xref: /openbmc/linux/fs/ocfs2/aops.c (revision c0e297dc)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33 
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50 
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55 
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 				   struct buffer_head *bh_result, int create)
58 {
59 	int err = -EIO;
60 	int status;
61 	struct ocfs2_dinode *fe = NULL;
62 	struct buffer_head *bh = NULL;
63 	struct buffer_head *buffer_cache_bh = NULL;
64 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 	void *kaddr;
66 
67 	trace_ocfs2_symlink_get_block(
68 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
69 			(unsigned long long)iblock, bh_result, create);
70 
71 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72 
73 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 		     (unsigned long long)iblock);
76 		goto bail;
77 	}
78 
79 	status = ocfs2_read_inode_block(inode, &bh);
80 	if (status < 0) {
81 		mlog_errno(status);
82 		goto bail;
83 	}
84 	fe = (struct ocfs2_dinode *) bh->b_data;
85 
86 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 						    le32_to_cpu(fe->i_clusters))) {
88 		err = -ENOMEM;
89 		mlog(ML_ERROR, "block offset is outside the allocated size: "
90 		     "%llu\n", (unsigned long long)iblock);
91 		goto bail;
92 	}
93 
94 	/* We don't use the page cache to create symlink data, so if
95 	 * need be, copy it over from the buffer cache. */
96 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 			    iblock;
99 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 		if (!buffer_cache_bh) {
101 			err = -ENOMEM;
102 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 			goto bail;
104 		}
105 
106 		/* we haven't locked out transactions, so a commit
107 		 * could've happened. Since we've got a reference on
108 		 * the bh, even if it commits while we're doing the
109 		 * copy, the data is still good. */
110 		if (buffer_jbd(buffer_cache_bh)
111 		    && ocfs2_inode_is_new(inode)) {
112 			kaddr = kmap_atomic(bh_result->b_page);
113 			if (!kaddr) {
114 				mlog(ML_ERROR, "couldn't kmap!\n");
115 				goto bail;
116 			}
117 			memcpy(kaddr + (bh_result->b_size * iblock),
118 			       buffer_cache_bh->b_data,
119 			       bh_result->b_size);
120 			kunmap_atomic(kaddr);
121 			set_buffer_uptodate(bh_result);
122 		}
123 		brelse(buffer_cache_bh);
124 	}
125 
126 	map_bh(bh_result, inode->i_sb,
127 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128 
129 	err = 0;
130 
131 bail:
132 	brelse(bh);
133 
134 	return err;
135 }
136 
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 		    struct buffer_head *bh_result, int create)
139 {
140 	int err = 0;
141 	unsigned int ext_flags;
142 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 	u64 p_blkno, count, past_eof;
144 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145 
146 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 			      (unsigned long long)iblock, bh_result, create);
148 
149 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 		     inode, inode->i_ino);
152 
153 	if (S_ISLNK(inode->i_mode)) {
154 		/* this always does I/O for some reason. */
155 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 		goto bail;
157 	}
158 
159 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 					  &ext_flags);
161 	if (err) {
162 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 		     (unsigned long long)p_blkno);
165 		goto bail;
166 	}
167 
168 	if (max_blocks < count)
169 		count = max_blocks;
170 
171 	/*
172 	 * ocfs2 never allocates in this function - the only time we
173 	 * need to use BH_New is when we're extending i_size on a file
174 	 * system which doesn't support holes, in which case BH_New
175 	 * allows __block_write_begin() to zero.
176 	 *
177 	 * If we see this on a sparse file system, then a truncate has
178 	 * raced us and removed the cluster. In this case, we clear
179 	 * the buffers dirty and uptodate bits and let the buffer code
180 	 * ignore it as a hole.
181 	 */
182 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 		clear_buffer_dirty(bh_result);
184 		clear_buffer_uptodate(bh_result);
185 		goto bail;
186 	}
187 
188 	/* Treat the unwritten extent as a hole for zeroing purposes. */
189 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190 		map_bh(bh_result, inode->i_sb, p_blkno);
191 
192 	bh_result->b_size = count << inode->i_blkbits;
193 
194 	if (!ocfs2_sparse_alloc(osb)) {
195 		if (p_blkno == 0) {
196 			err = -EIO;
197 			mlog(ML_ERROR,
198 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 			     (unsigned long long)iblock,
200 			     (unsigned long long)p_blkno,
201 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 			dump_stack();
204 			goto bail;
205 		}
206 	}
207 
208 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209 
210 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 				  (unsigned long long)past_eof);
212 	if (create && (iblock >= past_eof))
213 		set_buffer_new(bh_result);
214 
215 bail:
216 	if (err < 0)
217 		err = -EIO;
218 
219 	return err;
220 }
221 
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 			   struct buffer_head *di_bh)
224 {
225 	void *kaddr;
226 	loff_t size;
227 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228 
229 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 		return -EROFS;
233 	}
234 
235 	size = i_size_read(inode);
236 
237 	if (size > PAGE_CACHE_SIZE ||
238 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239 		ocfs2_error(inode->i_sb,
240 			    "Inode %llu has with inline data has bad size: %Lu",
241 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 			    (unsigned long long)size);
243 		return -EROFS;
244 	}
245 
246 	kaddr = kmap_atomic(page);
247 	if (size)
248 		memcpy(kaddr, di->id2.i_data.id_data, size);
249 	/* Clear the remaining part of the page */
250 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251 	flush_dcache_page(page);
252 	kunmap_atomic(kaddr);
253 
254 	SetPageUptodate(page);
255 
256 	return 0;
257 }
258 
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261 	int ret;
262 	struct buffer_head *di_bh = NULL;
263 
264 	BUG_ON(!PageLocked(page));
265 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266 
267 	ret = ocfs2_read_inode_block(inode, &di_bh);
268 	if (ret) {
269 		mlog_errno(ret);
270 		goto out;
271 	}
272 
273 	ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275 	unlock_page(page);
276 
277 	brelse(di_bh);
278 	return ret;
279 }
280 
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283 	struct inode *inode = page->mapping->host;
284 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
285 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 	int ret, unlock = 1;
287 
288 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 			     (page ? page->index : 0));
290 
291 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292 	if (ret != 0) {
293 		if (ret == AOP_TRUNCATED_PAGE)
294 			unlock = 0;
295 		mlog_errno(ret);
296 		goto out;
297 	}
298 
299 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300 		/*
301 		 * Unlock the page and cycle ip_alloc_sem so that we don't
302 		 * busyloop waiting for ip_alloc_sem to unlock
303 		 */
304 		ret = AOP_TRUNCATED_PAGE;
305 		unlock_page(page);
306 		unlock = 0;
307 		down_read(&oi->ip_alloc_sem);
308 		up_read(&oi->ip_alloc_sem);
309 		goto out_inode_unlock;
310 	}
311 
312 	/*
313 	 * i_size might have just been updated as we grabed the meta lock.  We
314 	 * might now be discovering a truncate that hit on another node.
315 	 * block_read_full_page->get_block freaks out if it is asked to read
316 	 * beyond the end of a file, so we check here.  Callers
317 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 	 * and notice that the page they just read isn't needed.
319 	 *
320 	 * XXX sys_readahead() seems to get that wrong?
321 	 */
322 	if (start >= i_size_read(inode)) {
323 		zero_user(page, 0, PAGE_SIZE);
324 		SetPageUptodate(page);
325 		ret = 0;
326 		goto out_alloc;
327 	}
328 
329 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 		ret = ocfs2_readpage_inline(inode, page);
331 	else
332 		ret = block_read_full_page(page, ocfs2_get_block);
333 	unlock = 0;
334 
335 out_alloc:
336 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338 	ocfs2_inode_unlock(inode, 0);
339 out:
340 	if (unlock)
341 		unlock_page(page);
342 	return ret;
343 }
344 
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 			   struct list_head *pages, unsigned nr_pages)
356 {
357 	int ret, err = -EIO;
358 	struct inode *inode = mapping->host;
359 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 	loff_t start;
361 	struct page *last;
362 
363 	/*
364 	 * Use the nonblocking flag for the dlm code to avoid page
365 	 * lock inversion, but don't bother with retrying.
366 	 */
367 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 	if (ret)
369 		return err;
370 
371 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 		ocfs2_inode_unlock(inode, 0);
373 		return err;
374 	}
375 
376 	/*
377 	 * Don't bother with inline-data. There isn't anything
378 	 * to read-ahead in that case anyway...
379 	 */
380 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 		goto out_unlock;
382 
383 	/*
384 	 * Check whether a remote node truncated this file - we just
385 	 * drop out in that case as it's not worth handling here.
386 	 */
387 	last = list_entry(pages->prev, struct page, lru);
388 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389 	if (start >= i_size_read(inode))
390 		goto out_unlock;
391 
392 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393 
394 out_unlock:
395 	up_read(&oi->ip_alloc_sem);
396 	ocfs2_inode_unlock(inode, 0);
397 
398 	return err;
399 }
400 
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414 	trace_ocfs2_writepage(
415 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 		page->index);
417 
418 	return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420 
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(	handle_t *handle,
426 			struct buffer_head *head,
427 			unsigned from,
428 			unsigned to,
429 			int *partial,
430 			int (*fn)(	handle_t *handle,
431 					struct buffer_head *bh))
432 {
433 	struct buffer_head *bh;
434 	unsigned block_start, block_end;
435 	unsigned blocksize = head->b_size;
436 	int err, ret = 0;
437 	struct buffer_head *next;
438 
439 	for (	bh = head, block_start = 0;
440 		ret == 0 && (bh != head || !block_start);
441 	    	block_start = block_end, bh = next)
442 	{
443 		next = bh->b_this_page;
444 		block_end = block_start + blocksize;
445 		if (block_end <= from || block_start >= to) {
446 			if (partial && !buffer_uptodate(bh))
447 				*partial = 1;
448 			continue;
449 		}
450 		err = (*fn)(handle, bh);
451 		if (!ret)
452 			ret = err;
453 	}
454 	return ret;
455 }
456 
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459 	sector_t status;
460 	u64 p_blkno = 0;
461 	int err = 0;
462 	struct inode *inode = mapping->host;
463 
464 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 			 (unsigned long long)block);
466 
467 	/* We don't need to lock journal system files, since they aren't
468 	 * accessed concurrently from multiple nodes.
469 	 */
470 	if (!INODE_JOURNAL(inode)) {
471 		err = ocfs2_inode_lock(inode, NULL, 0);
472 		if (err) {
473 			if (err != -ENOENT)
474 				mlog_errno(err);
475 			goto bail;
476 		}
477 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 	}
479 
480 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 						  NULL);
483 
484 	if (!INODE_JOURNAL(inode)) {
485 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
486 		ocfs2_inode_unlock(inode, 0);
487 	}
488 
489 	if (err) {
490 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 		     (unsigned long long)block);
492 		mlog_errno(err);
493 		goto bail;
494 	}
495 
496 bail:
497 	status = err ? 0 : p_blkno;
498 
499 	return status;
500 }
501 
502 /*
503  * TODO: Make this into a generic get_blocks function.
504  *
505  * From do_direct_io in direct-io.c:
506  *  "So what we do is to permit the ->get_blocks function to populate
507  *   bh.b_size with the size of IO which is permitted at this offset and
508  *   this i_blkbits."
509  *
510  * This function is called directly from get_more_blocks in direct-io.c.
511  *
512  * called like this: dio->get_blocks(dio->inode, fs_startblk,
513  * 					fs_count, map_bh, dio->rw == WRITE);
514  */
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516 				     struct buffer_head *bh_result, int create)
517 {
518 	int ret;
519 	u32 cpos = 0;
520 	int alloc_locked = 0;
521 	u64 p_blkno, inode_blocks, contig_blocks;
522 	unsigned int ext_flags;
523 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525 	unsigned long len = bh_result->b_size;
526 	unsigned int clusters_to_alloc = 0, contig_clusters = 0;
527 
528 	cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529 
530 	/* This function won't even be called if the request isn't all
531 	 * nicely aligned and of the right size, so there's no need
532 	 * for us to check any of that. */
533 
534 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535 
536 	/* This figures out the size of the next contiguous block, and
537 	 * our logical offset */
538 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
539 					  &contig_blocks, &ext_flags);
540 	if (ret) {
541 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542 		     (unsigned long long)iblock);
543 		ret = -EIO;
544 		goto bail;
545 	}
546 
547 	/* We should already CoW the refcounted extent in case of create. */
548 	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
549 
550 	/* allocate blocks if no p_blkno is found, and create == 1 */
551 	if (!p_blkno && create) {
552 		ret = ocfs2_inode_lock(inode, NULL, 1);
553 		if (ret < 0) {
554 			mlog_errno(ret);
555 			goto bail;
556 		}
557 
558 		alloc_locked = 1;
559 
560 		/* fill hole, allocate blocks can't be larger than the size
561 		 * of the hole */
562 		clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
563 		contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
564 				contig_blocks);
565 		if (clusters_to_alloc > contig_clusters)
566 			clusters_to_alloc = contig_clusters;
567 
568 		/* allocate extent and insert them into the extent tree */
569 		ret = ocfs2_extend_allocation(inode, cpos,
570 				clusters_to_alloc, 0);
571 		if (ret < 0) {
572 			mlog_errno(ret);
573 			goto bail;
574 		}
575 
576 		ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
577 				&contig_blocks, &ext_flags);
578 		if (ret < 0) {
579 			mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
580 					(unsigned long long)iblock);
581 			ret = -EIO;
582 			goto bail;
583 		}
584 	}
585 
586 	/*
587 	 * get_more_blocks() expects us to describe a hole by clearing
588 	 * the mapped bit on bh_result().
589 	 *
590 	 * Consider an unwritten extent as a hole.
591 	 */
592 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
593 		map_bh(bh_result, inode->i_sb, p_blkno);
594 	else
595 		clear_buffer_mapped(bh_result);
596 
597 	/* make sure we don't map more than max_blocks blocks here as
598 	   that's all the kernel will handle at this point. */
599 	if (max_blocks < contig_blocks)
600 		contig_blocks = max_blocks;
601 	bh_result->b_size = contig_blocks << blocksize_bits;
602 bail:
603 	if (alloc_locked)
604 		ocfs2_inode_unlock(inode, 1);
605 	return ret;
606 }
607 
608 /*
609  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
610  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
611  * to protect io on one node from truncation on another.
612  */
613 static void ocfs2_dio_end_io(struct kiocb *iocb,
614 			     loff_t offset,
615 			     ssize_t bytes,
616 			     void *private)
617 {
618 	struct inode *inode = file_inode(iocb->ki_filp);
619 	int level;
620 
621 	/* this io's submitter should not have unlocked this before we could */
622 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
623 
624 	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
625 		ocfs2_iocb_clear_unaligned_aio(iocb);
626 
627 		mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
628 	}
629 
630 	ocfs2_iocb_clear_rw_locked(iocb);
631 
632 	level = ocfs2_iocb_rw_locked_level(iocb);
633 	ocfs2_rw_unlock(inode, level);
634 }
635 
636 static int ocfs2_releasepage(struct page *page, gfp_t wait)
637 {
638 	if (!page_has_buffers(page))
639 		return 0;
640 	return try_to_free_buffers(page);
641 }
642 
643 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
644 		struct inode *inode, loff_t offset)
645 {
646 	int ret = 0;
647 	u32 v_cpos = 0;
648 	u32 p_cpos = 0;
649 	unsigned int num_clusters = 0;
650 	unsigned int ext_flags = 0;
651 
652 	v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
653 	ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
654 			&num_clusters, &ext_flags);
655 	if (ret < 0) {
656 		mlog_errno(ret);
657 		return ret;
658 	}
659 
660 	if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
661 		return 1;
662 
663 	return 0;
664 }
665 
666 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
667 		struct inode *inode, loff_t offset,
668 		u64 zero_len, int cluster_align)
669 {
670 	u32 p_cpos = 0;
671 	u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
672 	unsigned int num_clusters = 0;
673 	unsigned int ext_flags = 0;
674 	int ret = 0;
675 
676 	if (offset <= i_size_read(inode) || cluster_align)
677 		return 0;
678 
679 	ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
680 			&ext_flags);
681 	if (ret < 0) {
682 		mlog_errno(ret);
683 		return ret;
684 	}
685 
686 	if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
687 		u64 s = i_size_read(inode);
688 		sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
689 			(do_div(s, osb->s_clustersize) >> 9);
690 
691 		ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
692 				zero_len >> 9, GFP_NOFS, false);
693 		if (ret < 0)
694 			mlog_errno(ret);
695 	}
696 
697 	return ret;
698 }
699 
700 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
701 		struct inode *inode, loff_t offset)
702 {
703 	u64 zero_start, zero_len, total_zero_len;
704 	u32 p_cpos = 0, clusters_to_add;
705 	u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
706 	unsigned int num_clusters = 0;
707 	unsigned int ext_flags = 0;
708 	u32 size_div, offset_div;
709 	int ret = 0;
710 
711 	{
712 		u64 o = offset;
713 		u64 s = i_size_read(inode);
714 
715 		offset_div = do_div(o, osb->s_clustersize);
716 		size_div = do_div(s, osb->s_clustersize);
717 	}
718 
719 	if (offset <= i_size_read(inode))
720 		return 0;
721 
722 	clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
723 		ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
724 	total_zero_len = offset - i_size_read(inode);
725 	if (clusters_to_add)
726 		total_zero_len -= offset_div;
727 
728 	/* Allocate clusters to fill out holes, and this is only needed
729 	 * when we add more than one clusters. Otherwise the cluster will
730 	 * be allocated during direct IO */
731 	if (clusters_to_add > 1) {
732 		ret = ocfs2_extend_allocation(inode,
733 				OCFS2_I(inode)->ip_clusters,
734 				clusters_to_add - 1, 0);
735 		if (ret) {
736 			mlog_errno(ret);
737 			goto out;
738 		}
739 	}
740 
741 	while (total_zero_len) {
742 		ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
743 				&ext_flags);
744 		if (ret < 0) {
745 			mlog_errno(ret);
746 			goto out;
747 		}
748 
749 		zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
750 			size_div;
751 		zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
752 			size_div;
753 		zero_len = min(total_zero_len, zero_len);
754 
755 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
756 			ret = blkdev_issue_zeroout(osb->sb->s_bdev,
757 					zero_start >> 9, zero_len >> 9,
758 					GFP_NOFS, false);
759 			if (ret < 0) {
760 				mlog_errno(ret);
761 				goto out;
762 			}
763 		}
764 
765 		total_zero_len -= zero_len;
766 		v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
767 
768 		/* Only at first iteration can be cluster not aligned.
769 		 * So set size_div to 0 for the rest */
770 		size_div = 0;
771 	}
772 
773 out:
774 	return ret;
775 }
776 
777 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
778 		struct iov_iter *iter,
779 		loff_t offset)
780 {
781 	ssize_t ret = 0;
782 	ssize_t written = 0;
783 	bool orphaned = false;
784 	int is_overwrite = 0;
785 	struct file *file = iocb->ki_filp;
786 	struct inode *inode = file_inode(file)->i_mapping->host;
787 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
788 	struct buffer_head *di_bh = NULL;
789 	size_t count = iter->count;
790 	journal_t *journal = osb->journal->j_journal;
791 	u64 zero_len_head, zero_len_tail;
792 	int cluster_align_head, cluster_align_tail;
793 	loff_t final_size = offset + count;
794 	int append_write = offset >= i_size_read(inode) ? 1 : 0;
795 	unsigned int num_clusters = 0;
796 	unsigned int ext_flags = 0;
797 
798 	{
799 		u64 o = offset;
800 		u64 s = i_size_read(inode);
801 
802 		zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
803 		cluster_align_head = !zero_len_head;
804 
805 		zero_len_tail = osb->s_clustersize -
806 			do_div(s, osb->s_clustersize);
807 		if ((offset - i_size_read(inode)) < zero_len_tail)
808 			zero_len_tail = offset - i_size_read(inode);
809 		cluster_align_tail = !zero_len_tail;
810 	}
811 
812 	/*
813 	 * when final_size > inode->i_size, inode->i_size will be
814 	 * updated after direct write, so add the inode to orphan
815 	 * dir first.
816 	 */
817 	if (final_size > i_size_read(inode)) {
818 		ret = ocfs2_add_inode_to_orphan(osb, inode);
819 		if (ret < 0) {
820 			mlog_errno(ret);
821 			goto out;
822 		}
823 		orphaned = true;
824 	}
825 
826 	if (append_write) {
827 		ret = ocfs2_inode_lock(inode, NULL, 1);
828 		if (ret < 0) {
829 			mlog_errno(ret);
830 			goto clean_orphan;
831 		}
832 
833 		/* zeroing out the previously allocated cluster tail
834 		 * that but not zeroed */
835 		if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
836 			ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
837 					zero_len_tail, cluster_align_tail);
838 		else
839 			ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
840 					offset);
841 		if (ret < 0) {
842 			mlog_errno(ret);
843 			ocfs2_inode_unlock(inode, 1);
844 			goto clean_orphan;
845 		}
846 
847 		is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
848 		if (is_overwrite < 0) {
849 			mlog_errno(is_overwrite);
850 			ocfs2_inode_unlock(inode, 1);
851 			goto clean_orphan;
852 		}
853 
854 		ocfs2_inode_unlock(inode, 1);
855 	}
856 
857 	written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
858 				       offset, ocfs2_direct_IO_get_blocks,
859 				       ocfs2_dio_end_io, NULL, 0);
860 	if (unlikely(written < 0)) {
861 		loff_t i_size = i_size_read(inode);
862 
863 		if (offset + count > i_size) {
864 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
865 			if (ret < 0) {
866 				mlog_errno(ret);
867 				goto clean_orphan;
868 			}
869 
870 			if (i_size == i_size_read(inode)) {
871 				ret = ocfs2_truncate_file(inode, di_bh,
872 						i_size);
873 				if (ret < 0) {
874 					if (ret != -ENOSPC)
875 						mlog_errno(ret);
876 
877 					ocfs2_inode_unlock(inode, 1);
878 					brelse(di_bh);
879 					goto clean_orphan;
880 				}
881 			}
882 
883 			ocfs2_inode_unlock(inode, 1);
884 			brelse(di_bh);
885 
886 			ret = jbd2_journal_force_commit(journal);
887 			if (ret < 0)
888 				mlog_errno(ret);
889 		}
890 	} else if (written > 0 && append_write && !is_overwrite &&
891 			!cluster_align_head) {
892 		/* zeroing out the allocated cluster head */
893 		u32 p_cpos = 0;
894 		u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
895 
896 		ret = ocfs2_inode_lock(inode, NULL, 0);
897 		if (ret < 0) {
898 			mlog_errno(ret);
899 			goto clean_orphan;
900 		}
901 
902 		ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
903 				&num_clusters, &ext_flags);
904 		if (ret < 0) {
905 			mlog_errno(ret);
906 			ocfs2_inode_unlock(inode, 0);
907 			goto clean_orphan;
908 		}
909 
910 		BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
911 
912 		ret = blkdev_issue_zeroout(osb->sb->s_bdev,
913 				(u64)p_cpos << (osb->s_clustersize_bits - 9),
914 				zero_len_head >> 9, GFP_NOFS, false);
915 		if (ret < 0)
916 			mlog_errno(ret);
917 
918 		ocfs2_inode_unlock(inode, 0);
919 	}
920 
921 clean_orphan:
922 	if (orphaned) {
923 		int tmp_ret;
924 		int update_isize = written > 0 ? 1 : 0;
925 		loff_t end = update_isize ? offset + written : 0;
926 
927 		tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
928 		if (tmp_ret < 0) {
929 			ret = tmp_ret;
930 			mlog_errno(ret);
931 			goto out;
932 		}
933 
934 		tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
935 				update_isize, end);
936 		if (tmp_ret < 0) {
937 			ret = tmp_ret;
938 			mlog_errno(ret);
939 			goto out;
940 		}
941 
942 		ocfs2_inode_unlock(inode, 1);
943 
944 		tmp_ret = jbd2_journal_force_commit(journal);
945 		if (tmp_ret < 0) {
946 			ret = tmp_ret;
947 			mlog_errno(tmp_ret);
948 		}
949 	}
950 
951 out:
952 	if (ret >= 0)
953 		ret = written;
954 	return ret;
955 }
956 
957 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
958 			       loff_t offset)
959 {
960 	struct file *file = iocb->ki_filp;
961 	struct inode *inode = file_inode(file)->i_mapping->host;
962 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
963 	int full_coherency = !(osb->s_mount_opt &
964 			OCFS2_MOUNT_COHERENCY_BUFFERED);
965 
966 	/*
967 	 * Fallback to buffered I/O if we see an inode without
968 	 * extents.
969 	 */
970 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
971 		return 0;
972 
973 	/* Fallback to buffered I/O if we are appending and
974 	 * concurrent O_DIRECT writes are allowed.
975 	 */
976 	if (i_size_read(inode) <= offset && !full_coherency)
977 		return 0;
978 
979 	if (iov_iter_rw(iter) == READ)
980 		return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
981 					    iter, offset,
982 					    ocfs2_direct_IO_get_blocks,
983 					    ocfs2_dio_end_io, NULL, 0);
984 	else
985 		return ocfs2_direct_IO_write(iocb, iter, offset);
986 }
987 
988 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
989 					    u32 cpos,
990 					    unsigned int *start,
991 					    unsigned int *end)
992 {
993 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
994 
995 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
996 		unsigned int cpp;
997 
998 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
999 
1000 		cluster_start = cpos % cpp;
1001 		cluster_start = cluster_start << osb->s_clustersize_bits;
1002 
1003 		cluster_end = cluster_start + osb->s_clustersize;
1004 	}
1005 
1006 	BUG_ON(cluster_start > PAGE_SIZE);
1007 	BUG_ON(cluster_end > PAGE_SIZE);
1008 
1009 	if (start)
1010 		*start = cluster_start;
1011 	if (end)
1012 		*end = cluster_end;
1013 }
1014 
1015 /*
1016  * 'from' and 'to' are the region in the page to avoid zeroing.
1017  *
1018  * If pagesize > clustersize, this function will avoid zeroing outside
1019  * of the cluster boundary.
1020  *
1021  * from == to == 0 is code for "zero the entire cluster region"
1022  */
1023 static void ocfs2_clear_page_regions(struct page *page,
1024 				     struct ocfs2_super *osb, u32 cpos,
1025 				     unsigned from, unsigned to)
1026 {
1027 	void *kaddr;
1028 	unsigned int cluster_start, cluster_end;
1029 
1030 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1031 
1032 	kaddr = kmap_atomic(page);
1033 
1034 	if (from || to) {
1035 		if (from > cluster_start)
1036 			memset(kaddr + cluster_start, 0, from - cluster_start);
1037 		if (to < cluster_end)
1038 			memset(kaddr + to, 0, cluster_end - to);
1039 	} else {
1040 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1041 	}
1042 
1043 	kunmap_atomic(kaddr);
1044 }
1045 
1046 /*
1047  * Nonsparse file systems fully allocate before we get to the write
1048  * code. This prevents ocfs2_write() from tagging the write as an
1049  * allocating one, which means ocfs2_map_page_blocks() might try to
1050  * read-in the blocks at the tail of our file. Avoid reading them by
1051  * testing i_size against each block offset.
1052  */
1053 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1054 				 unsigned int block_start)
1055 {
1056 	u64 offset = page_offset(page) + block_start;
1057 
1058 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1059 		return 1;
1060 
1061 	if (i_size_read(inode) > offset)
1062 		return 1;
1063 
1064 	return 0;
1065 }
1066 
1067 /*
1068  * Some of this taken from __block_write_begin(). We already have our
1069  * mapping by now though, and the entire write will be allocating or
1070  * it won't, so not much need to use BH_New.
1071  *
1072  * This will also skip zeroing, which is handled externally.
1073  */
1074 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1075 			  struct inode *inode, unsigned int from,
1076 			  unsigned int to, int new)
1077 {
1078 	int ret = 0;
1079 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1080 	unsigned int block_end, block_start;
1081 	unsigned int bsize = 1 << inode->i_blkbits;
1082 
1083 	if (!page_has_buffers(page))
1084 		create_empty_buffers(page, bsize, 0);
1085 
1086 	head = page_buffers(page);
1087 	for (bh = head, block_start = 0; bh != head || !block_start;
1088 	     bh = bh->b_this_page, block_start += bsize) {
1089 		block_end = block_start + bsize;
1090 
1091 		clear_buffer_new(bh);
1092 
1093 		/*
1094 		 * Ignore blocks outside of our i/o range -
1095 		 * they may belong to unallocated clusters.
1096 		 */
1097 		if (block_start >= to || block_end <= from) {
1098 			if (PageUptodate(page))
1099 				set_buffer_uptodate(bh);
1100 			continue;
1101 		}
1102 
1103 		/*
1104 		 * For an allocating write with cluster size >= page
1105 		 * size, we always write the entire page.
1106 		 */
1107 		if (new)
1108 			set_buffer_new(bh);
1109 
1110 		if (!buffer_mapped(bh)) {
1111 			map_bh(bh, inode->i_sb, *p_blkno);
1112 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1113 		}
1114 
1115 		if (PageUptodate(page)) {
1116 			if (!buffer_uptodate(bh))
1117 				set_buffer_uptodate(bh);
1118 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1119 			   !buffer_new(bh) &&
1120 			   ocfs2_should_read_blk(inode, page, block_start) &&
1121 			   (block_start < from || block_end > to)) {
1122 			ll_rw_block(READ, 1, &bh);
1123 			*wait_bh++=bh;
1124 		}
1125 
1126 		*p_blkno = *p_blkno + 1;
1127 	}
1128 
1129 	/*
1130 	 * If we issued read requests - let them complete.
1131 	 */
1132 	while(wait_bh > wait) {
1133 		wait_on_buffer(*--wait_bh);
1134 		if (!buffer_uptodate(*wait_bh))
1135 			ret = -EIO;
1136 	}
1137 
1138 	if (ret == 0 || !new)
1139 		return ret;
1140 
1141 	/*
1142 	 * If we get -EIO above, zero out any newly allocated blocks
1143 	 * to avoid exposing stale data.
1144 	 */
1145 	bh = head;
1146 	block_start = 0;
1147 	do {
1148 		block_end = block_start + bsize;
1149 		if (block_end <= from)
1150 			goto next_bh;
1151 		if (block_start >= to)
1152 			break;
1153 
1154 		zero_user(page, block_start, bh->b_size);
1155 		set_buffer_uptodate(bh);
1156 		mark_buffer_dirty(bh);
1157 
1158 next_bh:
1159 		block_start = block_end;
1160 		bh = bh->b_this_page;
1161 	} while (bh != head);
1162 
1163 	return ret;
1164 }
1165 
1166 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1167 #define OCFS2_MAX_CTXT_PAGES	1
1168 #else
1169 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1170 #endif
1171 
1172 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1173 
1174 /*
1175  * Describe the state of a single cluster to be written to.
1176  */
1177 struct ocfs2_write_cluster_desc {
1178 	u32		c_cpos;
1179 	u32		c_phys;
1180 	/*
1181 	 * Give this a unique field because c_phys eventually gets
1182 	 * filled.
1183 	 */
1184 	unsigned	c_new;
1185 	unsigned	c_unwritten;
1186 	unsigned	c_needs_zero;
1187 };
1188 
1189 struct ocfs2_write_ctxt {
1190 	/* Logical cluster position / len of write */
1191 	u32				w_cpos;
1192 	u32				w_clen;
1193 
1194 	/* First cluster allocated in a nonsparse extend */
1195 	u32				w_first_new_cpos;
1196 
1197 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1198 
1199 	/*
1200 	 * This is true if page_size > cluster_size.
1201 	 *
1202 	 * It triggers a set of special cases during write which might
1203 	 * have to deal with allocating writes to partial pages.
1204 	 */
1205 	unsigned int			w_large_pages;
1206 
1207 	/*
1208 	 * Pages involved in this write.
1209 	 *
1210 	 * w_target_page is the page being written to by the user.
1211 	 *
1212 	 * w_pages is an array of pages which always contains
1213 	 * w_target_page, and in the case of an allocating write with
1214 	 * page_size < cluster size, it will contain zero'd and mapped
1215 	 * pages adjacent to w_target_page which need to be written
1216 	 * out in so that future reads from that region will get
1217 	 * zero's.
1218 	 */
1219 	unsigned int			w_num_pages;
1220 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
1221 	struct page			*w_target_page;
1222 
1223 	/*
1224 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
1225 	 * against w_target_page in ocfs2_write_end_nolock.
1226 	 */
1227 	unsigned int			w_target_locked:1;
1228 
1229 	/*
1230 	 * ocfs2_write_end() uses this to know what the real range to
1231 	 * write in the target should be.
1232 	 */
1233 	unsigned int			w_target_from;
1234 	unsigned int			w_target_to;
1235 
1236 	/*
1237 	 * We could use journal_current_handle() but this is cleaner,
1238 	 * IMHO -Mark
1239 	 */
1240 	handle_t			*w_handle;
1241 
1242 	struct buffer_head		*w_di_bh;
1243 
1244 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
1245 };
1246 
1247 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1248 {
1249 	int i;
1250 
1251 	for(i = 0; i < num_pages; i++) {
1252 		if (pages[i]) {
1253 			unlock_page(pages[i]);
1254 			mark_page_accessed(pages[i]);
1255 			page_cache_release(pages[i]);
1256 		}
1257 	}
1258 }
1259 
1260 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1261 {
1262 	int i;
1263 
1264 	/*
1265 	 * w_target_locked is only set to true in the page_mkwrite() case.
1266 	 * The intent is to allow us to lock the target page from write_begin()
1267 	 * to write_end(). The caller must hold a ref on w_target_page.
1268 	 */
1269 	if (wc->w_target_locked) {
1270 		BUG_ON(!wc->w_target_page);
1271 		for (i = 0; i < wc->w_num_pages; i++) {
1272 			if (wc->w_target_page == wc->w_pages[i]) {
1273 				wc->w_pages[i] = NULL;
1274 				break;
1275 			}
1276 		}
1277 		mark_page_accessed(wc->w_target_page);
1278 		page_cache_release(wc->w_target_page);
1279 	}
1280 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1281 }
1282 
1283 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1284 {
1285 	ocfs2_unlock_pages(wc);
1286 	brelse(wc->w_di_bh);
1287 	kfree(wc);
1288 }
1289 
1290 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1291 				  struct ocfs2_super *osb, loff_t pos,
1292 				  unsigned len, struct buffer_head *di_bh)
1293 {
1294 	u32 cend;
1295 	struct ocfs2_write_ctxt *wc;
1296 
1297 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1298 	if (!wc)
1299 		return -ENOMEM;
1300 
1301 	wc->w_cpos = pos >> osb->s_clustersize_bits;
1302 	wc->w_first_new_cpos = UINT_MAX;
1303 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
1304 	wc->w_clen = cend - wc->w_cpos + 1;
1305 	get_bh(di_bh);
1306 	wc->w_di_bh = di_bh;
1307 
1308 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1309 		wc->w_large_pages = 1;
1310 	else
1311 		wc->w_large_pages = 0;
1312 
1313 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1314 
1315 	*wcp = wc;
1316 
1317 	return 0;
1318 }
1319 
1320 /*
1321  * If a page has any new buffers, zero them out here, and mark them uptodate
1322  * and dirty so they'll be written out (in order to prevent uninitialised
1323  * block data from leaking). And clear the new bit.
1324  */
1325 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1326 {
1327 	unsigned int block_start, block_end;
1328 	struct buffer_head *head, *bh;
1329 
1330 	BUG_ON(!PageLocked(page));
1331 	if (!page_has_buffers(page))
1332 		return;
1333 
1334 	bh = head = page_buffers(page);
1335 	block_start = 0;
1336 	do {
1337 		block_end = block_start + bh->b_size;
1338 
1339 		if (buffer_new(bh)) {
1340 			if (block_end > from && block_start < to) {
1341 				if (!PageUptodate(page)) {
1342 					unsigned start, end;
1343 
1344 					start = max(from, block_start);
1345 					end = min(to, block_end);
1346 
1347 					zero_user_segment(page, start, end);
1348 					set_buffer_uptodate(bh);
1349 				}
1350 
1351 				clear_buffer_new(bh);
1352 				mark_buffer_dirty(bh);
1353 			}
1354 		}
1355 
1356 		block_start = block_end;
1357 		bh = bh->b_this_page;
1358 	} while (bh != head);
1359 }
1360 
1361 /*
1362  * Only called when we have a failure during allocating write to write
1363  * zero's to the newly allocated region.
1364  */
1365 static void ocfs2_write_failure(struct inode *inode,
1366 				struct ocfs2_write_ctxt *wc,
1367 				loff_t user_pos, unsigned user_len)
1368 {
1369 	int i;
1370 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1371 		to = user_pos + user_len;
1372 	struct page *tmppage;
1373 
1374 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1375 
1376 	for(i = 0; i < wc->w_num_pages; i++) {
1377 		tmppage = wc->w_pages[i];
1378 
1379 		if (page_has_buffers(tmppage)) {
1380 			if (ocfs2_should_order_data(inode))
1381 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1382 
1383 			block_commit_write(tmppage, from, to);
1384 		}
1385 	}
1386 }
1387 
1388 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1389 					struct ocfs2_write_ctxt *wc,
1390 					struct page *page, u32 cpos,
1391 					loff_t user_pos, unsigned user_len,
1392 					int new)
1393 {
1394 	int ret;
1395 	unsigned int map_from = 0, map_to = 0;
1396 	unsigned int cluster_start, cluster_end;
1397 	unsigned int user_data_from = 0, user_data_to = 0;
1398 
1399 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1400 					&cluster_start, &cluster_end);
1401 
1402 	/* treat the write as new if the a hole/lseek spanned across
1403 	 * the page boundary.
1404 	 */
1405 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1406 			(page_offset(page) <= user_pos));
1407 
1408 	if (page == wc->w_target_page) {
1409 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1410 		map_to = map_from + user_len;
1411 
1412 		if (new)
1413 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1414 						    cluster_start, cluster_end,
1415 						    new);
1416 		else
1417 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1418 						    map_from, map_to, new);
1419 		if (ret) {
1420 			mlog_errno(ret);
1421 			goto out;
1422 		}
1423 
1424 		user_data_from = map_from;
1425 		user_data_to = map_to;
1426 		if (new) {
1427 			map_from = cluster_start;
1428 			map_to = cluster_end;
1429 		}
1430 	} else {
1431 		/*
1432 		 * If we haven't allocated the new page yet, we
1433 		 * shouldn't be writing it out without copying user
1434 		 * data. This is likely a math error from the caller.
1435 		 */
1436 		BUG_ON(!new);
1437 
1438 		map_from = cluster_start;
1439 		map_to = cluster_end;
1440 
1441 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1442 					    cluster_start, cluster_end, new);
1443 		if (ret) {
1444 			mlog_errno(ret);
1445 			goto out;
1446 		}
1447 	}
1448 
1449 	/*
1450 	 * Parts of newly allocated pages need to be zero'd.
1451 	 *
1452 	 * Above, we have also rewritten 'to' and 'from' - as far as
1453 	 * the rest of the function is concerned, the entire cluster
1454 	 * range inside of a page needs to be written.
1455 	 *
1456 	 * We can skip this if the page is up to date - it's already
1457 	 * been zero'd from being read in as a hole.
1458 	 */
1459 	if (new && !PageUptodate(page))
1460 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1461 					 cpos, user_data_from, user_data_to);
1462 
1463 	flush_dcache_page(page);
1464 
1465 out:
1466 	return ret;
1467 }
1468 
1469 /*
1470  * This function will only grab one clusters worth of pages.
1471  */
1472 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1473 				      struct ocfs2_write_ctxt *wc,
1474 				      u32 cpos, loff_t user_pos,
1475 				      unsigned user_len, int new,
1476 				      struct page *mmap_page)
1477 {
1478 	int ret = 0, i;
1479 	unsigned long start, target_index, end_index, index;
1480 	struct inode *inode = mapping->host;
1481 	loff_t last_byte;
1482 
1483 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1484 
1485 	/*
1486 	 * Figure out how many pages we'll be manipulating here. For
1487 	 * non allocating write, we just change the one
1488 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1489 	 * writing past i_size, we only need enough pages to cover the
1490 	 * last page of the write.
1491 	 */
1492 	if (new) {
1493 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1494 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1495 		/*
1496 		 * We need the index *past* the last page we could possibly
1497 		 * touch.  This is the page past the end of the write or
1498 		 * i_size, whichever is greater.
1499 		 */
1500 		last_byte = max(user_pos + user_len, i_size_read(inode));
1501 		BUG_ON(last_byte < 1);
1502 		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1503 		if ((start + wc->w_num_pages) > end_index)
1504 			wc->w_num_pages = end_index - start;
1505 	} else {
1506 		wc->w_num_pages = 1;
1507 		start = target_index;
1508 	}
1509 
1510 	for(i = 0; i < wc->w_num_pages; i++) {
1511 		index = start + i;
1512 
1513 		if (index == target_index && mmap_page) {
1514 			/*
1515 			 * ocfs2_pagemkwrite() is a little different
1516 			 * and wants us to directly use the page
1517 			 * passed in.
1518 			 */
1519 			lock_page(mmap_page);
1520 
1521 			/* Exit and let the caller retry */
1522 			if (mmap_page->mapping != mapping) {
1523 				WARN_ON(mmap_page->mapping);
1524 				unlock_page(mmap_page);
1525 				ret = -EAGAIN;
1526 				goto out;
1527 			}
1528 
1529 			page_cache_get(mmap_page);
1530 			wc->w_pages[i] = mmap_page;
1531 			wc->w_target_locked = true;
1532 		} else {
1533 			wc->w_pages[i] = find_or_create_page(mapping, index,
1534 							     GFP_NOFS);
1535 			if (!wc->w_pages[i]) {
1536 				ret = -ENOMEM;
1537 				mlog_errno(ret);
1538 				goto out;
1539 			}
1540 		}
1541 		wait_for_stable_page(wc->w_pages[i]);
1542 
1543 		if (index == target_index)
1544 			wc->w_target_page = wc->w_pages[i];
1545 	}
1546 out:
1547 	if (ret)
1548 		wc->w_target_locked = false;
1549 	return ret;
1550 }
1551 
1552 /*
1553  * Prepare a single cluster for write one cluster into the file.
1554  */
1555 static int ocfs2_write_cluster(struct address_space *mapping,
1556 			       u32 phys, unsigned int unwritten,
1557 			       unsigned int should_zero,
1558 			       struct ocfs2_alloc_context *data_ac,
1559 			       struct ocfs2_alloc_context *meta_ac,
1560 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1561 			       loff_t user_pos, unsigned user_len)
1562 {
1563 	int ret, i, new;
1564 	u64 v_blkno, p_blkno;
1565 	struct inode *inode = mapping->host;
1566 	struct ocfs2_extent_tree et;
1567 
1568 	new = phys == 0 ? 1 : 0;
1569 	if (new) {
1570 		u32 tmp_pos;
1571 
1572 		/*
1573 		 * This is safe to call with the page locks - it won't take
1574 		 * any additional semaphores or cluster locks.
1575 		 */
1576 		tmp_pos = cpos;
1577 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1578 					   &tmp_pos, 1, 0, wc->w_di_bh,
1579 					   wc->w_handle, data_ac,
1580 					   meta_ac, NULL);
1581 		/*
1582 		 * This shouldn't happen because we must have already
1583 		 * calculated the correct meta data allocation required. The
1584 		 * internal tree allocation code should know how to increase
1585 		 * transaction credits itself.
1586 		 *
1587 		 * If need be, we could handle -EAGAIN for a
1588 		 * RESTART_TRANS here.
1589 		 */
1590 		mlog_bug_on_msg(ret == -EAGAIN,
1591 				"Inode %llu: EAGAIN return during allocation.\n",
1592 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1593 		if (ret < 0) {
1594 			mlog_errno(ret);
1595 			goto out;
1596 		}
1597 	} else if (unwritten) {
1598 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1599 					      wc->w_di_bh);
1600 		ret = ocfs2_mark_extent_written(inode, &et,
1601 						wc->w_handle, cpos, 1, phys,
1602 						meta_ac, &wc->w_dealloc);
1603 		if (ret < 0) {
1604 			mlog_errno(ret);
1605 			goto out;
1606 		}
1607 	}
1608 
1609 	if (should_zero)
1610 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1611 	else
1612 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1613 
1614 	/*
1615 	 * The only reason this should fail is due to an inability to
1616 	 * find the extent added.
1617 	 */
1618 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1619 					  NULL);
1620 	if (ret < 0) {
1621 		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1622 			    "at logical block %llu",
1623 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1624 			    (unsigned long long)v_blkno);
1625 		goto out;
1626 	}
1627 
1628 	BUG_ON(p_blkno == 0);
1629 
1630 	for(i = 0; i < wc->w_num_pages; i++) {
1631 		int tmpret;
1632 
1633 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1634 						      wc->w_pages[i], cpos,
1635 						      user_pos, user_len,
1636 						      should_zero);
1637 		if (tmpret) {
1638 			mlog_errno(tmpret);
1639 			if (ret == 0)
1640 				ret = tmpret;
1641 		}
1642 	}
1643 
1644 	/*
1645 	 * We only have cleanup to do in case of allocating write.
1646 	 */
1647 	if (ret && new)
1648 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1649 
1650 out:
1651 
1652 	return ret;
1653 }
1654 
1655 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1656 				       struct ocfs2_alloc_context *data_ac,
1657 				       struct ocfs2_alloc_context *meta_ac,
1658 				       struct ocfs2_write_ctxt *wc,
1659 				       loff_t pos, unsigned len)
1660 {
1661 	int ret, i;
1662 	loff_t cluster_off;
1663 	unsigned int local_len = len;
1664 	struct ocfs2_write_cluster_desc *desc;
1665 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1666 
1667 	for (i = 0; i < wc->w_clen; i++) {
1668 		desc = &wc->w_desc[i];
1669 
1670 		/*
1671 		 * We have to make sure that the total write passed in
1672 		 * doesn't extend past a single cluster.
1673 		 */
1674 		local_len = len;
1675 		cluster_off = pos & (osb->s_clustersize - 1);
1676 		if ((cluster_off + local_len) > osb->s_clustersize)
1677 			local_len = osb->s_clustersize - cluster_off;
1678 
1679 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1680 					  desc->c_unwritten,
1681 					  desc->c_needs_zero,
1682 					  data_ac, meta_ac,
1683 					  wc, desc->c_cpos, pos, local_len);
1684 		if (ret) {
1685 			mlog_errno(ret);
1686 			goto out;
1687 		}
1688 
1689 		len -= local_len;
1690 		pos += local_len;
1691 	}
1692 
1693 	ret = 0;
1694 out:
1695 	return ret;
1696 }
1697 
1698 /*
1699  * ocfs2_write_end() wants to know which parts of the target page it
1700  * should complete the write on. It's easiest to compute them ahead of
1701  * time when a more complete view of the write is available.
1702  */
1703 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1704 					struct ocfs2_write_ctxt *wc,
1705 					loff_t pos, unsigned len, int alloc)
1706 {
1707 	struct ocfs2_write_cluster_desc *desc;
1708 
1709 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1710 	wc->w_target_to = wc->w_target_from + len;
1711 
1712 	if (alloc == 0)
1713 		return;
1714 
1715 	/*
1716 	 * Allocating write - we may have different boundaries based
1717 	 * on page size and cluster size.
1718 	 *
1719 	 * NOTE: We can no longer compute one value from the other as
1720 	 * the actual write length and user provided length may be
1721 	 * different.
1722 	 */
1723 
1724 	if (wc->w_large_pages) {
1725 		/*
1726 		 * We only care about the 1st and last cluster within
1727 		 * our range and whether they should be zero'd or not. Either
1728 		 * value may be extended out to the start/end of a
1729 		 * newly allocated cluster.
1730 		 */
1731 		desc = &wc->w_desc[0];
1732 		if (desc->c_needs_zero)
1733 			ocfs2_figure_cluster_boundaries(osb,
1734 							desc->c_cpos,
1735 							&wc->w_target_from,
1736 							NULL);
1737 
1738 		desc = &wc->w_desc[wc->w_clen - 1];
1739 		if (desc->c_needs_zero)
1740 			ocfs2_figure_cluster_boundaries(osb,
1741 							desc->c_cpos,
1742 							NULL,
1743 							&wc->w_target_to);
1744 	} else {
1745 		wc->w_target_from = 0;
1746 		wc->w_target_to = PAGE_CACHE_SIZE;
1747 	}
1748 }
1749 
1750 /*
1751  * Populate each single-cluster write descriptor in the write context
1752  * with information about the i/o to be done.
1753  *
1754  * Returns the number of clusters that will have to be allocated, as
1755  * well as a worst case estimate of the number of extent records that
1756  * would have to be created during a write to an unwritten region.
1757  */
1758 static int ocfs2_populate_write_desc(struct inode *inode,
1759 				     struct ocfs2_write_ctxt *wc,
1760 				     unsigned int *clusters_to_alloc,
1761 				     unsigned int *extents_to_split)
1762 {
1763 	int ret;
1764 	struct ocfs2_write_cluster_desc *desc;
1765 	unsigned int num_clusters = 0;
1766 	unsigned int ext_flags = 0;
1767 	u32 phys = 0;
1768 	int i;
1769 
1770 	*clusters_to_alloc = 0;
1771 	*extents_to_split = 0;
1772 
1773 	for (i = 0; i < wc->w_clen; i++) {
1774 		desc = &wc->w_desc[i];
1775 		desc->c_cpos = wc->w_cpos + i;
1776 
1777 		if (num_clusters == 0) {
1778 			/*
1779 			 * Need to look up the next extent record.
1780 			 */
1781 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1782 						 &num_clusters, &ext_flags);
1783 			if (ret) {
1784 				mlog_errno(ret);
1785 				goto out;
1786 			}
1787 
1788 			/* We should already CoW the refcountd extent. */
1789 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1790 
1791 			/*
1792 			 * Assume worst case - that we're writing in
1793 			 * the middle of the extent.
1794 			 *
1795 			 * We can assume that the write proceeds from
1796 			 * left to right, in which case the extent
1797 			 * insert code is smart enough to coalesce the
1798 			 * next splits into the previous records created.
1799 			 */
1800 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1801 				*extents_to_split = *extents_to_split + 2;
1802 		} else if (phys) {
1803 			/*
1804 			 * Only increment phys if it doesn't describe
1805 			 * a hole.
1806 			 */
1807 			phys++;
1808 		}
1809 
1810 		/*
1811 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1812 		 * file that got extended.  w_first_new_cpos tells us
1813 		 * where the newly allocated clusters are so we can
1814 		 * zero them.
1815 		 */
1816 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1817 			BUG_ON(phys == 0);
1818 			desc->c_needs_zero = 1;
1819 		}
1820 
1821 		desc->c_phys = phys;
1822 		if (phys == 0) {
1823 			desc->c_new = 1;
1824 			desc->c_needs_zero = 1;
1825 			*clusters_to_alloc = *clusters_to_alloc + 1;
1826 		}
1827 
1828 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1829 			desc->c_unwritten = 1;
1830 			desc->c_needs_zero = 1;
1831 		}
1832 
1833 		num_clusters--;
1834 	}
1835 
1836 	ret = 0;
1837 out:
1838 	return ret;
1839 }
1840 
1841 static int ocfs2_write_begin_inline(struct address_space *mapping,
1842 				    struct inode *inode,
1843 				    struct ocfs2_write_ctxt *wc)
1844 {
1845 	int ret;
1846 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1847 	struct page *page;
1848 	handle_t *handle;
1849 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1850 
1851 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1852 	if (IS_ERR(handle)) {
1853 		ret = PTR_ERR(handle);
1854 		mlog_errno(ret);
1855 		goto out;
1856 	}
1857 
1858 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1859 	if (!page) {
1860 		ocfs2_commit_trans(osb, handle);
1861 		ret = -ENOMEM;
1862 		mlog_errno(ret);
1863 		goto out;
1864 	}
1865 	/*
1866 	 * If we don't set w_num_pages then this page won't get unlocked
1867 	 * and freed on cleanup of the write context.
1868 	 */
1869 	wc->w_pages[0] = wc->w_target_page = page;
1870 	wc->w_num_pages = 1;
1871 
1872 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1873 				      OCFS2_JOURNAL_ACCESS_WRITE);
1874 	if (ret) {
1875 		ocfs2_commit_trans(osb, handle);
1876 
1877 		mlog_errno(ret);
1878 		goto out;
1879 	}
1880 
1881 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1882 		ocfs2_set_inode_data_inline(inode, di);
1883 
1884 	if (!PageUptodate(page)) {
1885 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1886 		if (ret) {
1887 			ocfs2_commit_trans(osb, handle);
1888 
1889 			goto out;
1890 		}
1891 	}
1892 
1893 	wc->w_handle = handle;
1894 out:
1895 	return ret;
1896 }
1897 
1898 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1899 {
1900 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1901 
1902 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1903 		return 1;
1904 	return 0;
1905 }
1906 
1907 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1908 					  struct inode *inode, loff_t pos,
1909 					  unsigned len, struct page *mmap_page,
1910 					  struct ocfs2_write_ctxt *wc)
1911 {
1912 	int ret, written = 0;
1913 	loff_t end = pos + len;
1914 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1915 	struct ocfs2_dinode *di = NULL;
1916 
1917 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1918 					     len, (unsigned long long)pos,
1919 					     oi->ip_dyn_features);
1920 
1921 	/*
1922 	 * Handle inodes which already have inline data 1st.
1923 	 */
1924 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1925 		if (mmap_page == NULL &&
1926 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1927 			goto do_inline_write;
1928 
1929 		/*
1930 		 * The write won't fit - we have to give this inode an
1931 		 * inline extent list now.
1932 		 */
1933 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1934 		if (ret)
1935 			mlog_errno(ret);
1936 		goto out;
1937 	}
1938 
1939 	/*
1940 	 * Check whether the inode can accept inline data.
1941 	 */
1942 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1943 		return 0;
1944 
1945 	/*
1946 	 * Check whether the write can fit.
1947 	 */
1948 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1949 	if (mmap_page ||
1950 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1951 		return 0;
1952 
1953 do_inline_write:
1954 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1955 	if (ret) {
1956 		mlog_errno(ret);
1957 		goto out;
1958 	}
1959 
1960 	/*
1961 	 * This signals to the caller that the data can be written
1962 	 * inline.
1963 	 */
1964 	written = 1;
1965 out:
1966 	return written ? written : ret;
1967 }
1968 
1969 /*
1970  * This function only does anything for file systems which can't
1971  * handle sparse files.
1972  *
1973  * What we want to do here is fill in any hole between the current end
1974  * of allocation and the end of our write. That way the rest of the
1975  * write path can treat it as an non-allocating write, which has no
1976  * special case code for sparse/nonsparse files.
1977  */
1978 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1979 					struct buffer_head *di_bh,
1980 					loff_t pos, unsigned len,
1981 					struct ocfs2_write_ctxt *wc)
1982 {
1983 	int ret;
1984 	loff_t newsize = pos + len;
1985 
1986 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1987 
1988 	if (newsize <= i_size_read(inode))
1989 		return 0;
1990 
1991 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1992 	if (ret)
1993 		mlog_errno(ret);
1994 
1995 	wc->w_first_new_cpos =
1996 		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1997 
1998 	return ret;
1999 }
2000 
2001 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2002 			   loff_t pos)
2003 {
2004 	int ret = 0;
2005 
2006 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2007 	if (pos > i_size_read(inode))
2008 		ret = ocfs2_zero_extend(inode, di_bh, pos);
2009 
2010 	return ret;
2011 }
2012 
2013 /*
2014  * Try to flush truncate logs if we can free enough clusters from it.
2015  * As for return value, "< 0" means error, "0" no space and "1" means
2016  * we have freed enough spaces and let the caller try to allocate again.
2017  */
2018 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2019 					  unsigned int needed)
2020 {
2021 	tid_t target;
2022 	int ret = 0;
2023 	unsigned int truncated_clusters;
2024 
2025 	mutex_lock(&osb->osb_tl_inode->i_mutex);
2026 	truncated_clusters = osb->truncated_clusters;
2027 	mutex_unlock(&osb->osb_tl_inode->i_mutex);
2028 
2029 	/*
2030 	 * Check whether we can succeed in allocating if we free
2031 	 * the truncate log.
2032 	 */
2033 	if (truncated_clusters < needed)
2034 		goto out;
2035 
2036 	ret = ocfs2_flush_truncate_log(osb);
2037 	if (ret) {
2038 		mlog_errno(ret);
2039 		goto out;
2040 	}
2041 
2042 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2043 		jbd2_log_wait_commit(osb->journal->j_journal, target);
2044 		ret = 1;
2045 	}
2046 out:
2047 	return ret;
2048 }
2049 
2050 int ocfs2_write_begin_nolock(struct file *filp,
2051 			     struct address_space *mapping,
2052 			     loff_t pos, unsigned len, unsigned flags,
2053 			     struct page **pagep, void **fsdata,
2054 			     struct buffer_head *di_bh, struct page *mmap_page)
2055 {
2056 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2057 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2058 	struct ocfs2_write_ctxt *wc;
2059 	struct inode *inode = mapping->host;
2060 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2061 	struct ocfs2_dinode *di;
2062 	struct ocfs2_alloc_context *data_ac = NULL;
2063 	struct ocfs2_alloc_context *meta_ac = NULL;
2064 	handle_t *handle;
2065 	struct ocfs2_extent_tree et;
2066 	int try_free = 1, ret1;
2067 
2068 try_again:
2069 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2070 	if (ret) {
2071 		mlog_errno(ret);
2072 		return ret;
2073 	}
2074 
2075 	if (ocfs2_supports_inline_data(osb)) {
2076 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2077 						     mmap_page, wc);
2078 		if (ret == 1) {
2079 			ret = 0;
2080 			goto success;
2081 		}
2082 		if (ret < 0) {
2083 			mlog_errno(ret);
2084 			goto out;
2085 		}
2086 	}
2087 
2088 	if (ocfs2_sparse_alloc(osb))
2089 		ret = ocfs2_zero_tail(inode, di_bh, pos);
2090 	else
2091 		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2092 						   wc);
2093 	if (ret) {
2094 		mlog_errno(ret);
2095 		goto out;
2096 	}
2097 
2098 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
2099 	if (ret < 0) {
2100 		mlog_errno(ret);
2101 		goto out;
2102 	} else if (ret == 1) {
2103 		clusters_need = wc->w_clen;
2104 		ret = ocfs2_refcount_cow(inode, di_bh,
2105 					 wc->w_cpos, wc->w_clen, UINT_MAX);
2106 		if (ret) {
2107 			mlog_errno(ret);
2108 			goto out;
2109 		}
2110 	}
2111 
2112 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2113 					&extents_to_split);
2114 	if (ret) {
2115 		mlog_errno(ret);
2116 		goto out;
2117 	}
2118 	clusters_need += clusters_to_alloc;
2119 
2120 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2121 
2122 	trace_ocfs2_write_begin_nolock(
2123 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2124 			(long long)i_size_read(inode),
2125 			le32_to_cpu(di->i_clusters),
2126 			pos, len, flags, mmap_page,
2127 			clusters_to_alloc, extents_to_split);
2128 
2129 	/*
2130 	 * We set w_target_from, w_target_to here so that
2131 	 * ocfs2_write_end() knows which range in the target page to
2132 	 * write out. An allocation requires that we write the entire
2133 	 * cluster range.
2134 	 */
2135 	if (clusters_to_alloc || extents_to_split) {
2136 		/*
2137 		 * XXX: We are stretching the limits of
2138 		 * ocfs2_lock_allocators(). It greatly over-estimates
2139 		 * the work to be done.
2140 		 */
2141 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2142 					      wc->w_di_bh);
2143 		ret = ocfs2_lock_allocators(inode, &et,
2144 					    clusters_to_alloc, extents_to_split,
2145 					    &data_ac, &meta_ac);
2146 		if (ret) {
2147 			mlog_errno(ret);
2148 			goto out;
2149 		}
2150 
2151 		if (data_ac)
2152 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2153 
2154 		credits = ocfs2_calc_extend_credits(inode->i_sb,
2155 						    &di->id2.i_list);
2156 
2157 	}
2158 
2159 	/*
2160 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
2161 	 * and non-sparse clusters we just extended.  For non-sparse writes,
2162 	 * we know zeros will only be needed in the first and/or last cluster.
2163 	 */
2164 	if (clusters_to_alloc || extents_to_split ||
2165 	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2166 			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2167 		cluster_of_pages = 1;
2168 	else
2169 		cluster_of_pages = 0;
2170 
2171 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2172 
2173 	handle = ocfs2_start_trans(osb, credits);
2174 	if (IS_ERR(handle)) {
2175 		ret = PTR_ERR(handle);
2176 		mlog_errno(ret);
2177 		goto out;
2178 	}
2179 
2180 	wc->w_handle = handle;
2181 
2182 	if (clusters_to_alloc) {
2183 		ret = dquot_alloc_space_nodirty(inode,
2184 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2185 		if (ret)
2186 			goto out_commit;
2187 	}
2188 	/*
2189 	 * We don't want this to fail in ocfs2_write_end(), so do it
2190 	 * here.
2191 	 */
2192 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2193 				      OCFS2_JOURNAL_ACCESS_WRITE);
2194 	if (ret) {
2195 		mlog_errno(ret);
2196 		goto out_quota;
2197 	}
2198 
2199 	/*
2200 	 * Fill our page array first. That way we've grabbed enough so
2201 	 * that we can zero and flush if we error after adding the
2202 	 * extent.
2203 	 */
2204 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2205 					 cluster_of_pages, mmap_page);
2206 	if (ret && ret != -EAGAIN) {
2207 		mlog_errno(ret);
2208 		goto out_quota;
2209 	}
2210 
2211 	/*
2212 	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2213 	 * the target page. In this case, we exit with no error and no target
2214 	 * page. This will trigger the caller, page_mkwrite(), to re-try
2215 	 * the operation.
2216 	 */
2217 	if (ret == -EAGAIN) {
2218 		BUG_ON(wc->w_target_page);
2219 		ret = 0;
2220 		goto out_quota;
2221 	}
2222 
2223 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2224 					  len);
2225 	if (ret) {
2226 		mlog_errno(ret);
2227 		goto out_quota;
2228 	}
2229 
2230 	if (data_ac)
2231 		ocfs2_free_alloc_context(data_ac);
2232 	if (meta_ac)
2233 		ocfs2_free_alloc_context(meta_ac);
2234 
2235 success:
2236 	*pagep = wc->w_target_page;
2237 	*fsdata = wc;
2238 	return 0;
2239 out_quota:
2240 	if (clusters_to_alloc)
2241 		dquot_free_space(inode,
2242 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2243 out_commit:
2244 	ocfs2_commit_trans(osb, handle);
2245 
2246 out:
2247 	ocfs2_free_write_ctxt(wc);
2248 
2249 	if (data_ac) {
2250 		ocfs2_free_alloc_context(data_ac);
2251 		data_ac = NULL;
2252 	}
2253 	if (meta_ac) {
2254 		ocfs2_free_alloc_context(meta_ac);
2255 		meta_ac = NULL;
2256 	}
2257 
2258 	if (ret == -ENOSPC && try_free) {
2259 		/*
2260 		 * Try to free some truncate log so that we can have enough
2261 		 * clusters to allocate.
2262 		 */
2263 		try_free = 0;
2264 
2265 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2266 		if (ret1 == 1)
2267 			goto try_again;
2268 
2269 		if (ret1 < 0)
2270 			mlog_errno(ret1);
2271 	}
2272 
2273 	return ret;
2274 }
2275 
2276 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2277 			     loff_t pos, unsigned len, unsigned flags,
2278 			     struct page **pagep, void **fsdata)
2279 {
2280 	int ret;
2281 	struct buffer_head *di_bh = NULL;
2282 	struct inode *inode = mapping->host;
2283 
2284 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2285 	if (ret) {
2286 		mlog_errno(ret);
2287 		return ret;
2288 	}
2289 
2290 	/*
2291 	 * Take alloc sem here to prevent concurrent lookups. That way
2292 	 * the mapping, zeroing and tree manipulation within
2293 	 * ocfs2_write() will be safe against ->readpage(). This
2294 	 * should also serve to lock out allocation from a shared
2295 	 * writeable region.
2296 	 */
2297 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
2298 
2299 	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2300 				       fsdata, di_bh, NULL);
2301 	if (ret) {
2302 		mlog_errno(ret);
2303 		goto out_fail;
2304 	}
2305 
2306 	brelse(di_bh);
2307 
2308 	return 0;
2309 
2310 out_fail:
2311 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2312 
2313 	brelse(di_bh);
2314 	ocfs2_inode_unlock(inode, 1);
2315 
2316 	return ret;
2317 }
2318 
2319 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2320 				   unsigned len, unsigned *copied,
2321 				   struct ocfs2_dinode *di,
2322 				   struct ocfs2_write_ctxt *wc)
2323 {
2324 	void *kaddr;
2325 
2326 	if (unlikely(*copied < len)) {
2327 		if (!PageUptodate(wc->w_target_page)) {
2328 			*copied = 0;
2329 			return;
2330 		}
2331 	}
2332 
2333 	kaddr = kmap_atomic(wc->w_target_page);
2334 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2335 	kunmap_atomic(kaddr);
2336 
2337 	trace_ocfs2_write_end_inline(
2338 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2339 	     (unsigned long long)pos, *copied,
2340 	     le16_to_cpu(di->id2.i_data.id_count),
2341 	     le16_to_cpu(di->i_dyn_features));
2342 }
2343 
2344 int ocfs2_write_end_nolock(struct address_space *mapping,
2345 			   loff_t pos, unsigned len, unsigned copied,
2346 			   struct page *page, void *fsdata)
2347 {
2348 	int i;
2349 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2350 	struct inode *inode = mapping->host;
2351 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2352 	struct ocfs2_write_ctxt *wc = fsdata;
2353 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2354 	handle_t *handle = wc->w_handle;
2355 	struct page *tmppage;
2356 
2357 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2358 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2359 		goto out_write_size;
2360 	}
2361 
2362 	if (unlikely(copied < len)) {
2363 		if (!PageUptodate(wc->w_target_page))
2364 			copied = 0;
2365 
2366 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2367 				       start+len);
2368 	}
2369 	flush_dcache_page(wc->w_target_page);
2370 
2371 	for(i = 0; i < wc->w_num_pages; i++) {
2372 		tmppage = wc->w_pages[i];
2373 
2374 		if (tmppage == wc->w_target_page) {
2375 			from = wc->w_target_from;
2376 			to = wc->w_target_to;
2377 
2378 			BUG_ON(from > PAGE_CACHE_SIZE ||
2379 			       to > PAGE_CACHE_SIZE ||
2380 			       to < from);
2381 		} else {
2382 			/*
2383 			 * Pages adjacent to the target (if any) imply
2384 			 * a hole-filling write in which case we want
2385 			 * to flush their entire range.
2386 			 */
2387 			from = 0;
2388 			to = PAGE_CACHE_SIZE;
2389 		}
2390 
2391 		if (page_has_buffers(tmppage)) {
2392 			if (ocfs2_should_order_data(inode))
2393 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
2394 			block_commit_write(tmppage, from, to);
2395 		}
2396 	}
2397 
2398 out_write_size:
2399 	pos += copied;
2400 	if (pos > i_size_read(inode)) {
2401 		i_size_write(inode, pos);
2402 		mark_inode_dirty(inode);
2403 	}
2404 	inode->i_blocks = ocfs2_inode_sector_count(inode);
2405 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2406 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2407 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2408 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2409 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
2410 	ocfs2_journal_dirty(handle, wc->w_di_bh);
2411 
2412 	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2413 	 * lock, or it will cause a deadlock since journal commit threads holds
2414 	 * this lock and will ask for the page lock when flushing the data.
2415 	 * put it here to preserve the unlock order.
2416 	 */
2417 	ocfs2_unlock_pages(wc);
2418 
2419 	ocfs2_commit_trans(osb, handle);
2420 
2421 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2422 
2423 	brelse(wc->w_di_bh);
2424 	kfree(wc);
2425 
2426 	return copied;
2427 }
2428 
2429 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2430 			   loff_t pos, unsigned len, unsigned copied,
2431 			   struct page *page, void *fsdata)
2432 {
2433 	int ret;
2434 	struct inode *inode = mapping->host;
2435 
2436 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2437 
2438 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2439 	ocfs2_inode_unlock(inode, 1);
2440 
2441 	return ret;
2442 }
2443 
2444 const struct address_space_operations ocfs2_aops = {
2445 	.readpage		= ocfs2_readpage,
2446 	.readpages		= ocfs2_readpages,
2447 	.writepage		= ocfs2_writepage,
2448 	.write_begin		= ocfs2_write_begin,
2449 	.write_end		= ocfs2_write_end,
2450 	.bmap			= ocfs2_bmap,
2451 	.direct_IO		= ocfs2_direct_IO,
2452 	.invalidatepage		= block_invalidatepage,
2453 	.releasepage		= ocfs2_releasepage,
2454 	.migratepage		= buffer_migrate_page,
2455 	.is_partially_uptodate	= block_is_partially_uptodate,
2456 	.error_remove_page	= generic_error_remove_page,
2457 };
2458