xref: /openbmc/linux/fs/ocfs2/aops.c (revision b96fc2f3)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33 
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50 
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55 
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 				   struct buffer_head *bh_result, int create)
58 {
59 	int err = -EIO;
60 	int status;
61 	struct ocfs2_dinode *fe = NULL;
62 	struct buffer_head *bh = NULL;
63 	struct buffer_head *buffer_cache_bh = NULL;
64 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 	void *kaddr;
66 
67 	trace_ocfs2_symlink_get_block(
68 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
69 			(unsigned long long)iblock, bh_result, create);
70 
71 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72 
73 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 		     (unsigned long long)iblock);
76 		goto bail;
77 	}
78 
79 	status = ocfs2_read_inode_block(inode, &bh);
80 	if (status < 0) {
81 		mlog_errno(status);
82 		goto bail;
83 	}
84 	fe = (struct ocfs2_dinode *) bh->b_data;
85 
86 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 						    le32_to_cpu(fe->i_clusters))) {
88 		err = -ENOMEM;
89 		mlog(ML_ERROR, "block offset is outside the allocated size: "
90 		     "%llu\n", (unsigned long long)iblock);
91 		goto bail;
92 	}
93 
94 	/* We don't use the page cache to create symlink data, so if
95 	 * need be, copy it over from the buffer cache. */
96 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 			    iblock;
99 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 		if (!buffer_cache_bh) {
101 			err = -ENOMEM;
102 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 			goto bail;
104 		}
105 
106 		/* we haven't locked out transactions, so a commit
107 		 * could've happened. Since we've got a reference on
108 		 * the bh, even if it commits while we're doing the
109 		 * copy, the data is still good. */
110 		if (buffer_jbd(buffer_cache_bh)
111 		    && ocfs2_inode_is_new(inode)) {
112 			kaddr = kmap_atomic(bh_result->b_page);
113 			if (!kaddr) {
114 				mlog(ML_ERROR, "couldn't kmap!\n");
115 				goto bail;
116 			}
117 			memcpy(kaddr + (bh_result->b_size * iblock),
118 			       buffer_cache_bh->b_data,
119 			       bh_result->b_size);
120 			kunmap_atomic(kaddr);
121 			set_buffer_uptodate(bh_result);
122 		}
123 		brelse(buffer_cache_bh);
124 	}
125 
126 	map_bh(bh_result, inode->i_sb,
127 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128 
129 	err = 0;
130 
131 bail:
132 	brelse(bh);
133 
134 	return err;
135 }
136 
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 		    struct buffer_head *bh_result, int create)
139 {
140 	int err = 0;
141 	unsigned int ext_flags;
142 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 	u64 p_blkno, count, past_eof;
144 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145 
146 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 			      (unsigned long long)iblock, bh_result, create);
148 
149 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 		     inode, inode->i_ino);
152 
153 	if (S_ISLNK(inode->i_mode)) {
154 		/* this always does I/O for some reason. */
155 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 		goto bail;
157 	}
158 
159 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 					  &ext_flags);
161 	if (err) {
162 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 		     (unsigned long long)p_blkno);
165 		goto bail;
166 	}
167 
168 	if (max_blocks < count)
169 		count = max_blocks;
170 
171 	/*
172 	 * ocfs2 never allocates in this function - the only time we
173 	 * need to use BH_New is when we're extending i_size on a file
174 	 * system which doesn't support holes, in which case BH_New
175 	 * allows __block_write_begin() to zero.
176 	 *
177 	 * If we see this on a sparse file system, then a truncate has
178 	 * raced us and removed the cluster. In this case, we clear
179 	 * the buffers dirty and uptodate bits and let the buffer code
180 	 * ignore it as a hole.
181 	 */
182 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 		clear_buffer_dirty(bh_result);
184 		clear_buffer_uptodate(bh_result);
185 		goto bail;
186 	}
187 
188 	/* Treat the unwritten extent as a hole for zeroing purposes. */
189 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190 		map_bh(bh_result, inode->i_sb, p_blkno);
191 
192 	bh_result->b_size = count << inode->i_blkbits;
193 
194 	if (!ocfs2_sparse_alloc(osb)) {
195 		if (p_blkno == 0) {
196 			err = -EIO;
197 			mlog(ML_ERROR,
198 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 			     (unsigned long long)iblock,
200 			     (unsigned long long)p_blkno,
201 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 			dump_stack();
204 			goto bail;
205 		}
206 	}
207 
208 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209 
210 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 				  (unsigned long long)past_eof);
212 	if (create && (iblock >= past_eof))
213 		set_buffer_new(bh_result);
214 
215 bail:
216 	if (err < 0)
217 		err = -EIO;
218 
219 	return err;
220 }
221 
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 			   struct buffer_head *di_bh)
224 {
225 	void *kaddr;
226 	loff_t size;
227 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228 
229 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
231 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 		return -EROFS;
233 	}
234 
235 	size = i_size_read(inode);
236 
237 	if (size > PAGE_CACHE_SIZE ||
238 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239 		ocfs2_error(inode->i_sb,
240 			    "Inode %llu has with inline data has bad size: %Lu\n",
241 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 			    (unsigned long long)size);
243 		return -EROFS;
244 	}
245 
246 	kaddr = kmap_atomic(page);
247 	if (size)
248 		memcpy(kaddr, di->id2.i_data.id_data, size);
249 	/* Clear the remaining part of the page */
250 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251 	flush_dcache_page(page);
252 	kunmap_atomic(kaddr);
253 
254 	SetPageUptodate(page);
255 
256 	return 0;
257 }
258 
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261 	int ret;
262 	struct buffer_head *di_bh = NULL;
263 
264 	BUG_ON(!PageLocked(page));
265 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266 
267 	ret = ocfs2_read_inode_block(inode, &di_bh);
268 	if (ret) {
269 		mlog_errno(ret);
270 		goto out;
271 	}
272 
273 	ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275 	unlock_page(page);
276 
277 	brelse(di_bh);
278 	return ret;
279 }
280 
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283 	struct inode *inode = page->mapping->host;
284 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
285 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 	int ret, unlock = 1;
287 
288 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 			     (page ? page->index : 0));
290 
291 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292 	if (ret != 0) {
293 		if (ret == AOP_TRUNCATED_PAGE)
294 			unlock = 0;
295 		mlog_errno(ret);
296 		goto out;
297 	}
298 
299 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300 		/*
301 		 * Unlock the page and cycle ip_alloc_sem so that we don't
302 		 * busyloop waiting for ip_alloc_sem to unlock
303 		 */
304 		ret = AOP_TRUNCATED_PAGE;
305 		unlock_page(page);
306 		unlock = 0;
307 		down_read(&oi->ip_alloc_sem);
308 		up_read(&oi->ip_alloc_sem);
309 		goto out_inode_unlock;
310 	}
311 
312 	/*
313 	 * i_size might have just been updated as we grabed the meta lock.  We
314 	 * might now be discovering a truncate that hit on another node.
315 	 * block_read_full_page->get_block freaks out if it is asked to read
316 	 * beyond the end of a file, so we check here.  Callers
317 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 	 * and notice that the page they just read isn't needed.
319 	 *
320 	 * XXX sys_readahead() seems to get that wrong?
321 	 */
322 	if (start >= i_size_read(inode)) {
323 		zero_user(page, 0, PAGE_SIZE);
324 		SetPageUptodate(page);
325 		ret = 0;
326 		goto out_alloc;
327 	}
328 
329 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 		ret = ocfs2_readpage_inline(inode, page);
331 	else
332 		ret = block_read_full_page(page, ocfs2_get_block);
333 	unlock = 0;
334 
335 out_alloc:
336 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338 	ocfs2_inode_unlock(inode, 0);
339 out:
340 	if (unlock)
341 		unlock_page(page);
342 	return ret;
343 }
344 
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 			   struct list_head *pages, unsigned nr_pages)
356 {
357 	int ret, err = -EIO;
358 	struct inode *inode = mapping->host;
359 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 	loff_t start;
361 	struct page *last;
362 
363 	/*
364 	 * Use the nonblocking flag for the dlm code to avoid page
365 	 * lock inversion, but don't bother with retrying.
366 	 */
367 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 	if (ret)
369 		return err;
370 
371 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 		ocfs2_inode_unlock(inode, 0);
373 		return err;
374 	}
375 
376 	/*
377 	 * Don't bother with inline-data. There isn't anything
378 	 * to read-ahead in that case anyway...
379 	 */
380 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 		goto out_unlock;
382 
383 	/*
384 	 * Check whether a remote node truncated this file - we just
385 	 * drop out in that case as it's not worth handling here.
386 	 */
387 	last = list_entry(pages->prev, struct page, lru);
388 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389 	if (start >= i_size_read(inode))
390 		goto out_unlock;
391 
392 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393 
394 out_unlock:
395 	up_read(&oi->ip_alloc_sem);
396 	ocfs2_inode_unlock(inode, 0);
397 
398 	return err;
399 }
400 
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414 	trace_ocfs2_writepage(
415 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 		page->index);
417 
418 	return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420 
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(	handle_t *handle,
426 			struct buffer_head *head,
427 			unsigned from,
428 			unsigned to,
429 			int *partial,
430 			int (*fn)(	handle_t *handle,
431 					struct buffer_head *bh))
432 {
433 	struct buffer_head *bh;
434 	unsigned block_start, block_end;
435 	unsigned blocksize = head->b_size;
436 	int err, ret = 0;
437 	struct buffer_head *next;
438 
439 	for (	bh = head, block_start = 0;
440 		ret == 0 && (bh != head || !block_start);
441 	    	block_start = block_end, bh = next)
442 	{
443 		next = bh->b_this_page;
444 		block_end = block_start + blocksize;
445 		if (block_end <= from || block_start >= to) {
446 			if (partial && !buffer_uptodate(bh))
447 				*partial = 1;
448 			continue;
449 		}
450 		err = (*fn)(handle, bh);
451 		if (!ret)
452 			ret = err;
453 	}
454 	return ret;
455 }
456 
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459 	sector_t status;
460 	u64 p_blkno = 0;
461 	int err = 0;
462 	struct inode *inode = mapping->host;
463 
464 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 			 (unsigned long long)block);
466 
467 	/* We don't need to lock journal system files, since they aren't
468 	 * accessed concurrently from multiple nodes.
469 	 */
470 	if (!INODE_JOURNAL(inode)) {
471 		err = ocfs2_inode_lock(inode, NULL, 0);
472 		if (err) {
473 			if (err != -ENOENT)
474 				mlog_errno(err);
475 			goto bail;
476 		}
477 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 	}
479 
480 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 						  NULL);
483 
484 	if (!INODE_JOURNAL(inode)) {
485 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
486 		ocfs2_inode_unlock(inode, 0);
487 	}
488 
489 	if (err) {
490 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 		     (unsigned long long)block);
492 		mlog_errno(err);
493 		goto bail;
494 	}
495 
496 bail:
497 	status = err ? 0 : p_blkno;
498 
499 	return status;
500 }
501 
502 /*
503  * TODO: Make this into a generic get_blocks function.
504  *
505  * From do_direct_io in direct-io.c:
506  *  "So what we do is to permit the ->get_blocks function to populate
507  *   bh.b_size with the size of IO which is permitted at this offset and
508  *   this i_blkbits."
509  *
510  * This function is called directly from get_more_blocks in direct-io.c.
511  *
512  * called like this: dio->get_blocks(dio->inode, fs_startblk,
513  * 					fs_count, map_bh, dio->rw == WRITE);
514  */
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516 				     struct buffer_head *bh_result, int create)
517 {
518 	int ret;
519 	u32 cpos = 0;
520 	int alloc_locked = 0;
521 	u64 p_blkno, inode_blocks, contig_blocks;
522 	unsigned int ext_flags;
523 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525 	unsigned long len = bh_result->b_size;
526 	unsigned int clusters_to_alloc = 0, contig_clusters = 0;
527 
528 	cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529 
530 	/* This function won't even be called if the request isn't all
531 	 * nicely aligned and of the right size, so there's no need
532 	 * for us to check any of that. */
533 
534 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535 
536 	down_read(&OCFS2_I(inode)->ip_alloc_sem);
537 
538 	/* This figures out the size of the next contiguous block, and
539 	 * our logical offset */
540 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
541 					  &contig_blocks, &ext_flags);
542 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
543 
544 	if (ret) {
545 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
546 		     (unsigned long long)iblock);
547 		ret = -EIO;
548 		goto bail;
549 	}
550 
551 	/* We should already CoW the refcounted extent in case of create. */
552 	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
553 
554 	/* allocate blocks if no p_blkno is found, and create == 1 */
555 	if (!p_blkno && create) {
556 		ret = ocfs2_inode_lock(inode, NULL, 1);
557 		if (ret < 0) {
558 			mlog_errno(ret);
559 			goto bail;
560 		}
561 
562 		alloc_locked = 1;
563 
564 		down_write(&OCFS2_I(inode)->ip_alloc_sem);
565 
566 		/* fill hole, allocate blocks can't be larger than the size
567 		 * of the hole */
568 		clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
569 		contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
570 				contig_blocks);
571 		if (clusters_to_alloc > contig_clusters)
572 			clusters_to_alloc = contig_clusters;
573 
574 		/* allocate extent and insert them into the extent tree */
575 		ret = ocfs2_extend_allocation(inode, cpos,
576 				clusters_to_alloc, 0);
577 		if (ret < 0) {
578 			up_write(&OCFS2_I(inode)->ip_alloc_sem);
579 			mlog_errno(ret);
580 			goto bail;
581 		}
582 
583 		ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
584 				&contig_blocks, &ext_flags);
585 		if (ret < 0) {
586 			up_write(&OCFS2_I(inode)->ip_alloc_sem);
587 			mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
588 					(unsigned long long)iblock);
589 			ret = -EIO;
590 			goto bail;
591 		}
592 		up_write(&OCFS2_I(inode)->ip_alloc_sem);
593 	}
594 
595 	/*
596 	 * get_more_blocks() expects us to describe a hole by clearing
597 	 * the mapped bit on bh_result().
598 	 *
599 	 * Consider an unwritten extent as a hole.
600 	 */
601 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
602 		map_bh(bh_result, inode->i_sb, p_blkno);
603 	else
604 		clear_buffer_mapped(bh_result);
605 
606 	/* make sure we don't map more than max_blocks blocks here as
607 	   that's all the kernel will handle at this point. */
608 	if (max_blocks < contig_blocks)
609 		contig_blocks = max_blocks;
610 	bh_result->b_size = contig_blocks << blocksize_bits;
611 bail:
612 	if (alloc_locked)
613 		ocfs2_inode_unlock(inode, 1);
614 	return ret;
615 }
616 
617 /*
618  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
619  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
620  * to protect io on one node from truncation on another.
621  */
622 static void ocfs2_dio_end_io(struct kiocb *iocb,
623 			     loff_t offset,
624 			     ssize_t bytes,
625 			     void *private)
626 {
627 	struct inode *inode = file_inode(iocb->ki_filp);
628 	int level;
629 
630 	/* this io's submitter should not have unlocked this before we could */
631 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
632 
633 	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
634 		ocfs2_iocb_clear_unaligned_aio(iocb);
635 
636 		mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
637 	}
638 
639 	/* Let rw unlock to be done later to protect append direct io write */
640 	if (offset + bytes <= i_size_read(inode)) {
641 		ocfs2_iocb_clear_rw_locked(iocb);
642 
643 		level = ocfs2_iocb_rw_locked_level(iocb);
644 		ocfs2_rw_unlock(inode, level);
645 	}
646 }
647 
648 static int ocfs2_releasepage(struct page *page, gfp_t wait)
649 {
650 	if (!page_has_buffers(page))
651 		return 0;
652 	return try_to_free_buffers(page);
653 }
654 
655 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
656 		struct inode *inode, loff_t offset)
657 {
658 	int ret = 0;
659 	u32 v_cpos = 0;
660 	u32 p_cpos = 0;
661 	unsigned int num_clusters = 0;
662 	unsigned int ext_flags = 0;
663 
664 	v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
665 	ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
666 			&num_clusters, &ext_flags);
667 	if (ret < 0) {
668 		mlog_errno(ret);
669 		return ret;
670 	}
671 
672 	if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
673 		return 1;
674 
675 	return 0;
676 }
677 
678 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
679 		struct inode *inode, loff_t offset,
680 		u64 zero_len, int cluster_align)
681 {
682 	u32 p_cpos = 0;
683 	u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
684 	unsigned int num_clusters = 0;
685 	unsigned int ext_flags = 0;
686 	int ret = 0;
687 
688 	if (offset <= i_size_read(inode) || cluster_align)
689 		return 0;
690 
691 	ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
692 			&ext_flags);
693 	if (ret < 0) {
694 		mlog_errno(ret);
695 		return ret;
696 	}
697 
698 	if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
699 		u64 s = i_size_read(inode);
700 		sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
701 			(do_div(s, osb->s_clustersize) >> 9);
702 
703 		ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
704 				zero_len >> 9, GFP_NOFS, false);
705 		if (ret < 0)
706 			mlog_errno(ret);
707 	}
708 
709 	return ret;
710 }
711 
712 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
713 		struct inode *inode, loff_t offset)
714 {
715 	u64 zero_start, zero_len, total_zero_len;
716 	u32 p_cpos = 0, clusters_to_add;
717 	u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
718 	unsigned int num_clusters = 0;
719 	unsigned int ext_flags = 0;
720 	u32 size_div, offset_div;
721 	int ret = 0;
722 
723 	{
724 		u64 o = offset;
725 		u64 s = i_size_read(inode);
726 
727 		offset_div = do_div(o, osb->s_clustersize);
728 		size_div = do_div(s, osb->s_clustersize);
729 	}
730 
731 	if (offset <= i_size_read(inode))
732 		return 0;
733 
734 	clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
735 		ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
736 	total_zero_len = offset - i_size_read(inode);
737 	if (clusters_to_add)
738 		total_zero_len -= offset_div;
739 
740 	/* Allocate clusters to fill out holes, and this is only needed
741 	 * when we add more than one clusters. Otherwise the cluster will
742 	 * be allocated during direct IO */
743 	if (clusters_to_add > 1) {
744 		ret = ocfs2_extend_allocation(inode,
745 				OCFS2_I(inode)->ip_clusters,
746 				clusters_to_add - 1, 0);
747 		if (ret) {
748 			mlog_errno(ret);
749 			goto out;
750 		}
751 	}
752 
753 	while (total_zero_len) {
754 		ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
755 				&ext_flags);
756 		if (ret < 0) {
757 			mlog_errno(ret);
758 			goto out;
759 		}
760 
761 		zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
762 			size_div;
763 		zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
764 			size_div;
765 		zero_len = min(total_zero_len, zero_len);
766 
767 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
768 			ret = blkdev_issue_zeroout(osb->sb->s_bdev,
769 					zero_start >> 9, zero_len >> 9,
770 					GFP_NOFS, false);
771 			if (ret < 0) {
772 				mlog_errno(ret);
773 				goto out;
774 			}
775 		}
776 
777 		total_zero_len -= zero_len;
778 		v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
779 
780 		/* Only at first iteration can be cluster not aligned.
781 		 * So set size_div to 0 for the rest */
782 		size_div = 0;
783 	}
784 
785 out:
786 	return ret;
787 }
788 
789 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
790 		struct iov_iter *iter,
791 		loff_t offset)
792 {
793 	ssize_t ret = 0;
794 	ssize_t written = 0;
795 	bool orphaned = false;
796 	int is_overwrite = 0;
797 	struct file *file = iocb->ki_filp;
798 	struct inode *inode = file_inode(file)->i_mapping->host;
799 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
800 	struct buffer_head *di_bh = NULL;
801 	size_t count = iter->count;
802 	journal_t *journal = osb->journal->j_journal;
803 	u64 zero_len_head, zero_len_tail;
804 	int cluster_align_head, cluster_align_tail;
805 	loff_t final_size = offset + count;
806 	int append_write = offset >= i_size_read(inode) ? 1 : 0;
807 	unsigned int num_clusters = 0;
808 	unsigned int ext_flags = 0;
809 
810 	{
811 		u64 o = offset;
812 		u64 s = i_size_read(inode);
813 
814 		zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
815 		cluster_align_head = !zero_len_head;
816 
817 		zero_len_tail = osb->s_clustersize -
818 			do_div(s, osb->s_clustersize);
819 		if ((offset - i_size_read(inode)) < zero_len_tail)
820 			zero_len_tail = offset - i_size_read(inode);
821 		cluster_align_tail = !zero_len_tail;
822 	}
823 
824 	/*
825 	 * when final_size > inode->i_size, inode->i_size will be
826 	 * updated after direct write, so add the inode to orphan
827 	 * dir first.
828 	 */
829 	if (final_size > i_size_read(inode)) {
830 		ret = ocfs2_add_inode_to_orphan(osb, inode);
831 		if (ret < 0) {
832 			mlog_errno(ret);
833 			goto out;
834 		}
835 		orphaned = true;
836 	}
837 
838 	if (append_write) {
839 		ret = ocfs2_inode_lock(inode, NULL, 1);
840 		if (ret < 0) {
841 			mlog_errno(ret);
842 			goto clean_orphan;
843 		}
844 
845 		/* zeroing out the previously allocated cluster tail
846 		 * that but not zeroed */
847 		if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
848 			down_read(&OCFS2_I(inode)->ip_alloc_sem);
849 			ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
850 					zero_len_tail, cluster_align_tail);
851 			up_read(&OCFS2_I(inode)->ip_alloc_sem);
852 		} else {
853 			down_write(&OCFS2_I(inode)->ip_alloc_sem);
854 			ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
855 					offset);
856 			up_write(&OCFS2_I(inode)->ip_alloc_sem);
857 		}
858 		if (ret < 0) {
859 			mlog_errno(ret);
860 			ocfs2_inode_unlock(inode, 1);
861 			goto clean_orphan;
862 		}
863 
864 		is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
865 		if (is_overwrite < 0) {
866 			mlog_errno(is_overwrite);
867 			ocfs2_inode_unlock(inode, 1);
868 			goto clean_orphan;
869 		}
870 
871 		ocfs2_inode_unlock(inode, 1);
872 	}
873 
874 	written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
875 				       offset, ocfs2_direct_IO_get_blocks,
876 				       ocfs2_dio_end_io, NULL, 0);
877 	/* overwrite aio may return -EIOCBQUEUED, and it is not an error */
878 	if ((written < 0) && (written != -EIOCBQUEUED)) {
879 		loff_t i_size = i_size_read(inode);
880 
881 		if (offset + count > i_size) {
882 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
883 			if (ret < 0) {
884 				mlog_errno(ret);
885 				goto clean_orphan;
886 			}
887 
888 			if (i_size == i_size_read(inode)) {
889 				ret = ocfs2_truncate_file(inode, di_bh,
890 						i_size);
891 				if (ret < 0) {
892 					if (ret != -ENOSPC)
893 						mlog_errno(ret);
894 
895 					ocfs2_inode_unlock(inode, 1);
896 					brelse(di_bh);
897 					di_bh = NULL;
898 					goto clean_orphan;
899 				}
900 			}
901 
902 			ocfs2_inode_unlock(inode, 1);
903 			brelse(di_bh);
904 			di_bh = NULL;
905 
906 			ret = jbd2_journal_force_commit(journal);
907 			if (ret < 0)
908 				mlog_errno(ret);
909 		}
910 	} else if (written > 0 && append_write && !is_overwrite &&
911 			!cluster_align_head) {
912 		/* zeroing out the allocated cluster head */
913 		u32 p_cpos = 0;
914 		u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
915 
916 		ret = ocfs2_inode_lock(inode, NULL, 0);
917 		if (ret < 0) {
918 			mlog_errno(ret);
919 			goto clean_orphan;
920 		}
921 
922 		ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
923 				&num_clusters, &ext_flags);
924 		if (ret < 0) {
925 			mlog_errno(ret);
926 			ocfs2_inode_unlock(inode, 0);
927 			goto clean_orphan;
928 		}
929 
930 		BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
931 
932 		ret = blkdev_issue_zeroout(osb->sb->s_bdev,
933 				(u64)p_cpos << (osb->s_clustersize_bits - 9),
934 				zero_len_head >> 9, GFP_NOFS, false);
935 		if (ret < 0)
936 			mlog_errno(ret);
937 
938 		ocfs2_inode_unlock(inode, 0);
939 	}
940 
941 clean_orphan:
942 	if (orphaned) {
943 		int tmp_ret;
944 		int update_isize = written > 0 ? 1 : 0;
945 		loff_t end = update_isize ? offset + written : 0;
946 
947 		tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
948 		if (tmp_ret < 0) {
949 			ret = tmp_ret;
950 			mlog_errno(ret);
951 			goto out;
952 		}
953 
954 		tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
955 				update_isize, end);
956 		if (tmp_ret < 0) {
957 			ret = tmp_ret;
958 			mlog_errno(ret);
959 			brelse(di_bh);
960 			goto out;
961 		}
962 
963 		ocfs2_inode_unlock(inode, 1);
964 		brelse(di_bh);
965 
966 		tmp_ret = jbd2_journal_force_commit(journal);
967 		if (tmp_ret < 0) {
968 			ret = tmp_ret;
969 			mlog_errno(tmp_ret);
970 		}
971 	}
972 
973 out:
974 	if (ret >= 0)
975 		ret = written;
976 	return ret;
977 }
978 
979 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
980 			       loff_t offset)
981 {
982 	struct file *file = iocb->ki_filp;
983 	struct inode *inode = file_inode(file)->i_mapping->host;
984 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
985 	int full_coherency = !(osb->s_mount_opt &
986 			OCFS2_MOUNT_COHERENCY_BUFFERED);
987 
988 	/*
989 	 * Fallback to buffered I/O if we see an inode without
990 	 * extents.
991 	 */
992 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
993 		return 0;
994 
995 	/* Fallback to buffered I/O if we are appending and
996 	 * concurrent O_DIRECT writes are allowed.
997 	 */
998 	if (i_size_read(inode) <= offset && !full_coherency)
999 		return 0;
1000 
1001 	if (iov_iter_rw(iter) == READ)
1002 		return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
1003 					    iter, offset,
1004 					    ocfs2_direct_IO_get_blocks,
1005 					    ocfs2_dio_end_io, NULL, 0);
1006 	else
1007 		return ocfs2_direct_IO_write(iocb, iter, offset);
1008 }
1009 
1010 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
1011 					    u32 cpos,
1012 					    unsigned int *start,
1013 					    unsigned int *end)
1014 {
1015 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
1016 
1017 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
1018 		unsigned int cpp;
1019 
1020 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
1021 
1022 		cluster_start = cpos % cpp;
1023 		cluster_start = cluster_start << osb->s_clustersize_bits;
1024 
1025 		cluster_end = cluster_start + osb->s_clustersize;
1026 	}
1027 
1028 	BUG_ON(cluster_start > PAGE_SIZE);
1029 	BUG_ON(cluster_end > PAGE_SIZE);
1030 
1031 	if (start)
1032 		*start = cluster_start;
1033 	if (end)
1034 		*end = cluster_end;
1035 }
1036 
1037 /*
1038  * 'from' and 'to' are the region in the page to avoid zeroing.
1039  *
1040  * If pagesize > clustersize, this function will avoid zeroing outside
1041  * of the cluster boundary.
1042  *
1043  * from == to == 0 is code for "zero the entire cluster region"
1044  */
1045 static void ocfs2_clear_page_regions(struct page *page,
1046 				     struct ocfs2_super *osb, u32 cpos,
1047 				     unsigned from, unsigned to)
1048 {
1049 	void *kaddr;
1050 	unsigned int cluster_start, cluster_end;
1051 
1052 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1053 
1054 	kaddr = kmap_atomic(page);
1055 
1056 	if (from || to) {
1057 		if (from > cluster_start)
1058 			memset(kaddr + cluster_start, 0, from - cluster_start);
1059 		if (to < cluster_end)
1060 			memset(kaddr + to, 0, cluster_end - to);
1061 	} else {
1062 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1063 	}
1064 
1065 	kunmap_atomic(kaddr);
1066 }
1067 
1068 /*
1069  * Nonsparse file systems fully allocate before we get to the write
1070  * code. This prevents ocfs2_write() from tagging the write as an
1071  * allocating one, which means ocfs2_map_page_blocks() might try to
1072  * read-in the blocks at the tail of our file. Avoid reading them by
1073  * testing i_size against each block offset.
1074  */
1075 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1076 				 unsigned int block_start)
1077 {
1078 	u64 offset = page_offset(page) + block_start;
1079 
1080 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1081 		return 1;
1082 
1083 	if (i_size_read(inode) > offset)
1084 		return 1;
1085 
1086 	return 0;
1087 }
1088 
1089 /*
1090  * Some of this taken from __block_write_begin(). We already have our
1091  * mapping by now though, and the entire write will be allocating or
1092  * it won't, so not much need to use BH_New.
1093  *
1094  * This will also skip zeroing, which is handled externally.
1095  */
1096 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1097 			  struct inode *inode, unsigned int from,
1098 			  unsigned int to, int new)
1099 {
1100 	int ret = 0;
1101 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1102 	unsigned int block_end, block_start;
1103 	unsigned int bsize = 1 << inode->i_blkbits;
1104 
1105 	if (!page_has_buffers(page))
1106 		create_empty_buffers(page, bsize, 0);
1107 
1108 	head = page_buffers(page);
1109 	for (bh = head, block_start = 0; bh != head || !block_start;
1110 	     bh = bh->b_this_page, block_start += bsize) {
1111 		block_end = block_start + bsize;
1112 
1113 		clear_buffer_new(bh);
1114 
1115 		/*
1116 		 * Ignore blocks outside of our i/o range -
1117 		 * they may belong to unallocated clusters.
1118 		 */
1119 		if (block_start >= to || block_end <= from) {
1120 			if (PageUptodate(page))
1121 				set_buffer_uptodate(bh);
1122 			continue;
1123 		}
1124 
1125 		/*
1126 		 * For an allocating write with cluster size >= page
1127 		 * size, we always write the entire page.
1128 		 */
1129 		if (new)
1130 			set_buffer_new(bh);
1131 
1132 		if (!buffer_mapped(bh)) {
1133 			map_bh(bh, inode->i_sb, *p_blkno);
1134 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1135 		}
1136 
1137 		if (PageUptodate(page)) {
1138 			if (!buffer_uptodate(bh))
1139 				set_buffer_uptodate(bh);
1140 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1141 			   !buffer_new(bh) &&
1142 			   ocfs2_should_read_blk(inode, page, block_start) &&
1143 			   (block_start < from || block_end > to)) {
1144 			ll_rw_block(READ, 1, &bh);
1145 			*wait_bh++=bh;
1146 		}
1147 
1148 		*p_blkno = *p_blkno + 1;
1149 	}
1150 
1151 	/*
1152 	 * If we issued read requests - let them complete.
1153 	 */
1154 	while(wait_bh > wait) {
1155 		wait_on_buffer(*--wait_bh);
1156 		if (!buffer_uptodate(*wait_bh))
1157 			ret = -EIO;
1158 	}
1159 
1160 	if (ret == 0 || !new)
1161 		return ret;
1162 
1163 	/*
1164 	 * If we get -EIO above, zero out any newly allocated blocks
1165 	 * to avoid exposing stale data.
1166 	 */
1167 	bh = head;
1168 	block_start = 0;
1169 	do {
1170 		block_end = block_start + bsize;
1171 		if (block_end <= from)
1172 			goto next_bh;
1173 		if (block_start >= to)
1174 			break;
1175 
1176 		zero_user(page, block_start, bh->b_size);
1177 		set_buffer_uptodate(bh);
1178 		mark_buffer_dirty(bh);
1179 
1180 next_bh:
1181 		block_start = block_end;
1182 		bh = bh->b_this_page;
1183 	} while (bh != head);
1184 
1185 	return ret;
1186 }
1187 
1188 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1189 #define OCFS2_MAX_CTXT_PAGES	1
1190 #else
1191 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1192 #endif
1193 
1194 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1195 
1196 /*
1197  * Describe the state of a single cluster to be written to.
1198  */
1199 struct ocfs2_write_cluster_desc {
1200 	u32		c_cpos;
1201 	u32		c_phys;
1202 	/*
1203 	 * Give this a unique field because c_phys eventually gets
1204 	 * filled.
1205 	 */
1206 	unsigned	c_new;
1207 	unsigned	c_unwritten;
1208 	unsigned	c_needs_zero;
1209 };
1210 
1211 struct ocfs2_write_ctxt {
1212 	/* Logical cluster position / len of write */
1213 	u32				w_cpos;
1214 	u32				w_clen;
1215 
1216 	/* First cluster allocated in a nonsparse extend */
1217 	u32				w_first_new_cpos;
1218 
1219 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1220 
1221 	/*
1222 	 * This is true if page_size > cluster_size.
1223 	 *
1224 	 * It triggers a set of special cases during write which might
1225 	 * have to deal with allocating writes to partial pages.
1226 	 */
1227 	unsigned int			w_large_pages;
1228 
1229 	/*
1230 	 * Pages involved in this write.
1231 	 *
1232 	 * w_target_page is the page being written to by the user.
1233 	 *
1234 	 * w_pages is an array of pages which always contains
1235 	 * w_target_page, and in the case of an allocating write with
1236 	 * page_size < cluster size, it will contain zero'd and mapped
1237 	 * pages adjacent to w_target_page which need to be written
1238 	 * out in so that future reads from that region will get
1239 	 * zero's.
1240 	 */
1241 	unsigned int			w_num_pages;
1242 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
1243 	struct page			*w_target_page;
1244 
1245 	/*
1246 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
1247 	 * against w_target_page in ocfs2_write_end_nolock.
1248 	 */
1249 	unsigned int			w_target_locked:1;
1250 
1251 	/*
1252 	 * ocfs2_write_end() uses this to know what the real range to
1253 	 * write in the target should be.
1254 	 */
1255 	unsigned int			w_target_from;
1256 	unsigned int			w_target_to;
1257 
1258 	/*
1259 	 * We could use journal_current_handle() but this is cleaner,
1260 	 * IMHO -Mark
1261 	 */
1262 	handle_t			*w_handle;
1263 
1264 	struct buffer_head		*w_di_bh;
1265 
1266 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
1267 };
1268 
1269 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1270 {
1271 	int i;
1272 
1273 	for(i = 0; i < num_pages; i++) {
1274 		if (pages[i]) {
1275 			unlock_page(pages[i]);
1276 			mark_page_accessed(pages[i]);
1277 			page_cache_release(pages[i]);
1278 		}
1279 	}
1280 }
1281 
1282 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1283 {
1284 	int i;
1285 
1286 	/*
1287 	 * w_target_locked is only set to true in the page_mkwrite() case.
1288 	 * The intent is to allow us to lock the target page from write_begin()
1289 	 * to write_end(). The caller must hold a ref on w_target_page.
1290 	 */
1291 	if (wc->w_target_locked) {
1292 		BUG_ON(!wc->w_target_page);
1293 		for (i = 0; i < wc->w_num_pages; i++) {
1294 			if (wc->w_target_page == wc->w_pages[i]) {
1295 				wc->w_pages[i] = NULL;
1296 				break;
1297 			}
1298 		}
1299 		mark_page_accessed(wc->w_target_page);
1300 		page_cache_release(wc->w_target_page);
1301 	}
1302 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1303 }
1304 
1305 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1306 {
1307 	ocfs2_unlock_pages(wc);
1308 	brelse(wc->w_di_bh);
1309 	kfree(wc);
1310 }
1311 
1312 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1313 				  struct ocfs2_super *osb, loff_t pos,
1314 				  unsigned len, struct buffer_head *di_bh)
1315 {
1316 	u32 cend;
1317 	struct ocfs2_write_ctxt *wc;
1318 
1319 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1320 	if (!wc)
1321 		return -ENOMEM;
1322 
1323 	wc->w_cpos = pos >> osb->s_clustersize_bits;
1324 	wc->w_first_new_cpos = UINT_MAX;
1325 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
1326 	wc->w_clen = cend - wc->w_cpos + 1;
1327 	get_bh(di_bh);
1328 	wc->w_di_bh = di_bh;
1329 
1330 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1331 		wc->w_large_pages = 1;
1332 	else
1333 		wc->w_large_pages = 0;
1334 
1335 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1336 
1337 	*wcp = wc;
1338 
1339 	return 0;
1340 }
1341 
1342 /*
1343  * If a page has any new buffers, zero them out here, and mark them uptodate
1344  * and dirty so they'll be written out (in order to prevent uninitialised
1345  * block data from leaking). And clear the new bit.
1346  */
1347 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1348 {
1349 	unsigned int block_start, block_end;
1350 	struct buffer_head *head, *bh;
1351 
1352 	BUG_ON(!PageLocked(page));
1353 	if (!page_has_buffers(page))
1354 		return;
1355 
1356 	bh = head = page_buffers(page);
1357 	block_start = 0;
1358 	do {
1359 		block_end = block_start + bh->b_size;
1360 
1361 		if (buffer_new(bh)) {
1362 			if (block_end > from && block_start < to) {
1363 				if (!PageUptodate(page)) {
1364 					unsigned start, end;
1365 
1366 					start = max(from, block_start);
1367 					end = min(to, block_end);
1368 
1369 					zero_user_segment(page, start, end);
1370 					set_buffer_uptodate(bh);
1371 				}
1372 
1373 				clear_buffer_new(bh);
1374 				mark_buffer_dirty(bh);
1375 			}
1376 		}
1377 
1378 		block_start = block_end;
1379 		bh = bh->b_this_page;
1380 	} while (bh != head);
1381 }
1382 
1383 /*
1384  * Only called when we have a failure during allocating write to write
1385  * zero's to the newly allocated region.
1386  */
1387 static void ocfs2_write_failure(struct inode *inode,
1388 				struct ocfs2_write_ctxt *wc,
1389 				loff_t user_pos, unsigned user_len)
1390 {
1391 	int i;
1392 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1393 		to = user_pos + user_len;
1394 	struct page *tmppage;
1395 
1396 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1397 
1398 	for(i = 0; i < wc->w_num_pages; i++) {
1399 		tmppage = wc->w_pages[i];
1400 
1401 		if (page_has_buffers(tmppage)) {
1402 			if (ocfs2_should_order_data(inode))
1403 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1404 
1405 			block_commit_write(tmppage, from, to);
1406 		}
1407 	}
1408 }
1409 
1410 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1411 					struct ocfs2_write_ctxt *wc,
1412 					struct page *page, u32 cpos,
1413 					loff_t user_pos, unsigned user_len,
1414 					int new)
1415 {
1416 	int ret;
1417 	unsigned int map_from = 0, map_to = 0;
1418 	unsigned int cluster_start, cluster_end;
1419 	unsigned int user_data_from = 0, user_data_to = 0;
1420 
1421 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1422 					&cluster_start, &cluster_end);
1423 
1424 	/* treat the write as new if the a hole/lseek spanned across
1425 	 * the page boundary.
1426 	 */
1427 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1428 			(page_offset(page) <= user_pos));
1429 
1430 	if (page == wc->w_target_page) {
1431 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1432 		map_to = map_from + user_len;
1433 
1434 		if (new)
1435 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1436 						    cluster_start, cluster_end,
1437 						    new);
1438 		else
1439 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1440 						    map_from, map_to, new);
1441 		if (ret) {
1442 			mlog_errno(ret);
1443 			goto out;
1444 		}
1445 
1446 		user_data_from = map_from;
1447 		user_data_to = map_to;
1448 		if (new) {
1449 			map_from = cluster_start;
1450 			map_to = cluster_end;
1451 		}
1452 	} else {
1453 		/*
1454 		 * If we haven't allocated the new page yet, we
1455 		 * shouldn't be writing it out without copying user
1456 		 * data. This is likely a math error from the caller.
1457 		 */
1458 		BUG_ON(!new);
1459 
1460 		map_from = cluster_start;
1461 		map_to = cluster_end;
1462 
1463 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1464 					    cluster_start, cluster_end, new);
1465 		if (ret) {
1466 			mlog_errno(ret);
1467 			goto out;
1468 		}
1469 	}
1470 
1471 	/*
1472 	 * Parts of newly allocated pages need to be zero'd.
1473 	 *
1474 	 * Above, we have also rewritten 'to' and 'from' - as far as
1475 	 * the rest of the function is concerned, the entire cluster
1476 	 * range inside of a page needs to be written.
1477 	 *
1478 	 * We can skip this if the page is up to date - it's already
1479 	 * been zero'd from being read in as a hole.
1480 	 */
1481 	if (new && !PageUptodate(page))
1482 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1483 					 cpos, user_data_from, user_data_to);
1484 
1485 	flush_dcache_page(page);
1486 
1487 out:
1488 	return ret;
1489 }
1490 
1491 /*
1492  * This function will only grab one clusters worth of pages.
1493  */
1494 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1495 				      struct ocfs2_write_ctxt *wc,
1496 				      u32 cpos, loff_t user_pos,
1497 				      unsigned user_len, int new,
1498 				      struct page *mmap_page)
1499 {
1500 	int ret = 0, i;
1501 	unsigned long start, target_index, end_index, index;
1502 	struct inode *inode = mapping->host;
1503 	loff_t last_byte;
1504 
1505 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1506 
1507 	/*
1508 	 * Figure out how many pages we'll be manipulating here. For
1509 	 * non allocating write, we just change the one
1510 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1511 	 * writing past i_size, we only need enough pages to cover the
1512 	 * last page of the write.
1513 	 */
1514 	if (new) {
1515 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1516 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1517 		/*
1518 		 * We need the index *past* the last page we could possibly
1519 		 * touch.  This is the page past the end of the write or
1520 		 * i_size, whichever is greater.
1521 		 */
1522 		last_byte = max(user_pos + user_len, i_size_read(inode));
1523 		BUG_ON(last_byte < 1);
1524 		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1525 		if ((start + wc->w_num_pages) > end_index)
1526 			wc->w_num_pages = end_index - start;
1527 	} else {
1528 		wc->w_num_pages = 1;
1529 		start = target_index;
1530 	}
1531 
1532 	for(i = 0; i < wc->w_num_pages; i++) {
1533 		index = start + i;
1534 
1535 		if (index == target_index && mmap_page) {
1536 			/*
1537 			 * ocfs2_pagemkwrite() is a little different
1538 			 * and wants us to directly use the page
1539 			 * passed in.
1540 			 */
1541 			lock_page(mmap_page);
1542 
1543 			/* Exit and let the caller retry */
1544 			if (mmap_page->mapping != mapping) {
1545 				WARN_ON(mmap_page->mapping);
1546 				unlock_page(mmap_page);
1547 				ret = -EAGAIN;
1548 				goto out;
1549 			}
1550 
1551 			page_cache_get(mmap_page);
1552 			wc->w_pages[i] = mmap_page;
1553 			wc->w_target_locked = true;
1554 		} else {
1555 			wc->w_pages[i] = find_or_create_page(mapping, index,
1556 							     GFP_NOFS);
1557 			if (!wc->w_pages[i]) {
1558 				ret = -ENOMEM;
1559 				mlog_errno(ret);
1560 				goto out;
1561 			}
1562 		}
1563 		wait_for_stable_page(wc->w_pages[i]);
1564 
1565 		if (index == target_index)
1566 			wc->w_target_page = wc->w_pages[i];
1567 	}
1568 out:
1569 	if (ret)
1570 		wc->w_target_locked = false;
1571 	return ret;
1572 }
1573 
1574 /*
1575  * Prepare a single cluster for write one cluster into the file.
1576  */
1577 static int ocfs2_write_cluster(struct address_space *mapping,
1578 			       u32 phys, unsigned int unwritten,
1579 			       unsigned int should_zero,
1580 			       struct ocfs2_alloc_context *data_ac,
1581 			       struct ocfs2_alloc_context *meta_ac,
1582 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1583 			       loff_t user_pos, unsigned user_len)
1584 {
1585 	int ret, i, new;
1586 	u64 v_blkno, p_blkno;
1587 	struct inode *inode = mapping->host;
1588 	struct ocfs2_extent_tree et;
1589 
1590 	new = phys == 0 ? 1 : 0;
1591 	if (new) {
1592 		u32 tmp_pos;
1593 
1594 		/*
1595 		 * This is safe to call with the page locks - it won't take
1596 		 * any additional semaphores or cluster locks.
1597 		 */
1598 		tmp_pos = cpos;
1599 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1600 					   &tmp_pos, 1, 0, wc->w_di_bh,
1601 					   wc->w_handle, data_ac,
1602 					   meta_ac, NULL);
1603 		/*
1604 		 * This shouldn't happen because we must have already
1605 		 * calculated the correct meta data allocation required. The
1606 		 * internal tree allocation code should know how to increase
1607 		 * transaction credits itself.
1608 		 *
1609 		 * If need be, we could handle -EAGAIN for a
1610 		 * RESTART_TRANS here.
1611 		 */
1612 		mlog_bug_on_msg(ret == -EAGAIN,
1613 				"Inode %llu: EAGAIN return during allocation.\n",
1614 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1615 		if (ret < 0) {
1616 			mlog_errno(ret);
1617 			goto out;
1618 		}
1619 	} else if (unwritten) {
1620 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1621 					      wc->w_di_bh);
1622 		ret = ocfs2_mark_extent_written(inode, &et,
1623 						wc->w_handle, cpos, 1, phys,
1624 						meta_ac, &wc->w_dealloc);
1625 		if (ret < 0) {
1626 			mlog_errno(ret);
1627 			goto out;
1628 		}
1629 	}
1630 
1631 	if (should_zero)
1632 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1633 	else
1634 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1635 
1636 	/*
1637 	 * The only reason this should fail is due to an inability to
1638 	 * find the extent added.
1639 	 */
1640 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1641 					  NULL);
1642 	if (ret < 0) {
1643 		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1644 			    "at logical block %llu",
1645 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1646 			    (unsigned long long)v_blkno);
1647 		goto out;
1648 	}
1649 
1650 	BUG_ON(p_blkno == 0);
1651 
1652 	for(i = 0; i < wc->w_num_pages; i++) {
1653 		int tmpret;
1654 
1655 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1656 						      wc->w_pages[i], cpos,
1657 						      user_pos, user_len,
1658 						      should_zero);
1659 		if (tmpret) {
1660 			mlog_errno(tmpret);
1661 			if (ret == 0)
1662 				ret = tmpret;
1663 		}
1664 	}
1665 
1666 	/*
1667 	 * We only have cleanup to do in case of allocating write.
1668 	 */
1669 	if (ret && new)
1670 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1671 
1672 out:
1673 
1674 	return ret;
1675 }
1676 
1677 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1678 				       struct ocfs2_alloc_context *data_ac,
1679 				       struct ocfs2_alloc_context *meta_ac,
1680 				       struct ocfs2_write_ctxt *wc,
1681 				       loff_t pos, unsigned len)
1682 {
1683 	int ret, i;
1684 	loff_t cluster_off;
1685 	unsigned int local_len = len;
1686 	struct ocfs2_write_cluster_desc *desc;
1687 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1688 
1689 	for (i = 0; i < wc->w_clen; i++) {
1690 		desc = &wc->w_desc[i];
1691 
1692 		/*
1693 		 * We have to make sure that the total write passed in
1694 		 * doesn't extend past a single cluster.
1695 		 */
1696 		local_len = len;
1697 		cluster_off = pos & (osb->s_clustersize - 1);
1698 		if ((cluster_off + local_len) > osb->s_clustersize)
1699 			local_len = osb->s_clustersize - cluster_off;
1700 
1701 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1702 					  desc->c_unwritten,
1703 					  desc->c_needs_zero,
1704 					  data_ac, meta_ac,
1705 					  wc, desc->c_cpos, pos, local_len);
1706 		if (ret) {
1707 			mlog_errno(ret);
1708 			goto out;
1709 		}
1710 
1711 		len -= local_len;
1712 		pos += local_len;
1713 	}
1714 
1715 	ret = 0;
1716 out:
1717 	return ret;
1718 }
1719 
1720 /*
1721  * ocfs2_write_end() wants to know which parts of the target page it
1722  * should complete the write on. It's easiest to compute them ahead of
1723  * time when a more complete view of the write is available.
1724  */
1725 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1726 					struct ocfs2_write_ctxt *wc,
1727 					loff_t pos, unsigned len, int alloc)
1728 {
1729 	struct ocfs2_write_cluster_desc *desc;
1730 
1731 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1732 	wc->w_target_to = wc->w_target_from + len;
1733 
1734 	if (alloc == 0)
1735 		return;
1736 
1737 	/*
1738 	 * Allocating write - we may have different boundaries based
1739 	 * on page size and cluster size.
1740 	 *
1741 	 * NOTE: We can no longer compute one value from the other as
1742 	 * the actual write length and user provided length may be
1743 	 * different.
1744 	 */
1745 
1746 	if (wc->w_large_pages) {
1747 		/*
1748 		 * We only care about the 1st and last cluster within
1749 		 * our range and whether they should be zero'd or not. Either
1750 		 * value may be extended out to the start/end of a
1751 		 * newly allocated cluster.
1752 		 */
1753 		desc = &wc->w_desc[0];
1754 		if (desc->c_needs_zero)
1755 			ocfs2_figure_cluster_boundaries(osb,
1756 							desc->c_cpos,
1757 							&wc->w_target_from,
1758 							NULL);
1759 
1760 		desc = &wc->w_desc[wc->w_clen - 1];
1761 		if (desc->c_needs_zero)
1762 			ocfs2_figure_cluster_boundaries(osb,
1763 							desc->c_cpos,
1764 							NULL,
1765 							&wc->w_target_to);
1766 	} else {
1767 		wc->w_target_from = 0;
1768 		wc->w_target_to = PAGE_CACHE_SIZE;
1769 	}
1770 }
1771 
1772 /*
1773  * Populate each single-cluster write descriptor in the write context
1774  * with information about the i/o to be done.
1775  *
1776  * Returns the number of clusters that will have to be allocated, as
1777  * well as a worst case estimate of the number of extent records that
1778  * would have to be created during a write to an unwritten region.
1779  */
1780 static int ocfs2_populate_write_desc(struct inode *inode,
1781 				     struct ocfs2_write_ctxt *wc,
1782 				     unsigned int *clusters_to_alloc,
1783 				     unsigned int *extents_to_split)
1784 {
1785 	int ret;
1786 	struct ocfs2_write_cluster_desc *desc;
1787 	unsigned int num_clusters = 0;
1788 	unsigned int ext_flags = 0;
1789 	u32 phys = 0;
1790 	int i;
1791 
1792 	*clusters_to_alloc = 0;
1793 	*extents_to_split = 0;
1794 
1795 	for (i = 0; i < wc->w_clen; i++) {
1796 		desc = &wc->w_desc[i];
1797 		desc->c_cpos = wc->w_cpos + i;
1798 
1799 		if (num_clusters == 0) {
1800 			/*
1801 			 * Need to look up the next extent record.
1802 			 */
1803 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1804 						 &num_clusters, &ext_flags);
1805 			if (ret) {
1806 				mlog_errno(ret);
1807 				goto out;
1808 			}
1809 
1810 			/* We should already CoW the refcountd extent. */
1811 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1812 
1813 			/*
1814 			 * Assume worst case - that we're writing in
1815 			 * the middle of the extent.
1816 			 *
1817 			 * We can assume that the write proceeds from
1818 			 * left to right, in which case the extent
1819 			 * insert code is smart enough to coalesce the
1820 			 * next splits into the previous records created.
1821 			 */
1822 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1823 				*extents_to_split = *extents_to_split + 2;
1824 		} else if (phys) {
1825 			/*
1826 			 * Only increment phys if it doesn't describe
1827 			 * a hole.
1828 			 */
1829 			phys++;
1830 		}
1831 
1832 		/*
1833 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1834 		 * file that got extended.  w_first_new_cpos tells us
1835 		 * where the newly allocated clusters are so we can
1836 		 * zero them.
1837 		 */
1838 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1839 			BUG_ON(phys == 0);
1840 			desc->c_needs_zero = 1;
1841 		}
1842 
1843 		desc->c_phys = phys;
1844 		if (phys == 0) {
1845 			desc->c_new = 1;
1846 			desc->c_needs_zero = 1;
1847 			*clusters_to_alloc = *clusters_to_alloc + 1;
1848 		}
1849 
1850 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1851 			desc->c_unwritten = 1;
1852 			desc->c_needs_zero = 1;
1853 		}
1854 
1855 		num_clusters--;
1856 	}
1857 
1858 	ret = 0;
1859 out:
1860 	return ret;
1861 }
1862 
1863 static int ocfs2_write_begin_inline(struct address_space *mapping,
1864 				    struct inode *inode,
1865 				    struct ocfs2_write_ctxt *wc)
1866 {
1867 	int ret;
1868 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1869 	struct page *page;
1870 	handle_t *handle;
1871 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1872 
1873 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1874 	if (IS_ERR(handle)) {
1875 		ret = PTR_ERR(handle);
1876 		mlog_errno(ret);
1877 		goto out;
1878 	}
1879 
1880 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1881 	if (!page) {
1882 		ocfs2_commit_trans(osb, handle);
1883 		ret = -ENOMEM;
1884 		mlog_errno(ret);
1885 		goto out;
1886 	}
1887 	/*
1888 	 * If we don't set w_num_pages then this page won't get unlocked
1889 	 * and freed on cleanup of the write context.
1890 	 */
1891 	wc->w_pages[0] = wc->w_target_page = page;
1892 	wc->w_num_pages = 1;
1893 
1894 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1895 				      OCFS2_JOURNAL_ACCESS_WRITE);
1896 	if (ret) {
1897 		ocfs2_commit_trans(osb, handle);
1898 
1899 		mlog_errno(ret);
1900 		goto out;
1901 	}
1902 
1903 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1904 		ocfs2_set_inode_data_inline(inode, di);
1905 
1906 	if (!PageUptodate(page)) {
1907 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1908 		if (ret) {
1909 			ocfs2_commit_trans(osb, handle);
1910 
1911 			goto out;
1912 		}
1913 	}
1914 
1915 	wc->w_handle = handle;
1916 out:
1917 	return ret;
1918 }
1919 
1920 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1921 {
1922 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1923 
1924 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1925 		return 1;
1926 	return 0;
1927 }
1928 
1929 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1930 					  struct inode *inode, loff_t pos,
1931 					  unsigned len, struct page *mmap_page,
1932 					  struct ocfs2_write_ctxt *wc)
1933 {
1934 	int ret, written = 0;
1935 	loff_t end = pos + len;
1936 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1937 	struct ocfs2_dinode *di = NULL;
1938 
1939 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1940 					     len, (unsigned long long)pos,
1941 					     oi->ip_dyn_features);
1942 
1943 	/*
1944 	 * Handle inodes which already have inline data 1st.
1945 	 */
1946 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1947 		if (mmap_page == NULL &&
1948 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1949 			goto do_inline_write;
1950 
1951 		/*
1952 		 * The write won't fit - we have to give this inode an
1953 		 * inline extent list now.
1954 		 */
1955 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1956 		if (ret)
1957 			mlog_errno(ret);
1958 		goto out;
1959 	}
1960 
1961 	/*
1962 	 * Check whether the inode can accept inline data.
1963 	 */
1964 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1965 		return 0;
1966 
1967 	/*
1968 	 * Check whether the write can fit.
1969 	 */
1970 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1971 	if (mmap_page ||
1972 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1973 		return 0;
1974 
1975 do_inline_write:
1976 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1977 	if (ret) {
1978 		mlog_errno(ret);
1979 		goto out;
1980 	}
1981 
1982 	/*
1983 	 * This signals to the caller that the data can be written
1984 	 * inline.
1985 	 */
1986 	written = 1;
1987 out:
1988 	return written ? written : ret;
1989 }
1990 
1991 /*
1992  * This function only does anything for file systems which can't
1993  * handle sparse files.
1994  *
1995  * What we want to do here is fill in any hole between the current end
1996  * of allocation and the end of our write. That way the rest of the
1997  * write path can treat it as an non-allocating write, which has no
1998  * special case code for sparse/nonsparse files.
1999  */
2000 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
2001 					struct buffer_head *di_bh,
2002 					loff_t pos, unsigned len,
2003 					struct ocfs2_write_ctxt *wc)
2004 {
2005 	int ret;
2006 	loff_t newsize = pos + len;
2007 
2008 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2009 
2010 	if (newsize <= i_size_read(inode))
2011 		return 0;
2012 
2013 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
2014 	if (ret)
2015 		mlog_errno(ret);
2016 
2017 	wc->w_first_new_cpos =
2018 		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
2019 
2020 	return ret;
2021 }
2022 
2023 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2024 			   loff_t pos)
2025 {
2026 	int ret = 0;
2027 
2028 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2029 	if (pos > i_size_read(inode))
2030 		ret = ocfs2_zero_extend(inode, di_bh, pos);
2031 
2032 	return ret;
2033 }
2034 
2035 /*
2036  * Try to flush truncate logs if we can free enough clusters from it.
2037  * As for return value, "< 0" means error, "0" no space and "1" means
2038  * we have freed enough spaces and let the caller try to allocate again.
2039  */
2040 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2041 					  unsigned int needed)
2042 {
2043 	tid_t target;
2044 	int ret = 0;
2045 	unsigned int truncated_clusters;
2046 
2047 	mutex_lock(&osb->osb_tl_inode->i_mutex);
2048 	truncated_clusters = osb->truncated_clusters;
2049 	mutex_unlock(&osb->osb_tl_inode->i_mutex);
2050 
2051 	/*
2052 	 * Check whether we can succeed in allocating if we free
2053 	 * the truncate log.
2054 	 */
2055 	if (truncated_clusters < needed)
2056 		goto out;
2057 
2058 	ret = ocfs2_flush_truncate_log(osb);
2059 	if (ret) {
2060 		mlog_errno(ret);
2061 		goto out;
2062 	}
2063 
2064 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2065 		jbd2_log_wait_commit(osb->journal->j_journal, target);
2066 		ret = 1;
2067 	}
2068 out:
2069 	return ret;
2070 }
2071 
2072 int ocfs2_write_begin_nolock(struct file *filp,
2073 			     struct address_space *mapping,
2074 			     loff_t pos, unsigned len, unsigned flags,
2075 			     struct page **pagep, void **fsdata,
2076 			     struct buffer_head *di_bh, struct page *mmap_page)
2077 {
2078 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2079 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2080 	struct ocfs2_write_ctxt *wc;
2081 	struct inode *inode = mapping->host;
2082 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2083 	struct ocfs2_dinode *di;
2084 	struct ocfs2_alloc_context *data_ac = NULL;
2085 	struct ocfs2_alloc_context *meta_ac = NULL;
2086 	handle_t *handle;
2087 	struct ocfs2_extent_tree et;
2088 	int try_free = 1, ret1;
2089 
2090 try_again:
2091 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2092 	if (ret) {
2093 		mlog_errno(ret);
2094 		return ret;
2095 	}
2096 
2097 	if (ocfs2_supports_inline_data(osb)) {
2098 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2099 						     mmap_page, wc);
2100 		if (ret == 1) {
2101 			ret = 0;
2102 			goto success;
2103 		}
2104 		if (ret < 0) {
2105 			mlog_errno(ret);
2106 			goto out;
2107 		}
2108 	}
2109 
2110 	if (ocfs2_sparse_alloc(osb))
2111 		ret = ocfs2_zero_tail(inode, di_bh, pos);
2112 	else
2113 		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2114 						   wc);
2115 	if (ret) {
2116 		mlog_errno(ret);
2117 		goto out;
2118 	}
2119 
2120 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
2121 	if (ret < 0) {
2122 		mlog_errno(ret);
2123 		goto out;
2124 	} else if (ret == 1) {
2125 		clusters_need = wc->w_clen;
2126 		ret = ocfs2_refcount_cow(inode, di_bh,
2127 					 wc->w_cpos, wc->w_clen, UINT_MAX);
2128 		if (ret) {
2129 			mlog_errno(ret);
2130 			goto out;
2131 		}
2132 	}
2133 
2134 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2135 					&extents_to_split);
2136 	if (ret) {
2137 		mlog_errno(ret);
2138 		goto out;
2139 	}
2140 	clusters_need += clusters_to_alloc;
2141 
2142 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2143 
2144 	trace_ocfs2_write_begin_nolock(
2145 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2146 			(long long)i_size_read(inode),
2147 			le32_to_cpu(di->i_clusters),
2148 			pos, len, flags, mmap_page,
2149 			clusters_to_alloc, extents_to_split);
2150 
2151 	/*
2152 	 * We set w_target_from, w_target_to here so that
2153 	 * ocfs2_write_end() knows which range in the target page to
2154 	 * write out. An allocation requires that we write the entire
2155 	 * cluster range.
2156 	 */
2157 	if (clusters_to_alloc || extents_to_split) {
2158 		/*
2159 		 * XXX: We are stretching the limits of
2160 		 * ocfs2_lock_allocators(). It greatly over-estimates
2161 		 * the work to be done.
2162 		 */
2163 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2164 					      wc->w_di_bh);
2165 		ret = ocfs2_lock_allocators(inode, &et,
2166 					    clusters_to_alloc, extents_to_split,
2167 					    &data_ac, &meta_ac);
2168 		if (ret) {
2169 			mlog_errno(ret);
2170 			goto out;
2171 		}
2172 
2173 		if (data_ac)
2174 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2175 
2176 		credits = ocfs2_calc_extend_credits(inode->i_sb,
2177 						    &di->id2.i_list);
2178 
2179 	}
2180 
2181 	/*
2182 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
2183 	 * and non-sparse clusters we just extended.  For non-sparse writes,
2184 	 * we know zeros will only be needed in the first and/or last cluster.
2185 	 */
2186 	if (clusters_to_alloc || extents_to_split ||
2187 	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2188 			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2189 		cluster_of_pages = 1;
2190 	else
2191 		cluster_of_pages = 0;
2192 
2193 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2194 
2195 	handle = ocfs2_start_trans(osb, credits);
2196 	if (IS_ERR(handle)) {
2197 		ret = PTR_ERR(handle);
2198 		mlog_errno(ret);
2199 		goto out;
2200 	}
2201 
2202 	wc->w_handle = handle;
2203 
2204 	if (clusters_to_alloc) {
2205 		ret = dquot_alloc_space_nodirty(inode,
2206 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2207 		if (ret)
2208 			goto out_commit;
2209 	}
2210 
2211 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2212 				      OCFS2_JOURNAL_ACCESS_WRITE);
2213 	if (ret) {
2214 		mlog_errno(ret);
2215 		goto out_quota;
2216 	}
2217 
2218 	/*
2219 	 * Fill our page array first. That way we've grabbed enough so
2220 	 * that we can zero and flush if we error after adding the
2221 	 * extent.
2222 	 */
2223 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2224 					 cluster_of_pages, mmap_page);
2225 	if (ret && ret != -EAGAIN) {
2226 		mlog_errno(ret);
2227 		goto out_quota;
2228 	}
2229 
2230 	/*
2231 	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2232 	 * the target page. In this case, we exit with no error and no target
2233 	 * page. This will trigger the caller, page_mkwrite(), to re-try
2234 	 * the operation.
2235 	 */
2236 	if (ret == -EAGAIN) {
2237 		BUG_ON(wc->w_target_page);
2238 		ret = 0;
2239 		goto out_quota;
2240 	}
2241 
2242 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2243 					  len);
2244 	if (ret) {
2245 		mlog_errno(ret);
2246 		goto out_quota;
2247 	}
2248 
2249 	if (data_ac)
2250 		ocfs2_free_alloc_context(data_ac);
2251 	if (meta_ac)
2252 		ocfs2_free_alloc_context(meta_ac);
2253 
2254 success:
2255 	*pagep = wc->w_target_page;
2256 	*fsdata = wc;
2257 	return 0;
2258 out_quota:
2259 	if (clusters_to_alloc)
2260 		dquot_free_space(inode,
2261 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2262 out_commit:
2263 	ocfs2_commit_trans(osb, handle);
2264 
2265 out:
2266 	ocfs2_free_write_ctxt(wc);
2267 
2268 	if (data_ac) {
2269 		ocfs2_free_alloc_context(data_ac);
2270 		data_ac = NULL;
2271 	}
2272 	if (meta_ac) {
2273 		ocfs2_free_alloc_context(meta_ac);
2274 		meta_ac = NULL;
2275 	}
2276 
2277 	if (ret == -ENOSPC && try_free) {
2278 		/*
2279 		 * Try to free some truncate log so that we can have enough
2280 		 * clusters to allocate.
2281 		 */
2282 		try_free = 0;
2283 
2284 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2285 		if (ret1 == 1)
2286 			goto try_again;
2287 
2288 		if (ret1 < 0)
2289 			mlog_errno(ret1);
2290 	}
2291 
2292 	return ret;
2293 }
2294 
2295 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2296 			     loff_t pos, unsigned len, unsigned flags,
2297 			     struct page **pagep, void **fsdata)
2298 {
2299 	int ret;
2300 	struct buffer_head *di_bh = NULL;
2301 	struct inode *inode = mapping->host;
2302 
2303 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2304 	if (ret) {
2305 		mlog_errno(ret);
2306 		return ret;
2307 	}
2308 
2309 	/*
2310 	 * Take alloc sem here to prevent concurrent lookups. That way
2311 	 * the mapping, zeroing and tree manipulation within
2312 	 * ocfs2_write() will be safe against ->readpage(). This
2313 	 * should also serve to lock out allocation from a shared
2314 	 * writeable region.
2315 	 */
2316 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
2317 
2318 	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2319 				       fsdata, di_bh, NULL);
2320 	if (ret) {
2321 		mlog_errno(ret);
2322 		goto out_fail;
2323 	}
2324 
2325 	brelse(di_bh);
2326 
2327 	return 0;
2328 
2329 out_fail:
2330 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2331 
2332 	brelse(di_bh);
2333 	ocfs2_inode_unlock(inode, 1);
2334 
2335 	return ret;
2336 }
2337 
2338 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2339 				   unsigned len, unsigned *copied,
2340 				   struct ocfs2_dinode *di,
2341 				   struct ocfs2_write_ctxt *wc)
2342 {
2343 	void *kaddr;
2344 
2345 	if (unlikely(*copied < len)) {
2346 		if (!PageUptodate(wc->w_target_page)) {
2347 			*copied = 0;
2348 			return;
2349 		}
2350 	}
2351 
2352 	kaddr = kmap_atomic(wc->w_target_page);
2353 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2354 	kunmap_atomic(kaddr);
2355 
2356 	trace_ocfs2_write_end_inline(
2357 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2358 	     (unsigned long long)pos, *copied,
2359 	     le16_to_cpu(di->id2.i_data.id_count),
2360 	     le16_to_cpu(di->i_dyn_features));
2361 }
2362 
2363 int ocfs2_write_end_nolock(struct address_space *mapping,
2364 			   loff_t pos, unsigned len, unsigned copied,
2365 			   struct page *page, void *fsdata)
2366 {
2367 	int i, ret;
2368 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2369 	struct inode *inode = mapping->host;
2370 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2371 	struct ocfs2_write_ctxt *wc = fsdata;
2372 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2373 	handle_t *handle = wc->w_handle;
2374 	struct page *tmppage;
2375 
2376 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2377 			OCFS2_JOURNAL_ACCESS_WRITE);
2378 	if (ret) {
2379 		copied = ret;
2380 		mlog_errno(ret);
2381 		goto out;
2382 	}
2383 
2384 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2385 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2386 		goto out_write_size;
2387 	}
2388 
2389 	if (unlikely(copied < len)) {
2390 		if (!PageUptodate(wc->w_target_page))
2391 			copied = 0;
2392 
2393 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2394 				       start+len);
2395 	}
2396 	flush_dcache_page(wc->w_target_page);
2397 
2398 	for(i = 0; i < wc->w_num_pages; i++) {
2399 		tmppage = wc->w_pages[i];
2400 
2401 		if (tmppage == wc->w_target_page) {
2402 			from = wc->w_target_from;
2403 			to = wc->w_target_to;
2404 
2405 			BUG_ON(from > PAGE_CACHE_SIZE ||
2406 			       to > PAGE_CACHE_SIZE ||
2407 			       to < from);
2408 		} else {
2409 			/*
2410 			 * Pages adjacent to the target (if any) imply
2411 			 * a hole-filling write in which case we want
2412 			 * to flush their entire range.
2413 			 */
2414 			from = 0;
2415 			to = PAGE_CACHE_SIZE;
2416 		}
2417 
2418 		if (page_has_buffers(tmppage)) {
2419 			if (ocfs2_should_order_data(inode))
2420 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
2421 			block_commit_write(tmppage, from, to);
2422 		}
2423 	}
2424 
2425 out_write_size:
2426 	pos += copied;
2427 	if (pos > i_size_read(inode)) {
2428 		i_size_write(inode, pos);
2429 		mark_inode_dirty(inode);
2430 	}
2431 	inode->i_blocks = ocfs2_inode_sector_count(inode);
2432 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2433 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2434 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2435 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2436 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
2437 	ocfs2_journal_dirty(handle, wc->w_di_bh);
2438 
2439 out:
2440 	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2441 	 * lock, or it will cause a deadlock since journal commit threads holds
2442 	 * this lock and will ask for the page lock when flushing the data.
2443 	 * put it here to preserve the unlock order.
2444 	 */
2445 	ocfs2_unlock_pages(wc);
2446 
2447 	ocfs2_commit_trans(osb, handle);
2448 
2449 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2450 
2451 	brelse(wc->w_di_bh);
2452 	kfree(wc);
2453 
2454 	return copied;
2455 }
2456 
2457 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2458 			   loff_t pos, unsigned len, unsigned copied,
2459 			   struct page *page, void *fsdata)
2460 {
2461 	int ret;
2462 	struct inode *inode = mapping->host;
2463 
2464 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2465 
2466 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2467 	ocfs2_inode_unlock(inode, 1);
2468 
2469 	return ret;
2470 }
2471 
2472 const struct address_space_operations ocfs2_aops = {
2473 	.readpage		= ocfs2_readpage,
2474 	.readpages		= ocfs2_readpages,
2475 	.writepage		= ocfs2_writepage,
2476 	.write_begin		= ocfs2_write_begin,
2477 	.write_end		= ocfs2_write_end,
2478 	.bmap			= ocfs2_bmap,
2479 	.direct_IO		= ocfs2_direct_IO,
2480 	.invalidatepage		= block_invalidatepage,
2481 	.releasepage		= ocfs2_releasepage,
2482 	.migratepage		= buffer_migrate_page,
2483 	.is_partially_uptodate	= block_is_partially_uptodate,
2484 	.error_remove_page	= generic_error_remove_page,
2485 };
2486