xref: /openbmc/linux/fs/ocfs2/aops.c (revision c4c11dd1)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 
32 #include <cluster/masklog.h>
33 
34 #include "ocfs2.h"
35 
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
48 
49 #include "buffer_head_io.h"
50 
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 				   struct buffer_head *bh_result, int create)
53 {
54 	int err = -EIO;
55 	int status;
56 	struct ocfs2_dinode *fe = NULL;
57 	struct buffer_head *bh = NULL;
58 	struct buffer_head *buffer_cache_bh = NULL;
59 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 	void *kaddr;
61 
62 	trace_ocfs2_symlink_get_block(
63 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
64 			(unsigned long long)iblock, bh_result, create);
65 
66 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67 
68 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 		     (unsigned long long)iblock);
71 		goto bail;
72 	}
73 
74 	status = ocfs2_read_inode_block(inode, &bh);
75 	if (status < 0) {
76 		mlog_errno(status);
77 		goto bail;
78 	}
79 	fe = (struct ocfs2_dinode *) bh->b_data;
80 
81 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 						    le32_to_cpu(fe->i_clusters))) {
83 		mlog(ML_ERROR, "block offset is outside the allocated size: "
84 		     "%llu\n", (unsigned long long)iblock);
85 		goto bail;
86 	}
87 
88 	/* We don't use the page cache to create symlink data, so if
89 	 * need be, copy it over from the buffer cache. */
90 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 			    iblock;
93 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 		if (!buffer_cache_bh) {
95 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 			goto bail;
97 		}
98 
99 		/* we haven't locked out transactions, so a commit
100 		 * could've happened. Since we've got a reference on
101 		 * the bh, even if it commits while we're doing the
102 		 * copy, the data is still good. */
103 		if (buffer_jbd(buffer_cache_bh)
104 		    && ocfs2_inode_is_new(inode)) {
105 			kaddr = kmap_atomic(bh_result->b_page);
106 			if (!kaddr) {
107 				mlog(ML_ERROR, "couldn't kmap!\n");
108 				goto bail;
109 			}
110 			memcpy(kaddr + (bh_result->b_size * iblock),
111 			       buffer_cache_bh->b_data,
112 			       bh_result->b_size);
113 			kunmap_atomic(kaddr);
114 			set_buffer_uptodate(bh_result);
115 		}
116 		brelse(buffer_cache_bh);
117 	}
118 
119 	map_bh(bh_result, inode->i_sb,
120 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121 
122 	err = 0;
123 
124 bail:
125 	brelse(bh);
126 
127 	return err;
128 }
129 
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 		    struct buffer_head *bh_result, int create)
132 {
133 	int err = 0;
134 	unsigned int ext_flags;
135 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 	u64 p_blkno, count, past_eof;
137 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138 
139 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 			      (unsigned long long)iblock, bh_result, create);
141 
142 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 		     inode, inode->i_ino);
145 
146 	if (S_ISLNK(inode->i_mode)) {
147 		/* this always does I/O for some reason. */
148 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 		goto bail;
150 	}
151 
152 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 					  &ext_flags);
154 	if (err) {
155 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 		     (unsigned long long)p_blkno);
158 		goto bail;
159 	}
160 
161 	if (max_blocks < count)
162 		count = max_blocks;
163 
164 	/*
165 	 * ocfs2 never allocates in this function - the only time we
166 	 * need to use BH_New is when we're extending i_size on a file
167 	 * system which doesn't support holes, in which case BH_New
168 	 * allows __block_write_begin() to zero.
169 	 *
170 	 * If we see this on a sparse file system, then a truncate has
171 	 * raced us and removed the cluster. In this case, we clear
172 	 * the buffers dirty and uptodate bits and let the buffer code
173 	 * ignore it as a hole.
174 	 */
175 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 		clear_buffer_dirty(bh_result);
177 		clear_buffer_uptodate(bh_result);
178 		goto bail;
179 	}
180 
181 	/* Treat the unwritten extent as a hole for zeroing purposes. */
182 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 		map_bh(bh_result, inode->i_sb, p_blkno);
184 
185 	bh_result->b_size = count << inode->i_blkbits;
186 
187 	if (!ocfs2_sparse_alloc(osb)) {
188 		if (p_blkno == 0) {
189 			err = -EIO;
190 			mlog(ML_ERROR,
191 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 			     (unsigned long long)iblock,
193 			     (unsigned long long)p_blkno,
194 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 			dump_stack();
197 			goto bail;
198 		}
199 	}
200 
201 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202 
203 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 				  (unsigned long long)past_eof);
205 	if (create && (iblock >= past_eof))
206 		set_buffer_new(bh_result);
207 
208 bail:
209 	if (err < 0)
210 		err = -EIO;
211 
212 	return err;
213 }
214 
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 			   struct buffer_head *di_bh)
217 {
218 	void *kaddr;
219 	loff_t size;
220 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221 
222 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 		return -EROFS;
226 	}
227 
228 	size = i_size_read(inode);
229 
230 	if (size > PAGE_CACHE_SIZE ||
231 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 		ocfs2_error(inode->i_sb,
233 			    "Inode %llu has with inline data has bad size: %Lu",
234 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 			    (unsigned long long)size);
236 		return -EROFS;
237 	}
238 
239 	kaddr = kmap_atomic(page);
240 	if (size)
241 		memcpy(kaddr, di->id2.i_data.id_data, size);
242 	/* Clear the remaining part of the page */
243 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 	flush_dcache_page(page);
245 	kunmap_atomic(kaddr);
246 
247 	SetPageUptodate(page);
248 
249 	return 0;
250 }
251 
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253 {
254 	int ret;
255 	struct buffer_head *di_bh = NULL;
256 
257 	BUG_ON(!PageLocked(page));
258 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259 
260 	ret = ocfs2_read_inode_block(inode, &di_bh);
261 	if (ret) {
262 		mlog_errno(ret);
263 		goto out;
264 	}
265 
266 	ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268 	unlock_page(page);
269 
270 	brelse(di_bh);
271 	return ret;
272 }
273 
274 static int ocfs2_readpage(struct file *file, struct page *page)
275 {
276 	struct inode *inode = page->mapping->host;
277 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 	int ret, unlock = 1;
280 
281 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 			     (page ? page->index : 0));
283 
284 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 	if (ret != 0) {
286 		if (ret == AOP_TRUNCATED_PAGE)
287 			unlock = 0;
288 		mlog_errno(ret);
289 		goto out;
290 	}
291 
292 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293 		/*
294 		 * Unlock the page and cycle ip_alloc_sem so that we don't
295 		 * busyloop waiting for ip_alloc_sem to unlock
296 		 */
297 		ret = AOP_TRUNCATED_PAGE;
298 		unlock_page(page);
299 		unlock = 0;
300 		down_read(&oi->ip_alloc_sem);
301 		up_read(&oi->ip_alloc_sem);
302 		goto out_inode_unlock;
303 	}
304 
305 	/*
306 	 * i_size might have just been updated as we grabed the meta lock.  We
307 	 * might now be discovering a truncate that hit on another node.
308 	 * block_read_full_page->get_block freaks out if it is asked to read
309 	 * beyond the end of a file, so we check here.  Callers
310 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
311 	 * and notice that the page they just read isn't needed.
312 	 *
313 	 * XXX sys_readahead() seems to get that wrong?
314 	 */
315 	if (start >= i_size_read(inode)) {
316 		zero_user(page, 0, PAGE_SIZE);
317 		SetPageUptodate(page);
318 		ret = 0;
319 		goto out_alloc;
320 	}
321 
322 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
323 		ret = ocfs2_readpage_inline(inode, page);
324 	else
325 		ret = block_read_full_page(page, ocfs2_get_block);
326 	unlock = 0;
327 
328 out_alloc:
329 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
330 out_inode_unlock:
331 	ocfs2_inode_unlock(inode, 0);
332 out:
333 	if (unlock)
334 		unlock_page(page);
335 	return ret;
336 }
337 
338 /*
339  * This is used only for read-ahead. Failures or difficult to handle
340  * situations are safe to ignore.
341  *
342  * Right now, we don't bother with BH_Boundary - in-inode extent lists
343  * are quite large (243 extents on 4k blocks), so most inodes don't
344  * grow out to a tree. If need be, detecting boundary extents could
345  * trivially be added in a future version of ocfs2_get_block().
346  */
347 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
348 			   struct list_head *pages, unsigned nr_pages)
349 {
350 	int ret, err = -EIO;
351 	struct inode *inode = mapping->host;
352 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
353 	loff_t start;
354 	struct page *last;
355 
356 	/*
357 	 * Use the nonblocking flag for the dlm code to avoid page
358 	 * lock inversion, but don't bother with retrying.
359 	 */
360 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361 	if (ret)
362 		return err;
363 
364 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
365 		ocfs2_inode_unlock(inode, 0);
366 		return err;
367 	}
368 
369 	/*
370 	 * Don't bother with inline-data. There isn't anything
371 	 * to read-ahead in that case anyway...
372 	 */
373 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
374 		goto out_unlock;
375 
376 	/*
377 	 * Check whether a remote node truncated this file - we just
378 	 * drop out in that case as it's not worth handling here.
379 	 */
380 	last = list_entry(pages->prev, struct page, lru);
381 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
382 	if (start >= i_size_read(inode))
383 		goto out_unlock;
384 
385 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
386 
387 out_unlock:
388 	up_read(&oi->ip_alloc_sem);
389 	ocfs2_inode_unlock(inode, 0);
390 
391 	return err;
392 }
393 
394 /* Note: Because we don't support holes, our allocation has
395  * already happened (allocation writes zeros to the file data)
396  * so we don't have to worry about ordered writes in
397  * ocfs2_writepage.
398  *
399  * ->writepage is called during the process of invalidating the page cache
400  * during blocked lock processing.  It can't block on any cluster locks
401  * to during block mapping.  It's relying on the fact that the block
402  * mapping can't have disappeared under the dirty pages that it is
403  * being asked to write back.
404  */
405 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
406 {
407 	trace_ocfs2_writepage(
408 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
409 		page->index);
410 
411 	return block_write_full_page(page, ocfs2_get_block, wbc);
412 }
413 
414 /* Taken from ext3. We don't necessarily need the full blown
415  * functionality yet, but IMHO it's better to cut and paste the whole
416  * thing so we can avoid introducing our own bugs (and easily pick up
417  * their fixes when they happen) --Mark */
418 int walk_page_buffers(	handle_t *handle,
419 			struct buffer_head *head,
420 			unsigned from,
421 			unsigned to,
422 			int *partial,
423 			int (*fn)(	handle_t *handle,
424 					struct buffer_head *bh))
425 {
426 	struct buffer_head *bh;
427 	unsigned block_start, block_end;
428 	unsigned blocksize = head->b_size;
429 	int err, ret = 0;
430 	struct buffer_head *next;
431 
432 	for (	bh = head, block_start = 0;
433 		ret == 0 && (bh != head || !block_start);
434 	    	block_start = block_end, bh = next)
435 	{
436 		next = bh->b_this_page;
437 		block_end = block_start + blocksize;
438 		if (block_end <= from || block_start >= to) {
439 			if (partial && !buffer_uptodate(bh))
440 				*partial = 1;
441 			continue;
442 		}
443 		err = (*fn)(handle, bh);
444 		if (!ret)
445 			ret = err;
446 	}
447 	return ret;
448 }
449 
450 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
451 {
452 	sector_t status;
453 	u64 p_blkno = 0;
454 	int err = 0;
455 	struct inode *inode = mapping->host;
456 
457 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
458 			 (unsigned long long)block);
459 
460 	/* We don't need to lock journal system files, since they aren't
461 	 * accessed concurrently from multiple nodes.
462 	 */
463 	if (!INODE_JOURNAL(inode)) {
464 		err = ocfs2_inode_lock(inode, NULL, 0);
465 		if (err) {
466 			if (err != -ENOENT)
467 				mlog_errno(err);
468 			goto bail;
469 		}
470 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
471 	}
472 
473 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
474 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
475 						  NULL);
476 
477 	if (!INODE_JOURNAL(inode)) {
478 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
479 		ocfs2_inode_unlock(inode, 0);
480 	}
481 
482 	if (err) {
483 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
484 		     (unsigned long long)block);
485 		mlog_errno(err);
486 		goto bail;
487 	}
488 
489 bail:
490 	status = err ? 0 : p_blkno;
491 
492 	return status;
493 }
494 
495 /*
496  * TODO: Make this into a generic get_blocks function.
497  *
498  * From do_direct_io in direct-io.c:
499  *  "So what we do is to permit the ->get_blocks function to populate
500  *   bh.b_size with the size of IO which is permitted at this offset and
501  *   this i_blkbits."
502  *
503  * This function is called directly from get_more_blocks in direct-io.c.
504  *
505  * called like this: dio->get_blocks(dio->inode, fs_startblk,
506  * 					fs_count, map_bh, dio->rw == WRITE);
507  *
508  * Note that we never bother to allocate blocks here, and thus ignore the
509  * create argument.
510  */
511 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
512 				     struct buffer_head *bh_result, int create)
513 {
514 	int ret;
515 	u64 p_blkno, inode_blocks, contig_blocks;
516 	unsigned int ext_flags;
517 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
518 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
519 
520 	/* This function won't even be called if the request isn't all
521 	 * nicely aligned and of the right size, so there's no need
522 	 * for us to check any of that. */
523 
524 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
525 
526 	/* This figures out the size of the next contiguous block, and
527 	 * our logical offset */
528 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
529 					  &contig_blocks, &ext_flags);
530 	if (ret) {
531 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
532 		     (unsigned long long)iblock);
533 		ret = -EIO;
534 		goto bail;
535 	}
536 
537 	/* We should already CoW the refcounted extent in case of create. */
538 	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
539 
540 	/*
541 	 * get_more_blocks() expects us to describe a hole by clearing
542 	 * the mapped bit on bh_result().
543 	 *
544 	 * Consider an unwritten extent as a hole.
545 	 */
546 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
547 		map_bh(bh_result, inode->i_sb, p_blkno);
548 	else
549 		clear_buffer_mapped(bh_result);
550 
551 	/* make sure we don't map more than max_blocks blocks here as
552 	   that's all the kernel will handle at this point. */
553 	if (max_blocks < contig_blocks)
554 		contig_blocks = max_blocks;
555 	bh_result->b_size = contig_blocks << blocksize_bits;
556 bail:
557 	return ret;
558 }
559 
560 /*
561  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
562  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
563  * to protect io on one node from truncation on another.
564  */
565 static void ocfs2_dio_end_io(struct kiocb *iocb,
566 			     loff_t offset,
567 			     ssize_t bytes,
568 			     void *private,
569 			     int ret,
570 			     bool is_async)
571 {
572 	struct inode *inode = file_inode(iocb->ki_filp);
573 	int level;
574 	wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
575 
576 	/* this io's submitter should not have unlocked this before we could */
577 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
578 
579 	if (ocfs2_iocb_is_sem_locked(iocb))
580 		ocfs2_iocb_clear_sem_locked(iocb);
581 
582 	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
583 		ocfs2_iocb_clear_unaligned_aio(iocb);
584 
585 		if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
586 		    waitqueue_active(wq)) {
587 			wake_up_all(wq);
588 		}
589 	}
590 
591 	ocfs2_iocb_clear_rw_locked(iocb);
592 
593 	level = ocfs2_iocb_rw_locked_level(iocb);
594 	ocfs2_rw_unlock(inode, level);
595 
596 	inode_dio_done(inode);
597 	if (is_async)
598 		aio_complete(iocb, ret, 0);
599 }
600 
601 /*
602  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
603  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
604  * do journalled data.
605  */
606 static void ocfs2_invalidatepage(struct page *page, unsigned int offset,
607 				 unsigned int length)
608 {
609 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
610 
611 	jbd2_journal_invalidatepage(journal, page, offset, length);
612 }
613 
614 static int ocfs2_releasepage(struct page *page, gfp_t wait)
615 {
616 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
617 
618 	if (!page_has_buffers(page))
619 		return 0;
620 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
621 }
622 
623 static ssize_t ocfs2_direct_IO(int rw,
624 			       struct kiocb *iocb,
625 			       const struct iovec *iov,
626 			       loff_t offset,
627 			       unsigned long nr_segs)
628 {
629 	struct file *file = iocb->ki_filp;
630 	struct inode *inode = file_inode(file)->i_mapping->host;
631 
632 	/*
633 	 * Fallback to buffered I/O if we see an inode without
634 	 * extents.
635 	 */
636 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
637 		return 0;
638 
639 	/* Fallback to buffered I/O if we are appending. */
640 	if (i_size_read(inode) <= offset)
641 		return 0;
642 
643 	return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
644 				    iov, offset, nr_segs,
645 				    ocfs2_direct_IO_get_blocks,
646 				    ocfs2_dio_end_io, NULL, 0);
647 }
648 
649 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
650 					    u32 cpos,
651 					    unsigned int *start,
652 					    unsigned int *end)
653 {
654 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
655 
656 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
657 		unsigned int cpp;
658 
659 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
660 
661 		cluster_start = cpos % cpp;
662 		cluster_start = cluster_start << osb->s_clustersize_bits;
663 
664 		cluster_end = cluster_start + osb->s_clustersize;
665 	}
666 
667 	BUG_ON(cluster_start > PAGE_SIZE);
668 	BUG_ON(cluster_end > PAGE_SIZE);
669 
670 	if (start)
671 		*start = cluster_start;
672 	if (end)
673 		*end = cluster_end;
674 }
675 
676 /*
677  * 'from' and 'to' are the region in the page to avoid zeroing.
678  *
679  * If pagesize > clustersize, this function will avoid zeroing outside
680  * of the cluster boundary.
681  *
682  * from == to == 0 is code for "zero the entire cluster region"
683  */
684 static void ocfs2_clear_page_regions(struct page *page,
685 				     struct ocfs2_super *osb, u32 cpos,
686 				     unsigned from, unsigned to)
687 {
688 	void *kaddr;
689 	unsigned int cluster_start, cluster_end;
690 
691 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
692 
693 	kaddr = kmap_atomic(page);
694 
695 	if (from || to) {
696 		if (from > cluster_start)
697 			memset(kaddr + cluster_start, 0, from - cluster_start);
698 		if (to < cluster_end)
699 			memset(kaddr + to, 0, cluster_end - to);
700 	} else {
701 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
702 	}
703 
704 	kunmap_atomic(kaddr);
705 }
706 
707 /*
708  * Nonsparse file systems fully allocate before we get to the write
709  * code. This prevents ocfs2_write() from tagging the write as an
710  * allocating one, which means ocfs2_map_page_blocks() might try to
711  * read-in the blocks at the tail of our file. Avoid reading them by
712  * testing i_size against each block offset.
713  */
714 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
715 				 unsigned int block_start)
716 {
717 	u64 offset = page_offset(page) + block_start;
718 
719 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
720 		return 1;
721 
722 	if (i_size_read(inode) > offset)
723 		return 1;
724 
725 	return 0;
726 }
727 
728 /*
729  * Some of this taken from __block_write_begin(). We already have our
730  * mapping by now though, and the entire write will be allocating or
731  * it won't, so not much need to use BH_New.
732  *
733  * This will also skip zeroing, which is handled externally.
734  */
735 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
736 			  struct inode *inode, unsigned int from,
737 			  unsigned int to, int new)
738 {
739 	int ret = 0;
740 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
741 	unsigned int block_end, block_start;
742 	unsigned int bsize = 1 << inode->i_blkbits;
743 
744 	if (!page_has_buffers(page))
745 		create_empty_buffers(page, bsize, 0);
746 
747 	head = page_buffers(page);
748 	for (bh = head, block_start = 0; bh != head || !block_start;
749 	     bh = bh->b_this_page, block_start += bsize) {
750 		block_end = block_start + bsize;
751 
752 		clear_buffer_new(bh);
753 
754 		/*
755 		 * Ignore blocks outside of our i/o range -
756 		 * they may belong to unallocated clusters.
757 		 */
758 		if (block_start >= to || block_end <= from) {
759 			if (PageUptodate(page))
760 				set_buffer_uptodate(bh);
761 			continue;
762 		}
763 
764 		/*
765 		 * For an allocating write with cluster size >= page
766 		 * size, we always write the entire page.
767 		 */
768 		if (new)
769 			set_buffer_new(bh);
770 
771 		if (!buffer_mapped(bh)) {
772 			map_bh(bh, inode->i_sb, *p_blkno);
773 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
774 		}
775 
776 		if (PageUptodate(page)) {
777 			if (!buffer_uptodate(bh))
778 				set_buffer_uptodate(bh);
779 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
780 			   !buffer_new(bh) &&
781 			   ocfs2_should_read_blk(inode, page, block_start) &&
782 			   (block_start < from || block_end > to)) {
783 			ll_rw_block(READ, 1, &bh);
784 			*wait_bh++=bh;
785 		}
786 
787 		*p_blkno = *p_blkno + 1;
788 	}
789 
790 	/*
791 	 * If we issued read requests - let them complete.
792 	 */
793 	while(wait_bh > wait) {
794 		wait_on_buffer(*--wait_bh);
795 		if (!buffer_uptodate(*wait_bh))
796 			ret = -EIO;
797 	}
798 
799 	if (ret == 0 || !new)
800 		return ret;
801 
802 	/*
803 	 * If we get -EIO above, zero out any newly allocated blocks
804 	 * to avoid exposing stale data.
805 	 */
806 	bh = head;
807 	block_start = 0;
808 	do {
809 		block_end = block_start + bsize;
810 		if (block_end <= from)
811 			goto next_bh;
812 		if (block_start >= to)
813 			break;
814 
815 		zero_user(page, block_start, bh->b_size);
816 		set_buffer_uptodate(bh);
817 		mark_buffer_dirty(bh);
818 
819 next_bh:
820 		block_start = block_end;
821 		bh = bh->b_this_page;
822 	} while (bh != head);
823 
824 	return ret;
825 }
826 
827 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
828 #define OCFS2_MAX_CTXT_PAGES	1
829 #else
830 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
831 #endif
832 
833 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
834 
835 /*
836  * Describe the state of a single cluster to be written to.
837  */
838 struct ocfs2_write_cluster_desc {
839 	u32		c_cpos;
840 	u32		c_phys;
841 	/*
842 	 * Give this a unique field because c_phys eventually gets
843 	 * filled.
844 	 */
845 	unsigned	c_new;
846 	unsigned	c_unwritten;
847 	unsigned	c_needs_zero;
848 };
849 
850 struct ocfs2_write_ctxt {
851 	/* Logical cluster position / len of write */
852 	u32				w_cpos;
853 	u32				w_clen;
854 
855 	/* First cluster allocated in a nonsparse extend */
856 	u32				w_first_new_cpos;
857 
858 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
859 
860 	/*
861 	 * This is true if page_size > cluster_size.
862 	 *
863 	 * It triggers a set of special cases during write which might
864 	 * have to deal with allocating writes to partial pages.
865 	 */
866 	unsigned int			w_large_pages;
867 
868 	/*
869 	 * Pages involved in this write.
870 	 *
871 	 * w_target_page is the page being written to by the user.
872 	 *
873 	 * w_pages is an array of pages which always contains
874 	 * w_target_page, and in the case of an allocating write with
875 	 * page_size < cluster size, it will contain zero'd and mapped
876 	 * pages adjacent to w_target_page which need to be written
877 	 * out in so that future reads from that region will get
878 	 * zero's.
879 	 */
880 	unsigned int			w_num_pages;
881 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
882 	struct page			*w_target_page;
883 
884 	/*
885 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
886 	 * against w_target_page in ocfs2_write_end_nolock.
887 	 */
888 	unsigned int			w_target_locked:1;
889 
890 	/*
891 	 * ocfs2_write_end() uses this to know what the real range to
892 	 * write in the target should be.
893 	 */
894 	unsigned int			w_target_from;
895 	unsigned int			w_target_to;
896 
897 	/*
898 	 * We could use journal_current_handle() but this is cleaner,
899 	 * IMHO -Mark
900 	 */
901 	handle_t			*w_handle;
902 
903 	struct buffer_head		*w_di_bh;
904 
905 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
906 };
907 
908 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
909 {
910 	int i;
911 
912 	for(i = 0; i < num_pages; i++) {
913 		if (pages[i]) {
914 			unlock_page(pages[i]);
915 			mark_page_accessed(pages[i]);
916 			page_cache_release(pages[i]);
917 		}
918 	}
919 }
920 
921 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
922 {
923 	int i;
924 
925 	/*
926 	 * w_target_locked is only set to true in the page_mkwrite() case.
927 	 * The intent is to allow us to lock the target page from write_begin()
928 	 * to write_end(). The caller must hold a ref on w_target_page.
929 	 */
930 	if (wc->w_target_locked) {
931 		BUG_ON(!wc->w_target_page);
932 		for (i = 0; i < wc->w_num_pages; i++) {
933 			if (wc->w_target_page == wc->w_pages[i]) {
934 				wc->w_pages[i] = NULL;
935 				break;
936 			}
937 		}
938 		mark_page_accessed(wc->w_target_page);
939 		page_cache_release(wc->w_target_page);
940 	}
941 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
942 
943 	brelse(wc->w_di_bh);
944 	kfree(wc);
945 }
946 
947 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
948 				  struct ocfs2_super *osb, loff_t pos,
949 				  unsigned len, struct buffer_head *di_bh)
950 {
951 	u32 cend;
952 	struct ocfs2_write_ctxt *wc;
953 
954 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
955 	if (!wc)
956 		return -ENOMEM;
957 
958 	wc->w_cpos = pos >> osb->s_clustersize_bits;
959 	wc->w_first_new_cpos = UINT_MAX;
960 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
961 	wc->w_clen = cend - wc->w_cpos + 1;
962 	get_bh(di_bh);
963 	wc->w_di_bh = di_bh;
964 
965 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
966 		wc->w_large_pages = 1;
967 	else
968 		wc->w_large_pages = 0;
969 
970 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
971 
972 	*wcp = wc;
973 
974 	return 0;
975 }
976 
977 /*
978  * If a page has any new buffers, zero them out here, and mark them uptodate
979  * and dirty so they'll be written out (in order to prevent uninitialised
980  * block data from leaking). And clear the new bit.
981  */
982 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
983 {
984 	unsigned int block_start, block_end;
985 	struct buffer_head *head, *bh;
986 
987 	BUG_ON(!PageLocked(page));
988 	if (!page_has_buffers(page))
989 		return;
990 
991 	bh = head = page_buffers(page);
992 	block_start = 0;
993 	do {
994 		block_end = block_start + bh->b_size;
995 
996 		if (buffer_new(bh)) {
997 			if (block_end > from && block_start < to) {
998 				if (!PageUptodate(page)) {
999 					unsigned start, end;
1000 
1001 					start = max(from, block_start);
1002 					end = min(to, block_end);
1003 
1004 					zero_user_segment(page, start, end);
1005 					set_buffer_uptodate(bh);
1006 				}
1007 
1008 				clear_buffer_new(bh);
1009 				mark_buffer_dirty(bh);
1010 			}
1011 		}
1012 
1013 		block_start = block_end;
1014 		bh = bh->b_this_page;
1015 	} while (bh != head);
1016 }
1017 
1018 /*
1019  * Only called when we have a failure during allocating write to write
1020  * zero's to the newly allocated region.
1021  */
1022 static void ocfs2_write_failure(struct inode *inode,
1023 				struct ocfs2_write_ctxt *wc,
1024 				loff_t user_pos, unsigned user_len)
1025 {
1026 	int i;
1027 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1028 		to = user_pos + user_len;
1029 	struct page *tmppage;
1030 
1031 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1032 
1033 	for(i = 0; i < wc->w_num_pages; i++) {
1034 		tmppage = wc->w_pages[i];
1035 
1036 		if (page_has_buffers(tmppage)) {
1037 			if (ocfs2_should_order_data(inode))
1038 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1039 
1040 			block_commit_write(tmppage, from, to);
1041 		}
1042 	}
1043 }
1044 
1045 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1046 					struct ocfs2_write_ctxt *wc,
1047 					struct page *page, u32 cpos,
1048 					loff_t user_pos, unsigned user_len,
1049 					int new)
1050 {
1051 	int ret;
1052 	unsigned int map_from = 0, map_to = 0;
1053 	unsigned int cluster_start, cluster_end;
1054 	unsigned int user_data_from = 0, user_data_to = 0;
1055 
1056 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1057 					&cluster_start, &cluster_end);
1058 
1059 	/* treat the write as new if the a hole/lseek spanned across
1060 	 * the page boundary.
1061 	 */
1062 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1063 			(page_offset(page) <= user_pos));
1064 
1065 	if (page == wc->w_target_page) {
1066 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1067 		map_to = map_from + user_len;
1068 
1069 		if (new)
1070 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1071 						    cluster_start, cluster_end,
1072 						    new);
1073 		else
1074 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1075 						    map_from, map_to, new);
1076 		if (ret) {
1077 			mlog_errno(ret);
1078 			goto out;
1079 		}
1080 
1081 		user_data_from = map_from;
1082 		user_data_to = map_to;
1083 		if (new) {
1084 			map_from = cluster_start;
1085 			map_to = cluster_end;
1086 		}
1087 	} else {
1088 		/*
1089 		 * If we haven't allocated the new page yet, we
1090 		 * shouldn't be writing it out without copying user
1091 		 * data. This is likely a math error from the caller.
1092 		 */
1093 		BUG_ON(!new);
1094 
1095 		map_from = cluster_start;
1096 		map_to = cluster_end;
1097 
1098 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1099 					    cluster_start, cluster_end, new);
1100 		if (ret) {
1101 			mlog_errno(ret);
1102 			goto out;
1103 		}
1104 	}
1105 
1106 	/*
1107 	 * Parts of newly allocated pages need to be zero'd.
1108 	 *
1109 	 * Above, we have also rewritten 'to' and 'from' - as far as
1110 	 * the rest of the function is concerned, the entire cluster
1111 	 * range inside of a page needs to be written.
1112 	 *
1113 	 * We can skip this if the page is up to date - it's already
1114 	 * been zero'd from being read in as a hole.
1115 	 */
1116 	if (new && !PageUptodate(page))
1117 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1118 					 cpos, user_data_from, user_data_to);
1119 
1120 	flush_dcache_page(page);
1121 
1122 out:
1123 	return ret;
1124 }
1125 
1126 /*
1127  * This function will only grab one clusters worth of pages.
1128  */
1129 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1130 				      struct ocfs2_write_ctxt *wc,
1131 				      u32 cpos, loff_t user_pos,
1132 				      unsigned user_len, int new,
1133 				      struct page *mmap_page)
1134 {
1135 	int ret = 0, i;
1136 	unsigned long start, target_index, end_index, index;
1137 	struct inode *inode = mapping->host;
1138 	loff_t last_byte;
1139 
1140 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1141 
1142 	/*
1143 	 * Figure out how many pages we'll be manipulating here. For
1144 	 * non allocating write, we just change the one
1145 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1146 	 * writing past i_size, we only need enough pages to cover the
1147 	 * last page of the write.
1148 	 */
1149 	if (new) {
1150 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1151 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1152 		/*
1153 		 * We need the index *past* the last page we could possibly
1154 		 * touch.  This is the page past the end of the write or
1155 		 * i_size, whichever is greater.
1156 		 */
1157 		last_byte = max(user_pos + user_len, i_size_read(inode));
1158 		BUG_ON(last_byte < 1);
1159 		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1160 		if ((start + wc->w_num_pages) > end_index)
1161 			wc->w_num_pages = end_index - start;
1162 	} else {
1163 		wc->w_num_pages = 1;
1164 		start = target_index;
1165 	}
1166 
1167 	for(i = 0; i < wc->w_num_pages; i++) {
1168 		index = start + i;
1169 
1170 		if (index == target_index && mmap_page) {
1171 			/*
1172 			 * ocfs2_pagemkwrite() is a little different
1173 			 * and wants us to directly use the page
1174 			 * passed in.
1175 			 */
1176 			lock_page(mmap_page);
1177 
1178 			/* Exit and let the caller retry */
1179 			if (mmap_page->mapping != mapping) {
1180 				WARN_ON(mmap_page->mapping);
1181 				unlock_page(mmap_page);
1182 				ret = -EAGAIN;
1183 				goto out;
1184 			}
1185 
1186 			page_cache_get(mmap_page);
1187 			wc->w_pages[i] = mmap_page;
1188 			wc->w_target_locked = true;
1189 		} else {
1190 			wc->w_pages[i] = find_or_create_page(mapping, index,
1191 							     GFP_NOFS);
1192 			if (!wc->w_pages[i]) {
1193 				ret = -ENOMEM;
1194 				mlog_errno(ret);
1195 				goto out;
1196 			}
1197 		}
1198 		wait_for_stable_page(wc->w_pages[i]);
1199 
1200 		if (index == target_index)
1201 			wc->w_target_page = wc->w_pages[i];
1202 	}
1203 out:
1204 	if (ret)
1205 		wc->w_target_locked = false;
1206 	return ret;
1207 }
1208 
1209 /*
1210  * Prepare a single cluster for write one cluster into the file.
1211  */
1212 static int ocfs2_write_cluster(struct address_space *mapping,
1213 			       u32 phys, unsigned int unwritten,
1214 			       unsigned int should_zero,
1215 			       struct ocfs2_alloc_context *data_ac,
1216 			       struct ocfs2_alloc_context *meta_ac,
1217 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1218 			       loff_t user_pos, unsigned user_len)
1219 {
1220 	int ret, i, new;
1221 	u64 v_blkno, p_blkno;
1222 	struct inode *inode = mapping->host;
1223 	struct ocfs2_extent_tree et;
1224 
1225 	new = phys == 0 ? 1 : 0;
1226 	if (new) {
1227 		u32 tmp_pos;
1228 
1229 		/*
1230 		 * This is safe to call with the page locks - it won't take
1231 		 * any additional semaphores or cluster locks.
1232 		 */
1233 		tmp_pos = cpos;
1234 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1235 					   &tmp_pos, 1, 0, wc->w_di_bh,
1236 					   wc->w_handle, data_ac,
1237 					   meta_ac, NULL);
1238 		/*
1239 		 * This shouldn't happen because we must have already
1240 		 * calculated the correct meta data allocation required. The
1241 		 * internal tree allocation code should know how to increase
1242 		 * transaction credits itself.
1243 		 *
1244 		 * If need be, we could handle -EAGAIN for a
1245 		 * RESTART_TRANS here.
1246 		 */
1247 		mlog_bug_on_msg(ret == -EAGAIN,
1248 				"Inode %llu: EAGAIN return during allocation.\n",
1249 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1250 		if (ret < 0) {
1251 			mlog_errno(ret);
1252 			goto out;
1253 		}
1254 	} else if (unwritten) {
1255 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1256 					      wc->w_di_bh);
1257 		ret = ocfs2_mark_extent_written(inode, &et,
1258 						wc->w_handle, cpos, 1, phys,
1259 						meta_ac, &wc->w_dealloc);
1260 		if (ret < 0) {
1261 			mlog_errno(ret);
1262 			goto out;
1263 		}
1264 	}
1265 
1266 	if (should_zero)
1267 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1268 	else
1269 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1270 
1271 	/*
1272 	 * The only reason this should fail is due to an inability to
1273 	 * find the extent added.
1274 	 */
1275 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1276 					  NULL);
1277 	if (ret < 0) {
1278 		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1279 			    "at logical block %llu",
1280 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1281 			    (unsigned long long)v_blkno);
1282 		goto out;
1283 	}
1284 
1285 	BUG_ON(p_blkno == 0);
1286 
1287 	for(i = 0; i < wc->w_num_pages; i++) {
1288 		int tmpret;
1289 
1290 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1291 						      wc->w_pages[i], cpos,
1292 						      user_pos, user_len,
1293 						      should_zero);
1294 		if (tmpret) {
1295 			mlog_errno(tmpret);
1296 			if (ret == 0)
1297 				ret = tmpret;
1298 		}
1299 	}
1300 
1301 	/*
1302 	 * We only have cleanup to do in case of allocating write.
1303 	 */
1304 	if (ret && new)
1305 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1306 
1307 out:
1308 
1309 	return ret;
1310 }
1311 
1312 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1313 				       struct ocfs2_alloc_context *data_ac,
1314 				       struct ocfs2_alloc_context *meta_ac,
1315 				       struct ocfs2_write_ctxt *wc,
1316 				       loff_t pos, unsigned len)
1317 {
1318 	int ret, i;
1319 	loff_t cluster_off;
1320 	unsigned int local_len = len;
1321 	struct ocfs2_write_cluster_desc *desc;
1322 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1323 
1324 	for (i = 0; i < wc->w_clen; i++) {
1325 		desc = &wc->w_desc[i];
1326 
1327 		/*
1328 		 * We have to make sure that the total write passed in
1329 		 * doesn't extend past a single cluster.
1330 		 */
1331 		local_len = len;
1332 		cluster_off = pos & (osb->s_clustersize - 1);
1333 		if ((cluster_off + local_len) > osb->s_clustersize)
1334 			local_len = osb->s_clustersize - cluster_off;
1335 
1336 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1337 					  desc->c_unwritten,
1338 					  desc->c_needs_zero,
1339 					  data_ac, meta_ac,
1340 					  wc, desc->c_cpos, pos, local_len);
1341 		if (ret) {
1342 			mlog_errno(ret);
1343 			goto out;
1344 		}
1345 
1346 		len -= local_len;
1347 		pos += local_len;
1348 	}
1349 
1350 	ret = 0;
1351 out:
1352 	return ret;
1353 }
1354 
1355 /*
1356  * ocfs2_write_end() wants to know which parts of the target page it
1357  * should complete the write on. It's easiest to compute them ahead of
1358  * time when a more complete view of the write is available.
1359  */
1360 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1361 					struct ocfs2_write_ctxt *wc,
1362 					loff_t pos, unsigned len, int alloc)
1363 {
1364 	struct ocfs2_write_cluster_desc *desc;
1365 
1366 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1367 	wc->w_target_to = wc->w_target_from + len;
1368 
1369 	if (alloc == 0)
1370 		return;
1371 
1372 	/*
1373 	 * Allocating write - we may have different boundaries based
1374 	 * on page size and cluster size.
1375 	 *
1376 	 * NOTE: We can no longer compute one value from the other as
1377 	 * the actual write length and user provided length may be
1378 	 * different.
1379 	 */
1380 
1381 	if (wc->w_large_pages) {
1382 		/*
1383 		 * We only care about the 1st and last cluster within
1384 		 * our range and whether they should be zero'd or not. Either
1385 		 * value may be extended out to the start/end of a
1386 		 * newly allocated cluster.
1387 		 */
1388 		desc = &wc->w_desc[0];
1389 		if (desc->c_needs_zero)
1390 			ocfs2_figure_cluster_boundaries(osb,
1391 							desc->c_cpos,
1392 							&wc->w_target_from,
1393 							NULL);
1394 
1395 		desc = &wc->w_desc[wc->w_clen - 1];
1396 		if (desc->c_needs_zero)
1397 			ocfs2_figure_cluster_boundaries(osb,
1398 							desc->c_cpos,
1399 							NULL,
1400 							&wc->w_target_to);
1401 	} else {
1402 		wc->w_target_from = 0;
1403 		wc->w_target_to = PAGE_CACHE_SIZE;
1404 	}
1405 }
1406 
1407 /*
1408  * Populate each single-cluster write descriptor in the write context
1409  * with information about the i/o to be done.
1410  *
1411  * Returns the number of clusters that will have to be allocated, as
1412  * well as a worst case estimate of the number of extent records that
1413  * would have to be created during a write to an unwritten region.
1414  */
1415 static int ocfs2_populate_write_desc(struct inode *inode,
1416 				     struct ocfs2_write_ctxt *wc,
1417 				     unsigned int *clusters_to_alloc,
1418 				     unsigned int *extents_to_split)
1419 {
1420 	int ret;
1421 	struct ocfs2_write_cluster_desc *desc;
1422 	unsigned int num_clusters = 0;
1423 	unsigned int ext_flags = 0;
1424 	u32 phys = 0;
1425 	int i;
1426 
1427 	*clusters_to_alloc = 0;
1428 	*extents_to_split = 0;
1429 
1430 	for (i = 0; i < wc->w_clen; i++) {
1431 		desc = &wc->w_desc[i];
1432 		desc->c_cpos = wc->w_cpos + i;
1433 
1434 		if (num_clusters == 0) {
1435 			/*
1436 			 * Need to look up the next extent record.
1437 			 */
1438 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1439 						 &num_clusters, &ext_flags);
1440 			if (ret) {
1441 				mlog_errno(ret);
1442 				goto out;
1443 			}
1444 
1445 			/* We should already CoW the refcountd extent. */
1446 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1447 
1448 			/*
1449 			 * Assume worst case - that we're writing in
1450 			 * the middle of the extent.
1451 			 *
1452 			 * We can assume that the write proceeds from
1453 			 * left to right, in which case the extent
1454 			 * insert code is smart enough to coalesce the
1455 			 * next splits into the previous records created.
1456 			 */
1457 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1458 				*extents_to_split = *extents_to_split + 2;
1459 		} else if (phys) {
1460 			/*
1461 			 * Only increment phys if it doesn't describe
1462 			 * a hole.
1463 			 */
1464 			phys++;
1465 		}
1466 
1467 		/*
1468 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1469 		 * file that got extended.  w_first_new_cpos tells us
1470 		 * where the newly allocated clusters are so we can
1471 		 * zero them.
1472 		 */
1473 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1474 			BUG_ON(phys == 0);
1475 			desc->c_needs_zero = 1;
1476 		}
1477 
1478 		desc->c_phys = phys;
1479 		if (phys == 0) {
1480 			desc->c_new = 1;
1481 			desc->c_needs_zero = 1;
1482 			*clusters_to_alloc = *clusters_to_alloc + 1;
1483 		}
1484 
1485 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1486 			desc->c_unwritten = 1;
1487 			desc->c_needs_zero = 1;
1488 		}
1489 
1490 		num_clusters--;
1491 	}
1492 
1493 	ret = 0;
1494 out:
1495 	return ret;
1496 }
1497 
1498 static int ocfs2_write_begin_inline(struct address_space *mapping,
1499 				    struct inode *inode,
1500 				    struct ocfs2_write_ctxt *wc)
1501 {
1502 	int ret;
1503 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1504 	struct page *page;
1505 	handle_t *handle;
1506 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1507 
1508 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1509 	if (!page) {
1510 		ret = -ENOMEM;
1511 		mlog_errno(ret);
1512 		goto out;
1513 	}
1514 	/*
1515 	 * If we don't set w_num_pages then this page won't get unlocked
1516 	 * and freed on cleanup of the write context.
1517 	 */
1518 	wc->w_pages[0] = wc->w_target_page = page;
1519 	wc->w_num_pages = 1;
1520 
1521 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1522 	if (IS_ERR(handle)) {
1523 		ret = PTR_ERR(handle);
1524 		mlog_errno(ret);
1525 		goto out;
1526 	}
1527 
1528 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1529 				      OCFS2_JOURNAL_ACCESS_WRITE);
1530 	if (ret) {
1531 		ocfs2_commit_trans(osb, handle);
1532 
1533 		mlog_errno(ret);
1534 		goto out;
1535 	}
1536 
1537 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1538 		ocfs2_set_inode_data_inline(inode, di);
1539 
1540 	if (!PageUptodate(page)) {
1541 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1542 		if (ret) {
1543 			ocfs2_commit_trans(osb, handle);
1544 
1545 			goto out;
1546 		}
1547 	}
1548 
1549 	wc->w_handle = handle;
1550 out:
1551 	return ret;
1552 }
1553 
1554 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1555 {
1556 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1557 
1558 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1559 		return 1;
1560 	return 0;
1561 }
1562 
1563 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1564 					  struct inode *inode, loff_t pos,
1565 					  unsigned len, struct page *mmap_page,
1566 					  struct ocfs2_write_ctxt *wc)
1567 {
1568 	int ret, written = 0;
1569 	loff_t end = pos + len;
1570 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1571 	struct ocfs2_dinode *di = NULL;
1572 
1573 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1574 					     len, (unsigned long long)pos,
1575 					     oi->ip_dyn_features);
1576 
1577 	/*
1578 	 * Handle inodes which already have inline data 1st.
1579 	 */
1580 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1581 		if (mmap_page == NULL &&
1582 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1583 			goto do_inline_write;
1584 
1585 		/*
1586 		 * The write won't fit - we have to give this inode an
1587 		 * inline extent list now.
1588 		 */
1589 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1590 		if (ret)
1591 			mlog_errno(ret);
1592 		goto out;
1593 	}
1594 
1595 	/*
1596 	 * Check whether the inode can accept inline data.
1597 	 */
1598 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1599 		return 0;
1600 
1601 	/*
1602 	 * Check whether the write can fit.
1603 	 */
1604 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1605 	if (mmap_page ||
1606 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1607 		return 0;
1608 
1609 do_inline_write:
1610 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1611 	if (ret) {
1612 		mlog_errno(ret);
1613 		goto out;
1614 	}
1615 
1616 	/*
1617 	 * This signals to the caller that the data can be written
1618 	 * inline.
1619 	 */
1620 	written = 1;
1621 out:
1622 	return written ? written : ret;
1623 }
1624 
1625 /*
1626  * This function only does anything for file systems which can't
1627  * handle sparse files.
1628  *
1629  * What we want to do here is fill in any hole between the current end
1630  * of allocation and the end of our write. That way the rest of the
1631  * write path can treat it as an non-allocating write, which has no
1632  * special case code for sparse/nonsparse files.
1633  */
1634 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1635 					struct buffer_head *di_bh,
1636 					loff_t pos, unsigned len,
1637 					struct ocfs2_write_ctxt *wc)
1638 {
1639 	int ret;
1640 	loff_t newsize = pos + len;
1641 
1642 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1643 
1644 	if (newsize <= i_size_read(inode))
1645 		return 0;
1646 
1647 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1648 	if (ret)
1649 		mlog_errno(ret);
1650 
1651 	wc->w_first_new_cpos =
1652 		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1653 
1654 	return ret;
1655 }
1656 
1657 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1658 			   loff_t pos)
1659 {
1660 	int ret = 0;
1661 
1662 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1663 	if (pos > i_size_read(inode))
1664 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1665 
1666 	return ret;
1667 }
1668 
1669 /*
1670  * Try to flush truncate logs if we can free enough clusters from it.
1671  * As for return value, "< 0" means error, "0" no space and "1" means
1672  * we have freed enough spaces and let the caller try to allocate again.
1673  */
1674 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1675 					  unsigned int needed)
1676 {
1677 	tid_t target;
1678 	int ret = 0;
1679 	unsigned int truncated_clusters;
1680 
1681 	mutex_lock(&osb->osb_tl_inode->i_mutex);
1682 	truncated_clusters = osb->truncated_clusters;
1683 	mutex_unlock(&osb->osb_tl_inode->i_mutex);
1684 
1685 	/*
1686 	 * Check whether we can succeed in allocating if we free
1687 	 * the truncate log.
1688 	 */
1689 	if (truncated_clusters < needed)
1690 		goto out;
1691 
1692 	ret = ocfs2_flush_truncate_log(osb);
1693 	if (ret) {
1694 		mlog_errno(ret);
1695 		goto out;
1696 	}
1697 
1698 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1699 		jbd2_log_wait_commit(osb->journal->j_journal, target);
1700 		ret = 1;
1701 	}
1702 out:
1703 	return ret;
1704 }
1705 
1706 int ocfs2_write_begin_nolock(struct file *filp,
1707 			     struct address_space *mapping,
1708 			     loff_t pos, unsigned len, unsigned flags,
1709 			     struct page **pagep, void **fsdata,
1710 			     struct buffer_head *di_bh, struct page *mmap_page)
1711 {
1712 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1713 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1714 	struct ocfs2_write_ctxt *wc;
1715 	struct inode *inode = mapping->host;
1716 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1717 	struct ocfs2_dinode *di;
1718 	struct ocfs2_alloc_context *data_ac = NULL;
1719 	struct ocfs2_alloc_context *meta_ac = NULL;
1720 	handle_t *handle;
1721 	struct ocfs2_extent_tree et;
1722 	int try_free = 1, ret1;
1723 
1724 try_again:
1725 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1726 	if (ret) {
1727 		mlog_errno(ret);
1728 		return ret;
1729 	}
1730 
1731 	if (ocfs2_supports_inline_data(osb)) {
1732 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1733 						     mmap_page, wc);
1734 		if (ret == 1) {
1735 			ret = 0;
1736 			goto success;
1737 		}
1738 		if (ret < 0) {
1739 			mlog_errno(ret);
1740 			goto out;
1741 		}
1742 	}
1743 
1744 	if (ocfs2_sparse_alloc(osb))
1745 		ret = ocfs2_zero_tail(inode, di_bh, pos);
1746 	else
1747 		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1748 						   wc);
1749 	if (ret) {
1750 		mlog_errno(ret);
1751 		goto out;
1752 	}
1753 
1754 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1755 	if (ret < 0) {
1756 		mlog_errno(ret);
1757 		goto out;
1758 	} else if (ret == 1) {
1759 		clusters_need = wc->w_clen;
1760 		ret = ocfs2_refcount_cow(inode, filp, di_bh,
1761 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1762 		if (ret) {
1763 			mlog_errno(ret);
1764 			goto out;
1765 		}
1766 	}
1767 
1768 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1769 					&extents_to_split);
1770 	if (ret) {
1771 		mlog_errno(ret);
1772 		goto out;
1773 	}
1774 	clusters_need += clusters_to_alloc;
1775 
1776 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1777 
1778 	trace_ocfs2_write_begin_nolock(
1779 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1780 			(long long)i_size_read(inode),
1781 			le32_to_cpu(di->i_clusters),
1782 			pos, len, flags, mmap_page,
1783 			clusters_to_alloc, extents_to_split);
1784 
1785 	/*
1786 	 * We set w_target_from, w_target_to here so that
1787 	 * ocfs2_write_end() knows which range in the target page to
1788 	 * write out. An allocation requires that we write the entire
1789 	 * cluster range.
1790 	 */
1791 	if (clusters_to_alloc || extents_to_split) {
1792 		/*
1793 		 * XXX: We are stretching the limits of
1794 		 * ocfs2_lock_allocators(). It greatly over-estimates
1795 		 * the work to be done.
1796 		 */
1797 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1798 					      wc->w_di_bh);
1799 		ret = ocfs2_lock_allocators(inode, &et,
1800 					    clusters_to_alloc, extents_to_split,
1801 					    &data_ac, &meta_ac);
1802 		if (ret) {
1803 			mlog_errno(ret);
1804 			goto out;
1805 		}
1806 
1807 		if (data_ac)
1808 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1809 
1810 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1811 						    &di->id2.i_list,
1812 						    clusters_to_alloc);
1813 
1814 	}
1815 
1816 	/*
1817 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1818 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1819 	 * we know zeros will only be needed in the first and/or last cluster.
1820 	 */
1821 	if (clusters_to_alloc || extents_to_split ||
1822 	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1823 			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1824 		cluster_of_pages = 1;
1825 	else
1826 		cluster_of_pages = 0;
1827 
1828 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1829 
1830 	handle = ocfs2_start_trans(osb, credits);
1831 	if (IS_ERR(handle)) {
1832 		ret = PTR_ERR(handle);
1833 		mlog_errno(ret);
1834 		goto out;
1835 	}
1836 
1837 	wc->w_handle = handle;
1838 
1839 	if (clusters_to_alloc) {
1840 		ret = dquot_alloc_space_nodirty(inode,
1841 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1842 		if (ret)
1843 			goto out_commit;
1844 	}
1845 	/*
1846 	 * We don't want this to fail in ocfs2_write_end(), so do it
1847 	 * here.
1848 	 */
1849 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1850 				      OCFS2_JOURNAL_ACCESS_WRITE);
1851 	if (ret) {
1852 		mlog_errno(ret);
1853 		goto out_quota;
1854 	}
1855 
1856 	/*
1857 	 * Fill our page array first. That way we've grabbed enough so
1858 	 * that we can zero and flush if we error after adding the
1859 	 * extent.
1860 	 */
1861 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1862 					 cluster_of_pages, mmap_page);
1863 	if (ret && ret != -EAGAIN) {
1864 		mlog_errno(ret);
1865 		goto out_quota;
1866 	}
1867 
1868 	/*
1869 	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1870 	 * the target page. In this case, we exit with no error and no target
1871 	 * page. This will trigger the caller, page_mkwrite(), to re-try
1872 	 * the operation.
1873 	 */
1874 	if (ret == -EAGAIN) {
1875 		BUG_ON(wc->w_target_page);
1876 		ret = 0;
1877 		goto out_quota;
1878 	}
1879 
1880 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1881 					  len);
1882 	if (ret) {
1883 		mlog_errno(ret);
1884 		goto out_quota;
1885 	}
1886 
1887 	if (data_ac)
1888 		ocfs2_free_alloc_context(data_ac);
1889 	if (meta_ac)
1890 		ocfs2_free_alloc_context(meta_ac);
1891 
1892 success:
1893 	*pagep = wc->w_target_page;
1894 	*fsdata = wc;
1895 	return 0;
1896 out_quota:
1897 	if (clusters_to_alloc)
1898 		dquot_free_space(inode,
1899 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1900 out_commit:
1901 	ocfs2_commit_trans(osb, handle);
1902 
1903 out:
1904 	ocfs2_free_write_ctxt(wc);
1905 
1906 	if (data_ac)
1907 		ocfs2_free_alloc_context(data_ac);
1908 	if (meta_ac)
1909 		ocfs2_free_alloc_context(meta_ac);
1910 
1911 	if (ret == -ENOSPC && try_free) {
1912 		/*
1913 		 * Try to free some truncate log so that we can have enough
1914 		 * clusters to allocate.
1915 		 */
1916 		try_free = 0;
1917 
1918 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1919 		if (ret1 == 1)
1920 			goto try_again;
1921 
1922 		if (ret1 < 0)
1923 			mlog_errno(ret1);
1924 	}
1925 
1926 	return ret;
1927 }
1928 
1929 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1930 			     loff_t pos, unsigned len, unsigned flags,
1931 			     struct page **pagep, void **fsdata)
1932 {
1933 	int ret;
1934 	struct buffer_head *di_bh = NULL;
1935 	struct inode *inode = mapping->host;
1936 
1937 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1938 	if (ret) {
1939 		mlog_errno(ret);
1940 		return ret;
1941 	}
1942 
1943 	/*
1944 	 * Take alloc sem here to prevent concurrent lookups. That way
1945 	 * the mapping, zeroing and tree manipulation within
1946 	 * ocfs2_write() will be safe against ->readpage(). This
1947 	 * should also serve to lock out allocation from a shared
1948 	 * writeable region.
1949 	 */
1950 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1951 
1952 	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1953 				       fsdata, di_bh, NULL);
1954 	if (ret) {
1955 		mlog_errno(ret);
1956 		goto out_fail;
1957 	}
1958 
1959 	brelse(di_bh);
1960 
1961 	return 0;
1962 
1963 out_fail:
1964 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1965 
1966 	brelse(di_bh);
1967 	ocfs2_inode_unlock(inode, 1);
1968 
1969 	return ret;
1970 }
1971 
1972 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1973 				   unsigned len, unsigned *copied,
1974 				   struct ocfs2_dinode *di,
1975 				   struct ocfs2_write_ctxt *wc)
1976 {
1977 	void *kaddr;
1978 
1979 	if (unlikely(*copied < len)) {
1980 		if (!PageUptodate(wc->w_target_page)) {
1981 			*copied = 0;
1982 			return;
1983 		}
1984 	}
1985 
1986 	kaddr = kmap_atomic(wc->w_target_page);
1987 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1988 	kunmap_atomic(kaddr);
1989 
1990 	trace_ocfs2_write_end_inline(
1991 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1992 	     (unsigned long long)pos, *copied,
1993 	     le16_to_cpu(di->id2.i_data.id_count),
1994 	     le16_to_cpu(di->i_dyn_features));
1995 }
1996 
1997 int ocfs2_write_end_nolock(struct address_space *mapping,
1998 			   loff_t pos, unsigned len, unsigned copied,
1999 			   struct page *page, void *fsdata)
2000 {
2001 	int i;
2002 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2003 	struct inode *inode = mapping->host;
2004 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2005 	struct ocfs2_write_ctxt *wc = fsdata;
2006 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2007 	handle_t *handle = wc->w_handle;
2008 	struct page *tmppage;
2009 
2010 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2011 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2012 		goto out_write_size;
2013 	}
2014 
2015 	if (unlikely(copied < len)) {
2016 		if (!PageUptodate(wc->w_target_page))
2017 			copied = 0;
2018 
2019 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2020 				       start+len);
2021 	}
2022 	flush_dcache_page(wc->w_target_page);
2023 
2024 	for(i = 0; i < wc->w_num_pages; i++) {
2025 		tmppage = wc->w_pages[i];
2026 
2027 		if (tmppage == wc->w_target_page) {
2028 			from = wc->w_target_from;
2029 			to = wc->w_target_to;
2030 
2031 			BUG_ON(from > PAGE_CACHE_SIZE ||
2032 			       to > PAGE_CACHE_SIZE ||
2033 			       to < from);
2034 		} else {
2035 			/*
2036 			 * Pages adjacent to the target (if any) imply
2037 			 * a hole-filling write in which case we want
2038 			 * to flush their entire range.
2039 			 */
2040 			from = 0;
2041 			to = PAGE_CACHE_SIZE;
2042 		}
2043 
2044 		if (page_has_buffers(tmppage)) {
2045 			if (ocfs2_should_order_data(inode))
2046 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
2047 			block_commit_write(tmppage, from, to);
2048 		}
2049 	}
2050 
2051 out_write_size:
2052 	pos += copied;
2053 	if (pos > inode->i_size) {
2054 		i_size_write(inode, pos);
2055 		mark_inode_dirty(inode);
2056 	}
2057 	inode->i_blocks = ocfs2_inode_sector_count(inode);
2058 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2059 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2060 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2061 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2062 	ocfs2_journal_dirty(handle, wc->w_di_bh);
2063 
2064 	ocfs2_commit_trans(osb, handle);
2065 
2066 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2067 
2068 	ocfs2_free_write_ctxt(wc);
2069 
2070 	return copied;
2071 }
2072 
2073 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2074 			   loff_t pos, unsigned len, unsigned copied,
2075 			   struct page *page, void *fsdata)
2076 {
2077 	int ret;
2078 	struct inode *inode = mapping->host;
2079 
2080 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2081 
2082 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2083 	ocfs2_inode_unlock(inode, 1);
2084 
2085 	return ret;
2086 }
2087 
2088 const struct address_space_operations ocfs2_aops = {
2089 	.readpage		= ocfs2_readpage,
2090 	.readpages		= ocfs2_readpages,
2091 	.writepage		= ocfs2_writepage,
2092 	.write_begin		= ocfs2_write_begin,
2093 	.write_end		= ocfs2_write_end,
2094 	.bmap			= ocfs2_bmap,
2095 	.direct_IO		= ocfs2_direct_IO,
2096 	.invalidatepage		= ocfs2_invalidatepage,
2097 	.releasepage		= ocfs2_releasepage,
2098 	.migratepage		= buffer_migrate_page,
2099 	.is_partially_uptodate	= block_is_partially_uptodate,
2100 	.error_remove_page	= generic_error_remove_page,
2101 };
2102