xref: /openbmc/linux/fs/ocfs2/aops.c (revision d5532ee7)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
48 
49 #include "buffer_head_io.h"
50 
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 				   struct buffer_head *bh_result, int create)
53 {
54 	int err = -EIO;
55 	int status;
56 	struct ocfs2_dinode *fe = NULL;
57 	struct buffer_head *bh = NULL;
58 	struct buffer_head *buffer_cache_bh = NULL;
59 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 	void *kaddr;
61 
62 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63 		   (unsigned long long)iblock, bh_result, create);
64 
65 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66 
67 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69 		     (unsigned long long)iblock);
70 		goto bail;
71 	}
72 
73 	status = ocfs2_read_inode_block(inode, &bh);
74 	if (status < 0) {
75 		mlog_errno(status);
76 		goto bail;
77 	}
78 	fe = (struct ocfs2_dinode *) bh->b_data;
79 
80 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81 						    le32_to_cpu(fe->i_clusters))) {
82 		mlog(ML_ERROR, "block offset is outside the allocated size: "
83 		     "%llu\n", (unsigned long long)iblock);
84 		goto bail;
85 	}
86 
87 	/* We don't use the page cache to create symlink data, so if
88 	 * need be, copy it over from the buffer cache. */
89 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91 			    iblock;
92 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
93 		if (!buffer_cache_bh) {
94 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95 			goto bail;
96 		}
97 
98 		/* we haven't locked out transactions, so a commit
99 		 * could've happened. Since we've got a reference on
100 		 * the bh, even if it commits while we're doing the
101 		 * copy, the data is still good. */
102 		if (buffer_jbd(buffer_cache_bh)
103 		    && ocfs2_inode_is_new(inode)) {
104 			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105 			if (!kaddr) {
106 				mlog(ML_ERROR, "couldn't kmap!\n");
107 				goto bail;
108 			}
109 			memcpy(kaddr + (bh_result->b_size * iblock),
110 			       buffer_cache_bh->b_data,
111 			       bh_result->b_size);
112 			kunmap_atomic(kaddr, KM_USER0);
113 			set_buffer_uptodate(bh_result);
114 		}
115 		brelse(buffer_cache_bh);
116 	}
117 
118 	map_bh(bh_result, inode->i_sb,
119 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
120 
121 	err = 0;
122 
123 bail:
124 	brelse(bh);
125 
126 	mlog_exit(err);
127 	return err;
128 }
129 
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 		    struct buffer_head *bh_result, int create)
132 {
133 	int err = 0;
134 	unsigned int ext_flags;
135 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 	u64 p_blkno, count, past_eof;
137 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138 
139 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140 		   (unsigned long long)iblock, bh_result, create);
141 
142 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 		     inode, inode->i_ino);
145 
146 	if (S_ISLNK(inode->i_mode)) {
147 		/* this always does I/O for some reason. */
148 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 		goto bail;
150 	}
151 
152 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 					  &ext_flags);
154 	if (err) {
155 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 		     (unsigned long long)p_blkno);
158 		goto bail;
159 	}
160 
161 	if (max_blocks < count)
162 		count = max_blocks;
163 
164 	/*
165 	 * ocfs2 never allocates in this function - the only time we
166 	 * need to use BH_New is when we're extending i_size on a file
167 	 * system which doesn't support holes, in which case BH_New
168 	 * allows block_prepare_write() to zero.
169 	 *
170 	 * If we see this on a sparse file system, then a truncate has
171 	 * raced us and removed the cluster. In this case, we clear
172 	 * the buffers dirty and uptodate bits and let the buffer code
173 	 * ignore it as a hole.
174 	 */
175 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 		clear_buffer_dirty(bh_result);
177 		clear_buffer_uptodate(bh_result);
178 		goto bail;
179 	}
180 
181 	/* Treat the unwritten extent as a hole for zeroing purposes. */
182 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 		map_bh(bh_result, inode->i_sb, p_blkno);
184 
185 	bh_result->b_size = count << inode->i_blkbits;
186 
187 	if (!ocfs2_sparse_alloc(osb)) {
188 		if (p_blkno == 0) {
189 			err = -EIO;
190 			mlog(ML_ERROR,
191 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 			     (unsigned long long)iblock,
193 			     (unsigned long long)p_blkno,
194 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 			dump_stack();
197 			goto bail;
198 		}
199 	}
200 
201 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202 	mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
203 	     (unsigned long long)past_eof);
204 	if (create && (iblock >= past_eof))
205 		set_buffer_new(bh_result);
206 
207 bail:
208 	if (err < 0)
209 		err = -EIO;
210 
211 	mlog_exit(err);
212 	return err;
213 }
214 
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 			   struct buffer_head *di_bh)
217 {
218 	void *kaddr;
219 	loff_t size;
220 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221 
222 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 		return -EROFS;
226 	}
227 
228 	size = i_size_read(inode);
229 
230 	if (size > PAGE_CACHE_SIZE ||
231 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 		ocfs2_error(inode->i_sb,
233 			    "Inode %llu has with inline data has bad size: %Lu",
234 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 			    (unsigned long long)size);
236 		return -EROFS;
237 	}
238 
239 	kaddr = kmap_atomic(page, KM_USER0);
240 	if (size)
241 		memcpy(kaddr, di->id2.i_data.id_data, size);
242 	/* Clear the remaining part of the page */
243 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 	flush_dcache_page(page);
245 	kunmap_atomic(kaddr, KM_USER0);
246 
247 	SetPageUptodate(page);
248 
249 	return 0;
250 }
251 
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253 {
254 	int ret;
255 	struct buffer_head *di_bh = NULL;
256 
257 	BUG_ON(!PageLocked(page));
258 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259 
260 	ret = ocfs2_read_inode_block(inode, &di_bh);
261 	if (ret) {
262 		mlog_errno(ret);
263 		goto out;
264 	}
265 
266 	ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268 	unlock_page(page);
269 
270 	brelse(di_bh);
271 	return ret;
272 }
273 
274 static int ocfs2_readpage(struct file *file, struct page *page)
275 {
276 	struct inode *inode = page->mapping->host;
277 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 	int ret, unlock = 1;
280 
281 	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
282 
283 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
284 	if (ret != 0) {
285 		if (ret == AOP_TRUNCATED_PAGE)
286 			unlock = 0;
287 		mlog_errno(ret);
288 		goto out;
289 	}
290 
291 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
292 		ret = AOP_TRUNCATED_PAGE;
293 		goto out_inode_unlock;
294 	}
295 
296 	/*
297 	 * i_size might have just been updated as we grabed the meta lock.  We
298 	 * might now be discovering a truncate that hit on another node.
299 	 * block_read_full_page->get_block freaks out if it is asked to read
300 	 * beyond the end of a file, so we check here.  Callers
301 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
302 	 * and notice that the page they just read isn't needed.
303 	 *
304 	 * XXX sys_readahead() seems to get that wrong?
305 	 */
306 	if (start >= i_size_read(inode)) {
307 		zero_user(page, 0, PAGE_SIZE);
308 		SetPageUptodate(page);
309 		ret = 0;
310 		goto out_alloc;
311 	}
312 
313 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
314 		ret = ocfs2_readpage_inline(inode, page);
315 	else
316 		ret = block_read_full_page(page, ocfs2_get_block);
317 	unlock = 0;
318 
319 out_alloc:
320 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
321 out_inode_unlock:
322 	ocfs2_inode_unlock(inode, 0);
323 out:
324 	if (unlock)
325 		unlock_page(page);
326 	mlog_exit(ret);
327 	return ret;
328 }
329 
330 /*
331  * This is used only for read-ahead. Failures or difficult to handle
332  * situations are safe to ignore.
333  *
334  * Right now, we don't bother with BH_Boundary - in-inode extent lists
335  * are quite large (243 extents on 4k blocks), so most inodes don't
336  * grow out to a tree. If need be, detecting boundary extents could
337  * trivially be added in a future version of ocfs2_get_block().
338  */
339 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 			   struct list_head *pages, unsigned nr_pages)
341 {
342 	int ret, err = -EIO;
343 	struct inode *inode = mapping->host;
344 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 	loff_t start;
346 	struct page *last;
347 
348 	/*
349 	 * Use the nonblocking flag for the dlm code to avoid page
350 	 * lock inversion, but don't bother with retrying.
351 	 */
352 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 	if (ret)
354 		return err;
355 
356 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 		ocfs2_inode_unlock(inode, 0);
358 		return err;
359 	}
360 
361 	/*
362 	 * Don't bother with inline-data. There isn't anything
363 	 * to read-ahead in that case anyway...
364 	 */
365 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 		goto out_unlock;
367 
368 	/*
369 	 * Check whether a remote node truncated this file - we just
370 	 * drop out in that case as it's not worth handling here.
371 	 */
372 	last = list_entry(pages->prev, struct page, lru);
373 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 	if (start >= i_size_read(inode))
375 		goto out_unlock;
376 
377 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378 
379 out_unlock:
380 	up_read(&oi->ip_alloc_sem);
381 	ocfs2_inode_unlock(inode, 0);
382 
383 	return err;
384 }
385 
386 /* Note: Because we don't support holes, our allocation has
387  * already happened (allocation writes zeros to the file data)
388  * so we don't have to worry about ordered writes in
389  * ocfs2_writepage.
390  *
391  * ->writepage is called during the process of invalidating the page cache
392  * during blocked lock processing.  It can't block on any cluster locks
393  * to during block mapping.  It's relying on the fact that the block
394  * mapping can't have disappeared under the dirty pages that it is
395  * being asked to write back.
396  */
397 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398 {
399 	int ret;
400 
401 	mlog_entry("(0x%p)\n", page);
402 
403 	ret = block_write_full_page(page, ocfs2_get_block, wbc);
404 
405 	mlog_exit(ret);
406 
407 	return ret;
408 }
409 
410 /*
411  * This is called from ocfs2_write_zero_page() which has handled it's
412  * own cluster locking and has ensured allocation exists for those
413  * blocks to be written.
414  */
415 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
416 			       unsigned from, unsigned to)
417 {
418 	int ret;
419 
420 	ret = block_prepare_write(page, from, to, ocfs2_get_block);
421 
422 	return ret;
423 }
424 
425 /* Taken from ext3. We don't necessarily need the full blown
426  * functionality yet, but IMHO it's better to cut and paste the whole
427  * thing so we can avoid introducing our own bugs (and easily pick up
428  * their fixes when they happen) --Mark */
429 int walk_page_buffers(	handle_t *handle,
430 			struct buffer_head *head,
431 			unsigned from,
432 			unsigned to,
433 			int *partial,
434 			int (*fn)(	handle_t *handle,
435 					struct buffer_head *bh))
436 {
437 	struct buffer_head *bh;
438 	unsigned block_start, block_end;
439 	unsigned blocksize = head->b_size;
440 	int err, ret = 0;
441 	struct buffer_head *next;
442 
443 	for (	bh = head, block_start = 0;
444 		ret == 0 && (bh != head || !block_start);
445 	    	block_start = block_end, bh = next)
446 	{
447 		next = bh->b_this_page;
448 		block_end = block_start + blocksize;
449 		if (block_end <= from || block_start >= to) {
450 			if (partial && !buffer_uptodate(bh))
451 				*partial = 1;
452 			continue;
453 		}
454 		err = (*fn)(handle, bh);
455 		if (!ret)
456 			ret = err;
457 	}
458 	return ret;
459 }
460 
461 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
462 {
463 	sector_t status;
464 	u64 p_blkno = 0;
465 	int err = 0;
466 	struct inode *inode = mapping->host;
467 
468 	mlog_entry("(block = %llu)\n", (unsigned long long)block);
469 
470 	/* We don't need to lock journal system files, since they aren't
471 	 * accessed concurrently from multiple nodes.
472 	 */
473 	if (!INODE_JOURNAL(inode)) {
474 		err = ocfs2_inode_lock(inode, NULL, 0);
475 		if (err) {
476 			if (err != -ENOENT)
477 				mlog_errno(err);
478 			goto bail;
479 		}
480 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
481 	}
482 
483 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
484 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
485 						  NULL);
486 
487 	if (!INODE_JOURNAL(inode)) {
488 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
489 		ocfs2_inode_unlock(inode, 0);
490 	}
491 
492 	if (err) {
493 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
494 		     (unsigned long long)block);
495 		mlog_errno(err);
496 		goto bail;
497 	}
498 
499 bail:
500 	status = err ? 0 : p_blkno;
501 
502 	mlog_exit((int)status);
503 
504 	return status;
505 }
506 
507 /*
508  * TODO: Make this into a generic get_blocks function.
509  *
510  * From do_direct_io in direct-io.c:
511  *  "So what we do is to permit the ->get_blocks function to populate
512  *   bh.b_size with the size of IO which is permitted at this offset and
513  *   this i_blkbits."
514  *
515  * This function is called directly from get_more_blocks in direct-io.c.
516  *
517  * called like this: dio->get_blocks(dio->inode, fs_startblk,
518  * 					fs_count, map_bh, dio->rw == WRITE);
519  *
520  * Note that we never bother to allocate blocks here, and thus ignore the
521  * create argument.
522  */
523 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
524 				     struct buffer_head *bh_result, int create)
525 {
526 	int ret;
527 	u64 p_blkno, inode_blocks, contig_blocks;
528 	unsigned int ext_flags;
529 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
530 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
531 
532 	/* This function won't even be called if the request isn't all
533 	 * nicely aligned and of the right size, so there's no need
534 	 * for us to check any of that. */
535 
536 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
537 
538 	/* This figures out the size of the next contiguous block, and
539 	 * our logical offset */
540 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
541 					  &contig_blocks, &ext_flags);
542 	if (ret) {
543 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
544 		     (unsigned long long)iblock);
545 		ret = -EIO;
546 		goto bail;
547 	}
548 
549 	/* We should already CoW the refcounted extent in case of create. */
550 	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
551 
552 	/*
553 	 * get_more_blocks() expects us to describe a hole by clearing
554 	 * the mapped bit on bh_result().
555 	 *
556 	 * Consider an unwritten extent as a hole.
557 	 */
558 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
559 		map_bh(bh_result, inode->i_sb, p_blkno);
560 	else
561 		clear_buffer_mapped(bh_result);
562 
563 	/* make sure we don't map more than max_blocks blocks here as
564 	   that's all the kernel will handle at this point. */
565 	if (max_blocks < contig_blocks)
566 		contig_blocks = max_blocks;
567 	bh_result->b_size = contig_blocks << blocksize_bits;
568 bail:
569 	return ret;
570 }
571 
572 /*
573  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
574  * particularly interested in the aio/dio case.  Like the core uses
575  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
576  * truncation on another.
577  */
578 static void ocfs2_dio_end_io(struct kiocb *iocb,
579 			     loff_t offset,
580 			     ssize_t bytes,
581 			     void *private,
582 			     int ret,
583 			     bool is_async)
584 {
585 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
586 	int level;
587 
588 	/* this io's submitter should not have unlocked this before we could */
589 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
590 
591 	ocfs2_iocb_clear_rw_locked(iocb);
592 
593 	level = ocfs2_iocb_rw_locked_level(iocb);
594 	if (!level)
595 		up_read(&inode->i_alloc_sem);
596 	ocfs2_rw_unlock(inode, level);
597 
598 	if (is_async)
599 		aio_complete(iocb, ret, 0);
600 }
601 
602 /*
603  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
604  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
605  * do journalled data.
606  */
607 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
608 {
609 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
610 
611 	jbd2_journal_invalidatepage(journal, page, offset);
612 }
613 
614 static int ocfs2_releasepage(struct page *page, gfp_t wait)
615 {
616 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
617 
618 	if (!page_has_buffers(page))
619 		return 0;
620 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
621 }
622 
623 static ssize_t ocfs2_direct_IO(int rw,
624 			       struct kiocb *iocb,
625 			       const struct iovec *iov,
626 			       loff_t offset,
627 			       unsigned long nr_segs)
628 {
629 	struct file *file = iocb->ki_filp;
630 	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
631 	int ret;
632 
633 	mlog_entry_void();
634 
635 	/*
636 	 * Fallback to buffered I/O if we see an inode without
637 	 * extents.
638 	 */
639 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
640 		return 0;
641 
642 	/* Fallback to buffered I/O if we are appending. */
643 	if (i_size_read(inode) <= offset)
644 		return 0;
645 
646 	ret = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
647 				   iov, offset, nr_segs,
648 				   ocfs2_direct_IO_get_blocks,
649 				   ocfs2_dio_end_io, NULL, 0);
650 
651 	mlog_exit(ret);
652 	return ret;
653 }
654 
655 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
656 					    u32 cpos,
657 					    unsigned int *start,
658 					    unsigned int *end)
659 {
660 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
661 
662 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
663 		unsigned int cpp;
664 
665 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
666 
667 		cluster_start = cpos % cpp;
668 		cluster_start = cluster_start << osb->s_clustersize_bits;
669 
670 		cluster_end = cluster_start + osb->s_clustersize;
671 	}
672 
673 	BUG_ON(cluster_start > PAGE_SIZE);
674 	BUG_ON(cluster_end > PAGE_SIZE);
675 
676 	if (start)
677 		*start = cluster_start;
678 	if (end)
679 		*end = cluster_end;
680 }
681 
682 /*
683  * 'from' and 'to' are the region in the page to avoid zeroing.
684  *
685  * If pagesize > clustersize, this function will avoid zeroing outside
686  * of the cluster boundary.
687  *
688  * from == to == 0 is code for "zero the entire cluster region"
689  */
690 static void ocfs2_clear_page_regions(struct page *page,
691 				     struct ocfs2_super *osb, u32 cpos,
692 				     unsigned from, unsigned to)
693 {
694 	void *kaddr;
695 	unsigned int cluster_start, cluster_end;
696 
697 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
698 
699 	kaddr = kmap_atomic(page, KM_USER0);
700 
701 	if (from || to) {
702 		if (from > cluster_start)
703 			memset(kaddr + cluster_start, 0, from - cluster_start);
704 		if (to < cluster_end)
705 			memset(kaddr + to, 0, cluster_end - to);
706 	} else {
707 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
708 	}
709 
710 	kunmap_atomic(kaddr, KM_USER0);
711 }
712 
713 /*
714  * Nonsparse file systems fully allocate before we get to the write
715  * code. This prevents ocfs2_write() from tagging the write as an
716  * allocating one, which means ocfs2_map_page_blocks() might try to
717  * read-in the blocks at the tail of our file. Avoid reading them by
718  * testing i_size against each block offset.
719  */
720 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
721 				 unsigned int block_start)
722 {
723 	u64 offset = page_offset(page) + block_start;
724 
725 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
726 		return 1;
727 
728 	if (i_size_read(inode) > offset)
729 		return 1;
730 
731 	return 0;
732 }
733 
734 /*
735  * Some of this taken from block_prepare_write(). We already have our
736  * mapping by now though, and the entire write will be allocating or
737  * it won't, so not much need to use BH_New.
738  *
739  * This will also skip zeroing, which is handled externally.
740  */
741 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
742 			  struct inode *inode, unsigned int from,
743 			  unsigned int to, int new)
744 {
745 	int ret = 0;
746 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
747 	unsigned int block_end, block_start;
748 	unsigned int bsize = 1 << inode->i_blkbits;
749 
750 	if (!page_has_buffers(page))
751 		create_empty_buffers(page, bsize, 0);
752 
753 	head = page_buffers(page);
754 	for (bh = head, block_start = 0; bh != head || !block_start;
755 	     bh = bh->b_this_page, block_start += bsize) {
756 		block_end = block_start + bsize;
757 
758 		clear_buffer_new(bh);
759 
760 		/*
761 		 * Ignore blocks outside of our i/o range -
762 		 * they may belong to unallocated clusters.
763 		 */
764 		if (block_start >= to || block_end <= from) {
765 			if (PageUptodate(page))
766 				set_buffer_uptodate(bh);
767 			continue;
768 		}
769 
770 		/*
771 		 * For an allocating write with cluster size >= page
772 		 * size, we always write the entire page.
773 		 */
774 		if (new)
775 			set_buffer_new(bh);
776 
777 		if (!buffer_mapped(bh)) {
778 			map_bh(bh, inode->i_sb, *p_blkno);
779 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
780 		}
781 
782 		if (PageUptodate(page)) {
783 			if (!buffer_uptodate(bh))
784 				set_buffer_uptodate(bh);
785 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
786 			   !buffer_new(bh) &&
787 			   ocfs2_should_read_blk(inode, page, block_start) &&
788 			   (block_start < from || block_end > to)) {
789 			ll_rw_block(READ, 1, &bh);
790 			*wait_bh++=bh;
791 		}
792 
793 		*p_blkno = *p_blkno + 1;
794 	}
795 
796 	/*
797 	 * If we issued read requests - let them complete.
798 	 */
799 	while(wait_bh > wait) {
800 		wait_on_buffer(*--wait_bh);
801 		if (!buffer_uptodate(*wait_bh))
802 			ret = -EIO;
803 	}
804 
805 	if (ret == 0 || !new)
806 		return ret;
807 
808 	/*
809 	 * If we get -EIO above, zero out any newly allocated blocks
810 	 * to avoid exposing stale data.
811 	 */
812 	bh = head;
813 	block_start = 0;
814 	do {
815 		block_end = block_start + bsize;
816 		if (block_end <= from)
817 			goto next_bh;
818 		if (block_start >= to)
819 			break;
820 
821 		zero_user(page, block_start, bh->b_size);
822 		set_buffer_uptodate(bh);
823 		mark_buffer_dirty(bh);
824 
825 next_bh:
826 		block_start = block_end;
827 		bh = bh->b_this_page;
828 	} while (bh != head);
829 
830 	return ret;
831 }
832 
833 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
834 #define OCFS2_MAX_CTXT_PAGES	1
835 #else
836 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
837 #endif
838 
839 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
840 
841 /*
842  * Describe the state of a single cluster to be written to.
843  */
844 struct ocfs2_write_cluster_desc {
845 	u32		c_cpos;
846 	u32		c_phys;
847 	/*
848 	 * Give this a unique field because c_phys eventually gets
849 	 * filled.
850 	 */
851 	unsigned	c_new;
852 	unsigned	c_unwritten;
853 	unsigned	c_needs_zero;
854 };
855 
856 struct ocfs2_write_ctxt {
857 	/* Logical cluster position / len of write */
858 	u32				w_cpos;
859 	u32				w_clen;
860 
861 	/* First cluster allocated in a nonsparse extend */
862 	u32				w_first_new_cpos;
863 
864 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
865 
866 	/*
867 	 * This is true if page_size > cluster_size.
868 	 *
869 	 * It triggers a set of special cases during write which might
870 	 * have to deal with allocating writes to partial pages.
871 	 */
872 	unsigned int			w_large_pages;
873 
874 	/*
875 	 * Pages involved in this write.
876 	 *
877 	 * w_target_page is the page being written to by the user.
878 	 *
879 	 * w_pages is an array of pages which always contains
880 	 * w_target_page, and in the case of an allocating write with
881 	 * page_size < cluster size, it will contain zero'd and mapped
882 	 * pages adjacent to w_target_page which need to be written
883 	 * out in so that future reads from that region will get
884 	 * zero's.
885 	 */
886 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
887 	unsigned int			w_num_pages;
888 	struct page			*w_target_page;
889 
890 	/*
891 	 * ocfs2_write_end() uses this to know what the real range to
892 	 * write in the target should be.
893 	 */
894 	unsigned int			w_target_from;
895 	unsigned int			w_target_to;
896 
897 	/*
898 	 * We could use journal_current_handle() but this is cleaner,
899 	 * IMHO -Mark
900 	 */
901 	handle_t			*w_handle;
902 
903 	struct buffer_head		*w_di_bh;
904 
905 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
906 };
907 
908 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
909 {
910 	int i;
911 
912 	for(i = 0; i < num_pages; i++) {
913 		if (pages[i]) {
914 			unlock_page(pages[i]);
915 			mark_page_accessed(pages[i]);
916 			page_cache_release(pages[i]);
917 		}
918 	}
919 }
920 
921 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
922 {
923 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
924 
925 	brelse(wc->w_di_bh);
926 	kfree(wc);
927 }
928 
929 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
930 				  struct ocfs2_super *osb, loff_t pos,
931 				  unsigned len, struct buffer_head *di_bh)
932 {
933 	u32 cend;
934 	struct ocfs2_write_ctxt *wc;
935 
936 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
937 	if (!wc)
938 		return -ENOMEM;
939 
940 	wc->w_cpos = pos >> osb->s_clustersize_bits;
941 	wc->w_first_new_cpos = UINT_MAX;
942 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
943 	wc->w_clen = cend - wc->w_cpos + 1;
944 	get_bh(di_bh);
945 	wc->w_di_bh = di_bh;
946 
947 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
948 		wc->w_large_pages = 1;
949 	else
950 		wc->w_large_pages = 0;
951 
952 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
953 
954 	*wcp = wc;
955 
956 	return 0;
957 }
958 
959 /*
960  * If a page has any new buffers, zero them out here, and mark them uptodate
961  * and dirty so they'll be written out (in order to prevent uninitialised
962  * block data from leaking). And clear the new bit.
963  */
964 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
965 {
966 	unsigned int block_start, block_end;
967 	struct buffer_head *head, *bh;
968 
969 	BUG_ON(!PageLocked(page));
970 	if (!page_has_buffers(page))
971 		return;
972 
973 	bh = head = page_buffers(page);
974 	block_start = 0;
975 	do {
976 		block_end = block_start + bh->b_size;
977 
978 		if (buffer_new(bh)) {
979 			if (block_end > from && block_start < to) {
980 				if (!PageUptodate(page)) {
981 					unsigned start, end;
982 
983 					start = max(from, block_start);
984 					end = min(to, block_end);
985 
986 					zero_user_segment(page, start, end);
987 					set_buffer_uptodate(bh);
988 				}
989 
990 				clear_buffer_new(bh);
991 				mark_buffer_dirty(bh);
992 			}
993 		}
994 
995 		block_start = block_end;
996 		bh = bh->b_this_page;
997 	} while (bh != head);
998 }
999 
1000 /*
1001  * Only called when we have a failure during allocating write to write
1002  * zero's to the newly allocated region.
1003  */
1004 static void ocfs2_write_failure(struct inode *inode,
1005 				struct ocfs2_write_ctxt *wc,
1006 				loff_t user_pos, unsigned user_len)
1007 {
1008 	int i;
1009 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1010 		to = user_pos + user_len;
1011 	struct page *tmppage;
1012 
1013 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1014 
1015 	for(i = 0; i < wc->w_num_pages; i++) {
1016 		tmppage = wc->w_pages[i];
1017 
1018 		if (page_has_buffers(tmppage)) {
1019 			if (ocfs2_should_order_data(inode))
1020 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1021 
1022 			block_commit_write(tmppage, from, to);
1023 		}
1024 	}
1025 }
1026 
1027 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1028 					struct ocfs2_write_ctxt *wc,
1029 					struct page *page, u32 cpos,
1030 					loff_t user_pos, unsigned user_len,
1031 					int new)
1032 {
1033 	int ret;
1034 	unsigned int map_from = 0, map_to = 0;
1035 	unsigned int cluster_start, cluster_end;
1036 	unsigned int user_data_from = 0, user_data_to = 0;
1037 
1038 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1039 					&cluster_start, &cluster_end);
1040 
1041 	if (page == wc->w_target_page) {
1042 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1043 		map_to = map_from + user_len;
1044 
1045 		if (new)
1046 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1047 						    cluster_start, cluster_end,
1048 						    new);
1049 		else
1050 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1051 						    map_from, map_to, new);
1052 		if (ret) {
1053 			mlog_errno(ret);
1054 			goto out;
1055 		}
1056 
1057 		user_data_from = map_from;
1058 		user_data_to = map_to;
1059 		if (new) {
1060 			map_from = cluster_start;
1061 			map_to = cluster_end;
1062 		}
1063 	} else {
1064 		/*
1065 		 * If we haven't allocated the new page yet, we
1066 		 * shouldn't be writing it out without copying user
1067 		 * data. This is likely a math error from the caller.
1068 		 */
1069 		BUG_ON(!new);
1070 
1071 		map_from = cluster_start;
1072 		map_to = cluster_end;
1073 
1074 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1075 					    cluster_start, cluster_end, new);
1076 		if (ret) {
1077 			mlog_errno(ret);
1078 			goto out;
1079 		}
1080 	}
1081 
1082 	/*
1083 	 * Parts of newly allocated pages need to be zero'd.
1084 	 *
1085 	 * Above, we have also rewritten 'to' and 'from' - as far as
1086 	 * the rest of the function is concerned, the entire cluster
1087 	 * range inside of a page needs to be written.
1088 	 *
1089 	 * We can skip this if the page is up to date - it's already
1090 	 * been zero'd from being read in as a hole.
1091 	 */
1092 	if (new && !PageUptodate(page))
1093 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1094 					 cpos, user_data_from, user_data_to);
1095 
1096 	flush_dcache_page(page);
1097 
1098 out:
1099 	return ret;
1100 }
1101 
1102 /*
1103  * This function will only grab one clusters worth of pages.
1104  */
1105 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1106 				      struct ocfs2_write_ctxt *wc,
1107 				      u32 cpos, loff_t user_pos,
1108 				      unsigned user_len, int new,
1109 				      struct page *mmap_page)
1110 {
1111 	int ret = 0, i;
1112 	unsigned long start, target_index, end_index, index;
1113 	struct inode *inode = mapping->host;
1114 	loff_t last_byte;
1115 
1116 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1117 
1118 	/*
1119 	 * Figure out how many pages we'll be manipulating here. For
1120 	 * non allocating write, we just change the one
1121 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1122 	 * writing past i_size, we only need enough pages to cover the
1123 	 * last page of the write.
1124 	 */
1125 	if (new) {
1126 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1127 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1128 		/*
1129 		 * We need the index *past* the last page we could possibly
1130 		 * touch.  This is the page past the end of the write or
1131 		 * i_size, whichever is greater.
1132 		 */
1133 		last_byte = max(user_pos + user_len, i_size_read(inode));
1134 		BUG_ON(last_byte < 1);
1135 		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1136 		if ((start + wc->w_num_pages) > end_index)
1137 			wc->w_num_pages = end_index - start;
1138 	} else {
1139 		wc->w_num_pages = 1;
1140 		start = target_index;
1141 	}
1142 
1143 	for(i = 0; i < wc->w_num_pages; i++) {
1144 		index = start + i;
1145 
1146 		if (index == target_index && mmap_page) {
1147 			/*
1148 			 * ocfs2_pagemkwrite() is a little different
1149 			 * and wants us to directly use the page
1150 			 * passed in.
1151 			 */
1152 			lock_page(mmap_page);
1153 
1154 			if (mmap_page->mapping != mapping) {
1155 				unlock_page(mmap_page);
1156 				/*
1157 				 * Sanity check - the locking in
1158 				 * ocfs2_pagemkwrite() should ensure
1159 				 * that this code doesn't trigger.
1160 				 */
1161 				ret = -EINVAL;
1162 				mlog_errno(ret);
1163 				goto out;
1164 			}
1165 
1166 			page_cache_get(mmap_page);
1167 			wc->w_pages[i] = mmap_page;
1168 		} else {
1169 			wc->w_pages[i] = find_or_create_page(mapping, index,
1170 							     GFP_NOFS);
1171 			if (!wc->w_pages[i]) {
1172 				ret = -ENOMEM;
1173 				mlog_errno(ret);
1174 				goto out;
1175 			}
1176 		}
1177 
1178 		if (index == target_index)
1179 			wc->w_target_page = wc->w_pages[i];
1180 	}
1181 out:
1182 	return ret;
1183 }
1184 
1185 /*
1186  * Prepare a single cluster for write one cluster into the file.
1187  */
1188 static int ocfs2_write_cluster(struct address_space *mapping,
1189 			       u32 phys, unsigned int unwritten,
1190 			       unsigned int should_zero,
1191 			       struct ocfs2_alloc_context *data_ac,
1192 			       struct ocfs2_alloc_context *meta_ac,
1193 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1194 			       loff_t user_pos, unsigned user_len)
1195 {
1196 	int ret, i, new;
1197 	u64 v_blkno, p_blkno;
1198 	struct inode *inode = mapping->host;
1199 	struct ocfs2_extent_tree et;
1200 
1201 	new = phys == 0 ? 1 : 0;
1202 	if (new) {
1203 		u32 tmp_pos;
1204 
1205 		/*
1206 		 * This is safe to call with the page locks - it won't take
1207 		 * any additional semaphores or cluster locks.
1208 		 */
1209 		tmp_pos = cpos;
1210 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1211 					   &tmp_pos, 1, 0, wc->w_di_bh,
1212 					   wc->w_handle, data_ac,
1213 					   meta_ac, NULL);
1214 		/*
1215 		 * This shouldn't happen because we must have already
1216 		 * calculated the correct meta data allocation required. The
1217 		 * internal tree allocation code should know how to increase
1218 		 * transaction credits itself.
1219 		 *
1220 		 * If need be, we could handle -EAGAIN for a
1221 		 * RESTART_TRANS here.
1222 		 */
1223 		mlog_bug_on_msg(ret == -EAGAIN,
1224 				"Inode %llu: EAGAIN return during allocation.\n",
1225 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1226 		if (ret < 0) {
1227 			mlog_errno(ret);
1228 			goto out;
1229 		}
1230 	} else if (unwritten) {
1231 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1232 					      wc->w_di_bh);
1233 		ret = ocfs2_mark_extent_written(inode, &et,
1234 						wc->w_handle, cpos, 1, phys,
1235 						meta_ac, &wc->w_dealloc);
1236 		if (ret < 0) {
1237 			mlog_errno(ret);
1238 			goto out;
1239 		}
1240 	}
1241 
1242 	if (should_zero)
1243 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1244 	else
1245 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1246 
1247 	/*
1248 	 * The only reason this should fail is due to an inability to
1249 	 * find the extent added.
1250 	 */
1251 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1252 					  NULL);
1253 	if (ret < 0) {
1254 		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1255 			    "at logical block %llu",
1256 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1257 			    (unsigned long long)v_blkno);
1258 		goto out;
1259 	}
1260 
1261 	BUG_ON(p_blkno == 0);
1262 
1263 	for(i = 0; i < wc->w_num_pages; i++) {
1264 		int tmpret;
1265 
1266 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1267 						      wc->w_pages[i], cpos,
1268 						      user_pos, user_len,
1269 						      should_zero);
1270 		if (tmpret) {
1271 			mlog_errno(tmpret);
1272 			if (ret == 0)
1273 				ret = tmpret;
1274 		}
1275 	}
1276 
1277 	/*
1278 	 * We only have cleanup to do in case of allocating write.
1279 	 */
1280 	if (ret && new)
1281 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1282 
1283 out:
1284 
1285 	return ret;
1286 }
1287 
1288 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1289 				       struct ocfs2_alloc_context *data_ac,
1290 				       struct ocfs2_alloc_context *meta_ac,
1291 				       struct ocfs2_write_ctxt *wc,
1292 				       loff_t pos, unsigned len)
1293 {
1294 	int ret, i;
1295 	loff_t cluster_off;
1296 	unsigned int local_len = len;
1297 	struct ocfs2_write_cluster_desc *desc;
1298 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1299 
1300 	for (i = 0; i < wc->w_clen; i++) {
1301 		desc = &wc->w_desc[i];
1302 
1303 		/*
1304 		 * We have to make sure that the total write passed in
1305 		 * doesn't extend past a single cluster.
1306 		 */
1307 		local_len = len;
1308 		cluster_off = pos & (osb->s_clustersize - 1);
1309 		if ((cluster_off + local_len) > osb->s_clustersize)
1310 			local_len = osb->s_clustersize - cluster_off;
1311 
1312 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1313 					  desc->c_unwritten,
1314 					  desc->c_needs_zero,
1315 					  data_ac, meta_ac,
1316 					  wc, desc->c_cpos, pos, local_len);
1317 		if (ret) {
1318 			mlog_errno(ret);
1319 			goto out;
1320 		}
1321 
1322 		len -= local_len;
1323 		pos += local_len;
1324 	}
1325 
1326 	ret = 0;
1327 out:
1328 	return ret;
1329 }
1330 
1331 /*
1332  * ocfs2_write_end() wants to know which parts of the target page it
1333  * should complete the write on. It's easiest to compute them ahead of
1334  * time when a more complete view of the write is available.
1335  */
1336 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1337 					struct ocfs2_write_ctxt *wc,
1338 					loff_t pos, unsigned len, int alloc)
1339 {
1340 	struct ocfs2_write_cluster_desc *desc;
1341 
1342 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1343 	wc->w_target_to = wc->w_target_from + len;
1344 
1345 	if (alloc == 0)
1346 		return;
1347 
1348 	/*
1349 	 * Allocating write - we may have different boundaries based
1350 	 * on page size and cluster size.
1351 	 *
1352 	 * NOTE: We can no longer compute one value from the other as
1353 	 * the actual write length and user provided length may be
1354 	 * different.
1355 	 */
1356 
1357 	if (wc->w_large_pages) {
1358 		/*
1359 		 * We only care about the 1st and last cluster within
1360 		 * our range and whether they should be zero'd or not. Either
1361 		 * value may be extended out to the start/end of a
1362 		 * newly allocated cluster.
1363 		 */
1364 		desc = &wc->w_desc[0];
1365 		if (desc->c_needs_zero)
1366 			ocfs2_figure_cluster_boundaries(osb,
1367 							desc->c_cpos,
1368 							&wc->w_target_from,
1369 							NULL);
1370 
1371 		desc = &wc->w_desc[wc->w_clen - 1];
1372 		if (desc->c_needs_zero)
1373 			ocfs2_figure_cluster_boundaries(osb,
1374 							desc->c_cpos,
1375 							NULL,
1376 							&wc->w_target_to);
1377 	} else {
1378 		wc->w_target_from = 0;
1379 		wc->w_target_to = PAGE_CACHE_SIZE;
1380 	}
1381 }
1382 
1383 /*
1384  * Populate each single-cluster write descriptor in the write context
1385  * with information about the i/o to be done.
1386  *
1387  * Returns the number of clusters that will have to be allocated, as
1388  * well as a worst case estimate of the number of extent records that
1389  * would have to be created during a write to an unwritten region.
1390  */
1391 static int ocfs2_populate_write_desc(struct inode *inode,
1392 				     struct ocfs2_write_ctxt *wc,
1393 				     unsigned int *clusters_to_alloc,
1394 				     unsigned int *extents_to_split)
1395 {
1396 	int ret;
1397 	struct ocfs2_write_cluster_desc *desc;
1398 	unsigned int num_clusters = 0;
1399 	unsigned int ext_flags = 0;
1400 	u32 phys = 0;
1401 	int i;
1402 
1403 	*clusters_to_alloc = 0;
1404 	*extents_to_split = 0;
1405 
1406 	for (i = 0; i < wc->w_clen; i++) {
1407 		desc = &wc->w_desc[i];
1408 		desc->c_cpos = wc->w_cpos + i;
1409 
1410 		if (num_clusters == 0) {
1411 			/*
1412 			 * Need to look up the next extent record.
1413 			 */
1414 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1415 						 &num_clusters, &ext_flags);
1416 			if (ret) {
1417 				mlog_errno(ret);
1418 				goto out;
1419 			}
1420 
1421 			/* We should already CoW the refcountd extent. */
1422 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1423 
1424 			/*
1425 			 * Assume worst case - that we're writing in
1426 			 * the middle of the extent.
1427 			 *
1428 			 * We can assume that the write proceeds from
1429 			 * left to right, in which case the extent
1430 			 * insert code is smart enough to coalesce the
1431 			 * next splits into the previous records created.
1432 			 */
1433 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1434 				*extents_to_split = *extents_to_split + 2;
1435 		} else if (phys) {
1436 			/*
1437 			 * Only increment phys if it doesn't describe
1438 			 * a hole.
1439 			 */
1440 			phys++;
1441 		}
1442 
1443 		/*
1444 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1445 		 * file that got extended.  w_first_new_cpos tells us
1446 		 * where the newly allocated clusters are so we can
1447 		 * zero them.
1448 		 */
1449 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1450 			BUG_ON(phys == 0);
1451 			desc->c_needs_zero = 1;
1452 		}
1453 
1454 		desc->c_phys = phys;
1455 		if (phys == 0) {
1456 			desc->c_new = 1;
1457 			desc->c_needs_zero = 1;
1458 			*clusters_to_alloc = *clusters_to_alloc + 1;
1459 		}
1460 
1461 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1462 			desc->c_unwritten = 1;
1463 			desc->c_needs_zero = 1;
1464 		}
1465 
1466 		num_clusters--;
1467 	}
1468 
1469 	ret = 0;
1470 out:
1471 	return ret;
1472 }
1473 
1474 static int ocfs2_write_begin_inline(struct address_space *mapping,
1475 				    struct inode *inode,
1476 				    struct ocfs2_write_ctxt *wc)
1477 {
1478 	int ret;
1479 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1480 	struct page *page;
1481 	handle_t *handle;
1482 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1483 
1484 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1485 	if (!page) {
1486 		ret = -ENOMEM;
1487 		mlog_errno(ret);
1488 		goto out;
1489 	}
1490 	/*
1491 	 * If we don't set w_num_pages then this page won't get unlocked
1492 	 * and freed on cleanup of the write context.
1493 	 */
1494 	wc->w_pages[0] = wc->w_target_page = page;
1495 	wc->w_num_pages = 1;
1496 
1497 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1498 	if (IS_ERR(handle)) {
1499 		ret = PTR_ERR(handle);
1500 		mlog_errno(ret);
1501 		goto out;
1502 	}
1503 
1504 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1505 				      OCFS2_JOURNAL_ACCESS_WRITE);
1506 	if (ret) {
1507 		ocfs2_commit_trans(osb, handle);
1508 
1509 		mlog_errno(ret);
1510 		goto out;
1511 	}
1512 
1513 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1514 		ocfs2_set_inode_data_inline(inode, di);
1515 
1516 	if (!PageUptodate(page)) {
1517 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1518 		if (ret) {
1519 			ocfs2_commit_trans(osb, handle);
1520 
1521 			goto out;
1522 		}
1523 	}
1524 
1525 	wc->w_handle = handle;
1526 out:
1527 	return ret;
1528 }
1529 
1530 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1531 {
1532 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1533 
1534 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1535 		return 1;
1536 	return 0;
1537 }
1538 
1539 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1540 					  struct inode *inode, loff_t pos,
1541 					  unsigned len, struct page *mmap_page,
1542 					  struct ocfs2_write_ctxt *wc)
1543 {
1544 	int ret, written = 0;
1545 	loff_t end = pos + len;
1546 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1547 	struct ocfs2_dinode *di = NULL;
1548 
1549 	mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1550 	     (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1551 	     oi->ip_dyn_features);
1552 
1553 	/*
1554 	 * Handle inodes which already have inline data 1st.
1555 	 */
1556 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1557 		if (mmap_page == NULL &&
1558 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1559 			goto do_inline_write;
1560 
1561 		/*
1562 		 * The write won't fit - we have to give this inode an
1563 		 * inline extent list now.
1564 		 */
1565 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1566 		if (ret)
1567 			mlog_errno(ret);
1568 		goto out;
1569 	}
1570 
1571 	/*
1572 	 * Check whether the inode can accept inline data.
1573 	 */
1574 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1575 		return 0;
1576 
1577 	/*
1578 	 * Check whether the write can fit.
1579 	 */
1580 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1581 	if (mmap_page ||
1582 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1583 		return 0;
1584 
1585 do_inline_write:
1586 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1587 	if (ret) {
1588 		mlog_errno(ret);
1589 		goto out;
1590 	}
1591 
1592 	/*
1593 	 * This signals to the caller that the data can be written
1594 	 * inline.
1595 	 */
1596 	written = 1;
1597 out:
1598 	return written ? written : ret;
1599 }
1600 
1601 /*
1602  * This function only does anything for file systems which can't
1603  * handle sparse files.
1604  *
1605  * What we want to do here is fill in any hole between the current end
1606  * of allocation and the end of our write. That way the rest of the
1607  * write path can treat it as an non-allocating write, which has no
1608  * special case code for sparse/nonsparse files.
1609  */
1610 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1611 					struct buffer_head *di_bh,
1612 					loff_t pos, unsigned len,
1613 					struct ocfs2_write_ctxt *wc)
1614 {
1615 	int ret;
1616 	loff_t newsize = pos + len;
1617 
1618 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1619 
1620 	if (newsize <= i_size_read(inode))
1621 		return 0;
1622 
1623 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1624 	if (ret)
1625 		mlog_errno(ret);
1626 
1627 	wc->w_first_new_cpos =
1628 		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1629 
1630 	return ret;
1631 }
1632 
1633 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1634 			   loff_t pos)
1635 {
1636 	int ret = 0;
1637 
1638 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1639 	if (pos > i_size_read(inode))
1640 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1641 
1642 	return ret;
1643 }
1644 
1645 int ocfs2_write_begin_nolock(struct address_space *mapping,
1646 			     loff_t pos, unsigned len, unsigned flags,
1647 			     struct page **pagep, void **fsdata,
1648 			     struct buffer_head *di_bh, struct page *mmap_page)
1649 {
1650 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1651 	unsigned int clusters_to_alloc, extents_to_split;
1652 	struct ocfs2_write_ctxt *wc;
1653 	struct inode *inode = mapping->host;
1654 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1655 	struct ocfs2_dinode *di;
1656 	struct ocfs2_alloc_context *data_ac = NULL;
1657 	struct ocfs2_alloc_context *meta_ac = NULL;
1658 	handle_t *handle;
1659 	struct ocfs2_extent_tree et;
1660 
1661 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1662 	if (ret) {
1663 		mlog_errno(ret);
1664 		return ret;
1665 	}
1666 
1667 	if (ocfs2_supports_inline_data(osb)) {
1668 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1669 						     mmap_page, wc);
1670 		if (ret == 1) {
1671 			ret = 0;
1672 			goto success;
1673 		}
1674 		if (ret < 0) {
1675 			mlog_errno(ret);
1676 			goto out;
1677 		}
1678 	}
1679 
1680 	if (ocfs2_sparse_alloc(osb))
1681 		ret = ocfs2_zero_tail(inode, di_bh, pos);
1682 	else
1683 		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1684 						   wc);
1685 	if (ret) {
1686 		mlog_errno(ret);
1687 		goto out;
1688 	}
1689 
1690 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1691 	if (ret < 0) {
1692 		mlog_errno(ret);
1693 		goto out;
1694 	} else if (ret == 1) {
1695 		ret = ocfs2_refcount_cow(inode, di_bh,
1696 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1697 		if (ret) {
1698 			mlog_errno(ret);
1699 			goto out;
1700 		}
1701 	}
1702 
1703 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1704 					&extents_to_split);
1705 	if (ret) {
1706 		mlog_errno(ret);
1707 		goto out;
1708 	}
1709 
1710 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1711 
1712 	/*
1713 	 * We set w_target_from, w_target_to here so that
1714 	 * ocfs2_write_end() knows which range in the target page to
1715 	 * write out. An allocation requires that we write the entire
1716 	 * cluster range.
1717 	 */
1718 	if (clusters_to_alloc || extents_to_split) {
1719 		/*
1720 		 * XXX: We are stretching the limits of
1721 		 * ocfs2_lock_allocators(). It greatly over-estimates
1722 		 * the work to be done.
1723 		 */
1724 		mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1725 		     " clusters_to_add = %u, extents_to_split = %u\n",
1726 		     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1727 		     (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1728 		     clusters_to_alloc, extents_to_split);
1729 
1730 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1731 					      wc->w_di_bh);
1732 		ret = ocfs2_lock_allocators(inode, &et,
1733 					    clusters_to_alloc, extents_to_split,
1734 					    &data_ac, &meta_ac);
1735 		if (ret) {
1736 			mlog_errno(ret);
1737 			goto out;
1738 		}
1739 
1740 		if (data_ac)
1741 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1742 
1743 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1744 						    &di->id2.i_list,
1745 						    clusters_to_alloc);
1746 
1747 	}
1748 
1749 	/*
1750 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1751 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1752 	 * we know zeros will only be needed in the first and/or last cluster.
1753 	 */
1754 	if (clusters_to_alloc || extents_to_split ||
1755 	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1756 			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1757 		cluster_of_pages = 1;
1758 	else
1759 		cluster_of_pages = 0;
1760 
1761 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1762 
1763 	handle = ocfs2_start_trans(osb, credits);
1764 	if (IS_ERR(handle)) {
1765 		ret = PTR_ERR(handle);
1766 		mlog_errno(ret);
1767 		goto out;
1768 	}
1769 
1770 	wc->w_handle = handle;
1771 
1772 	if (clusters_to_alloc) {
1773 		ret = dquot_alloc_space_nodirty(inode,
1774 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1775 		if (ret)
1776 			goto out_commit;
1777 	}
1778 	/*
1779 	 * We don't want this to fail in ocfs2_write_end(), so do it
1780 	 * here.
1781 	 */
1782 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1783 				      OCFS2_JOURNAL_ACCESS_WRITE);
1784 	if (ret) {
1785 		mlog_errno(ret);
1786 		goto out_quota;
1787 	}
1788 
1789 	/*
1790 	 * Fill our page array first. That way we've grabbed enough so
1791 	 * that we can zero and flush if we error after adding the
1792 	 * extent.
1793 	 */
1794 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1795 					 cluster_of_pages, mmap_page);
1796 	if (ret) {
1797 		mlog_errno(ret);
1798 		goto out_quota;
1799 	}
1800 
1801 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1802 					  len);
1803 	if (ret) {
1804 		mlog_errno(ret);
1805 		goto out_quota;
1806 	}
1807 
1808 	if (data_ac)
1809 		ocfs2_free_alloc_context(data_ac);
1810 	if (meta_ac)
1811 		ocfs2_free_alloc_context(meta_ac);
1812 
1813 success:
1814 	*pagep = wc->w_target_page;
1815 	*fsdata = wc;
1816 	return 0;
1817 out_quota:
1818 	if (clusters_to_alloc)
1819 		dquot_free_space(inode,
1820 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1821 out_commit:
1822 	ocfs2_commit_trans(osb, handle);
1823 
1824 out:
1825 	ocfs2_free_write_ctxt(wc);
1826 
1827 	if (data_ac)
1828 		ocfs2_free_alloc_context(data_ac);
1829 	if (meta_ac)
1830 		ocfs2_free_alloc_context(meta_ac);
1831 	return ret;
1832 }
1833 
1834 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1835 			     loff_t pos, unsigned len, unsigned flags,
1836 			     struct page **pagep, void **fsdata)
1837 {
1838 	int ret;
1839 	struct buffer_head *di_bh = NULL;
1840 	struct inode *inode = mapping->host;
1841 
1842 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1843 	if (ret) {
1844 		mlog_errno(ret);
1845 		return ret;
1846 	}
1847 
1848 	/*
1849 	 * Take alloc sem here to prevent concurrent lookups. That way
1850 	 * the mapping, zeroing and tree manipulation within
1851 	 * ocfs2_write() will be safe against ->readpage(). This
1852 	 * should also serve to lock out allocation from a shared
1853 	 * writeable region.
1854 	 */
1855 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1856 
1857 	ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1858 				       fsdata, di_bh, NULL);
1859 	if (ret) {
1860 		mlog_errno(ret);
1861 		goto out_fail;
1862 	}
1863 
1864 	brelse(di_bh);
1865 
1866 	return 0;
1867 
1868 out_fail:
1869 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1870 
1871 	brelse(di_bh);
1872 	ocfs2_inode_unlock(inode, 1);
1873 
1874 	return ret;
1875 }
1876 
1877 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1878 				   unsigned len, unsigned *copied,
1879 				   struct ocfs2_dinode *di,
1880 				   struct ocfs2_write_ctxt *wc)
1881 {
1882 	void *kaddr;
1883 
1884 	if (unlikely(*copied < len)) {
1885 		if (!PageUptodate(wc->w_target_page)) {
1886 			*copied = 0;
1887 			return;
1888 		}
1889 	}
1890 
1891 	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1892 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1893 	kunmap_atomic(kaddr, KM_USER0);
1894 
1895 	mlog(0, "Data written to inode at offset %llu. "
1896 	     "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1897 	     (unsigned long long)pos, *copied,
1898 	     le16_to_cpu(di->id2.i_data.id_count),
1899 	     le16_to_cpu(di->i_dyn_features));
1900 }
1901 
1902 int ocfs2_write_end_nolock(struct address_space *mapping,
1903 			   loff_t pos, unsigned len, unsigned copied,
1904 			   struct page *page, void *fsdata)
1905 {
1906 	int i;
1907 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1908 	struct inode *inode = mapping->host;
1909 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1910 	struct ocfs2_write_ctxt *wc = fsdata;
1911 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1912 	handle_t *handle = wc->w_handle;
1913 	struct page *tmppage;
1914 
1915 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1916 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1917 		goto out_write_size;
1918 	}
1919 
1920 	if (unlikely(copied < len)) {
1921 		if (!PageUptodate(wc->w_target_page))
1922 			copied = 0;
1923 
1924 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1925 				       start+len);
1926 	}
1927 	flush_dcache_page(wc->w_target_page);
1928 
1929 	for(i = 0; i < wc->w_num_pages; i++) {
1930 		tmppage = wc->w_pages[i];
1931 
1932 		if (tmppage == wc->w_target_page) {
1933 			from = wc->w_target_from;
1934 			to = wc->w_target_to;
1935 
1936 			BUG_ON(from > PAGE_CACHE_SIZE ||
1937 			       to > PAGE_CACHE_SIZE ||
1938 			       to < from);
1939 		} else {
1940 			/*
1941 			 * Pages adjacent to the target (if any) imply
1942 			 * a hole-filling write in which case we want
1943 			 * to flush their entire range.
1944 			 */
1945 			from = 0;
1946 			to = PAGE_CACHE_SIZE;
1947 		}
1948 
1949 		if (page_has_buffers(tmppage)) {
1950 			if (ocfs2_should_order_data(inode))
1951 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1952 			block_commit_write(tmppage, from, to);
1953 		}
1954 	}
1955 
1956 out_write_size:
1957 	pos += copied;
1958 	if (pos > inode->i_size) {
1959 		i_size_write(inode, pos);
1960 		mark_inode_dirty(inode);
1961 	}
1962 	inode->i_blocks = ocfs2_inode_sector_count(inode);
1963 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1964 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1965 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1966 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1967 	ocfs2_journal_dirty(handle, wc->w_di_bh);
1968 
1969 	ocfs2_commit_trans(osb, handle);
1970 
1971 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
1972 
1973 	ocfs2_free_write_ctxt(wc);
1974 
1975 	return copied;
1976 }
1977 
1978 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1979 			   loff_t pos, unsigned len, unsigned copied,
1980 			   struct page *page, void *fsdata)
1981 {
1982 	int ret;
1983 	struct inode *inode = mapping->host;
1984 
1985 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1986 
1987 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1988 	ocfs2_inode_unlock(inode, 1);
1989 
1990 	return ret;
1991 }
1992 
1993 const struct address_space_operations ocfs2_aops = {
1994 	.readpage		= ocfs2_readpage,
1995 	.readpages		= ocfs2_readpages,
1996 	.writepage		= ocfs2_writepage,
1997 	.write_begin		= ocfs2_write_begin,
1998 	.write_end		= ocfs2_write_end,
1999 	.bmap			= ocfs2_bmap,
2000 	.sync_page		= block_sync_page,
2001 	.direct_IO		= ocfs2_direct_IO,
2002 	.invalidatepage		= ocfs2_invalidatepage,
2003 	.releasepage		= ocfs2_releasepage,
2004 	.migratepage		= buffer_migrate_page,
2005 	.is_partially_uptodate	= block_is_partially_uptodate,
2006 	.error_remove_page	= generic_error_remove_page,
2007 };
2008