1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 #include <linux/quotaops.h> 31 32 #define MLOG_MASK_PREFIX ML_FILE_IO 33 #include <cluster/masklog.h> 34 35 #include "ocfs2.h" 36 37 #include "alloc.h" 38 #include "aops.h" 39 #include "dlmglue.h" 40 #include "extent_map.h" 41 #include "file.h" 42 #include "inode.h" 43 #include "journal.h" 44 #include "suballoc.h" 45 #include "super.h" 46 #include "symlink.h" 47 #include "refcounttree.h" 48 49 #include "buffer_head_io.h" 50 51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 52 struct buffer_head *bh_result, int create) 53 { 54 int err = -EIO; 55 int status; 56 struct ocfs2_dinode *fe = NULL; 57 struct buffer_head *bh = NULL; 58 struct buffer_head *buffer_cache_bh = NULL; 59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 60 void *kaddr; 61 62 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, 63 (unsigned long long)iblock, bh_result, create); 64 65 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 66 67 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 68 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 69 (unsigned long long)iblock); 70 goto bail; 71 } 72 73 status = ocfs2_read_inode_block(inode, &bh); 74 if (status < 0) { 75 mlog_errno(status); 76 goto bail; 77 } 78 fe = (struct ocfs2_dinode *) bh->b_data; 79 80 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 81 le32_to_cpu(fe->i_clusters))) { 82 mlog(ML_ERROR, "block offset is outside the allocated size: " 83 "%llu\n", (unsigned long long)iblock); 84 goto bail; 85 } 86 87 /* We don't use the page cache to create symlink data, so if 88 * need be, copy it over from the buffer cache. */ 89 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 90 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 91 iblock; 92 buffer_cache_bh = sb_getblk(osb->sb, blkno); 93 if (!buffer_cache_bh) { 94 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 95 goto bail; 96 } 97 98 /* we haven't locked out transactions, so a commit 99 * could've happened. Since we've got a reference on 100 * the bh, even if it commits while we're doing the 101 * copy, the data is still good. */ 102 if (buffer_jbd(buffer_cache_bh) 103 && ocfs2_inode_is_new(inode)) { 104 kaddr = kmap_atomic(bh_result->b_page, KM_USER0); 105 if (!kaddr) { 106 mlog(ML_ERROR, "couldn't kmap!\n"); 107 goto bail; 108 } 109 memcpy(kaddr + (bh_result->b_size * iblock), 110 buffer_cache_bh->b_data, 111 bh_result->b_size); 112 kunmap_atomic(kaddr, KM_USER0); 113 set_buffer_uptodate(bh_result); 114 } 115 brelse(buffer_cache_bh); 116 } 117 118 map_bh(bh_result, inode->i_sb, 119 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 120 121 err = 0; 122 123 bail: 124 brelse(bh); 125 126 mlog_exit(err); 127 return err; 128 } 129 130 int ocfs2_get_block(struct inode *inode, sector_t iblock, 131 struct buffer_head *bh_result, int create) 132 { 133 int err = 0; 134 unsigned int ext_flags; 135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 136 u64 p_blkno, count, past_eof; 137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 138 139 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, 140 (unsigned long long)iblock, bh_result, create); 141 142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 144 inode, inode->i_ino); 145 146 if (S_ISLNK(inode->i_mode)) { 147 /* this always does I/O for some reason. */ 148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 149 goto bail; 150 } 151 152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 153 &ext_flags); 154 if (err) { 155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 157 (unsigned long long)p_blkno); 158 goto bail; 159 } 160 161 if (max_blocks < count) 162 count = max_blocks; 163 164 /* 165 * ocfs2 never allocates in this function - the only time we 166 * need to use BH_New is when we're extending i_size on a file 167 * system which doesn't support holes, in which case BH_New 168 * allows block_prepare_write() to zero. 169 * 170 * If we see this on a sparse file system, then a truncate has 171 * raced us and removed the cluster. In this case, we clear 172 * the buffers dirty and uptodate bits and let the buffer code 173 * ignore it as a hole. 174 */ 175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 176 clear_buffer_dirty(bh_result); 177 clear_buffer_uptodate(bh_result); 178 goto bail; 179 } 180 181 /* Treat the unwritten extent as a hole for zeroing purposes. */ 182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 183 map_bh(bh_result, inode->i_sb, p_blkno); 184 185 bh_result->b_size = count << inode->i_blkbits; 186 187 if (!ocfs2_sparse_alloc(osb)) { 188 if (p_blkno == 0) { 189 err = -EIO; 190 mlog(ML_ERROR, 191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 192 (unsigned long long)iblock, 193 (unsigned long long)p_blkno, 194 (unsigned long long)OCFS2_I(inode)->ip_blkno); 195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 196 dump_stack(); 197 goto bail; 198 } 199 } 200 201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 202 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino, 203 (unsigned long long)past_eof); 204 if (create && (iblock >= past_eof)) 205 set_buffer_new(bh_result); 206 207 bail: 208 if (err < 0) 209 err = -EIO; 210 211 mlog_exit(err); 212 return err; 213 } 214 215 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 216 struct buffer_head *di_bh) 217 { 218 void *kaddr; 219 loff_t size; 220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 221 222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag", 224 (unsigned long long)OCFS2_I(inode)->ip_blkno); 225 return -EROFS; 226 } 227 228 size = i_size_read(inode); 229 230 if (size > PAGE_CACHE_SIZE || 231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 232 ocfs2_error(inode->i_sb, 233 "Inode %llu has with inline data has bad size: %Lu", 234 (unsigned long long)OCFS2_I(inode)->ip_blkno, 235 (unsigned long long)size); 236 return -EROFS; 237 } 238 239 kaddr = kmap_atomic(page, KM_USER0); 240 if (size) 241 memcpy(kaddr, di->id2.i_data.id_data, size); 242 /* Clear the remaining part of the page */ 243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); 244 flush_dcache_page(page); 245 kunmap_atomic(kaddr, KM_USER0); 246 247 SetPageUptodate(page); 248 249 return 0; 250 } 251 252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 253 { 254 int ret; 255 struct buffer_head *di_bh = NULL; 256 257 BUG_ON(!PageLocked(page)); 258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 259 260 ret = ocfs2_read_inode_block(inode, &di_bh); 261 if (ret) { 262 mlog_errno(ret); 263 goto out; 264 } 265 266 ret = ocfs2_read_inline_data(inode, page, di_bh); 267 out: 268 unlock_page(page); 269 270 brelse(di_bh); 271 return ret; 272 } 273 274 static int ocfs2_readpage(struct file *file, struct page *page) 275 { 276 struct inode *inode = page->mapping->host; 277 struct ocfs2_inode_info *oi = OCFS2_I(inode); 278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; 279 int ret, unlock = 1; 280 281 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0)); 282 283 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 284 if (ret != 0) { 285 if (ret == AOP_TRUNCATED_PAGE) 286 unlock = 0; 287 mlog_errno(ret); 288 goto out; 289 } 290 291 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 292 ret = AOP_TRUNCATED_PAGE; 293 goto out_inode_unlock; 294 } 295 296 /* 297 * i_size might have just been updated as we grabed the meta lock. We 298 * might now be discovering a truncate that hit on another node. 299 * block_read_full_page->get_block freaks out if it is asked to read 300 * beyond the end of a file, so we check here. Callers 301 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 302 * and notice that the page they just read isn't needed. 303 * 304 * XXX sys_readahead() seems to get that wrong? 305 */ 306 if (start >= i_size_read(inode)) { 307 zero_user(page, 0, PAGE_SIZE); 308 SetPageUptodate(page); 309 ret = 0; 310 goto out_alloc; 311 } 312 313 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 314 ret = ocfs2_readpage_inline(inode, page); 315 else 316 ret = block_read_full_page(page, ocfs2_get_block); 317 unlock = 0; 318 319 out_alloc: 320 up_read(&OCFS2_I(inode)->ip_alloc_sem); 321 out_inode_unlock: 322 ocfs2_inode_unlock(inode, 0); 323 out: 324 if (unlock) 325 unlock_page(page); 326 mlog_exit(ret); 327 return ret; 328 } 329 330 /* 331 * This is used only for read-ahead. Failures or difficult to handle 332 * situations are safe to ignore. 333 * 334 * Right now, we don't bother with BH_Boundary - in-inode extent lists 335 * are quite large (243 extents on 4k blocks), so most inodes don't 336 * grow out to a tree. If need be, detecting boundary extents could 337 * trivially be added in a future version of ocfs2_get_block(). 338 */ 339 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 340 struct list_head *pages, unsigned nr_pages) 341 { 342 int ret, err = -EIO; 343 struct inode *inode = mapping->host; 344 struct ocfs2_inode_info *oi = OCFS2_I(inode); 345 loff_t start; 346 struct page *last; 347 348 /* 349 * Use the nonblocking flag for the dlm code to avoid page 350 * lock inversion, but don't bother with retrying. 351 */ 352 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 353 if (ret) 354 return err; 355 356 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 357 ocfs2_inode_unlock(inode, 0); 358 return err; 359 } 360 361 /* 362 * Don't bother with inline-data. There isn't anything 363 * to read-ahead in that case anyway... 364 */ 365 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 366 goto out_unlock; 367 368 /* 369 * Check whether a remote node truncated this file - we just 370 * drop out in that case as it's not worth handling here. 371 */ 372 last = list_entry(pages->prev, struct page, lru); 373 start = (loff_t)last->index << PAGE_CACHE_SHIFT; 374 if (start >= i_size_read(inode)) 375 goto out_unlock; 376 377 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 378 379 out_unlock: 380 up_read(&oi->ip_alloc_sem); 381 ocfs2_inode_unlock(inode, 0); 382 383 return err; 384 } 385 386 /* Note: Because we don't support holes, our allocation has 387 * already happened (allocation writes zeros to the file data) 388 * so we don't have to worry about ordered writes in 389 * ocfs2_writepage. 390 * 391 * ->writepage is called during the process of invalidating the page cache 392 * during blocked lock processing. It can't block on any cluster locks 393 * to during block mapping. It's relying on the fact that the block 394 * mapping can't have disappeared under the dirty pages that it is 395 * being asked to write back. 396 */ 397 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 398 { 399 int ret; 400 401 mlog_entry("(0x%p)\n", page); 402 403 ret = block_write_full_page(page, ocfs2_get_block, wbc); 404 405 mlog_exit(ret); 406 407 return ret; 408 } 409 410 /* 411 * This is called from ocfs2_write_zero_page() which has handled it's 412 * own cluster locking and has ensured allocation exists for those 413 * blocks to be written. 414 */ 415 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page, 416 unsigned from, unsigned to) 417 { 418 int ret; 419 420 ret = block_prepare_write(page, from, to, ocfs2_get_block); 421 422 return ret; 423 } 424 425 /* Taken from ext3. We don't necessarily need the full blown 426 * functionality yet, but IMHO it's better to cut and paste the whole 427 * thing so we can avoid introducing our own bugs (and easily pick up 428 * their fixes when they happen) --Mark */ 429 int walk_page_buffers( handle_t *handle, 430 struct buffer_head *head, 431 unsigned from, 432 unsigned to, 433 int *partial, 434 int (*fn)( handle_t *handle, 435 struct buffer_head *bh)) 436 { 437 struct buffer_head *bh; 438 unsigned block_start, block_end; 439 unsigned blocksize = head->b_size; 440 int err, ret = 0; 441 struct buffer_head *next; 442 443 for ( bh = head, block_start = 0; 444 ret == 0 && (bh != head || !block_start); 445 block_start = block_end, bh = next) 446 { 447 next = bh->b_this_page; 448 block_end = block_start + blocksize; 449 if (block_end <= from || block_start >= to) { 450 if (partial && !buffer_uptodate(bh)) 451 *partial = 1; 452 continue; 453 } 454 err = (*fn)(handle, bh); 455 if (!ret) 456 ret = err; 457 } 458 return ret; 459 } 460 461 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 462 { 463 sector_t status; 464 u64 p_blkno = 0; 465 int err = 0; 466 struct inode *inode = mapping->host; 467 468 mlog_entry("(block = %llu)\n", (unsigned long long)block); 469 470 /* We don't need to lock journal system files, since they aren't 471 * accessed concurrently from multiple nodes. 472 */ 473 if (!INODE_JOURNAL(inode)) { 474 err = ocfs2_inode_lock(inode, NULL, 0); 475 if (err) { 476 if (err != -ENOENT) 477 mlog_errno(err); 478 goto bail; 479 } 480 down_read(&OCFS2_I(inode)->ip_alloc_sem); 481 } 482 483 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 484 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 485 NULL); 486 487 if (!INODE_JOURNAL(inode)) { 488 up_read(&OCFS2_I(inode)->ip_alloc_sem); 489 ocfs2_inode_unlock(inode, 0); 490 } 491 492 if (err) { 493 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 494 (unsigned long long)block); 495 mlog_errno(err); 496 goto bail; 497 } 498 499 bail: 500 status = err ? 0 : p_blkno; 501 502 mlog_exit((int)status); 503 504 return status; 505 } 506 507 /* 508 * TODO: Make this into a generic get_blocks function. 509 * 510 * From do_direct_io in direct-io.c: 511 * "So what we do is to permit the ->get_blocks function to populate 512 * bh.b_size with the size of IO which is permitted at this offset and 513 * this i_blkbits." 514 * 515 * This function is called directly from get_more_blocks in direct-io.c. 516 * 517 * called like this: dio->get_blocks(dio->inode, fs_startblk, 518 * fs_count, map_bh, dio->rw == WRITE); 519 * 520 * Note that we never bother to allocate blocks here, and thus ignore the 521 * create argument. 522 */ 523 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, 524 struct buffer_head *bh_result, int create) 525 { 526 int ret; 527 u64 p_blkno, inode_blocks, contig_blocks; 528 unsigned int ext_flags; 529 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 530 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; 531 532 /* This function won't even be called if the request isn't all 533 * nicely aligned and of the right size, so there's no need 534 * for us to check any of that. */ 535 536 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 537 538 /* This figures out the size of the next contiguous block, and 539 * our logical offset */ 540 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 541 &contig_blocks, &ext_flags); 542 if (ret) { 543 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 544 (unsigned long long)iblock); 545 ret = -EIO; 546 goto bail; 547 } 548 549 /* We should already CoW the refcounted extent in case of create. */ 550 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED)); 551 552 /* 553 * get_more_blocks() expects us to describe a hole by clearing 554 * the mapped bit on bh_result(). 555 * 556 * Consider an unwritten extent as a hole. 557 */ 558 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 559 map_bh(bh_result, inode->i_sb, p_blkno); 560 else 561 clear_buffer_mapped(bh_result); 562 563 /* make sure we don't map more than max_blocks blocks here as 564 that's all the kernel will handle at this point. */ 565 if (max_blocks < contig_blocks) 566 contig_blocks = max_blocks; 567 bh_result->b_size = contig_blocks << blocksize_bits; 568 bail: 569 return ret; 570 } 571 572 /* 573 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 574 * particularly interested in the aio/dio case. Like the core uses 575 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from 576 * truncation on another. 577 */ 578 static void ocfs2_dio_end_io(struct kiocb *iocb, 579 loff_t offset, 580 ssize_t bytes, 581 void *private, 582 int ret, 583 bool is_async) 584 { 585 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 586 int level; 587 588 /* this io's submitter should not have unlocked this before we could */ 589 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 590 591 ocfs2_iocb_clear_rw_locked(iocb); 592 593 level = ocfs2_iocb_rw_locked_level(iocb); 594 if (!level) 595 up_read(&inode->i_alloc_sem); 596 ocfs2_rw_unlock(inode, level); 597 598 if (is_async) 599 aio_complete(iocb, ret, 0); 600 } 601 602 /* 603 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen 604 * from ext3. PageChecked() bits have been removed as OCFS2 does not 605 * do journalled data. 606 */ 607 static void ocfs2_invalidatepage(struct page *page, unsigned long offset) 608 { 609 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 610 611 jbd2_journal_invalidatepage(journal, page, offset); 612 } 613 614 static int ocfs2_releasepage(struct page *page, gfp_t wait) 615 { 616 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 617 618 if (!page_has_buffers(page)) 619 return 0; 620 return jbd2_journal_try_to_free_buffers(journal, page, wait); 621 } 622 623 static ssize_t ocfs2_direct_IO(int rw, 624 struct kiocb *iocb, 625 const struct iovec *iov, 626 loff_t offset, 627 unsigned long nr_segs) 628 { 629 struct file *file = iocb->ki_filp; 630 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host; 631 int ret; 632 633 mlog_entry_void(); 634 635 /* 636 * Fallback to buffered I/O if we see an inode without 637 * extents. 638 */ 639 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 640 return 0; 641 642 /* Fallback to buffered I/O if we are appending. */ 643 if (i_size_read(inode) <= offset) 644 return 0; 645 646 ret = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, 647 iov, offset, nr_segs, 648 ocfs2_direct_IO_get_blocks, 649 ocfs2_dio_end_io, NULL, 0); 650 651 mlog_exit(ret); 652 return ret; 653 } 654 655 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 656 u32 cpos, 657 unsigned int *start, 658 unsigned int *end) 659 { 660 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; 661 662 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { 663 unsigned int cpp; 664 665 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); 666 667 cluster_start = cpos % cpp; 668 cluster_start = cluster_start << osb->s_clustersize_bits; 669 670 cluster_end = cluster_start + osb->s_clustersize; 671 } 672 673 BUG_ON(cluster_start > PAGE_SIZE); 674 BUG_ON(cluster_end > PAGE_SIZE); 675 676 if (start) 677 *start = cluster_start; 678 if (end) 679 *end = cluster_end; 680 } 681 682 /* 683 * 'from' and 'to' are the region in the page to avoid zeroing. 684 * 685 * If pagesize > clustersize, this function will avoid zeroing outside 686 * of the cluster boundary. 687 * 688 * from == to == 0 is code for "zero the entire cluster region" 689 */ 690 static void ocfs2_clear_page_regions(struct page *page, 691 struct ocfs2_super *osb, u32 cpos, 692 unsigned from, unsigned to) 693 { 694 void *kaddr; 695 unsigned int cluster_start, cluster_end; 696 697 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 698 699 kaddr = kmap_atomic(page, KM_USER0); 700 701 if (from || to) { 702 if (from > cluster_start) 703 memset(kaddr + cluster_start, 0, from - cluster_start); 704 if (to < cluster_end) 705 memset(kaddr + to, 0, cluster_end - to); 706 } else { 707 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 708 } 709 710 kunmap_atomic(kaddr, KM_USER0); 711 } 712 713 /* 714 * Nonsparse file systems fully allocate before we get to the write 715 * code. This prevents ocfs2_write() from tagging the write as an 716 * allocating one, which means ocfs2_map_page_blocks() might try to 717 * read-in the blocks at the tail of our file. Avoid reading them by 718 * testing i_size against each block offset. 719 */ 720 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 721 unsigned int block_start) 722 { 723 u64 offset = page_offset(page) + block_start; 724 725 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 726 return 1; 727 728 if (i_size_read(inode) > offset) 729 return 1; 730 731 return 0; 732 } 733 734 /* 735 * Some of this taken from block_prepare_write(). We already have our 736 * mapping by now though, and the entire write will be allocating or 737 * it won't, so not much need to use BH_New. 738 * 739 * This will also skip zeroing, which is handled externally. 740 */ 741 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 742 struct inode *inode, unsigned int from, 743 unsigned int to, int new) 744 { 745 int ret = 0; 746 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 747 unsigned int block_end, block_start; 748 unsigned int bsize = 1 << inode->i_blkbits; 749 750 if (!page_has_buffers(page)) 751 create_empty_buffers(page, bsize, 0); 752 753 head = page_buffers(page); 754 for (bh = head, block_start = 0; bh != head || !block_start; 755 bh = bh->b_this_page, block_start += bsize) { 756 block_end = block_start + bsize; 757 758 clear_buffer_new(bh); 759 760 /* 761 * Ignore blocks outside of our i/o range - 762 * they may belong to unallocated clusters. 763 */ 764 if (block_start >= to || block_end <= from) { 765 if (PageUptodate(page)) 766 set_buffer_uptodate(bh); 767 continue; 768 } 769 770 /* 771 * For an allocating write with cluster size >= page 772 * size, we always write the entire page. 773 */ 774 if (new) 775 set_buffer_new(bh); 776 777 if (!buffer_mapped(bh)) { 778 map_bh(bh, inode->i_sb, *p_blkno); 779 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 780 } 781 782 if (PageUptodate(page)) { 783 if (!buffer_uptodate(bh)) 784 set_buffer_uptodate(bh); 785 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 786 !buffer_new(bh) && 787 ocfs2_should_read_blk(inode, page, block_start) && 788 (block_start < from || block_end > to)) { 789 ll_rw_block(READ, 1, &bh); 790 *wait_bh++=bh; 791 } 792 793 *p_blkno = *p_blkno + 1; 794 } 795 796 /* 797 * If we issued read requests - let them complete. 798 */ 799 while(wait_bh > wait) { 800 wait_on_buffer(*--wait_bh); 801 if (!buffer_uptodate(*wait_bh)) 802 ret = -EIO; 803 } 804 805 if (ret == 0 || !new) 806 return ret; 807 808 /* 809 * If we get -EIO above, zero out any newly allocated blocks 810 * to avoid exposing stale data. 811 */ 812 bh = head; 813 block_start = 0; 814 do { 815 block_end = block_start + bsize; 816 if (block_end <= from) 817 goto next_bh; 818 if (block_start >= to) 819 break; 820 821 zero_user(page, block_start, bh->b_size); 822 set_buffer_uptodate(bh); 823 mark_buffer_dirty(bh); 824 825 next_bh: 826 block_start = block_end; 827 bh = bh->b_this_page; 828 } while (bh != head); 829 830 return ret; 831 } 832 833 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 834 #define OCFS2_MAX_CTXT_PAGES 1 835 #else 836 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) 837 #endif 838 839 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) 840 841 /* 842 * Describe the state of a single cluster to be written to. 843 */ 844 struct ocfs2_write_cluster_desc { 845 u32 c_cpos; 846 u32 c_phys; 847 /* 848 * Give this a unique field because c_phys eventually gets 849 * filled. 850 */ 851 unsigned c_new; 852 unsigned c_unwritten; 853 unsigned c_needs_zero; 854 }; 855 856 struct ocfs2_write_ctxt { 857 /* Logical cluster position / len of write */ 858 u32 w_cpos; 859 u32 w_clen; 860 861 /* First cluster allocated in a nonsparse extend */ 862 u32 w_first_new_cpos; 863 864 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 865 866 /* 867 * This is true if page_size > cluster_size. 868 * 869 * It triggers a set of special cases during write which might 870 * have to deal with allocating writes to partial pages. 871 */ 872 unsigned int w_large_pages; 873 874 /* 875 * Pages involved in this write. 876 * 877 * w_target_page is the page being written to by the user. 878 * 879 * w_pages is an array of pages which always contains 880 * w_target_page, and in the case of an allocating write with 881 * page_size < cluster size, it will contain zero'd and mapped 882 * pages adjacent to w_target_page which need to be written 883 * out in so that future reads from that region will get 884 * zero's. 885 */ 886 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 887 unsigned int w_num_pages; 888 struct page *w_target_page; 889 890 /* 891 * ocfs2_write_end() uses this to know what the real range to 892 * write in the target should be. 893 */ 894 unsigned int w_target_from; 895 unsigned int w_target_to; 896 897 /* 898 * We could use journal_current_handle() but this is cleaner, 899 * IMHO -Mark 900 */ 901 handle_t *w_handle; 902 903 struct buffer_head *w_di_bh; 904 905 struct ocfs2_cached_dealloc_ctxt w_dealloc; 906 }; 907 908 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 909 { 910 int i; 911 912 for(i = 0; i < num_pages; i++) { 913 if (pages[i]) { 914 unlock_page(pages[i]); 915 mark_page_accessed(pages[i]); 916 page_cache_release(pages[i]); 917 } 918 } 919 } 920 921 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) 922 { 923 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 924 925 brelse(wc->w_di_bh); 926 kfree(wc); 927 } 928 929 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 930 struct ocfs2_super *osb, loff_t pos, 931 unsigned len, struct buffer_head *di_bh) 932 { 933 u32 cend; 934 struct ocfs2_write_ctxt *wc; 935 936 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 937 if (!wc) 938 return -ENOMEM; 939 940 wc->w_cpos = pos >> osb->s_clustersize_bits; 941 wc->w_first_new_cpos = UINT_MAX; 942 cend = (pos + len - 1) >> osb->s_clustersize_bits; 943 wc->w_clen = cend - wc->w_cpos + 1; 944 get_bh(di_bh); 945 wc->w_di_bh = di_bh; 946 947 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) 948 wc->w_large_pages = 1; 949 else 950 wc->w_large_pages = 0; 951 952 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 953 954 *wcp = wc; 955 956 return 0; 957 } 958 959 /* 960 * If a page has any new buffers, zero them out here, and mark them uptodate 961 * and dirty so they'll be written out (in order to prevent uninitialised 962 * block data from leaking). And clear the new bit. 963 */ 964 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 965 { 966 unsigned int block_start, block_end; 967 struct buffer_head *head, *bh; 968 969 BUG_ON(!PageLocked(page)); 970 if (!page_has_buffers(page)) 971 return; 972 973 bh = head = page_buffers(page); 974 block_start = 0; 975 do { 976 block_end = block_start + bh->b_size; 977 978 if (buffer_new(bh)) { 979 if (block_end > from && block_start < to) { 980 if (!PageUptodate(page)) { 981 unsigned start, end; 982 983 start = max(from, block_start); 984 end = min(to, block_end); 985 986 zero_user_segment(page, start, end); 987 set_buffer_uptodate(bh); 988 } 989 990 clear_buffer_new(bh); 991 mark_buffer_dirty(bh); 992 } 993 } 994 995 block_start = block_end; 996 bh = bh->b_this_page; 997 } while (bh != head); 998 } 999 1000 /* 1001 * Only called when we have a failure during allocating write to write 1002 * zero's to the newly allocated region. 1003 */ 1004 static void ocfs2_write_failure(struct inode *inode, 1005 struct ocfs2_write_ctxt *wc, 1006 loff_t user_pos, unsigned user_len) 1007 { 1008 int i; 1009 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), 1010 to = user_pos + user_len; 1011 struct page *tmppage; 1012 1013 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 1014 1015 for(i = 0; i < wc->w_num_pages; i++) { 1016 tmppage = wc->w_pages[i]; 1017 1018 if (page_has_buffers(tmppage)) { 1019 if (ocfs2_should_order_data(inode)) 1020 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1021 1022 block_commit_write(tmppage, from, to); 1023 } 1024 } 1025 } 1026 1027 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 1028 struct ocfs2_write_ctxt *wc, 1029 struct page *page, u32 cpos, 1030 loff_t user_pos, unsigned user_len, 1031 int new) 1032 { 1033 int ret; 1034 unsigned int map_from = 0, map_to = 0; 1035 unsigned int cluster_start, cluster_end; 1036 unsigned int user_data_from = 0, user_data_to = 0; 1037 1038 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 1039 &cluster_start, &cluster_end); 1040 1041 if (page == wc->w_target_page) { 1042 map_from = user_pos & (PAGE_CACHE_SIZE - 1); 1043 map_to = map_from + user_len; 1044 1045 if (new) 1046 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1047 cluster_start, cluster_end, 1048 new); 1049 else 1050 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1051 map_from, map_to, new); 1052 if (ret) { 1053 mlog_errno(ret); 1054 goto out; 1055 } 1056 1057 user_data_from = map_from; 1058 user_data_to = map_to; 1059 if (new) { 1060 map_from = cluster_start; 1061 map_to = cluster_end; 1062 } 1063 } else { 1064 /* 1065 * If we haven't allocated the new page yet, we 1066 * shouldn't be writing it out without copying user 1067 * data. This is likely a math error from the caller. 1068 */ 1069 BUG_ON(!new); 1070 1071 map_from = cluster_start; 1072 map_to = cluster_end; 1073 1074 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1075 cluster_start, cluster_end, new); 1076 if (ret) { 1077 mlog_errno(ret); 1078 goto out; 1079 } 1080 } 1081 1082 /* 1083 * Parts of newly allocated pages need to be zero'd. 1084 * 1085 * Above, we have also rewritten 'to' and 'from' - as far as 1086 * the rest of the function is concerned, the entire cluster 1087 * range inside of a page needs to be written. 1088 * 1089 * We can skip this if the page is up to date - it's already 1090 * been zero'd from being read in as a hole. 1091 */ 1092 if (new && !PageUptodate(page)) 1093 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1094 cpos, user_data_from, user_data_to); 1095 1096 flush_dcache_page(page); 1097 1098 out: 1099 return ret; 1100 } 1101 1102 /* 1103 * This function will only grab one clusters worth of pages. 1104 */ 1105 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1106 struct ocfs2_write_ctxt *wc, 1107 u32 cpos, loff_t user_pos, 1108 unsigned user_len, int new, 1109 struct page *mmap_page) 1110 { 1111 int ret = 0, i; 1112 unsigned long start, target_index, end_index, index; 1113 struct inode *inode = mapping->host; 1114 loff_t last_byte; 1115 1116 target_index = user_pos >> PAGE_CACHE_SHIFT; 1117 1118 /* 1119 * Figure out how many pages we'll be manipulating here. For 1120 * non allocating write, we just change the one 1121 * page. Otherwise, we'll need a whole clusters worth. If we're 1122 * writing past i_size, we only need enough pages to cover the 1123 * last page of the write. 1124 */ 1125 if (new) { 1126 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1127 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1128 /* 1129 * We need the index *past* the last page we could possibly 1130 * touch. This is the page past the end of the write or 1131 * i_size, whichever is greater. 1132 */ 1133 last_byte = max(user_pos + user_len, i_size_read(inode)); 1134 BUG_ON(last_byte < 1); 1135 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1; 1136 if ((start + wc->w_num_pages) > end_index) 1137 wc->w_num_pages = end_index - start; 1138 } else { 1139 wc->w_num_pages = 1; 1140 start = target_index; 1141 } 1142 1143 for(i = 0; i < wc->w_num_pages; i++) { 1144 index = start + i; 1145 1146 if (index == target_index && mmap_page) { 1147 /* 1148 * ocfs2_pagemkwrite() is a little different 1149 * and wants us to directly use the page 1150 * passed in. 1151 */ 1152 lock_page(mmap_page); 1153 1154 if (mmap_page->mapping != mapping) { 1155 unlock_page(mmap_page); 1156 /* 1157 * Sanity check - the locking in 1158 * ocfs2_pagemkwrite() should ensure 1159 * that this code doesn't trigger. 1160 */ 1161 ret = -EINVAL; 1162 mlog_errno(ret); 1163 goto out; 1164 } 1165 1166 page_cache_get(mmap_page); 1167 wc->w_pages[i] = mmap_page; 1168 } else { 1169 wc->w_pages[i] = find_or_create_page(mapping, index, 1170 GFP_NOFS); 1171 if (!wc->w_pages[i]) { 1172 ret = -ENOMEM; 1173 mlog_errno(ret); 1174 goto out; 1175 } 1176 } 1177 1178 if (index == target_index) 1179 wc->w_target_page = wc->w_pages[i]; 1180 } 1181 out: 1182 return ret; 1183 } 1184 1185 /* 1186 * Prepare a single cluster for write one cluster into the file. 1187 */ 1188 static int ocfs2_write_cluster(struct address_space *mapping, 1189 u32 phys, unsigned int unwritten, 1190 unsigned int should_zero, 1191 struct ocfs2_alloc_context *data_ac, 1192 struct ocfs2_alloc_context *meta_ac, 1193 struct ocfs2_write_ctxt *wc, u32 cpos, 1194 loff_t user_pos, unsigned user_len) 1195 { 1196 int ret, i, new; 1197 u64 v_blkno, p_blkno; 1198 struct inode *inode = mapping->host; 1199 struct ocfs2_extent_tree et; 1200 1201 new = phys == 0 ? 1 : 0; 1202 if (new) { 1203 u32 tmp_pos; 1204 1205 /* 1206 * This is safe to call with the page locks - it won't take 1207 * any additional semaphores or cluster locks. 1208 */ 1209 tmp_pos = cpos; 1210 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1211 &tmp_pos, 1, 0, wc->w_di_bh, 1212 wc->w_handle, data_ac, 1213 meta_ac, NULL); 1214 /* 1215 * This shouldn't happen because we must have already 1216 * calculated the correct meta data allocation required. The 1217 * internal tree allocation code should know how to increase 1218 * transaction credits itself. 1219 * 1220 * If need be, we could handle -EAGAIN for a 1221 * RESTART_TRANS here. 1222 */ 1223 mlog_bug_on_msg(ret == -EAGAIN, 1224 "Inode %llu: EAGAIN return during allocation.\n", 1225 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1226 if (ret < 0) { 1227 mlog_errno(ret); 1228 goto out; 1229 } 1230 } else if (unwritten) { 1231 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1232 wc->w_di_bh); 1233 ret = ocfs2_mark_extent_written(inode, &et, 1234 wc->w_handle, cpos, 1, phys, 1235 meta_ac, &wc->w_dealloc); 1236 if (ret < 0) { 1237 mlog_errno(ret); 1238 goto out; 1239 } 1240 } 1241 1242 if (should_zero) 1243 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); 1244 else 1245 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; 1246 1247 /* 1248 * The only reason this should fail is due to an inability to 1249 * find the extent added. 1250 */ 1251 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, 1252 NULL); 1253 if (ret < 0) { 1254 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, " 1255 "at logical block %llu", 1256 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1257 (unsigned long long)v_blkno); 1258 goto out; 1259 } 1260 1261 BUG_ON(p_blkno == 0); 1262 1263 for(i = 0; i < wc->w_num_pages; i++) { 1264 int tmpret; 1265 1266 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1267 wc->w_pages[i], cpos, 1268 user_pos, user_len, 1269 should_zero); 1270 if (tmpret) { 1271 mlog_errno(tmpret); 1272 if (ret == 0) 1273 ret = tmpret; 1274 } 1275 } 1276 1277 /* 1278 * We only have cleanup to do in case of allocating write. 1279 */ 1280 if (ret && new) 1281 ocfs2_write_failure(inode, wc, user_pos, user_len); 1282 1283 out: 1284 1285 return ret; 1286 } 1287 1288 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1289 struct ocfs2_alloc_context *data_ac, 1290 struct ocfs2_alloc_context *meta_ac, 1291 struct ocfs2_write_ctxt *wc, 1292 loff_t pos, unsigned len) 1293 { 1294 int ret, i; 1295 loff_t cluster_off; 1296 unsigned int local_len = len; 1297 struct ocfs2_write_cluster_desc *desc; 1298 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1299 1300 for (i = 0; i < wc->w_clen; i++) { 1301 desc = &wc->w_desc[i]; 1302 1303 /* 1304 * We have to make sure that the total write passed in 1305 * doesn't extend past a single cluster. 1306 */ 1307 local_len = len; 1308 cluster_off = pos & (osb->s_clustersize - 1); 1309 if ((cluster_off + local_len) > osb->s_clustersize) 1310 local_len = osb->s_clustersize - cluster_off; 1311 1312 ret = ocfs2_write_cluster(mapping, desc->c_phys, 1313 desc->c_unwritten, 1314 desc->c_needs_zero, 1315 data_ac, meta_ac, 1316 wc, desc->c_cpos, pos, local_len); 1317 if (ret) { 1318 mlog_errno(ret); 1319 goto out; 1320 } 1321 1322 len -= local_len; 1323 pos += local_len; 1324 } 1325 1326 ret = 0; 1327 out: 1328 return ret; 1329 } 1330 1331 /* 1332 * ocfs2_write_end() wants to know which parts of the target page it 1333 * should complete the write on. It's easiest to compute them ahead of 1334 * time when a more complete view of the write is available. 1335 */ 1336 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1337 struct ocfs2_write_ctxt *wc, 1338 loff_t pos, unsigned len, int alloc) 1339 { 1340 struct ocfs2_write_cluster_desc *desc; 1341 1342 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); 1343 wc->w_target_to = wc->w_target_from + len; 1344 1345 if (alloc == 0) 1346 return; 1347 1348 /* 1349 * Allocating write - we may have different boundaries based 1350 * on page size and cluster size. 1351 * 1352 * NOTE: We can no longer compute one value from the other as 1353 * the actual write length and user provided length may be 1354 * different. 1355 */ 1356 1357 if (wc->w_large_pages) { 1358 /* 1359 * We only care about the 1st and last cluster within 1360 * our range and whether they should be zero'd or not. Either 1361 * value may be extended out to the start/end of a 1362 * newly allocated cluster. 1363 */ 1364 desc = &wc->w_desc[0]; 1365 if (desc->c_needs_zero) 1366 ocfs2_figure_cluster_boundaries(osb, 1367 desc->c_cpos, 1368 &wc->w_target_from, 1369 NULL); 1370 1371 desc = &wc->w_desc[wc->w_clen - 1]; 1372 if (desc->c_needs_zero) 1373 ocfs2_figure_cluster_boundaries(osb, 1374 desc->c_cpos, 1375 NULL, 1376 &wc->w_target_to); 1377 } else { 1378 wc->w_target_from = 0; 1379 wc->w_target_to = PAGE_CACHE_SIZE; 1380 } 1381 } 1382 1383 /* 1384 * Populate each single-cluster write descriptor in the write context 1385 * with information about the i/o to be done. 1386 * 1387 * Returns the number of clusters that will have to be allocated, as 1388 * well as a worst case estimate of the number of extent records that 1389 * would have to be created during a write to an unwritten region. 1390 */ 1391 static int ocfs2_populate_write_desc(struct inode *inode, 1392 struct ocfs2_write_ctxt *wc, 1393 unsigned int *clusters_to_alloc, 1394 unsigned int *extents_to_split) 1395 { 1396 int ret; 1397 struct ocfs2_write_cluster_desc *desc; 1398 unsigned int num_clusters = 0; 1399 unsigned int ext_flags = 0; 1400 u32 phys = 0; 1401 int i; 1402 1403 *clusters_to_alloc = 0; 1404 *extents_to_split = 0; 1405 1406 for (i = 0; i < wc->w_clen; i++) { 1407 desc = &wc->w_desc[i]; 1408 desc->c_cpos = wc->w_cpos + i; 1409 1410 if (num_clusters == 0) { 1411 /* 1412 * Need to look up the next extent record. 1413 */ 1414 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1415 &num_clusters, &ext_flags); 1416 if (ret) { 1417 mlog_errno(ret); 1418 goto out; 1419 } 1420 1421 /* We should already CoW the refcountd extent. */ 1422 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1423 1424 /* 1425 * Assume worst case - that we're writing in 1426 * the middle of the extent. 1427 * 1428 * We can assume that the write proceeds from 1429 * left to right, in which case the extent 1430 * insert code is smart enough to coalesce the 1431 * next splits into the previous records created. 1432 */ 1433 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1434 *extents_to_split = *extents_to_split + 2; 1435 } else if (phys) { 1436 /* 1437 * Only increment phys if it doesn't describe 1438 * a hole. 1439 */ 1440 phys++; 1441 } 1442 1443 /* 1444 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1445 * file that got extended. w_first_new_cpos tells us 1446 * where the newly allocated clusters are so we can 1447 * zero them. 1448 */ 1449 if (desc->c_cpos >= wc->w_first_new_cpos) { 1450 BUG_ON(phys == 0); 1451 desc->c_needs_zero = 1; 1452 } 1453 1454 desc->c_phys = phys; 1455 if (phys == 0) { 1456 desc->c_new = 1; 1457 desc->c_needs_zero = 1; 1458 *clusters_to_alloc = *clusters_to_alloc + 1; 1459 } 1460 1461 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1462 desc->c_unwritten = 1; 1463 desc->c_needs_zero = 1; 1464 } 1465 1466 num_clusters--; 1467 } 1468 1469 ret = 0; 1470 out: 1471 return ret; 1472 } 1473 1474 static int ocfs2_write_begin_inline(struct address_space *mapping, 1475 struct inode *inode, 1476 struct ocfs2_write_ctxt *wc) 1477 { 1478 int ret; 1479 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1480 struct page *page; 1481 handle_t *handle; 1482 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1483 1484 page = find_or_create_page(mapping, 0, GFP_NOFS); 1485 if (!page) { 1486 ret = -ENOMEM; 1487 mlog_errno(ret); 1488 goto out; 1489 } 1490 /* 1491 * If we don't set w_num_pages then this page won't get unlocked 1492 * and freed on cleanup of the write context. 1493 */ 1494 wc->w_pages[0] = wc->w_target_page = page; 1495 wc->w_num_pages = 1; 1496 1497 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1498 if (IS_ERR(handle)) { 1499 ret = PTR_ERR(handle); 1500 mlog_errno(ret); 1501 goto out; 1502 } 1503 1504 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1505 OCFS2_JOURNAL_ACCESS_WRITE); 1506 if (ret) { 1507 ocfs2_commit_trans(osb, handle); 1508 1509 mlog_errno(ret); 1510 goto out; 1511 } 1512 1513 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1514 ocfs2_set_inode_data_inline(inode, di); 1515 1516 if (!PageUptodate(page)) { 1517 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1518 if (ret) { 1519 ocfs2_commit_trans(osb, handle); 1520 1521 goto out; 1522 } 1523 } 1524 1525 wc->w_handle = handle; 1526 out: 1527 return ret; 1528 } 1529 1530 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1531 { 1532 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1533 1534 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1535 return 1; 1536 return 0; 1537 } 1538 1539 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1540 struct inode *inode, loff_t pos, 1541 unsigned len, struct page *mmap_page, 1542 struct ocfs2_write_ctxt *wc) 1543 { 1544 int ret, written = 0; 1545 loff_t end = pos + len; 1546 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1547 struct ocfs2_dinode *di = NULL; 1548 1549 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n", 1550 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos, 1551 oi->ip_dyn_features); 1552 1553 /* 1554 * Handle inodes which already have inline data 1st. 1555 */ 1556 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1557 if (mmap_page == NULL && 1558 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1559 goto do_inline_write; 1560 1561 /* 1562 * The write won't fit - we have to give this inode an 1563 * inline extent list now. 1564 */ 1565 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1566 if (ret) 1567 mlog_errno(ret); 1568 goto out; 1569 } 1570 1571 /* 1572 * Check whether the inode can accept inline data. 1573 */ 1574 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1575 return 0; 1576 1577 /* 1578 * Check whether the write can fit. 1579 */ 1580 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1581 if (mmap_page || 1582 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1583 return 0; 1584 1585 do_inline_write: 1586 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1587 if (ret) { 1588 mlog_errno(ret); 1589 goto out; 1590 } 1591 1592 /* 1593 * This signals to the caller that the data can be written 1594 * inline. 1595 */ 1596 written = 1; 1597 out: 1598 return written ? written : ret; 1599 } 1600 1601 /* 1602 * This function only does anything for file systems which can't 1603 * handle sparse files. 1604 * 1605 * What we want to do here is fill in any hole between the current end 1606 * of allocation and the end of our write. That way the rest of the 1607 * write path can treat it as an non-allocating write, which has no 1608 * special case code for sparse/nonsparse files. 1609 */ 1610 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1611 struct buffer_head *di_bh, 1612 loff_t pos, unsigned len, 1613 struct ocfs2_write_ctxt *wc) 1614 { 1615 int ret; 1616 loff_t newsize = pos + len; 1617 1618 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1619 1620 if (newsize <= i_size_read(inode)) 1621 return 0; 1622 1623 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1624 if (ret) 1625 mlog_errno(ret); 1626 1627 wc->w_first_new_cpos = 1628 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1629 1630 return ret; 1631 } 1632 1633 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1634 loff_t pos) 1635 { 1636 int ret = 0; 1637 1638 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1639 if (pos > i_size_read(inode)) 1640 ret = ocfs2_zero_extend(inode, di_bh, pos); 1641 1642 return ret; 1643 } 1644 1645 int ocfs2_write_begin_nolock(struct address_space *mapping, 1646 loff_t pos, unsigned len, unsigned flags, 1647 struct page **pagep, void **fsdata, 1648 struct buffer_head *di_bh, struct page *mmap_page) 1649 { 1650 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1651 unsigned int clusters_to_alloc, extents_to_split; 1652 struct ocfs2_write_ctxt *wc; 1653 struct inode *inode = mapping->host; 1654 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1655 struct ocfs2_dinode *di; 1656 struct ocfs2_alloc_context *data_ac = NULL; 1657 struct ocfs2_alloc_context *meta_ac = NULL; 1658 handle_t *handle; 1659 struct ocfs2_extent_tree et; 1660 1661 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); 1662 if (ret) { 1663 mlog_errno(ret); 1664 return ret; 1665 } 1666 1667 if (ocfs2_supports_inline_data(osb)) { 1668 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1669 mmap_page, wc); 1670 if (ret == 1) { 1671 ret = 0; 1672 goto success; 1673 } 1674 if (ret < 0) { 1675 mlog_errno(ret); 1676 goto out; 1677 } 1678 } 1679 1680 if (ocfs2_sparse_alloc(osb)) 1681 ret = ocfs2_zero_tail(inode, di_bh, pos); 1682 else 1683 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len, 1684 wc); 1685 if (ret) { 1686 mlog_errno(ret); 1687 goto out; 1688 } 1689 1690 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1691 if (ret < 0) { 1692 mlog_errno(ret); 1693 goto out; 1694 } else if (ret == 1) { 1695 ret = ocfs2_refcount_cow(inode, di_bh, 1696 wc->w_cpos, wc->w_clen, UINT_MAX); 1697 if (ret) { 1698 mlog_errno(ret); 1699 goto out; 1700 } 1701 } 1702 1703 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1704 &extents_to_split); 1705 if (ret) { 1706 mlog_errno(ret); 1707 goto out; 1708 } 1709 1710 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1711 1712 /* 1713 * We set w_target_from, w_target_to here so that 1714 * ocfs2_write_end() knows which range in the target page to 1715 * write out. An allocation requires that we write the entire 1716 * cluster range. 1717 */ 1718 if (clusters_to_alloc || extents_to_split) { 1719 /* 1720 * XXX: We are stretching the limits of 1721 * ocfs2_lock_allocators(). It greatly over-estimates 1722 * the work to be done. 1723 */ 1724 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u," 1725 " clusters_to_add = %u, extents_to_split = %u\n", 1726 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1727 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters), 1728 clusters_to_alloc, extents_to_split); 1729 1730 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1731 wc->w_di_bh); 1732 ret = ocfs2_lock_allocators(inode, &et, 1733 clusters_to_alloc, extents_to_split, 1734 &data_ac, &meta_ac); 1735 if (ret) { 1736 mlog_errno(ret); 1737 goto out; 1738 } 1739 1740 if (data_ac) 1741 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1742 1743 credits = ocfs2_calc_extend_credits(inode->i_sb, 1744 &di->id2.i_list, 1745 clusters_to_alloc); 1746 1747 } 1748 1749 /* 1750 * We have to zero sparse allocated clusters, unwritten extent clusters, 1751 * and non-sparse clusters we just extended. For non-sparse writes, 1752 * we know zeros will only be needed in the first and/or last cluster. 1753 */ 1754 if (clusters_to_alloc || extents_to_split || 1755 (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1756 wc->w_desc[wc->w_clen - 1].c_needs_zero))) 1757 cluster_of_pages = 1; 1758 else 1759 cluster_of_pages = 0; 1760 1761 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1762 1763 handle = ocfs2_start_trans(osb, credits); 1764 if (IS_ERR(handle)) { 1765 ret = PTR_ERR(handle); 1766 mlog_errno(ret); 1767 goto out; 1768 } 1769 1770 wc->w_handle = handle; 1771 1772 if (clusters_to_alloc) { 1773 ret = dquot_alloc_space_nodirty(inode, 1774 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1775 if (ret) 1776 goto out_commit; 1777 } 1778 /* 1779 * We don't want this to fail in ocfs2_write_end(), so do it 1780 * here. 1781 */ 1782 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1783 OCFS2_JOURNAL_ACCESS_WRITE); 1784 if (ret) { 1785 mlog_errno(ret); 1786 goto out_quota; 1787 } 1788 1789 /* 1790 * Fill our page array first. That way we've grabbed enough so 1791 * that we can zero and flush if we error after adding the 1792 * extent. 1793 */ 1794 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1795 cluster_of_pages, mmap_page); 1796 if (ret) { 1797 mlog_errno(ret); 1798 goto out_quota; 1799 } 1800 1801 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1802 len); 1803 if (ret) { 1804 mlog_errno(ret); 1805 goto out_quota; 1806 } 1807 1808 if (data_ac) 1809 ocfs2_free_alloc_context(data_ac); 1810 if (meta_ac) 1811 ocfs2_free_alloc_context(meta_ac); 1812 1813 success: 1814 *pagep = wc->w_target_page; 1815 *fsdata = wc; 1816 return 0; 1817 out_quota: 1818 if (clusters_to_alloc) 1819 dquot_free_space(inode, 1820 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1821 out_commit: 1822 ocfs2_commit_trans(osb, handle); 1823 1824 out: 1825 ocfs2_free_write_ctxt(wc); 1826 1827 if (data_ac) 1828 ocfs2_free_alloc_context(data_ac); 1829 if (meta_ac) 1830 ocfs2_free_alloc_context(meta_ac); 1831 return ret; 1832 } 1833 1834 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1835 loff_t pos, unsigned len, unsigned flags, 1836 struct page **pagep, void **fsdata) 1837 { 1838 int ret; 1839 struct buffer_head *di_bh = NULL; 1840 struct inode *inode = mapping->host; 1841 1842 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1843 if (ret) { 1844 mlog_errno(ret); 1845 return ret; 1846 } 1847 1848 /* 1849 * Take alloc sem here to prevent concurrent lookups. That way 1850 * the mapping, zeroing and tree manipulation within 1851 * ocfs2_write() will be safe against ->readpage(). This 1852 * should also serve to lock out allocation from a shared 1853 * writeable region. 1854 */ 1855 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1856 1857 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep, 1858 fsdata, di_bh, NULL); 1859 if (ret) { 1860 mlog_errno(ret); 1861 goto out_fail; 1862 } 1863 1864 brelse(di_bh); 1865 1866 return 0; 1867 1868 out_fail: 1869 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1870 1871 brelse(di_bh); 1872 ocfs2_inode_unlock(inode, 1); 1873 1874 return ret; 1875 } 1876 1877 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1878 unsigned len, unsigned *copied, 1879 struct ocfs2_dinode *di, 1880 struct ocfs2_write_ctxt *wc) 1881 { 1882 void *kaddr; 1883 1884 if (unlikely(*copied < len)) { 1885 if (!PageUptodate(wc->w_target_page)) { 1886 *copied = 0; 1887 return; 1888 } 1889 } 1890 1891 kaddr = kmap_atomic(wc->w_target_page, KM_USER0); 1892 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1893 kunmap_atomic(kaddr, KM_USER0); 1894 1895 mlog(0, "Data written to inode at offset %llu. " 1896 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n", 1897 (unsigned long long)pos, *copied, 1898 le16_to_cpu(di->id2.i_data.id_count), 1899 le16_to_cpu(di->i_dyn_features)); 1900 } 1901 1902 int ocfs2_write_end_nolock(struct address_space *mapping, 1903 loff_t pos, unsigned len, unsigned copied, 1904 struct page *page, void *fsdata) 1905 { 1906 int i; 1907 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); 1908 struct inode *inode = mapping->host; 1909 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1910 struct ocfs2_write_ctxt *wc = fsdata; 1911 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1912 handle_t *handle = wc->w_handle; 1913 struct page *tmppage; 1914 1915 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1916 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1917 goto out_write_size; 1918 } 1919 1920 if (unlikely(copied < len)) { 1921 if (!PageUptodate(wc->w_target_page)) 1922 copied = 0; 1923 1924 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1925 start+len); 1926 } 1927 flush_dcache_page(wc->w_target_page); 1928 1929 for(i = 0; i < wc->w_num_pages; i++) { 1930 tmppage = wc->w_pages[i]; 1931 1932 if (tmppage == wc->w_target_page) { 1933 from = wc->w_target_from; 1934 to = wc->w_target_to; 1935 1936 BUG_ON(from > PAGE_CACHE_SIZE || 1937 to > PAGE_CACHE_SIZE || 1938 to < from); 1939 } else { 1940 /* 1941 * Pages adjacent to the target (if any) imply 1942 * a hole-filling write in which case we want 1943 * to flush their entire range. 1944 */ 1945 from = 0; 1946 to = PAGE_CACHE_SIZE; 1947 } 1948 1949 if (page_has_buffers(tmppage)) { 1950 if (ocfs2_should_order_data(inode)) 1951 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1952 block_commit_write(tmppage, from, to); 1953 } 1954 } 1955 1956 out_write_size: 1957 pos += copied; 1958 if (pos > inode->i_size) { 1959 i_size_write(inode, pos); 1960 mark_inode_dirty(inode); 1961 } 1962 inode->i_blocks = ocfs2_inode_sector_count(inode); 1963 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 1964 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1965 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 1966 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 1967 ocfs2_journal_dirty(handle, wc->w_di_bh); 1968 1969 ocfs2_commit_trans(osb, handle); 1970 1971 ocfs2_run_deallocs(osb, &wc->w_dealloc); 1972 1973 ocfs2_free_write_ctxt(wc); 1974 1975 return copied; 1976 } 1977 1978 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 1979 loff_t pos, unsigned len, unsigned copied, 1980 struct page *page, void *fsdata) 1981 { 1982 int ret; 1983 struct inode *inode = mapping->host; 1984 1985 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 1986 1987 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1988 ocfs2_inode_unlock(inode, 1); 1989 1990 return ret; 1991 } 1992 1993 const struct address_space_operations ocfs2_aops = { 1994 .readpage = ocfs2_readpage, 1995 .readpages = ocfs2_readpages, 1996 .writepage = ocfs2_writepage, 1997 .write_begin = ocfs2_write_begin, 1998 .write_end = ocfs2_write_end, 1999 .bmap = ocfs2_bmap, 2000 .sync_page = block_sync_page, 2001 .direct_IO = ocfs2_direct_IO, 2002 .invalidatepage = ocfs2_invalidatepage, 2003 .releasepage = ocfs2_releasepage, 2004 .migratepage = buffer_migrate_page, 2005 .is_partially_uptodate = block_is_partially_uptodate, 2006 .error_remove_page = generic_error_remove_page, 2007 }; 2008