage(struct page *page, gfp_t wait)
638 {
639 	if (!page_has_buffers(page))
640 		return 0;
641 	return try_to_free_buffers(page);
642 }
643 
644 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
645 		struct inode *inode, loff_t offset)
646 {
647 	int ret = 0;
648 	u32 v_cpos = 0;
649 	u32 p_cpos = 0;
650 	unsigned int num_clusters = 0;
651 	unsigned int ext_flags = 0;
652 
653 	v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
654 	ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
655 			&num_clusters, &ext_flags);
656 	if (ret < 0) {
657 		mlog_errno(ret);
658 		return ret;
659 	}
660 
661 	if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
662 		return 1;
663 
664 	return 0;
665 }
666 
667 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
668 		struct inode *inode, loff_t offset,
669 		u64 zero_len, int cluster_align)
670 {
671 	u32 p_cpos = 0;
672 	u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
673 	unsigned int num_clusters = 0;
674 	unsigned int ext_flags = 0;
675 	int ret = 0;
676 
677 	if (offset <= i_size_read(inode) || cluster_align)
678 		return 0;
679 
680 	ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
681 			&ext_flags);
682 	if (ret < 0) {
683 		mlog_errno(ret);
684 		return ret;
685 	}
686 
687 	if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
688 		u64 s = i_size_read(inode);
689 		sector_t sector = (p_cpos << (osb->s_clustersize_bits - 9)) +
690 			(do_div(s, osb->s_clustersize) >> 9);
691 
692 		ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
693 				zero_len >> 9, GFP_NOFS, false);
694 		if (ret < 0)
695 			mlog_errno(ret);
696 	}
697 
698 	return ret;
699 }
700 
701 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
702 		struct inode *inode, loff_t offset)
703 {
704 	u64 zero_start, zero_len, total_zero_len;
705 	u32 p_cpos = 0, clusters_to_add;
706 	u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
707 	unsigned int num_clusters = 0;
708 	unsigned int ext_flags = 0;
709 	u32 size_div, offset_div;
710 	int ret = 0;
711 
712 	{
713 		u64 o = offset;
714 		u64 s = i_size_read(inode);
715 
716 		offset_div = do_div(o, osb->s_clustersize);
717 		size_div = do_div(s, osb->s_clustersize);
718 	}
719 
720 	if (offset <= i_size_read(inode))
721 		return 0;
722 
723 	clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
724 		ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
725 	total_zero_len = offset - i_size_read(inode);
726 	if (clusters_to_add)
727 		total_zero_len -= offset_div;
728 
729 	/* Allocate clusters to fill out holes, and this is only needed
730 	 * when we add more than one clusters. Otherwise the cluster will
731 	 * be allocated during direct IO */
732 	if (clusters_to_add > 1) {
733 		ret = ocfs2_extend_allocation(inode,
734 				OCFS2_I(inode)->ip_clusters,
735 				clusters_to_add - 1, 0);
736 		if (ret) {
737 			mlog_errno(ret);
738 			goto out;
739 		}
740 	}
741 
742 	while (total_zero_len) {
743 		ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
744 				&ext_flags);
745 		if (ret < 0) {
746 			mlog_errno(ret);
747 			goto out;
748 		}
749 
750 		zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
751 			size_div;
752 		zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
753 			size_div;
754 		zero_len = min(total_zero_len, zero_len);
755 
756 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
757 			ret = blkdev_issue_zeroout(osb->sb->s_bdev,
758 					zero_start >> 9, zero_len >> 9,
759 					GFP_NOFS, false);
760 			if (ret < 0) {
761 				mlog_errno(ret);
762 				goto out;
763 			}
764 		}
765 
766 		total_zero_len -= zero_len;
767 		v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
768 
769 		/* Only at first iteration can be cluster not aligned.
770 		 * So set size_div to 0 for the rest */
771 		size_div = 0;
772 	}
773 
774 out:
775 	return ret;
776 }
777 
778 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
779 		struct iov_iter *iter,
780 		loff_t offset)
781 {
782 	ssize_t ret = 0;
783 	ssize_t written = 0;
784 	bool orphaned = false;
785 	int is_overwrite = 0;
786 	struct file *file = iocb->ki_filp;
787 	struct inode *inode = file_inode(file)->i_mapping->host;
788 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
789 	struct buffer_head *di_bh = NULL;
790 	size_t count = iter->count;
791 	journal_t *journal = osb->journal->j_journal;
792 	u64 zero_len_head, zero_len_tail;
793 	int cluster_align_head, cluster_align_tail;
794 	loff_t final_size = offset + count;
795 	int append_write = offset >= i_size_read(inode) ? 1 : 0;
796 	unsigned int num_clusters = 0;
797 	unsigned int ext_flags = 0;
798 
799 	{
800 		u64 o = offset;
801 		u64 s = i_size_read(inode);
802 
803 		zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
804 		cluster_align_head = !zero_len_head;
805 
806 		zero_len_tail = osb->s_clustersize -
807 			do_div(s, osb->s_clustersize);
808 		if ((offset - i_size_read(inode)) < zero_len_tail)
809 			zero_len_tail = offset - i_size_read(inode);
810 		cluster_align_tail = !zero_len_tail;
811 	}
812 
813 	/*
814 	 * when final_size > inode->i_size, inode->i_size will be
815 	 * updated after direct write, so add the inode to orphan
816 	 * dir first.
817 	 */
818 	if (final_size > i_size_read(inode)) {
819 		ret = ocfs2_add_inode_to_orphan(osb, inode);
820 		if (ret < 0) {
821 			mlog_errno(ret);
822 			goto out;
823 		}
824 		orphaned = true;
825 	}
826 
827 	if (append_write) {
828 		ret = ocfs2_inode_lock(inode, NULL, 1);
829 		if (ret < 0) {
830 			mlog_errno(ret);
831 			goto clean_orphan;
832 		}
833 
834 		/* zeroing out the previously allocated cluster tail
835 		 * that but not zeroed */
836 		if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
837 			ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
838 					zero_len_tail, cluster_align_tail);
839 		else
840 			ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
841 					offset);
842 		if (ret < 0) {
843 			mlog_errno(ret);
844 			ocfs2_inode_unlock(inode, 1);
845 			goto clean_orphan;
846 		}
847 
848 		is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
849 		if (is_overwrite < 0) {
850 			mlog_errno(is_overwrite);
851 			ocfs2_inode_unlock(inode, 1);
852 			goto clean_orphan;
853 		}
854 
855 		ocfs2_inode_unlock(inode, 1);
856 	}
857 
858 	written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
859 				       offset, ocfs2_direct_IO_get_blocks,
860 				       ocfs2_dio_end_io, NULL, 0);
861 	if (unlikely(written < 0)) {
862 		loff_t i_size = i_size_read(inode);
863 
864 		if (offset + count > i_size) {
865 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
866 			if (ret < 0) {
867 				mlog_errno(ret);
868 				goto clean_orphan;
869 			}
870 
871 			if (i_size == i_size_read(inode)) {
872 				ret = ocfs2_truncate_file(inode, di_bh,
873 						i_size);
874 				if (ret < 0) {
875 					if (ret != -ENOSPC)
876 						mlog_errno(ret);
877 
878 					ocfs2_inode_unlock(inode, 1);
879 					brelse(di_bh);
880 					goto clean_orphan;
881 				}
882 			}
883 
884 			ocfs2_inode_unlock(inode, 1);
885 			brelse(di_bh);
886 
887 			ret = jbd2_journal_force_commit(journal);
888 			if (ret < 0)
889 				mlog_errno(ret);
890 		}
891 	} else if (written > 0 && append_write && !is_overwrite &&
892 			!cluster_align_head) {
893 		/* zeroing out the allocated cluster head */
894 		u32 p_cpos = 0;
895 		u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
896 
897 		ret = ocfs2_inode_lock(inode, NULL, 0);
898 		if (ret < 0) {
899 			mlog_errno(ret);
900 			goto clean_orphan;
901 		}
902 
903 		ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
904 				&num_clusters, &ext_flags);
905 		if (ret < 0) {
906 			mlog_errno(ret);
907 			ocfs2_inode_unlock(inode, 0);
908 			goto clean_orphan;
909 		}
910 
911 		BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
912 
913 		ret = blkdev_issue_zeroout(osb->sb->s_bdev,
914 				p_cpos << (osb->s_clustersize_bits - 9),
915 				zero_len_head >> 9, GFP_NOFS, false);
916 		if (ret < 0)
917 			mlog_errno(ret);
918 
919 		ocfs2_inode_unlock(inode, 0);
920 	}
921 
922 clean_orphan:
923 	if (orphaned) {
924 		int tmp_ret;
925 		int update_isize = written > 0 ? 1 : 0;
926 		loff_t end = update_isize ? offset + written : 0;
927 
928 		tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
929 				update_isize, end);
930 		if (tmp_ret < 0) {
931 			ret = tmp_ret;
932 			goto out;
933 		}
934 
935 		tmp_ret = jbd2_journal_force_commit(journal);
936 		if (tmp_ret < 0) {
937 			ret = tmp_ret;
938 			mlog_errno(tmp_ret);
939 		}
940 	}
941 
942 out:
943 	if (ret >= 0)
944 		ret = written;
945 	return ret;
946 }
947 
948 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
949 			       loff_t offset)
950 {
951 	struct file *file = iocb->ki_filp;
952 	struct inode *inode = file_inode(file)->i_mapping->host;
953 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
954 	int full_coherency = !(osb->s_mount_opt &
955 			OCFS2_MOUNT_COHERENCY_BUFFERED);
956 
957 	/*
958 	 * Fallback to buffered I/O if we see an inode without
959 	 * extents.
960 	 */
961 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
962 		return 0;
963 
964 	/* Fallback to buffered I/O if we are appending and
965 	 * concurrent O_DIRECT writes are allowed.
966 	 */
967 	if (i_size_read(inode) <= offset && !full_coherency)
968 		return 0;
969 
970 	if (iov_iter_rw(iter) == READ)
971 		return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
972 					    iter, offset,
973 					    ocfs2_direct_IO_get_blocks,
974 					    ocfs2_dio_end_io, NULL, 0);
975 	else
976 		return ocfs2_direct_IO_write(iocb, iter, offset);
977 }
978 
979 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
980 					    u32 cpos,
981 					    unsigned int *start,
982 					    unsigned int *end)
983 {
984 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
985 
986 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
987 		unsigned int cpp;
988 
989 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
990 
991 		cluster_start = cpos % cpp;
992 		cluster_start = cluster_start << osb->s_clustersize_bits;
993 
994 		cluster_end = cluster_start + osb->s_clustersize;
995 	}
996 
997 	BUG_ON(cluster_start > PAGE_SIZE);
998 	BUG_ON(cluster_end > PAGE_SIZE);
999 
1000 	if (start)
1001 		*start = cluster_start;
1002 	if (end)
1003 		*end = cluster_end;
1004 }
1005 
1006 /*
1007  * 'from' and 'to' are the region in the page to avoid zeroing.
1008  *
1009  * If pagesize > clustersize, this function will avoid zeroing outside
1010  * of the cluster boundary.
1011  *
1012  * from == to == 0 is code for "zero the entire cluster region"
1013  */
1014 static void ocfs2_clear_page_regions(struct page *page,
1015 				     struct ocfs2_super *osb, u32 cpos,
1016 				     unsigned from, unsigned to)
1017 {
1018 	void *kaddr;
1019 	unsigned int cluster_start, cluster_end;
1020 
1021 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1022 
1023 	kaddr = kmap_atomic(page);
1024 
1025 	if (from || to) {
1026 		if (from > cluster_start)
1027 			memset(kaddr + cluster_start, 0, from - cluster_start);
1028 		if (to < cluster_end)
1029 			memset(kaddr + to, 0, cluster_end - to);
1030 	} else {
1031 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1032 	}
1033 
1034 	kunmap_atomic(kaddr);
1035 }
1036 
1037 /*
1038  * Nonsparse file systems fully allocate before we get to the write
1039  * code. This prevents ocfs2_write() from tagging the write as an
1040  * allocating one, which means ocfs2_map_page_blocks() might try to
1041  * read-in the blocks at the tail of our file. Avoid reading them by
1042  * testing i_size against each block offset.
1043  */
1044 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1045 				 unsigned int block_start)
1046 {
1047 	u64 offset = page_offset(page) + block_start;
1048 
1049 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1050 		return 1;
1051 
1052 	if (i_size_read(inode) > offset)
1053 		return 1;
1054 
1055 	return 0;
1056 }
1057 
1058 /*
1059  * Some of this taken from __block_write_begin(). We already have our
1060  * mapping by now though, and the entire write will be allocating or
1061  * it won't, so not much need to use BH_New.
1062  *
1063  * This will also skip zeroing, which is handled externally.
1064  */
1065 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1066 			  struct inode *inode, unsigned int from,
1067 			  unsigned int to, int new)
1068 {
1069 	int ret = 0;
1070 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1071 	unsigned int block_end, block_start;
1072 	unsigned int bsize = 1 << inode->i_blkbits;
1073 
1074 	if (!page_has_buffers(page))
1075 		create_empty_buffers(page, bsize, 0);
1076 
1077 	head = page_buffers(page);
1078 	for (bh = head, block_start = 0; bh != head || !block_start;
1079 	     bh = bh->b_this_page, block_start += bsize) {
1080 		block_end = block_start + bsize;
1081 
1082 		clear_buffer_new(bh);
1083 
1084 		/*
1085 		 * Ignore blocks outside of our i/o range -
1086 		 * they may belong to unallocated clusters.
1087 		 */
1088 		if (block_start >= to || block_end <= from) {
1089 			if (PageUptodate(page))
1090 				set_buffer_uptodate(bh);
1091 			continue;
1092 		}
1093 
1094 		/*
1095 		 * For an allocating write with cluster size >= page
1096 		 * size, we always write the entire page.
1097 		 */
1098 		if (new)
1099 			set_buffer_new(bh);
1100 
1101 		if (!buffer_mapped(bh)) {
1102 			map_bh(bh, inode->i_sb, *p_blkno);
1103 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1104 		}
1105 
1106 		if (PageUptodate(page)) {
1107 			if (!buffer_uptodate(bh))
1108 				set_buffer_uptodate(bh);
1109 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1110 			   !buffer_new(bh) &&
1111 			   ocfs2_should_read_blk(inode, page, block_start) &&
1112 			   (block_start < from || block_end > to)) {
1113 			ll_rw_block(READ, 1, &bh);
1114 			*wait_bh++=bh;
1115 		}
1116 
1117 		*p_blkno = *p_blkno + 1;
1118 	}
1119 
1120 	/*
1121 	 * If we issued read requests - let them complete.
1122 	 */
1123 	while(wait_bh > wait) {
1124 		wait_on_buffer(*--wait_bh);
1125 		if (!buffer_uptodate(*wait_bh))
1126 			ret = -EIO;
1127 	}
1128 
1129 	if (ret == 0 || !new)
1130 		return ret;
1131 
1132 	/*
1133 	 * If we get -EIO above, zero out any newly allocated blocks
1134 	 * to avoid exposing stale data.
1135 	 */
1136 	bh = head;
1137 	block_start = 0;
1138 	do {
1139 		block_end = block_start + bsize;
1140 		if (block_end <= from)
1141 			goto next_bh;
1142 		if (block_start >= to)
1143 			break;
1144 
1145 		zero_user(page, block_start, bh->b_size);
1146 		set_buffer_uptodate(bh);
1147 		mark_buffer_dirty(bh);
1148 
1149 next_bh:
1150 		block_start = block_end;
1151 		bh = bh->b_this_page;
1152 	} while (bh != head);
1153 
1154 	return ret;
1155 }
1156 
1157 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1158 #define OCFS2_MAX_CTXT_PAGES	1
1159 #else
1160 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1161 #endif
1162 
1163 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1164 
1165 /*
1166  * Describe the state of a single cluster to be written to.
1167  */
1168 struct ocfs2_write_cluster_desc {
1169 	u32		c_cpos;
1170 	u32		c_phys;
1171 	/*
1172 	 * Give this a unique field because c_phys eventually gets
1173 	 * filled.
1174 	 */
1175 	unsigned	c_new;
1176 	unsigned	c_unwritten;
1177 	unsigned	c_needs_zero;
1178 };
1179 
1180 struct ocfs2_write_ctxt {
1181 	/* Logical cluster position / len of write */
1182 	u32				w_cpos;
1183 	u32				w_clen;
1184 
1185 	/* First cluster allocated in a nonsparse extend */
1186 	u32				w_first_new_cpos;
1187 
1188 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1189 
1190 	/*
1191 	 * This is true if page_size > cluster_size.
1192 	 *
1193 	 * It triggers a set of special cases during write which might
1194 	 * have to deal with allocating writes to partial pages.
1195 	 */
1196 	unsigned int			w_large_pages;
1197 
1198 	/*
1199 	 * Pages involved in this write.
1200 	 *
1201 	 * w_target_page is the page being written to by the user.
1202 	 *
1203 	 * w_pages is an array of pages which always contains
1204 	 * w_target_page, and in the case of an allocating write with
1205 	 * page_size < cluster size, it will contain zero'd and mapped
1206 	 * pages adjacent to w_target_page which need to be written
1207 	 * out in so that future reads from that region will get
1208 	 * zero's.
1209 	 */
1210 	unsigned int			w_num_pages;
1211 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
1212 	struct page			*w_target_page;
1213 
1214 	/*
1215 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
1216 	 * against w_target_page in ocfs2_write_end_nolock.
1217 	 */
1218 	unsigned int			w_target_locked:1;
1219 
1220 	/*
1221 	 * ocfs2_write_end() uses this to know what the real range to
1222 	 * write in the target should be.
1223 	 */
1224 	unsigned int			w_target_from;
1225 	unsigned int			w_target_to;
1226 
1227 	/*
1228 	 * We could use journal_current_handle() but this is cleaner,
1229 	 * IMHO -Mark
1230 	 */
1231 	handle_t			*w_handle;
1232 
1233 	struct buffer_head		*w_di_bh;
1234 
1235 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
1236 };
1237 
1238 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1239 {
1240 	int i;
1241 
1242 	for(i = 0; i < num_pages; i++) {
1243 		if (pages[i]) {
1244 			unlock_page(pages[i]);
1245 			mark_page_accessed(pages[i]);
1246 			page_cache_release(pages[i]);
1247 		}
1248 	}
1249 }
1250 
1251 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1252 {
1253 	int i;
1254 
1255 	/*
1256 	 * w_target_locked is only set to true in the page_mkwrite() case.
1257 	 * The intent is to allow us to lock the target page from write_begin()
1258 	 * to write_end(). The caller must hold a ref on w_target_page.
1259 	 */
1260 	if (wc->w_target_locked) {
1261 		BUG_ON(!wc->w_target_page);
1262 		for (i = 0; i < wc->w_num_pages; i++) {
1263 			if (wc->w_target_page == wc->w_pages[i]) {
1264 				wc->w_pages[i] = NULL;
1265 				break;
1266 			}
1267 		}
1268 		mark_page_accessed(wc->w_target_page);
1269 		page_cache_release(wc->w_target_page);
1270 	}
1271 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1272 }
1273 
1274 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1275 {
1276 	ocfs2_unlock_pages(wc);
1277 	brelse(wc->w_di_bh);
1278 	kfree(wc);
1279 }
1280 
1281 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1282 				  struct ocfs2_super *osb, loff_t pos,
1283 				  unsigned len, struct buffer_head *di_bh)
1284 {
1285 	u32 cend;
1286 	struct ocfs2_write_ctxt *wc;
1287 
1288 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1289 	if (!wc)
1290 		return -ENOMEM;
1291 
1292 	wc->w_cpos = pos >> osb->s_clustersize_bits;
1293 	wc->w_first_new_cpos = UINT_MAX;
1294 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
1295 	wc->w_clen = cend - wc->w_cpos + 1;
1296 	get_bh(di_bh);
1297 	wc->w_di_bh = di_bh;
1298 
1299 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1300 		wc->w_large_pages = 1;
1301 	else
1302 		wc->w_large_pages = 0;
1303 
1304 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1305 
1306 	*wcp = wc;
1307 
1308 	return 0;
1309 }
1310 
1311 /*
1312  * If a page has any new buffers, zero them out here, and mark them uptodate
1313  * and dirty so they'll be written out (in order to prevent uninitialised
1314  * block data from leaking). And clear the new bit.
1315  */
1316 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1317 {
1318 	unsigned int block_start, block_end;
1319 	struct buffer_head *head, *bh;
1320 
1321 	BUG_ON(!PageLocked(page));
1322 	if (!page_has_buffers(page))
1323 		return;
1324 
1325 	bh = head = page_buffers(page);
1326 	block_start = 0;
1327 	do {
1328 		block_end = block_start + bh->b_size;
1329 
1330 		if (buffer_new(bh)) {
1331 			if (block_end > from && block_start < to) {
1332 				if (!PageUptodate(page)) {
1333 					unsigned start, end;
1334 
1335 					start = max(from, block_start);
1336 					end = min(to, block_end);
1337 
1338 					zero_user_segment(page, start, end);
1339 					set_buffer_uptodate(bh);
1340 				}
1341 
1342 				clear_buffer_new(bh);
1343 				mark_buffer_dirty(bh);
1344 			}
1345 		}
1346 
1347 		block_start = block_end;
1348 		bh = bh->b_this_page;
1349 	} while (bh != head);
1350 }
1351 
1352 /*
1353  * Only called when we have a failure during allocating write to write
1354  * zero's to the newly allocated region.
1355  */
1356 static void ocfs2_write_failure(struct inode *inode,
1357 				struct ocfs2_write_ctxt *wc,
1358 				loff_t user_pos, unsigned user_len)
1359 {
1360 	int i;
1361 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1362 		to = user_pos + user_len;
1363 	struct page *tmppage;
1364 
1365 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1366 
1367 	for(i = 0; i < wc->w_num_pages; i++) {
1368 		tmppage = wc->w_pages[i];
1369 
1370 		if (page_has_buffers(tmppage)) {
1371 			if (ocfs2_should_order_data(inode))
1372 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1373 
1374 			block_commit_write(tmppage, from, to);
1375 		}
1376 	}
1377 }
1378 
1379 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1380 					struct ocfs2_write_ctxt *wc,
1381 					struct page *page, u32 cpos,
1382 					loff_t user_pos, unsigned user_len,
1383 					int new)
1384 {
1385 	int ret;
1386 	unsigned int map_from = 0, map_to = 0;
1387 	unsigned int cluster_start, cluster_end;
1388 	unsigned int user_data_from = 0, user_data_to = 0;
1389 
1390 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1391 					&cluster_start, &cluster_end);
1392 
1393 	/* treat the write as new if the a hole/lseek spanned across
1394 	 * the page boundary.
1395 	 */
1396 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1397 			(page_offset(page) <= user_pos));
1398 
1399 	if (page == wc->w_target_page) {
1400 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1401 		map_to = map_from + user_len;
1402 
1403 		if (new)
1404 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1405 						    cluster_start, cluster_end,
1406 						    new);
1407 		else
1408 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1409 						    map_from, map_to, new);
1410 		if (ret) {
1411 			mlog_errno(ret);
1412 			goto out;
1413 		}
1414 
1415 		user_data_from = map_from;
1416 		user_data_to = map_to;
1417 		if (new) {
1418 			map_from = cluster_start;
1419 			map_to = cluster_end;
1420 		}
1421 	} else {
1422 		/*
1423 		 * If we haven't allocated the new page yet, we
1424 		 * shouldn't be writing it out without copying user
1425 		 * data. This is likely a math error from the caller.
1426 		 */
1427 		BUG_ON(!new);
1428 
1429 		map_from = cluster_start;
1430 		map_to = cluster_end;
1431 
1432 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1433 					    cluster_start, cluster_end, new);
1434 		if (ret) {
1435 			mlog_errno(ret);
1436 			goto out;
1437 		}
1438 	}
1439 
1440 	/*
1441 	 * Parts of newly allocated pages need to be zero'd.
1442 	 *
1443 	 * Above, we have also rewritten 'to' and 'from' - as far as
1444 	 * the rest of the function is concerned, the entire cluster
1445 	 * range inside of a page needs to be written.
1446 	 *
1447 	 * We can skip this if the page is up to date - it's already
1448 	 * been zero'd from being read in as a hole.
1449 	 */
1450 	if (new && !PageUptodate(page))
1451 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1452 					 cpos, user_data_from, user_data_to);
1453 
1454 	flush_dcache_page(page);
1455 
1456 out:
1457 	return ret;
1458 }
1459 
1460 /*
1461  * This function will only grab one clusters worth of pages.
1462  */
1463 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1464 				      struct ocfs2_write_ctxt *wc,
1465 				      u32 cpos, loff_t user_pos,
1466 				      unsigned user_len, int new,
1467 				      struct page *mmap_page)
1468 {
1469 	int ret = 0, i;
1470 	unsigned long start, target_index, end_index, index;
1471 	struct inode *inode = mapping->host;
1472 	loff_t last_byte;
1473 
1474 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1475 
1476 	/*
1477 	 * Figure out how many pages we'll be manipulating here. For
1478 	 * non allocating write, we just change the one
1479 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1480 	 * writing past i_size, we only need enough pages to cover the
1481 	 * last page of the write.
1482 	 */
1483 	if (new) {
1484 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1485 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1486 		/*
1487 		 * We need the index *past* the last page we could possibly
1488 		 * touch.  This is the page past the end of the write or
1489 		 * i_size, whichever is greater.
1490 		 */
1491 		last_byte = max(user_pos + user_len, i_size_read(inode));
1492 		BUG_ON(last_byte < 1);
1493 		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1494 		if ((start + wc->w_num_pages) > end_index)
1495 			wc->w_num_pages = end_index - start;
1496 	} else {
1497 		wc->w_num_pages = 1;
1498 		start = target_index;
1499 	}
1500 
1501 	for(i = 0; i < wc->w_num_pages; i++) {
1502 		index = start + i;
1503 
1504 		if (index == target_index && mmap_page) {
1505 			/*
1506 			 * ocfs2_pagemkwrite() is a little different
1507 			 * and wants us to directly use the page
1508 			 * passed in.
1509 			 */
1510 			lock_page(mmap_page);
1511 
1512 			/* Exit and let the caller retry */
1513 			if (mmap_page->mapping != mapping) {
1514 				WARN_ON(mmap_page->mapping);
1515 				unlock_page(mmap_page);
1516 				ret = -EAGAIN;
1517 				goto out;
1518 			}
1519 
1520 			page_cache_get(mmap_page);
1521 			wc->w_pages[i] = mmap_page;
1522 			wc->w_target_locked = true;
1523 		} else {
1524 			wc->w_pages[i] = find_or_create_page(mapping, index,
1525 							     GFP_NOFS);
1526 			if (!wc->w_pages[i]) {
1527 				ret = -ENOMEM;
1528 				mlog_errno(ret);
1529 				goto out;
1530 			}
1531 		}
1532 		wait_for_stable_page(wc->w_pages[i]);
1533 
1534 		if (index == target_index)
1535 			wc->w_target_page = wc->w_pages[i];
1536 	}
1537 out:
1538 	if (ret)
1539 		wc->w_target_locked = false;
1540 	return ret;
1541 }
1542 
1543 /*
1544  * Prepare a single cluster for write one cluster into the file.
1545  */
1546 static int ocfs2_write_cluster(struct address_space *mapping,
1547 			       u32 phys, unsigned int unwritten,
1548 			       unsigned int should_zero,
1549 			       struct ocfs2_alloc_context *data_ac,
1550 			       struct ocfs2_alloc_context *meta_ac,
1551 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1552 			       loff_t user_pos, unsigned user_len)
1553 {
1554 	int ret, i, new;
1555 	u64 v_blkno, p_blkno;
1556 	struct inode *inode = mapping->host;
1557 	struct ocfs2_extent_tree et;
1558 
1559 	new = phys == 0 ? 1 : 0;
1560 	if (new) {
1561 		u32 tmp_pos;
1562 
1563 		/*
1564 		 * This is safe to call with the page locks - it won't take
1565 		 * any additional semaphores or cluster locks.
1566 		 */
1567 		tmp_pos = cpos;
1568 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1569 					   &tmp_pos, 1, 0, wc->w_di_bh,
1570 					   wc->w_handle, data_ac,
1571 					   meta_ac, NULL);
1572 		/*
1573 		 * This shouldn't happen because we must have already
1574 		 * calculated the correct meta data allocation required. The
1575 		 * internal tree allocation code should know how to increase
1576 		 * transaction credits itself.
1577 		 *
1578 		 * If need be, we could handle -EAGAIN for a
1579 		 * RESTART_TRANS here.
1580 		 */
1581 		mlog_bug_on_msg(ret == -EAGAIN,
1582 				"Inode %llu: EAGAIN return during allocation.\n",
1583 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1584 		if (ret < 0) {
1585 			mlog_errno(ret);
1586 			goto out;
1587 		}
1588 	} else if (unwritten) {
1589 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1590 					      wc->w_di_bh);
1591 		ret = ocfs2_mark_extent_written(inode, &et,
1592 						wc->w_handle, cpos, 1, phys,
1593 						meta_ac, &wc->w_dealloc);
1594 		if (ret < 0) {
1595 			mlog_errno(ret);
1596 			goto out;
1597 		}
1598 	}
1599 
1600 	if (should_zero)
1601 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1602 	else
1603 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1604 
1605 	/*
1606 	 * The only reason this should fail is due to an inability to
1607 	 * find the extent added.
1608 	 */
1609 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1610 					  NULL);
1611 	if (ret < 0) {
1612 		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1613 			    "at logical block %llu",
1614 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1615 			    (unsigned long long)v_blkno);
1616 		goto out;
1617 	}
1618 
1619 	BUG_ON(p_blkno == 0);
1620 
1621 	for(i = 0; i < wc->w_num_pages; i++) {
1622 		int tmpret;
1623 
1624 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1625 						      wc->w_pages[i], cpos,
1626 						      user_pos, user_len,
1627 						      should_zero);
1628 		if (tmpret) {
1629 			mlog_errno(tmpret);
1630 			if (ret == 0)
1631 				ret = tmpret;
1632 		}
1633 	}
1634 
1635 	/*
1636 	 * We only have cleanup to do in case of allocating write.
1637 	 */
1638 	if (ret && new)
1639 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1640 
1641 out:
1642 
1643 	return ret;
1644 }
1645 
1646 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1647 				       struct ocfs2_alloc_context *data_ac,
1648 				       struct ocfs2_alloc_context *meta_ac,
1649 				       struct ocfs2_write_ctxt *wc,
1650 				       loff_t pos, unsigned len)
1651 {
1652 	int ret, i;
1653 	loff_t cluster_off;
1654 	unsigned int local_len = len;
1655 	struct ocfs2_write_cluster_desc *desc;
1656 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1657 
1658 	for (i = 0; i < wc->w_clen; i++) {
1659 		desc = &wc->w_desc[i];
1660 
1661 		/*
1662 		 * We have to make sure that the total write passed in
1663 		 * doesn't extend past a single cluster.
1664 		 */
1665 		local_len = len;
1666 		cluster_off = pos & (osb->s_clustersize - 1);
1667 		if ((cluster_off + local_len) > osb->s_clustersize)
1668 			local_len = osb->s_clustersize - cluster_off;
1669 
1670 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1671 					  desc->c_unwritten,
1672 					  desc->c_needs_zero,
1673 					  data_ac, meta_ac,
1674 					  wc, desc->c_cpos, pos, local_len);
1675 		if (ret) {
1676 			mlog_errno(ret);
1677 			goto out;
1678 		}
1679 
1680 		len -= local_len;
1681 		pos += local_len;
1682 	}
1683 
1684 	ret = 0;
1685 out:
1686 	return ret;
1687 }
1688 
1689 /*
1690  * ocfs2_write_end() wants to know which parts of the target page it
1691  * should complete the write on. It's easiest to compute them ahead of
1692  * time when a more complete view of the write is available.
1693  */
1694 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1695 					struct ocfs2_write_ctxt *wc,
1696 					loff_t pos, unsigned len, int alloc)
1697 {
1698 	struct ocfs2_write_cluster_desc *desc;
1699 
1700 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1701 	wc->w_target_to = wc->w_target_from + len;
1702 
1703 	if (alloc == 0)
1704 		return;
1705 
1706 	/*
1707 	 * Allocating write - we may have different boundaries based
1708 	 * on page size and cluster size.
1709 	 *
1710 	 * NOTE: We can no longer compute one value from the other as
1711 	 * the actual write length and user provided length may be
1712 	 * different.
1713 	 */
1714 
1715 	if (wc->w_large_pages) {
1716 		/*
1717 		 * We only care about the 1st and last cluster within
1718 		 * our range and whether they should be zero'd or not. Either
1719 		 * value may be extended out to the start/end of a
1720 		 * newly allocated cluster.
1721 		 */
1722 		desc = &wc->w_desc[0];
1723 		if (desc->c_needs_zero)
1724 			ocfs2_figure_cluster_boundaries(osb,
1725 							desc->c_cpos,
1726 							&wc->w_target_from,
1727 							NULL);
1728 
1729 		desc = &wc->w_desc[wc->w_clen - 1];
1730 		if (desc->c_needs_zero)
1731 			ocfs2_figure_cluster_boundaries(osb,
1732 							desc->c_cpos,
1733 							NULL,
1734 							&wc->w_target_to);
1735 	} else {
1736 		wc->w_target_from = 0;
1737 		wc->w_target_to = PAGE_CACHE_SIZE;
1738 	}
1739 }
1740 
1741 /*
1742  * Populate each single-cluster write descriptor in the write context
1743  * with information about the i/o to be done.
1744  *
1745  * Returns the number of clusters that will have to be allocated, as
1746  * well as a worst case estimate of the number of extent records that
1747  * would have to be created during a write to an unwritten region.
1748  */
1749 static int ocfs2_populate_write_desc(struct inode *inode,
1750 				     struct ocfs2_write_ctxt *wc,
1751 				     unsigned int *clusters_to_alloc,
1752 				     unsigned int *extents_to_split)
1753 {
1754 	int ret;
1755 	struct ocfs2_write_cluster_desc *desc;
1756 	unsigned int num_clusters = 0;
1757 	unsigned int ext_flags = 0;
1758 	u32 phys = 0;
1759 	int i;
1760 
1761 	*clusters_to_alloc = 0;
1762 	*extents_to_split = 0;
1763 
1764 	for (i = 0; i < wc->w_clen; i++) {
1765 		desc = &wc->w_desc[i];
1766 		desc->c_cpos = wc->w_cpos + i;
1767 
1768 		if (num_clusters == 0) {
1769 			/*
1770 			 * Need to look up the next extent record.
1771 			 */
1772 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1773 						 &num_clusters, &ext_flags);
1774 			if (ret) {
1775 				mlog_errno(ret);
1776 				goto out;
1777 			}
1778 
1779 			/* We should already CoW the refcountd extent. */
1780 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1781 
1782 			/*
1783 			 * Assume worst case - that we're writing in
1784 			 * the middle of the extent.
1785 			 *
1786 			 * We can assume that the write proceeds from
1787 			 * left to right, in which case the extent
1788 			 * insert code is smart enough to coalesce the
1789 			 * next splits into the previous records created.
1790 			 */
1791 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1792 				*extents_to_split = *extents_to_split + 2;
1793 		} else if (phys) {
1794 			/*
1795 			 * Only increment phys if it doesn't describe
1796 			 * a hole.
1797 			 */
1798 			phys++;
1799 		}
1800 
1801 		/*
1802 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1803 		 * file that got extended.  w_first_new_cpos tells us
1804 		 * where the newly allocated clusters are so we can
1805 		 * zero them.
1806 		 */
1807 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1808 			BUG_ON(phys == 0);
1809 			desc->c_needs_zero = 1;
1810 		}
1811 
1812 		desc->c_phys = phys;
1813 		if (phys == 0) {
1814 			desc->c_new = 1;
1815 			desc->c_needs_zero = 1;
1816 			*clusters_to_alloc = *clusters_to_alloc + 1;
1817 		}
1818 
1819 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1820 			desc->c_unwritten = 1;
1821 			desc->c_needs_zero = 1;
1822 		}
1823 
1824 		num_clusters--;
1825 	}
1826 
1827 	ret = 0;
1828 out:
1829 	return ret;
1830 }
1831 
1832 static int ocfs2_write_begin_inline(struct address_space *mapping,
1833 				    struct inode *inode,
1834 				    struct ocfs2_write_ctxt *wc)
1835 {
1836 	int ret;
1837 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1838 	struct page *page;
1839 	handle_t *handle;
1840 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1841 
1842 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1843 	if (IS_ERR(handle)) {
1844 		ret = PTR_ERR(handle);
1845 		mlog_errno(ret);
1846 		goto out;
1847 	}
1848 
1849 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1850 	if (!page) {
1851 		ocfs2_commit_trans(osb, handle);
1852 		ret = -ENOMEM;
1853 		mlog_errno(ret);
1854 		goto out;
1855 	}
1856 	/*
1857 	 * If we don't set w_num_pages then this page won't get unlocked
1858 	 * and freed on cleanup of the write context.
1859 	 */
1860 	wc->w_pages[0] = wc->w_target_page = page;
1861 	wc->w_num_pages = 1;
1862 
1863 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1864 				      OCFS2_JOURNAL_ACCESS_WRITE);
1865 	if (ret) {
1866 		ocfs2_commit_trans(osb, handle);
1867 
1868 		mlog_errno(ret);
1869 		goto out;
1870 	}
1871 
1872 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1873 		ocfs2_set_inode_data_inline(inode, di);
1874 
1875 	if (!PageUptodate(page)) {
1876 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1877 		if (ret) {
1878 			ocfs2_commit_trans(osb, handle);
1879 
1880 			goto out;
1881 		}
1882 	}
1883 
1884 	wc->w_handle = handle;
1885 out:
1886 	return ret;
1887 }
1888 
1889 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1890 {
1891 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1892 
1893 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1894 		return 1;
1895 	return 0;
1896 }
1897 
1898 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1899 					  struct inode *inode, loff_t pos,
1900 					  unsigned len, struct page *mmap_page,
1901 					  struct ocfs2_write_ctxt *wc)
1902 {
1903 	int ret, written = 0;
1904 	loff_t end = pos + len;
1905 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1906 	struct ocfs2_dinode *di = NULL;
1907 
1908 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1909 					     len, (unsigned long long)pos,
1910 					     oi->ip_dyn_features);
1911 
1912 	/*
1913 	 * Handle inodes which already have inline data 1st.
1914 	 */
1915 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1916 		if (mmap_page == NULL &&
1917 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1918 			goto do_inline_write;
1919 
1920 		/*
1921 		 * The write won't fit - we have to give this inode an
1922 		 * inline extent list now.
1923 		 */
1924 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1925 		if (ret)
1926 			mlog_errno(ret);
1927 		goto out;
1928 	}
1929 
1930 	/*
1931 	 * Check whether the inode can accept inline data.
1932 	 */
1933 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1934 		return 0;
1935 
1936 	/*
1937 	 * Check whether the write can fit.
1938 	 */
1939 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1940 	if (mmap_page ||
1941 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1942 		return 0;
1943 
1944 do_inline_write:
1945 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1946 	if (ret) {
1947 		mlog_errno(ret);
1948 		goto out;
1949 	}
1950 
1951 	/*
1952 	 * This signals to the caller that the data can be written
1953 	 * inline.
1954 	 */
1955 	written = 1;
1956 out:
1957 	return written ? written : ret;
1958 }
1959 
1960 /*
1961  * This function only does anything for file systems which can't
1962  * handle sparse files.
1963  *
1964  * What we want to do here is fill in any hole between the current end
1965  * of allocation and the end of our write. That way the rest of the
1966  * write path can treat it as an non-allocating write, which has no
1967  * special case code for sparse/nonsparse files.
1968  */
1969 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1970 					struct buffer_head *di_bh,
1971 					loff_t pos, unsigned len,
1972 					struct ocfs2_write_ctxt *wc)
1973 {
1974 	int ret;
1975 	loff_t newsize = pos + len;
1976 
1977 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1978 
1979 	if (newsize <= i_size_read(inode))
1980 		return 0;
1981 
1982 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1983 	if (ret)
1984 		mlog_errno(ret);
1985 
1986 	wc->w_first_new_cpos =
1987 		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1988 
1989 	return ret;
1990 }
1991 
1992 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1993 			   loff_t pos)
1994 {
1995 	int ret = 0;
1996 
1997 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1998 	if (pos > i_size_read(inode))
1999 		ret = ocfs2_zero_extend(inode, di_bh, pos);
2000 
2001 	return ret;
2002 }
2003 
2004 /*
2005  * Try to flush truncate logs if we can free enough clusters from it.
2006  * As for return value, "< 0" means error, "0" no space and "1" means
2007  * we have freed enough spaces and let the caller try to allocate again.
2008  */
2009 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2010 					  unsigned int needed)
2011 {
2012 	tid_t target;
2013 	int ret = 0;
2014 	unsigned int truncated_clusters;
2015 
2016 	mutex_lock(&osb->osb_tl_inode->i_mutex);
2017 	truncated_clusters = osb->truncated_clusters;
2018 	mutex_unlock(&osb->osb_tl_inode->i_mutex);
2019 
2020 	/*
2021 	 * Check whether we can succeed in allocating if we free
2022 	 * the truncate log.
2023 	 */
2024 	if (truncated_clusters < needed)
2025 		goto out;
2026 
2027 	ret = ocfs2_flush_truncate_log(osb);
2028 	if (ret) {
2029 		mlog_errno(ret);
2030 		goto out;
2031 	}
2032 
2033 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2034 		jbd2_log_wait_commit(osb->journal->j_journal, target);
2035 		ret = 1;
2036 	}
2037 out:
2038 	return ret;
2039 }
2040 
2041 int ocfs2_write_begin_nolock(struct file *filp,
2042 			     struct address_space *mapping,
2043 			     loff_t pos, unsigned len, unsigned flags,
2044 			     struct page **pagep, void **fsdata,
2045 			     struct buffer_head *di_bh, struct page *mmap_page)
2046 {
2047 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2048 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2049 	struct ocfs2_write_ctxt *wc;
2050 	struct inode *inode = mapping->host;
2051 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2052 	struct ocfs2_dinode *di;
2053 	struct ocfs2_alloc_context *data_ac = NULL;
2054 	struct ocfs2_alloc_context *meta_ac = NULL;
2055 	handle_t *handle;
2056 	struct ocfs2_extent_tree et;
2057 	int try_free = 1, ret1;
2058 
2059 try_again:
2060 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2061 	if (ret) {
2062 		mlog_errno(ret);
2063 		return ret;
2064 	}
2065 
2066 	if (ocfs2_supports_inline_data(osb)) {
2067 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2068 						     mmap_page, wc);
2069 		if (ret == 1) {
2070 			ret = 0;
2071 			goto success;
2072 		}
2073 		if (ret < 0) {
2074 			mlog_errno(ret);
2075 			goto out;
2076 		}
2077 	}
2078 
2079 	if (ocfs2_sparse_alloc(osb))
2080 		ret = ocfs2_zero_tail(inode, di_bh, pos);
2081 	else
2082 		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2083 						   wc);
2084 	if (ret) {
2085 		mlog_errno(ret);
2086 		goto out;
2087 	}
2088 
2089 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
2090 	if (ret < 0) {
2091 		mlog_errno(ret);
2092 		goto out;
2093 	} else if (ret == 1) {
2094 		clusters_need = wc->w_clen;
2095 		ret = ocfs2_refcount_cow(inode, di_bh,
2096 					 wc->w_cpos, wc->w_clen, UINT_MAX);
2097 		if (ret) {
2098 			mlog_errno(ret);
2099 			goto out;
2100 		}
2101 	}
2102 
2103 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2104 					&extents_to_split);
2105 	if (ret) {
2106 		mlog_errno(ret);
2107 		goto out;
2108 	}
2109 	clusters_need += clusters_to_alloc;
2110 
2111 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2112 
2113 	trace_ocfs2_write_begin_nolock(
2114 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2115 			(long long)i_size_read(inode),
2116 			le32_to_cpu(di->i_clusters),
2117 			pos, len, flags, mmap_page,
2118 			clusters_to_alloc, extents_to_split);
2119 
2120 	/*
2121 	 * We set w_target_from, w_target_to here so that
2122 	 * ocfs2_write_end() knows which range in the target page to
2123 	 * write out. An allocation requires that we write the entire
2124 	 * cluster range.
2125 	 */
2126 	if (clusters_to_alloc || extents_to_split) {
2127 		/*
2128 		 * XXX: We are stretching the limits of
2129 		 * ocfs2_lock_allocators(). It greatly over-estimates
2130 		 * the work to be done.
2131 		 */
2132 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2133 					      wc->w_di_bh);
2134 		ret = ocfs2_lock_allocators(inode, &et,
2135 					    clusters_to_alloc, extents_to_split,
2136 					    &data_ac, &meta_ac);
2137 		if (ret) {
2138 			mlog_errno(ret);
2139 			goto out;
2140 		}
2141 
2142 		if (data_ac)
2143 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2144 
2145 		credits = ocfs2_calc_extend_credits(inode->i_sb,
2146 						    &di->id2.i_list);
2147 
2148 	}
2149 
2150 	/*
2151 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
2152 	 * and non-sparse clusters we just extended.  For non-sparse writes,
2153 	 * we know zeros will only be needed in the first and/or last cluster.
2154 	 */
2155 	if (clusters_to_alloc || extents_to_split ||
2156 	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2157 			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2158 		cluster_of_pages = 1;
2159 	else
2160 		cluster_of_pages = 0;
2161 
2162 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2163 
2164 	handle = ocfs2_start_trans(osb, credits);
2165 	if (IS_ERR(handle)) {
2166 		ret = PTR_ERR(handle);
2167 		mlog_errno(ret);
2168 		goto out;
2169 	}
2170 
2171 	wc->w_handle = handle;
2172 
2173 	if (clusters_to_alloc) {
2174 		ret = dquot_alloc_space_nodirty(inode,
2175 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2176 		if (ret)
2177 			goto out_commit;
2178 	}
2179 	/*
2180 	 * We don't want this to fail in ocfs2_write_end(), so do it
2181 	 * here.
2182 	 */
2183 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2184 				      OCFS2_JOURNAL_ACCESS_WRITE);
2185 	if (ret) {
2186 		mlog_errno(ret);
2187 		goto out_quota;
2188 	}
2189 
2190 	/*
2191 	 * Fill our page array first. That way we've grabbed enough so
2192 	 * that we can zero and flush if we error after adding the
2193 	 * extent.
2194 	 */
2195 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2196 					 cluster_of_pages, mmap_page);
2197 	if (ret && ret != -EAGAIN) {
2198 		mlog_errno(ret);
2199 		goto out_quota;
2200 	}
2201 
2202 	/*
2203 	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2204 	 * the target page. In this case, we exit with no error and no target
2205 	 * page. This will trigger the caller, page_mkwrite(), to re-try
2206 	 * the operation.
2207 	 */
2208 	if (ret == -EAGAIN) {
2209 		BUG_ON(wc->w_target_page);
2210 		ret = 0;
2211 		goto out_quota;
2212 	}
2213 
2214 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2215 					  len);
2216 	if (ret) {
2217 		mlog_errno(ret);
2218 		goto out_quota;
2219 	}
2220 
2221 	if (data_ac)
2222 		ocfs2_free_alloc_context(data_ac);
2223 	if (meta_ac)
2224 		ocfs2_free_alloc_context(meta_ac);
2225 
2226 success:
2227 	*pagep = wc->w_target_page;
2228 	*fsdata = wc;
2229 	return 0;
2230 out_quota:
2231 	if (clusters_to_alloc)
2232 		dquot_free_space(inode,
2233 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2234 out_commit:
2235 	ocfs2_commit_trans(osb, handle);
2236 
2237 out:
2238 	ocfs2_free_write_ctxt(wc);
2239 
2240 	if (data_ac) {
2241 		ocfs2_free_alloc_context(data_ac);
2242 		data_ac = NULL;
2243 	}
2244 	if (meta_ac) {
2245 		ocfs2_free_alloc_context(meta_ac);
2246 		meta_ac = NULL;
2247 	}
2248 
2249 	if (ret == -ENOSPC && try_free) {
2250 		/*
2251 		 * Try to free some truncate log so that we can have enough
2252 		 * clusters to allocate.
2253 		 */
2254 		try_free = 0;
2255 
2256 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2257 		if (ret1 == 1)
2258 			goto try_again;
2259 
2260 		if (ret1 < 0)
2261 			mlog_errno(ret1);
2262 	}
2263 
2264 	return ret;
2265 }
2266 
2267 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2268 			     loff_t pos, unsigned len, unsigned flags,
2269 			     struct page **pagep, void **fsdata)
2270 {
2271 	int ret;
2272 	struct buffer_head *di_bh = NULL;
2273 	struct inode *inode = mapping->host;
2274 
2275 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2276 	if (ret) {
2277 		mlog_errno(ret);
2278 		return ret;
2279 	}
2280 
2281 	/*
2282 	 * Take alloc sem here to prevent concurrent lookups. That way
2283 	 * the mapping, zeroing and tree manipulation within
2284 	 * ocfs2_write() will be safe against ->readpage(). This
2285 	 * should also serve to lock out allocation from a shared
2286 	 * writeable region.
2287 	 */
2288 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
2289 
2290 	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2291 				       fsdata, di_bh, NULL);
2292 	if (ret) {
2293 		mlog_errno(ret);
2294 		goto out_fail;
2295 	}
2296 
2297 	brelse(di_bh);
2298 
2299 	return 0;
2300 
2301 out_fail:
2302 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2303 
2304 	brelse(di_bh);
2305 	ocfs2_inode_unlock(inode, 1);
2306 
2307 	return ret;
2308 }
2309 
2310 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2311 				   unsigned len, unsigned *copied,
2312 				   struct ocfs2_dinode *di,
2313 				   struct ocfs2_write_ctxt *wc)
2314 {
2315 	void *kaddr;
2316 
2317 	if (unlikely(*copied < len)) {
2318 		if (!PageUptodate(wc->w_target_page)) {
2319 			*copied = 0;
2320 			return;
2321 		}
2322 	}
2323 
2324 	kaddr = kmap_atomic(wc->w_target_page);
2325 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2326 	kunmap_atomic(kaddr);
2327 
2328 	trace_ocfs2_write_end_inline(
2329 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2330 	     (unsigned long long)pos, *copied,
2331 	     le16_to_cpu(di->id2.i_data.id_count),
2332 	     le16_to_cpu(di->i_dyn_features));
2333 }
2334 
2335 int ocfs2_write_end_nolock(struct address_space *mapping,
2336 			   loff_t pos, unsigned len, unsigned copied,
2337 			   struct page *page, void *fsdata)
2338 {
2339 	int i;
2340 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2341 	struct inode *inode = mapping->host;
2342 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2343 	struct ocfs2_write_ctxt *wc = fsdata;
2344 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2345 	handle_t *handle = wc->w_handle;
2346 	struct page *tmppage;
2347 
2348 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2349 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2350 		goto out_write_size;
2351 	}
2352 
2353 	if (unlikely(copied < len)) {
2354 		if (!PageUptodate(wc->w_target_page))
2355 			copied = 0;
2356 
2357 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2358 				       start+len);
2359 	}
2360 	flush_dcache_page(wc->w_target_page);
2361 
2362 	for(i = 0; i < wc->w_num_pages; i++) {
2363 		tmppage = wc->w_pages[i];
2364 
2365 		if (tmppage == wc->w_target_page) {
2366 			from = wc->w_target_from;
2367 			to = wc->w_target_to;
2368 
2369 			BUG_ON(from > PAGE_CACHE_SIZE ||
2370 			       to > PAGE_CACHE_SIZE ||
2371 			       to < from);
2372 		} else {
2373 			/*
2374 			 * Pages adjacent to the target (if any) imply
2375 			 * a hole-filling write in which case we want
2376 			 * to flush their entire range.
2377 			 */
2378 			from = 0;
2379 			to = PAGE_CACHE_SIZE;
2380 		}
2381 
2382 		if (page_has_buffers(tmppage)) {
2383 			if (ocfs2_should_order_data(inode))
2384 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
2385 			block_commit_write(tmppage, from, to);
2386 		}
2387 	}
2388 
2389 out_write_size:
2390 	pos += copied;
2391 	if (pos > i_size_read(inode)) {
2392 		i_size_write(inode, pos);
2393 		mark_inode_dirty(inode);
2394 	}
2395 	inode->i_blocks = ocfs2_inode_sector_count(inode);
2396 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2397 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2398 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2399 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2400 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
2401 	ocfs2_journal_dirty(handle, wc->w_di_bh);
2402 
2403 	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2404 	 * lock, or it will cause a deadlock since journal commit threads holds
2405 	 * this lock and will ask for the page lock when flushing the data.
2406 	 * put it here to preserve the unlock order.
2407 	 */
2408 	ocfs2_unlock_pages(wc);
2409 
2410 	ocfs2_commit_trans(osb, handle);
2411 
2412 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2413 
2414 	brelse(wc->w_di_bh);
2415 	kfree(wc);
2416 
2417 	return copied;
2418 }
2419 
2420 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2421 			   loff_t pos, unsigned len, unsigned copied,
2422 			   struct page *page, void *fsdata)
2423 {
2424 	int ret;
2425 	struct inode *inode = mapping->host;
2426 
2427 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2428 
2429 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2430 	ocfs2_inode_unlock(inode, 1);
2431 
2432 	return ret;
2433 }
2434 
2435 const struct address_space_operations ocfs2_aops = {
2436 	.readpage		= ocfs2_readpage,
2437 	.readpages		= ocfs2_readpages,
2438 	.writepage		= ocfs2_writepage,
2439 	.write_begin		= ocfs2_write_begin,
2440 	.write_end		= ocfs2_write_end,
2441 	.bmap			= ocfs2_bmap,
2442 	.direct_IO		= ocfs2_direct_IO,
2443 	.invalidatepage		= block_invalidatepage,
2444 	.releasepage		= ocfs2_releasepage,
2445 	.migratepage		= buffer_migrate_page,
2446 	.is_partially_uptodate	= block_is_partially_uptodate,
2447 	.error_remove_page	= generic_error_remove_page,
2448 };
2449