1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 #include <linux/quotaops.h> 31 #include <linux/blkdev.h> 32 #include <linux/uio.h> 33 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "dlmglue.h" 41 #include "extent_map.h" 42 #include "file.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "suballoc.h" 46 #include "super.h" 47 #include "symlink.h" 48 #include "refcounttree.h" 49 #include "ocfs2_trace.h" 50 51 #include "buffer_head_io.h" 52 #include "dir.h" 53 #include "namei.h" 54 #include "sysfile.h" 55 56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 57 struct buffer_head *bh_result, int create) 58 { 59 int err = -EIO; 60 int status; 61 struct ocfs2_dinode *fe = NULL; 62 struct buffer_head *bh = NULL; 63 struct buffer_head *buffer_cache_bh = NULL; 64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 65 void *kaddr; 66 67 trace_ocfs2_symlink_get_block( 68 (unsigned long long)OCFS2_I(inode)->ip_blkno, 69 (unsigned long long)iblock, bh_result, create); 70 71 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 72 73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 75 (unsigned long long)iblock); 76 goto bail; 77 } 78 79 status = ocfs2_read_inode_block(inode, &bh); 80 if (status < 0) { 81 mlog_errno(status); 82 goto bail; 83 } 84 fe = (struct ocfs2_dinode *) bh->b_data; 85 86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 87 le32_to_cpu(fe->i_clusters))) { 88 err = -ENOMEM; 89 mlog(ML_ERROR, "block offset is outside the allocated size: " 90 "%llu\n", (unsigned long long)iblock); 91 goto bail; 92 } 93 94 /* We don't use the page cache to create symlink data, so if 95 * need be, copy it over from the buffer cache. */ 96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 98 iblock; 99 buffer_cache_bh = sb_getblk(osb->sb, blkno); 100 if (!buffer_cache_bh) { 101 err = -ENOMEM; 102 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 103 goto bail; 104 } 105 106 /* we haven't locked out transactions, so a commit 107 * could've happened. Since we've got a reference on 108 * the bh, even if it commits while we're doing the 109 * copy, the data is still good. */ 110 if (buffer_jbd(buffer_cache_bh) 111 && ocfs2_inode_is_new(inode)) { 112 kaddr = kmap_atomic(bh_result->b_page); 113 if (!kaddr) { 114 mlog(ML_ERROR, "couldn't kmap!\n"); 115 goto bail; 116 } 117 memcpy(kaddr + (bh_result->b_size * iblock), 118 buffer_cache_bh->b_data, 119 bh_result->b_size); 120 kunmap_atomic(kaddr); 121 set_buffer_uptodate(bh_result); 122 } 123 brelse(buffer_cache_bh); 124 } 125 126 map_bh(bh_result, inode->i_sb, 127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 128 129 err = 0; 130 131 bail: 132 brelse(bh); 133 134 return err; 135 } 136 137 int ocfs2_get_block(struct inode *inode, sector_t iblock, 138 struct buffer_head *bh_result, int create) 139 { 140 int err = 0; 141 unsigned int ext_flags; 142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 143 u64 p_blkno, count, past_eof; 144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 145 146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 147 (unsigned long long)iblock, bh_result, create); 148 149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 151 inode, inode->i_ino); 152 153 if (S_ISLNK(inode->i_mode)) { 154 /* this always does I/O for some reason. */ 155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 156 goto bail; 157 } 158 159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 160 &ext_flags); 161 if (err) { 162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 164 (unsigned long long)p_blkno); 165 goto bail; 166 } 167 168 if (max_blocks < count) 169 count = max_blocks; 170 171 /* 172 * ocfs2 never allocates in this function - the only time we 173 * need to use BH_New is when we're extending i_size on a file 174 * system which doesn't support holes, in which case BH_New 175 * allows __block_write_begin() to zero. 176 * 177 * If we see this on a sparse file system, then a truncate has 178 * raced us and removed the cluster. In this case, we clear 179 * the buffers dirty and uptodate bits and let the buffer code 180 * ignore it as a hole. 181 */ 182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 183 clear_buffer_dirty(bh_result); 184 clear_buffer_uptodate(bh_result); 185 goto bail; 186 } 187 188 /* Treat the unwritten extent as a hole for zeroing purposes. */ 189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 190 map_bh(bh_result, inode->i_sb, p_blkno); 191 192 bh_result->b_size = count << inode->i_blkbits; 193 194 if (!ocfs2_sparse_alloc(osb)) { 195 if (p_blkno == 0) { 196 err = -EIO; 197 mlog(ML_ERROR, 198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 199 (unsigned long long)iblock, 200 (unsigned long long)p_blkno, 201 (unsigned long long)OCFS2_I(inode)->ip_blkno); 202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 203 dump_stack(); 204 goto bail; 205 } 206 } 207 208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 209 210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 211 (unsigned long long)past_eof); 212 if (create && (iblock >= past_eof)) 213 set_buffer_new(bh_result); 214 215 bail: 216 if (err < 0) 217 err = -EIO; 218 219 return err; 220 } 221 222 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 223 struct buffer_head *di_bh) 224 { 225 void *kaddr; 226 loff_t size; 227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 228 229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 231 (unsigned long long)OCFS2_I(inode)->ip_blkno); 232 return -EROFS; 233 } 234 235 size = i_size_read(inode); 236 237 if (size > PAGE_CACHE_SIZE || 238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 239 ocfs2_error(inode->i_sb, 240 "Inode %llu has with inline data has bad size: %Lu\n", 241 (unsigned long long)OCFS2_I(inode)->ip_blkno, 242 (unsigned long long)size); 243 return -EROFS; 244 } 245 246 kaddr = kmap_atomic(page); 247 if (size) 248 memcpy(kaddr, di->id2.i_data.id_data, size); 249 /* Clear the remaining part of the page */ 250 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); 251 flush_dcache_page(page); 252 kunmap_atomic(kaddr); 253 254 SetPageUptodate(page); 255 256 return 0; 257 } 258 259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 260 { 261 int ret; 262 struct buffer_head *di_bh = NULL; 263 264 BUG_ON(!PageLocked(page)); 265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 266 267 ret = ocfs2_read_inode_block(inode, &di_bh); 268 if (ret) { 269 mlog_errno(ret); 270 goto out; 271 } 272 273 ret = ocfs2_read_inline_data(inode, page, di_bh); 274 out: 275 unlock_page(page); 276 277 brelse(di_bh); 278 return ret; 279 } 280 281 static int ocfs2_readpage(struct file *file, struct page *page) 282 { 283 struct inode *inode = page->mapping->host; 284 struct ocfs2_inode_info *oi = OCFS2_I(inode); 285 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; 286 int ret, unlock = 1; 287 288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 289 (page ? page->index : 0)); 290 291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 292 if (ret != 0) { 293 if (ret == AOP_TRUNCATED_PAGE) 294 unlock = 0; 295 mlog_errno(ret); 296 goto out; 297 } 298 299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 300 /* 301 * Unlock the page and cycle ip_alloc_sem so that we don't 302 * busyloop waiting for ip_alloc_sem to unlock 303 */ 304 ret = AOP_TRUNCATED_PAGE; 305 unlock_page(page); 306 unlock = 0; 307 down_read(&oi->ip_alloc_sem); 308 up_read(&oi->ip_alloc_sem); 309 goto out_inode_unlock; 310 } 311 312 /* 313 * i_size might have just been updated as we grabed the meta lock. We 314 * might now be discovering a truncate that hit on another node. 315 * block_read_full_page->get_block freaks out if it is asked to read 316 * beyond the end of a file, so we check here. Callers 317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 318 * and notice that the page they just read isn't needed. 319 * 320 * XXX sys_readahead() seems to get that wrong? 321 */ 322 if (start >= i_size_read(inode)) { 323 zero_user(page, 0, PAGE_SIZE); 324 SetPageUptodate(page); 325 ret = 0; 326 goto out_alloc; 327 } 328 329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 330 ret = ocfs2_readpage_inline(inode, page); 331 else 332 ret = block_read_full_page(page, ocfs2_get_block); 333 unlock = 0; 334 335 out_alloc: 336 up_read(&OCFS2_I(inode)->ip_alloc_sem); 337 out_inode_unlock: 338 ocfs2_inode_unlock(inode, 0); 339 out: 340 if (unlock) 341 unlock_page(page); 342 return ret; 343 } 344 345 /* 346 * This is used only for read-ahead. Failures or difficult to handle 347 * situations are safe to ignore. 348 * 349 * Right now, we don't bother with BH_Boundary - in-inode extent lists 350 * are quite large (243 extents on 4k blocks), so most inodes don't 351 * grow out to a tree. If need be, detecting boundary extents could 352 * trivially be added in a future version of ocfs2_get_block(). 353 */ 354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 355 struct list_head *pages, unsigned nr_pages) 356 { 357 int ret, err = -EIO; 358 struct inode *inode = mapping->host; 359 struct ocfs2_inode_info *oi = OCFS2_I(inode); 360 loff_t start; 361 struct page *last; 362 363 /* 364 * Use the nonblocking flag for the dlm code to avoid page 365 * lock inversion, but don't bother with retrying. 366 */ 367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 368 if (ret) 369 return err; 370 371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 372 ocfs2_inode_unlock(inode, 0); 373 return err; 374 } 375 376 /* 377 * Don't bother with inline-data. There isn't anything 378 * to read-ahead in that case anyway... 379 */ 380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 381 goto out_unlock; 382 383 /* 384 * Check whether a remote node truncated this file - we just 385 * drop out in that case as it's not worth handling here. 386 */ 387 last = list_entry(pages->prev, struct page, lru); 388 start = (loff_t)last->index << PAGE_CACHE_SHIFT; 389 if (start >= i_size_read(inode)) 390 goto out_unlock; 391 392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 393 394 out_unlock: 395 up_read(&oi->ip_alloc_sem); 396 ocfs2_inode_unlock(inode, 0); 397 398 return err; 399 } 400 401 /* Note: Because we don't support holes, our allocation has 402 * already happened (allocation writes zeros to the file data) 403 * so we don't have to worry about ordered writes in 404 * ocfs2_writepage. 405 * 406 * ->writepage is called during the process of invalidating the page cache 407 * during blocked lock processing. It can't block on any cluster locks 408 * to during block mapping. It's relying on the fact that the block 409 * mapping can't have disappeared under the dirty pages that it is 410 * being asked to write back. 411 */ 412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 413 { 414 trace_ocfs2_writepage( 415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 416 page->index); 417 418 return block_write_full_page(page, ocfs2_get_block, wbc); 419 } 420 421 /* Taken from ext3. We don't necessarily need the full blown 422 * functionality yet, but IMHO it's better to cut and paste the whole 423 * thing so we can avoid introducing our own bugs (and easily pick up 424 * their fixes when they happen) --Mark */ 425 int walk_page_buffers( handle_t *handle, 426 struct buffer_head *head, 427 unsigned from, 428 unsigned to, 429 int *partial, 430 int (*fn)( handle_t *handle, 431 struct buffer_head *bh)) 432 { 433 struct buffer_head *bh; 434 unsigned block_start, block_end; 435 unsigned blocksize = head->b_size; 436 int err, ret = 0; 437 struct buffer_head *next; 438 439 for ( bh = head, block_start = 0; 440 ret == 0 && (bh != head || !block_start); 441 block_start = block_end, bh = next) 442 { 443 next = bh->b_this_page; 444 block_end = block_start + blocksize; 445 if (block_end <= from || block_start >= to) { 446 if (partial && !buffer_uptodate(bh)) 447 *partial = 1; 448 continue; 449 } 450 err = (*fn)(handle, bh); 451 if (!ret) 452 ret = err; 453 } 454 return ret; 455 } 456 457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 458 { 459 sector_t status; 460 u64 p_blkno = 0; 461 int err = 0; 462 struct inode *inode = mapping->host; 463 464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 465 (unsigned long long)block); 466 467 /* We don't need to lock journal system files, since they aren't 468 * accessed concurrently from multiple nodes. 469 */ 470 if (!INODE_JOURNAL(inode)) { 471 err = ocfs2_inode_lock(inode, NULL, 0); 472 if (err) { 473 if (err != -ENOENT) 474 mlog_errno(err); 475 goto bail; 476 } 477 down_read(&OCFS2_I(inode)->ip_alloc_sem); 478 } 479 480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 482 NULL); 483 484 if (!INODE_JOURNAL(inode)) { 485 up_read(&OCFS2_I(inode)->ip_alloc_sem); 486 ocfs2_inode_unlock(inode, 0); 487 } 488 489 if (err) { 490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 491 (unsigned long long)block); 492 mlog_errno(err); 493 goto bail; 494 } 495 496 bail: 497 status = err ? 0 : p_blkno; 498 499 return status; 500 } 501 502 /* 503 * TODO: Make this into a generic get_blocks function. 504 * 505 * From do_direct_io in direct-io.c: 506 * "So what we do is to permit the ->get_blocks function to populate 507 * bh.b_size with the size of IO which is permitted at this offset and 508 * this i_blkbits." 509 * 510 * This function is called directly from get_more_blocks in direct-io.c. 511 * 512 * called like this: dio->get_blocks(dio->inode, fs_startblk, 513 * fs_count, map_bh, dio->rw == WRITE); 514 */ 515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, 516 struct buffer_head *bh_result, int create) 517 { 518 int ret; 519 u32 cpos = 0; 520 int alloc_locked = 0; 521 u64 p_blkno, inode_blocks, contig_blocks; 522 unsigned int ext_flags; 523 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 524 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; 525 unsigned long len = bh_result->b_size; 526 unsigned int clusters_to_alloc = 0, contig_clusters = 0; 527 528 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock); 529 530 /* This function won't even be called if the request isn't all 531 * nicely aligned and of the right size, so there's no need 532 * for us to check any of that. */ 533 534 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 535 536 down_read(&OCFS2_I(inode)->ip_alloc_sem); 537 538 /* This figures out the size of the next contiguous block, and 539 * our logical offset */ 540 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 541 &contig_blocks, &ext_flags); 542 up_read(&OCFS2_I(inode)->ip_alloc_sem); 543 544 if (ret) { 545 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 546 (unsigned long long)iblock); 547 ret = -EIO; 548 goto bail; 549 } 550 551 /* We should already CoW the refcounted extent in case of create. */ 552 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED)); 553 554 /* allocate blocks if no p_blkno is found, and create == 1 */ 555 if (!p_blkno && create) { 556 ret = ocfs2_inode_lock(inode, NULL, 1); 557 if (ret < 0) { 558 mlog_errno(ret); 559 goto bail; 560 } 561 562 alloc_locked = 1; 563 564 down_write(&OCFS2_I(inode)->ip_alloc_sem); 565 566 /* fill hole, allocate blocks can't be larger than the size 567 * of the hole */ 568 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len); 569 contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb, 570 contig_blocks); 571 if (clusters_to_alloc > contig_clusters) 572 clusters_to_alloc = contig_clusters; 573 574 /* allocate extent and insert them into the extent tree */ 575 ret = ocfs2_extend_allocation(inode, cpos, 576 clusters_to_alloc, 0); 577 if (ret < 0) { 578 up_write(&OCFS2_I(inode)->ip_alloc_sem); 579 mlog_errno(ret); 580 goto bail; 581 } 582 583 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 584 &contig_blocks, &ext_flags); 585 if (ret < 0) { 586 up_write(&OCFS2_I(inode)->ip_alloc_sem); 587 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 588 (unsigned long long)iblock); 589 ret = -EIO; 590 goto bail; 591 } 592 up_write(&OCFS2_I(inode)->ip_alloc_sem); 593 } 594 595 /* 596 * get_more_blocks() expects us to describe a hole by clearing 597 * the mapped bit on bh_result(). 598 * 599 * Consider an unwritten extent as a hole. 600 */ 601 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 602 map_bh(bh_result, inode->i_sb, p_blkno); 603 else 604 clear_buffer_mapped(bh_result); 605 606 /* make sure we don't map more than max_blocks blocks here as 607 that's all the kernel will handle at this point. */ 608 if (max_blocks < contig_blocks) 609 contig_blocks = max_blocks; 610 bh_result->b_size = contig_blocks << blocksize_bits; 611 bail: 612 if (alloc_locked) 613 ocfs2_inode_unlock(inode, 1); 614 return ret; 615 } 616 617 /* 618 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 619 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 620 * to protect io on one node from truncation on another. 621 */ 622 static void ocfs2_dio_end_io(struct kiocb *iocb, 623 loff_t offset, 624 ssize_t bytes, 625 void *private) 626 { 627 struct inode *inode = file_inode(iocb->ki_filp); 628 int level; 629 630 /* this io's submitter should not have unlocked this before we could */ 631 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 632 633 if (ocfs2_iocb_is_unaligned_aio(iocb)) { 634 ocfs2_iocb_clear_unaligned_aio(iocb); 635 636 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio); 637 } 638 639 /* Let rw unlock to be done later to protect append direct io write */ 640 if (offset + bytes <= i_size_read(inode)) { 641 ocfs2_iocb_clear_rw_locked(iocb); 642 643 level = ocfs2_iocb_rw_locked_level(iocb); 644 ocfs2_rw_unlock(inode, level); 645 } 646 } 647 648 static int ocfs2_releasepage(struct page *page, gfp_t wait) 649 { 650 if (!page_has_buffers(page)) 651 return 0; 652 return try_to_free_buffers(page); 653 } 654 655 static int ocfs2_is_overwrite(struct ocfs2_super *osb, 656 struct inode *inode, loff_t offset) 657 { 658 int ret = 0; 659 u32 v_cpos = 0; 660 u32 p_cpos = 0; 661 unsigned int num_clusters = 0; 662 unsigned int ext_flags = 0; 663 664 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset); 665 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, 666 &num_clusters, &ext_flags); 667 if (ret < 0) { 668 mlog_errno(ret); 669 return ret; 670 } 671 672 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 673 return 1; 674 675 return 0; 676 } 677 678 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb, 679 struct inode *inode, loff_t offset, 680 u64 zero_len, int cluster_align) 681 { 682 u32 p_cpos = 0; 683 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode)); 684 unsigned int num_clusters = 0; 685 unsigned int ext_flags = 0; 686 int ret = 0; 687 688 if (offset <= i_size_read(inode) || cluster_align) 689 return 0; 690 691 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters, 692 &ext_flags); 693 if (ret < 0) { 694 mlog_errno(ret); 695 return ret; 696 } 697 698 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 699 u64 s = i_size_read(inode); 700 sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) + 701 (do_div(s, osb->s_clustersize) >> 9); 702 703 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector, 704 zero_len >> 9, GFP_NOFS, false); 705 if (ret < 0) 706 mlog_errno(ret); 707 } 708 709 return ret; 710 } 711 712 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb, 713 struct inode *inode, loff_t offset) 714 { 715 u64 zero_start, zero_len, total_zero_len; 716 u32 p_cpos = 0, clusters_to_add; 717 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode)); 718 unsigned int num_clusters = 0; 719 unsigned int ext_flags = 0; 720 u32 size_div, offset_div; 721 int ret = 0; 722 723 { 724 u64 o = offset; 725 u64 s = i_size_read(inode); 726 727 offset_div = do_div(o, osb->s_clustersize); 728 size_div = do_div(s, osb->s_clustersize); 729 } 730 731 if (offset <= i_size_read(inode)) 732 return 0; 733 734 clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) - 735 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode)); 736 total_zero_len = offset - i_size_read(inode); 737 if (clusters_to_add) 738 total_zero_len -= offset_div; 739 740 /* Allocate clusters to fill out holes, and this is only needed 741 * when we add more than one clusters. Otherwise the cluster will 742 * be allocated during direct IO */ 743 if (clusters_to_add > 1) { 744 ret = ocfs2_extend_allocation(inode, 745 OCFS2_I(inode)->ip_clusters, 746 clusters_to_add - 1, 0); 747 if (ret) { 748 mlog_errno(ret); 749 goto out; 750 } 751 } 752 753 while (total_zero_len) { 754 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters, 755 &ext_flags); 756 if (ret < 0) { 757 mlog_errno(ret); 758 goto out; 759 } 760 761 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) + 762 size_div; 763 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) - 764 size_div; 765 zero_len = min(total_zero_len, zero_len); 766 767 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 768 ret = blkdev_issue_zeroout(osb->sb->s_bdev, 769 zero_start >> 9, zero_len >> 9, 770 GFP_NOFS, false); 771 if (ret < 0) { 772 mlog_errno(ret); 773 goto out; 774 } 775 } 776 777 total_zero_len -= zero_len; 778 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div); 779 780 /* Only at first iteration can be cluster not aligned. 781 * So set size_div to 0 for the rest */ 782 size_div = 0; 783 } 784 785 out: 786 return ret; 787 } 788 789 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb, 790 struct iov_iter *iter, 791 loff_t offset) 792 { 793 ssize_t ret = 0; 794 ssize_t written = 0; 795 bool orphaned = false; 796 int is_overwrite = 0; 797 struct file *file = iocb->ki_filp; 798 struct inode *inode = file_inode(file)->i_mapping->host; 799 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 800 struct buffer_head *di_bh = NULL; 801 size_t count = iter->count; 802 journal_t *journal = osb->journal->j_journal; 803 u64 zero_len_head, zero_len_tail; 804 int cluster_align_head, cluster_align_tail; 805 loff_t final_size = offset + count; 806 int append_write = offset >= i_size_read(inode) ? 1 : 0; 807 unsigned int num_clusters = 0; 808 unsigned int ext_flags = 0; 809 810 { 811 u64 o = offset; 812 u64 s = i_size_read(inode); 813 814 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits); 815 cluster_align_head = !zero_len_head; 816 817 zero_len_tail = osb->s_clustersize - 818 do_div(s, osb->s_clustersize); 819 if ((offset - i_size_read(inode)) < zero_len_tail) 820 zero_len_tail = offset - i_size_read(inode); 821 cluster_align_tail = !zero_len_tail; 822 } 823 824 /* 825 * when final_size > inode->i_size, inode->i_size will be 826 * updated after direct write, so add the inode to orphan 827 * dir first. 828 */ 829 if (final_size > i_size_read(inode)) { 830 ret = ocfs2_add_inode_to_orphan(osb, inode); 831 if (ret < 0) { 832 mlog_errno(ret); 833 goto out; 834 } 835 orphaned = true; 836 } 837 838 if (append_write) { 839 ret = ocfs2_inode_lock(inode, NULL, 1); 840 if (ret < 0) { 841 mlog_errno(ret); 842 goto clean_orphan; 843 } 844 845 /* zeroing out the previously allocated cluster tail 846 * that but not zeroed */ 847 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) { 848 down_read(&OCFS2_I(inode)->ip_alloc_sem); 849 ret = ocfs2_direct_IO_zero_extend(osb, inode, offset, 850 zero_len_tail, cluster_align_tail); 851 up_read(&OCFS2_I(inode)->ip_alloc_sem); 852 } else { 853 down_write(&OCFS2_I(inode)->ip_alloc_sem); 854 ret = ocfs2_direct_IO_extend_no_holes(osb, inode, 855 offset); 856 up_write(&OCFS2_I(inode)->ip_alloc_sem); 857 } 858 if (ret < 0) { 859 mlog_errno(ret); 860 ocfs2_inode_unlock(inode, 1); 861 goto clean_orphan; 862 } 863 864 is_overwrite = ocfs2_is_overwrite(osb, inode, offset); 865 if (is_overwrite < 0) { 866 mlog_errno(is_overwrite); 867 ocfs2_inode_unlock(inode, 1); 868 goto clean_orphan; 869 } 870 871 ocfs2_inode_unlock(inode, 1); 872 } 873 874 written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 875 offset, ocfs2_direct_IO_get_blocks, 876 ocfs2_dio_end_io, NULL, 0); 877 /* overwrite aio may return -EIOCBQUEUED, and it is not an error */ 878 if ((written < 0) && (written != -EIOCBQUEUED)) { 879 loff_t i_size = i_size_read(inode); 880 881 if (offset + count > i_size) { 882 ret = ocfs2_inode_lock(inode, &di_bh, 1); 883 if (ret < 0) { 884 mlog_errno(ret); 885 goto clean_orphan; 886 } 887 888 if (i_size == i_size_read(inode)) { 889 ret = ocfs2_truncate_file(inode, di_bh, 890 i_size); 891 if (ret < 0) { 892 if (ret != -ENOSPC) 893 mlog_errno(ret); 894 895 ocfs2_inode_unlock(inode, 1); 896 brelse(di_bh); 897 di_bh = NULL; 898 goto clean_orphan; 899 } 900 } 901 902 ocfs2_inode_unlock(inode, 1); 903 brelse(di_bh); 904 di_bh = NULL; 905 906 ret = jbd2_journal_force_commit(journal); 907 if (ret < 0) 908 mlog_errno(ret); 909 } 910 } else if (written > 0 && append_write && !is_overwrite && 911 !cluster_align_head) { 912 /* zeroing out the allocated cluster head */ 913 u32 p_cpos = 0; 914 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset); 915 916 ret = ocfs2_inode_lock(inode, NULL, 0); 917 if (ret < 0) { 918 mlog_errno(ret); 919 goto clean_orphan; 920 } 921 922 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, 923 &num_clusters, &ext_flags); 924 if (ret < 0) { 925 mlog_errno(ret); 926 ocfs2_inode_unlock(inode, 0); 927 goto clean_orphan; 928 } 929 930 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)); 931 932 ret = blkdev_issue_zeroout(osb->sb->s_bdev, 933 (u64)p_cpos << (osb->s_clustersize_bits - 9), 934 zero_len_head >> 9, GFP_NOFS, false); 935 if (ret < 0) 936 mlog_errno(ret); 937 938 ocfs2_inode_unlock(inode, 0); 939 } 940 941 clean_orphan: 942 if (orphaned) { 943 int tmp_ret; 944 int update_isize = written > 0 ? 1 : 0; 945 loff_t end = update_isize ? offset + written : 0; 946 947 tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1); 948 if (tmp_ret < 0) { 949 ret = tmp_ret; 950 mlog_errno(ret); 951 goto out; 952 } 953 954 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 955 update_isize, end); 956 if (tmp_ret < 0) { 957 ret = tmp_ret; 958 mlog_errno(ret); 959 brelse(di_bh); 960 goto out; 961 } 962 963 ocfs2_inode_unlock(inode, 1); 964 brelse(di_bh); 965 966 tmp_ret = jbd2_journal_force_commit(journal); 967 if (tmp_ret < 0) { 968 ret = tmp_ret; 969 mlog_errno(tmp_ret); 970 } 971 } 972 973 out: 974 if (ret >= 0) 975 ret = written; 976 return ret; 977 } 978 979 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 980 loff_t offset) 981 { 982 struct file *file = iocb->ki_filp; 983 struct inode *inode = file_inode(file)->i_mapping->host; 984 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 985 int full_coherency = !(osb->s_mount_opt & 986 OCFS2_MOUNT_COHERENCY_BUFFERED); 987 988 /* 989 * Fallback to buffered I/O if we see an inode without 990 * extents. 991 */ 992 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 993 return 0; 994 995 /* Fallback to buffered I/O if we are appending and 996 * concurrent O_DIRECT writes are allowed. 997 */ 998 if (i_size_read(inode) <= offset && !full_coherency) 999 return 0; 1000 1001 if (iov_iter_rw(iter) == READ) 1002 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 1003 iter, offset, 1004 ocfs2_direct_IO_get_blocks, 1005 ocfs2_dio_end_io, NULL, 0); 1006 else 1007 return ocfs2_direct_IO_write(iocb, iter, offset); 1008 } 1009 1010 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 1011 u32 cpos, 1012 unsigned int *start, 1013 unsigned int *end) 1014 { 1015 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; 1016 1017 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { 1018 unsigned int cpp; 1019 1020 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); 1021 1022 cluster_start = cpos % cpp; 1023 cluster_start = cluster_start << osb->s_clustersize_bits; 1024 1025 cluster_end = cluster_start + osb->s_clustersize; 1026 } 1027 1028 BUG_ON(cluster_start > PAGE_SIZE); 1029 BUG_ON(cluster_end > PAGE_SIZE); 1030 1031 if (start) 1032 *start = cluster_start; 1033 if (end) 1034 *end = cluster_end; 1035 } 1036 1037 /* 1038 * 'from' and 'to' are the region in the page to avoid zeroing. 1039 * 1040 * If pagesize > clustersize, this function will avoid zeroing outside 1041 * of the cluster boundary. 1042 * 1043 * from == to == 0 is code for "zero the entire cluster region" 1044 */ 1045 static void ocfs2_clear_page_regions(struct page *page, 1046 struct ocfs2_super *osb, u32 cpos, 1047 unsigned from, unsigned to) 1048 { 1049 void *kaddr; 1050 unsigned int cluster_start, cluster_end; 1051 1052 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 1053 1054 kaddr = kmap_atomic(page); 1055 1056 if (from || to) { 1057 if (from > cluster_start) 1058 memset(kaddr + cluster_start, 0, from - cluster_start); 1059 if (to < cluster_end) 1060 memset(kaddr + to, 0, cluster_end - to); 1061 } else { 1062 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 1063 } 1064 1065 kunmap_atomic(kaddr); 1066 } 1067 1068 /* 1069 * Nonsparse file systems fully allocate before we get to the write 1070 * code. This prevents ocfs2_write() from tagging the write as an 1071 * allocating one, which means ocfs2_map_page_blocks() might try to 1072 * read-in the blocks at the tail of our file. Avoid reading them by 1073 * testing i_size against each block offset. 1074 */ 1075 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 1076 unsigned int block_start) 1077 { 1078 u64 offset = page_offset(page) + block_start; 1079 1080 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1081 return 1; 1082 1083 if (i_size_read(inode) > offset) 1084 return 1; 1085 1086 return 0; 1087 } 1088 1089 /* 1090 * Some of this taken from __block_write_begin(). We already have our 1091 * mapping by now though, and the entire write will be allocating or 1092 * it won't, so not much need to use BH_New. 1093 * 1094 * This will also skip zeroing, which is handled externally. 1095 */ 1096 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 1097 struct inode *inode, unsigned int from, 1098 unsigned int to, int new) 1099 { 1100 int ret = 0; 1101 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 1102 unsigned int block_end, block_start; 1103 unsigned int bsize = 1 << inode->i_blkbits; 1104 1105 if (!page_has_buffers(page)) 1106 create_empty_buffers(page, bsize, 0); 1107 1108 head = page_buffers(page); 1109 for (bh = head, block_start = 0; bh != head || !block_start; 1110 bh = bh->b_this_page, block_start += bsize) { 1111 block_end = block_start + bsize; 1112 1113 clear_buffer_new(bh); 1114 1115 /* 1116 * Ignore blocks outside of our i/o range - 1117 * they may belong to unallocated clusters. 1118 */ 1119 if (block_start >= to || block_end <= from) { 1120 if (PageUptodate(page)) 1121 set_buffer_uptodate(bh); 1122 continue; 1123 } 1124 1125 /* 1126 * For an allocating write with cluster size >= page 1127 * size, we always write the entire page. 1128 */ 1129 if (new) 1130 set_buffer_new(bh); 1131 1132 if (!buffer_mapped(bh)) { 1133 map_bh(bh, inode->i_sb, *p_blkno); 1134 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 1135 } 1136 1137 if (PageUptodate(page)) { 1138 if (!buffer_uptodate(bh)) 1139 set_buffer_uptodate(bh); 1140 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1141 !buffer_new(bh) && 1142 ocfs2_should_read_blk(inode, page, block_start) && 1143 (block_start < from || block_end > to)) { 1144 ll_rw_block(READ, 1, &bh); 1145 *wait_bh++=bh; 1146 } 1147 1148 *p_blkno = *p_blkno + 1; 1149 } 1150 1151 /* 1152 * If we issued read requests - let them complete. 1153 */ 1154 while(wait_bh > wait) { 1155 wait_on_buffer(*--wait_bh); 1156 if (!buffer_uptodate(*wait_bh)) 1157 ret = -EIO; 1158 } 1159 1160 if (ret == 0 || !new) 1161 return ret; 1162 1163 /* 1164 * If we get -EIO above, zero out any newly allocated blocks 1165 * to avoid exposing stale data. 1166 */ 1167 bh = head; 1168 block_start = 0; 1169 do { 1170 block_end = block_start + bsize; 1171 if (block_end <= from) 1172 goto next_bh; 1173 if (block_start >= to) 1174 break; 1175 1176 zero_user(page, block_start, bh->b_size); 1177 set_buffer_uptodate(bh); 1178 mark_buffer_dirty(bh); 1179 1180 next_bh: 1181 block_start = block_end; 1182 bh = bh->b_this_page; 1183 } while (bh != head); 1184 1185 return ret; 1186 } 1187 1188 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 1189 #define OCFS2_MAX_CTXT_PAGES 1 1190 #else 1191 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) 1192 #endif 1193 1194 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) 1195 1196 /* 1197 * Describe the state of a single cluster to be written to. 1198 */ 1199 struct ocfs2_write_cluster_desc { 1200 u32 c_cpos; 1201 u32 c_phys; 1202 /* 1203 * Give this a unique field because c_phys eventually gets 1204 * filled. 1205 */ 1206 unsigned c_new; 1207 unsigned c_unwritten; 1208 unsigned c_needs_zero; 1209 }; 1210 1211 struct ocfs2_write_ctxt { 1212 /* Logical cluster position / len of write */ 1213 u32 w_cpos; 1214 u32 w_clen; 1215 1216 /* First cluster allocated in a nonsparse extend */ 1217 u32 w_first_new_cpos; 1218 1219 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 1220 1221 /* 1222 * This is true if page_size > cluster_size. 1223 * 1224 * It triggers a set of special cases during write which might 1225 * have to deal with allocating writes to partial pages. 1226 */ 1227 unsigned int w_large_pages; 1228 1229 /* 1230 * Pages involved in this write. 1231 * 1232 * w_target_page is the page being written to by the user. 1233 * 1234 * w_pages is an array of pages which always contains 1235 * w_target_page, and in the case of an allocating write with 1236 * page_size < cluster size, it will contain zero'd and mapped 1237 * pages adjacent to w_target_page which need to be written 1238 * out in so that future reads from that region will get 1239 * zero's. 1240 */ 1241 unsigned int w_num_pages; 1242 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 1243 struct page *w_target_page; 1244 1245 /* 1246 * w_target_locked is used for page_mkwrite path indicating no unlocking 1247 * against w_target_page in ocfs2_write_end_nolock. 1248 */ 1249 unsigned int w_target_locked:1; 1250 1251 /* 1252 * ocfs2_write_end() uses this to know what the real range to 1253 * write in the target should be. 1254 */ 1255 unsigned int w_target_from; 1256 unsigned int w_target_to; 1257 1258 /* 1259 * We could use journal_current_handle() but this is cleaner, 1260 * IMHO -Mark 1261 */ 1262 handle_t *w_handle; 1263 1264 struct buffer_head *w_di_bh; 1265 1266 struct ocfs2_cached_dealloc_ctxt w_dealloc; 1267 }; 1268 1269 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 1270 { 1271 int i; 1272 1273 for(i = 0; i < num_pages; i++) { 1274 if (pages[i]) { 1275 unlock_page(pages[i]); 1276 mark_page_accessed(pages[i]); 1277 page_cache_release(pages[i]); 1278 } 1279 } 1280 } 1281 1282 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 1283 { 1284 int i; 1285 1286 /* 1287 * w_target_locked is only set to true in the page_mkwrite() case. 1288 * The intent is to allow us to lock the target page from write_begin() 1289 * to write_end(). The caller must hold a ref on w_target_page. 1290 */ 1291 if (wc->w_target_locked) { 1292 BUG_ON(!wc->w_target_page); 1293 for (i = 0; i < wc->w_num_pages; i++) { 1294 if (wc->w_target_page == wc->w_pages[i]) { 1295 wc->w_pages[i] = NULL; 1296 break; 1297 } 1298 } 1299 mark_page_accessed(wc->w_target_page); 1300 page_cache_release(wc->w_target_page); 1301 } 1302 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 1303 } 1304 1305 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) 1306 { 1307 ocfs2_unlock_pages(wc); 1308 brelse(wc->w_di_bh); 1309 kfree(wc); 1310 } 1311 1312 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 1313 struct ocfs2_super *osb, loff_t pos, 1314 unsigned len, struct buffer_head *di_bh) 1315 { 1316 u32 cend; 1317 struct ocfs2_write_ctxt *wc; 1318 1319 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 1320 if (!wc) 1321 return -ENOMEM; 1322 1323 wc->w_cpos = pos >> osb->s_clustersize_bits; 1324 wc->w_first_new_cpos = UINT_MAX; 1325 cend = (pos + len - 1) >> osb->s_clustersize_bits; 1326 wc->w_clen = cend - wc->w_cpos + 1; 1327 get_bh(di_bh); 1328 wc->w_di_bh = di_bh; 1329 1330 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) 1331 wc->w_large_pages = 1; 1332 else 1333 wc->w_large_pages = 0; 1334 1335 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 1336 1337 *wcp = wc; 1338 1339 return 0; 1340 } 1341 1342 /* 1343 * If a page has any new buffers, zero them out here, and mark them uptodate 1344 * and dirty so they'll be written out (in order to prevent uninitialised 1345 * block data from leaking). And clear the new bit. 1346 */ 1347 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1348 { 1349 unsigned int block_start, block_end; 1350 struct buffer_head *head, *bh; 1351 1352 BUG_ON(!PageLocked(page)); 1353 if (!page_has_buffers(page)) 1354 return; 1355 1356 bh = head = page_buffers(page); 1357 block_start = 0; 1358 do { 1359 block_end = block_start + bh->b_size; 1360 1361 if (buffer_new(bh)) { 1362 if (block_end > from && block_start < to) { 1363 if (!PageUptodate(page)) { 1364 unsigned start, end; 1365 1366 start = max(from, block_start); 1367 end = min(to, block_end); 1368 1369 zero_user_segment(page, start, end); 1370 set_buffer_uptodate(bh); 1371 } 1372 1373 clear_buffer_new(bh); 1374 mark_buffer_dirty(bh); 1375 } 1376 } 1377 1378 block_start = block_end; 1379 bh = bh->b_this_page; 1380 } while (bh != head); 1381 } 1382 1383 /* 1384 * Only called when we have a failure during allocating write to write 1385 * zero's to the newly allocated region. 1386 */ 1387 static void ocfs2_write_failure(struct inode *inode, 1388 struct ocfs2_write_ctxt *wc, 1389 loff_t user_pos, unsigned user_len) 1390 { 1391 int i; 1392 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), 1393 to = user_pos + user_len; 1394 struct page *tmppage; 1395 1396 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 1397 1398 for(i = 0; i < wc->w_num_pages; i++) { 1399 tmppage = wc->w_pages[i]; 1400 1401 if (page_has_buffers(tmppage)) { 1402 if (ocfs2_should_order_data(inode)) 1403 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1404 1405 block_commit_write(tmppage, from, to); 1406 } 1407 } 1408 } 1409 1410 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 1411 struct ocfs2_write_ctxt *wc, 1412 struct page *page, u32 cpos, 1413 loff_t user_pos, unsigned user_len, 1414 int new) 1415 { 1416 int ret; 1417 unsigned int map_from = 0, map_to = 0; 1418 unsigned int cluster_start, cluster_end; 1419 unsigned int user_data_from = 0, user_data_to = 0; 1420 1421 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 1422 &cluster_start, &cluster_end); 1423 1424 /* treat the write as new if the a hole/lseek spanned across 1425 * the page boundary. 1426 */ 1427 new = new | ((i_size_read(inode) <= page_offset(page)) && 1428 (page_offset(page) <= user_pos)); 1429 1430 if (page == wc->w_target_page) { 1431 map_from = user_pos & (PAGE_CACHE_SIZE - 1); 1432 map_to = map_from + user_len; 1433 1434 if (new) 1435 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1436 cluster_start, cluster_end, 1437 new); 1438 else 1439 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1440 map_from, map_to, new); 1441 if (ret) { 1442 mlog_errno(ret); 1443 goto out; 1444 } 1445 1446 user_data_from = map_from; 1447 user_data_to = map_to; 1448 if (new) { 1449 map_from = cluster_start; 1450 map_to = cluster_end; 1451 } 1452 } else { 1453 /* 1454 * If we haven't allocated the new page yet, we 1455 * shouldn't be writing it out without copying user 1456 * data. This is likely a math error from the caller. 1457 */ 1458 BUG_ON(!new); 1459 1460 map_from = cluster_start; 1461 map_to = cluster_end; 1462 1463 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1464 cluster_start, cluster_end, new); 1465 if (ret) { 1466 mlog_errno(ret); 1467 goto out; 1468 } 1469 } 1470 1471 /* 1472 * Parts of newly allocated pages need to be zero'd. 1473 * 1474 * Above, we have also rewritten 'to' and 'from' - as far as 1475 * the rest of the function is concerned, the entire cluster 1476 * range inside of a page needs to be written. 1477 * 1478 * We can skip this if the page is up to date - it's already 1479 * been zero'd from being read in as a hole. 1480 */ 1481 if (new && !PageUptodate(page)) 1482 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1483 cpos, user_data_from, user_data_to); 1484 1485 flush_dcache_page(page); 1486 1487 out: 1488 return ret; 1489 } 1490 1491 /* 1492 * This function will only grab one clusters worth of pages. 1493 */ 1494 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1495 struct ocfs2_write_ctxt *wc, 1496 u32 cpos, loff_t user_pos, 1497 unsigned user_len, int new, 1498 struct page *mmap_page) 1499 { 1500 int ret = 0, i; 1501 unsigned long start, target_index, end_index, index; 1502 struct inode *inode = mapping->host; 1503 loff_t last_byte; 1504 1505 target_index = user_pos >> PAGE_CACHE_SHIFT; 1506 1507 /* 1508 * Figure out how many pages we'll be manipulating here. For 1509 * non allocating write, we just change the one 1510 * page. Otherwise, we'll need a whole clusters worth. If we're 1511 * writing past i_size, we only need enough pages to cover the 1512 * last page of the write. 1513 */ 1514 if (new) { 1515 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1516 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1517 /* 1518 * We need the index *past* the last page we could possibly 1519 * touch. This is the page past the end of the write or 1520 * i_size, whichever is greater. 1521 */ 1522 last_byte = max(user_pos + user_len, i_size_read(inode)); 1523 BUG_ON(last_byte < 1); 1524 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1; 1525 if ((start + wc->w_num_pages) > end_index) 1526 wc->w_num_pages = end_index - start; 1527 } else { 1528 wc->w_num_pages = 1; 1529 start = target_index; 1530 } 1531 1532 for(i = 0; i < wc->w_num_pages; i++) { 1533 index = start + i; 1534 1535 if (index == target_index && mmap_page) { 1536 /* 1537 * ocfs2_pagemkwrite() is a little different 1538 * and wants us to directly use the page 1539 * passed in. 1540 */ 1541 lock_page(mmap_page); 1542 1543 /* Exit and let the caller retry */ 1544 if (mmap_page->mapping != mapping) { 1545 WARN_ON(mmap_page->mapping); 1546 unlock_page(mmap_page); 1547 ret = -EAGAIN; 1548 goto out; 1549 } 1550 1551 page_cache_get(mmap_page); 1552 wc->w_pages[i] = mmap_page; 1553 wc->w_target_locked = true; 1554 } else { 1555 wc->w_pages[i] = find_or_create_page(mapping, index, 1556 GFP_NOFS); 1557 if (!wc->w_pages[i]) { 1558 ret = -ENOMEM; 1559 mlog_errno(ret); 1560 goto out; 1561 } 1562 } 1563 wait_for_stable_page(wc->w_pages[i]); 1564 1565 if (index == target_index) 1566 wc->w_target_page = wc->w_pages[i]; 1567 } 1568 out: 1569 if (ret) 1570 wc->w_target_locked = false; 1571 return ret; 1572 } 1573 1574 /* 1575 * Prepare a single cluster for write one cluster into the file. 1576 */ 1577 static int ocfs2_write_cluster(struct address_space *mapping, 1578 u32 phys, unsigned int unwritten, 1579 unsigned int should_zero, 1580 struct ocfs2_alloc_context *data_ac, 1581 struct ocfs2_alloc_context *meta_ac, 1582 struct ocfs2_write_ctxt *wc, u32 cpos, 1583 loff_t user_pos, unsigned user_len) 1584 { 1585 int ret, i, new; 1586 u64 v_blkno, p_blkno; 1587 struct inode *inode = mapping->host; 1588 struct ocfs2_extent_tree et; 1589 1590 new = phys == 0 ? 1 : 0; 1591 if (new) { 1592 u32 tmp_pos; 1593 1594 /* 1595 * This is safe to call with the page locks - it won't take 1596 * any additional semaphores or cluster locks. 1597 */ 1598 tmp_pos = cpos; 1599 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1600 &tmp_pos, 1, 0, wc->w_di_bh, 1601 wc->w_handle, data_ac, 1602 meta_ac, NULL); 1603 /* 1604 * This shouldn't happen because we must have already 1605 * calculated the correct meta data allocation required. The 1606 * internal tree allocation code should know how to increase 1607 * transaction credits itself. 1608 * 1609 * If need be, we could handle -EAGAIN for a 1610 * RESTART_TRANS here. 1611 */ 1612 mlog_bug_on_msg(ret == -EAGAIN, 1613 "Inode %llu: EAGAIN return during allocation.\n", 1614 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1615 if (ret < 0) { 1616 mlog_errno(ret); 1617 goto out; 1618 } 1619 } else if (unwritten) { 1620 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1621 wc->w_di_bh); 1622 ret = ocfs2_mark_extent_written(inode, &et, 1623 wc->w_handle, cpos, 1, phys, 1624 meta_ac, &wc->w_dealloc); 1625 if (ret < 0) { 1626 mlog_errno(ret); 1627 goto out; 1628 } 1629 } 1630 1631 if (should_zero) 1632 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); 1633 else 1634 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; 1635 1636 /* 1637 * The only reason this should fail is due to an inability to 1638 * find the extent added. 1639 */ 1640 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, 1641 NULL); 1642 if (ret < 0) { 1643 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1644 "at logical block %llu", 1645 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1646 (unsigned long long)v_blkno); 1647 goto out; 1648 } 1649 1650 BUG_ON(p_blkno == 0); 1651 1652 for(i = 0; i < wc->w_num_pages; i++) { 1653 int tmpret; 1654 1655 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1656 wc->w_pages[i], cpos, 1657 user_pos, user_len, 1658 should_zero); 1659 if (tmpret) { 1660 mlog_errno(tmpret); 1661 if (ret == 0) 1662 ret = tmpret; 1663 } 1664 } 1665 1666 /* 1667 * We only have cleanup to do in case of allocating write. 1668 */ 1669 if (ret && new) 1670 ocfs2_write_failure(inode, wc, user_pos, user_len); 1671 1672 out: 1673 1674 return ret; 1675 } 1676 1677 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1678 struct ocfs2_alloc_context *data_ac, 1679 struct ocfs2_alloc_context *meta_ac, 1680 struct ocfs2_write_ctxt *wc, 1681 loff_t pos, unsigned len) 1682 { 1683 int ret, i; 1684 loff_t cluster_off; 1685 unsigned int local_len = len; 1686 struct ocfs2_write_cluster_desc *desc; 1687 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1688 1689 for (i = 0; i < wc->w_clen; i++) { 1690 desc = &wc->w_desc[i]; 1691 1692 /* 1693 * We have to make sure that the total write passed in 1694 * doesn't extend past a single cluster. 1695 */ 1696 local_len = len; 1697 cluster_off = pos & (osb->s_clustersize - 1); 1698 if ((cluster_off + local_len) > osb->s_clustersize) 1699 local_len = osb->s_clustersize - cluster_off; 1700 1701 ret = ocfs2_write_cluster(mapping, desc->c_phys, 1702 desc->c_unwritten, 1703 desc->c_needs_zero, 1704 data_ac, meta_ac, 1705 wc, desc->c_cpos, pos, local_len); 1706 if (ret) { 1707 mlog_errno(ret); 1708 goto out; 1709 } 1710 1711 len -= local_len; 1712 pos += local_len; 1713 } 1714 1715 ret = 0; 1716 out: 1717 return ret; 1718 } 1719 1720 /* 1721 * ocfs2_write_end() wants to know which parts of the target page it 1722 * should complete the write on. It's easiest to compute them ahead of 1723 * time when a more complete view of the write is available. 1724 */ 1725 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1726 struct ocfs2_write_ctxt *wc, 1727 loff_t pos, unsigned len, int alloc) 1728 { 1729 struct ocfs2_write_cluster_desc *desc; 1730 1731 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); 1732 wc->w_target_to = wc->w_target_from + len; 1733 1734 if (alloc == 0) 1735 return; 1736 1737 /* 1738 * Allocating write - we may have different boundaries based 1739 * on page size and cluster size. 1740 * 1741 * NOTE: We can no longer compute one value from the other as 1742 * the actual write length and user provided length may be 1743 * different. 1744 */ 1745 1746 if (wc->w_large_pages) { 1747 /* 1748 * We only care about the 1st and last cluster within 1749 * our range and whether they should be zero'd or not. Either 1750 * value may be extended out to the start/end of a 1751 * newly allocated cluster. 1752 */ 1753 desc = &wc->w_desc[0]; 1754 if (desc->c_needs_zero) 1755 ocfs2_figure_cluster_boundaries(osb, 1756 desc->c_cpos, 1757 &wc->w_target_from, 1758 NULL); 1759 1760 desc = &wc->w_desc[wc->w_clen - 1]; 1761 if (desc->c_needs_zero) 1762 ocfs2_figure_cluster_boundaries(osb, 1763 desc->c_cpos, 1764 NULL, 1765 &wc->w_target_to); 1766 } else { 1767 wc->w_target_from = 0; 1768 wc->w_target_to = PAGE_CACHE_SIZE; 1769 } 1770 } 1771 1772 /* 1773 * Populate each single-cluster write descriptor in the write context 1774 * with information about the i/o to be done. 1775 * 1776 * Returns the number of clusters that will have to be allocated, as 1777 * well as a worst case estimate of the number of extent records that 1778 * would have to be created during a write to an unwritten region. 1779 */ 1780 static int ocfs2_populate_write_desc(struct inode *inode, 1781 struct ocfs2_write_ctxt *wc, 1782 unsigned int *clusters_to_alloc, 1783 unsigned int *extents_to_split) 1784 { 1785 int ret; 1786 struct ocfs2_write_cluster_desc *desc; 1787 unsigned int num_clusters = 0; 1788 unsigned int ext_flags = 0; 1789 u32 phys = 0; 1790 int i; 1791 1792 *clusters_to_alloc = 0; 1793 *extents_to_split = 0; 1794 1795 for (i = 0; i < wc->w_clen; i++) { 1796 desc = &wc->w_desc[i]; 1797 desc->c_cpos = wc->w_cpos + i; 1798 1799 if (num_clusters == 0) { 1800 /* 1801 * Need to look up the next extent record. 1802 */ 1803 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1804 &num_clusters, &ext_flags); 1805 if (ret) { 1806 mlog_errno(ret); 1807 goto out; 1808 } 1809 1810 /* We should already CoW the refcountd extent. */ 1811 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1812 1813 /* 1814 * Assume worst case - that we're writing in 1815 * the middle of the extent. 1816 * 1817 * We can assume that the write proceeds from 1818 * left to right, in which case the extent 1819 * insert code is smart enough to coalesce the 1820 * next splits into the previous records created. 1821 */ 1822 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1823 *extents_to_split = *extents_to_split + 2; 1824 } else if (phys) { 1825 /* 1826 * Only increment phys if it doesn't describe 1827 * a hole. 1828 */ 1829 phys++; 1830 } 1831 1832 /* 1833 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1834 * file that got extended. w_first_new_cpos tells us 1835 * where the newly allocated clusters are so we can 1836 * zero them. 1837 */ 1838 if (desc->c_cpos >= wc->w_first_new_cpos) { 1839 BUG_ON(phys == 0); 1840 desc->c_needs_zero = 1; 1841 } 1842 1843 desc->c_phys = phys; 1844 if (phys == 0) { 1845 desc->c_new = 1; 1846 desc->c_needs_zero = 1; 1847 *clusters_to_alloc = *clusters_to_alloc + 1; 1848 } 1849 1850 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1851 desc->c_unwritten = 1; 1852 desc->c_needs_zero = 1; 1853 } 1854 1855 num_clusters--; 1856 } 1857 1858 ret = 0; 1859 out: 1860 return ret; 1861 } 1862 1863 static int ocfs2_write_begin_inline(struct address_space *mapping, 1864 struct inode *inode, 1865 struct ocfs2_write_ctxt *wc) 1866 { 1867 int ret; 1868 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1869 struct page *page; 1870 handle_t *handle; 1871 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1872 1873 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1874 if (IS_ERR(handle)) { 1875 ret = PTR_ERR(handle); 1876 mlog_errno(ret); 1877 goto out; 1878 } 1879 1880 page = find_or_create_page(mapping, 0, GFP_NOFS); 1881 if (!page) { 1882 ocfs2_commit_trans(osb, handle); 1883 ret = -ENOMEM; 1884 mlog_errno(ret); 1885 goto out; 1886 } 1887 /* 1888 * If we don't set w_num_pages then this page won't get unlocked 1889 * and freed on cleanup of the write context. 1890 */ 1891 wc->w_pages[0] = wc->w_target_page = page; 1892 wc->w_num_pages = 1; 1893 1894 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1895 OCFS2_JOURNAL_ACCESS_WRITE); 1896 if (ret) { 1897 ocfs2_commit_trans(osb, handle); 1898 1899 mlog_errno(ret); 1900 goto out; 1901 } 1902 1903 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1904 ocfs2_set_inode_data_inline(inode, di); 1905 1906 if (!PageUptodate(page)) { 1907 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1908 if (ret) { 1909 ocfs2_commit_trans(osb, handle); 1910 1911 goto out; 1912 } 1913 } 1914 1915 wc->w_handle = handle; 1916 out: 1917 return ret; 1918 } 1919 1920 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1921 { 1922 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1923 1924 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1925 return 1; 1926 return 0; 1927 } 1928 1929 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1930 struct inode *inode, loff_t pos, 1931 unsigned len, struct page *mmap_page, 1932 struct ocfs2_write_ctxt *wc) 1933 { 1934 int ret, written = 0; 1935 loff_t end = pos + len; 1936 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1937 struct ocfs2_dinode *di = NULL; 1938 1939 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1940 len, (unsigned long long)pos, 1941 oi->ip_dyn_features); 1942 1943 /* 1944 * Handle inodes which already have inline data 1st. 1945 */ 1946 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1947 if (mmap_page == NULL && 1948 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1949 goto do_inline_write; 1950 1951 /* 1952 * The write won't fit - we have to give this inode an 1953 * inline extent list now. 1954 */ 1955 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1956 if (ret) 1957 mlog_errno(ret); 1958 goto out; 1959 } 1960 1961 /* 1962 * Check whether the inode can accept inline data. 1963 */ 1964 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1965 return 0; 1966 1967 /* 1968 * Check whether the write can fit. 1969 */ 1970 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1971 if (mmap_page || 1972 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1973 return 0; 1974 1975 do_inline_write: 1976 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1977 if (ret) { 1978 mlog_errno(ret); 1979 goto out; 1980 } 1981 1982 /* 1983 * This signals to the caller that the data can be written 1984 * inline. 1985 */ 1986 written = 1; 1987 out: 1988 return written ? written : ret; 1989 } 1990 1991 /* 1992 * This function only does anything for file systems which can't 1993 * handle sparse files. 1994 * 1995 * What we want to do here is fill in any hole between the current end 1996 * of allocation and the end of our write. That way the rest of the 1997 * write path can treat it as an non-allocating write, which has no 1998 * special case code for sparse/nonsparse files. 1999 */ 2000 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 2001 struct buffer_head *di_bh, 2002 loff_t pos, unsigned len, 2003 struct ocfs2_write_ctxt *wc) 2004 { 2005 int ret; 2006 loff_t newsize = pos + len; 2007 2008 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 2009 2010 if (newsize <= i_size_read(inode)) 2011 return 0; 2012 2013 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 2014 if (ret) 2015 mlog_errno(ret); 2016 2017 wc->w_first_new_cpos = 2018 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 2019 2020 return ret; 2021 } 2022 2023 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 2024 loff_t pos) 2025 { 2026 int ret = 0; 2027 2028 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 2029 if (pos > i_size_read(inode)) 2030 ret = ocfs2_zero_extend(inode, di_bh, pos); 2031 2032 return ret; 2033 } 2034 2035 /* 2036 * Try to flush truncate logs if we can free enough clusters from it. 2037 * As for return value, "< 0" means error, "0" no space and "1" means 2038 * we have freed enough spaces and let the caller try to allocate again. 2039 */ 2040 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 2041 unsigned int needed) 2042 { 2043 tid_t target; 2044 int ret = 0; 2045 unsigned int truncated_clusters; 2046 2047 mutex_lock(&osb->osb_tl_inode->i_mutex); 2048 truncated_clusters = osb->truncated_clusters; 2049 mutex_unlock(&osb->osb_tl_inode->i_mutex); 2050 2051 /* 2052 * Check whether we can succeed in allocating if we free 2053 * the truncate log. 2054 */ 2055 if (truncated_clusters < needed) 2056 goto out; 2057 2058 ret = ocfs2_flush_truncate_log(osb); 2059 if (ret) { 2060 mlog_errno(ret); 2061 goto out; 2062 } 2063 2064 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 2065 jbd2_log_wait_commit(osb->journal->j_journal, target); 2066 ret = 1; 2067 } 2068 out: 2069 return ret; 2070 } 2071 2072 int ocfs2_write_begin_nolock(struct file *filp, 2073 struct address_space *mapping, 2074 loff_t pos, unsigned len, unsigned flags, 2075 struct page **pagep, void **fsdata, 2076 struct buffer_head *di_bh, struct page *mmap_page) 2077 { 2078 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 2079 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 2080 struct ocfs2_write_ctxt *wc; 2081 struct inode *inode = mapping->host; 2082 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2083 struct ocfs2_dinode *di; 2084 struct ocfs2_alloc_context *data_ac = NULL; 2085 struct ocfs2_alloc_context *meta_ac = NULL; 2086 handle_t *handle; 2087 struct ocfs2_extent_tree et; 2088 int try_free = 1, ret1; 2089 2090 try_again: 2091 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); 2092 if (ret) { 2093 mlog_errno(ret); 2094 return ret; 2095 } 2096 2097 if (ocfs2_supports_inline_data(osb)) { 2098 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 2099 mmap_page, wc); 2100 if (ret == 1) { 2101 ret = 0; 2102 goto success; 2103 } 2104 if (ret < 0) { 2105 mlog_errno(ret); 2106 goto out; 2107 } 2108 } 2109 2110 if (ocfs2_sparse_alloc(osb)) 2111 ret = ocfs2_zero_tail(inode, di_bh, pos); 2112 else 2113 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len, 2114 wc); 2115 if (ret) { 2116 mlog_errno(ret); 2117 goto out; 2118 } 2119 2120 ret = ocfs2_check_range_for_refcount(inode, pos, len); 2121 if (ret < 0) { 2122 mlog_errno(ret); 2123 goto out; 2124 } else if (ret == 1) { 2125 clusters_need = wc->w_clen; 2126 ret = ocfs2_refcount_cow(inode, di_bh, 2127 wc->w_cpos, wc->w_clen, UINT_MAX); 2128 if (ret) { 2129 mlog_errno(ret); 2130 goto out; 2131 } 2132 } 2133 2134 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 2135 &extents_to_split); 2136 if (ret) { 2137 mlog_errno(ret); 2138 goto out; 2139 } 2140 clusters_need += clusters_to_alloc; 2141 2142 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 2143 2144 trace_ocfs2_write_begin_nolock( 2145 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2146 (long long)i_size_read(inode), 2147 le32_to_cpu(di->i_clusters), 2148 pos, len, flags, mmap_page, 2149 clusters_to_alloc, extents_to_split); 2150 2151 /* 2152 * We set w_target_from, w_target_to here so that 2153 * ocfs2_write_end() knows which range in the target page to 2154 * write out. An allocation requires that we write the entire 2155 * cluster range. 2156 */ 2157 if (clusters_to_alloc || extents_to_split) { 2158 /* 2159 * XXX: We are stretching the limits of 2160 * ocfs2_lock_allocators(). It greatly over-estimates 2161 * the work to be done. 2162 */ 2163 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 2164 wc->w_di_bh); 2165 ret = ocfs2_lock_allocators(inode, &et, 2166 clusters_to_alloc, extents_to_split, 2167 &data_ac, &meta_ac); 2168 if (ret) { 2169 mlog_errno(ret); 2170 goto out; 2171 } 2172 2173 if (data_ac) 2174 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 2175 2176 credits = ocfs2_calc_extend_credits(inode->i_sb, 2177 &di->id2.i_list); 2178 2179 } 2180 2181 /* 2182 * We have to zero sparse allocated clusters, unwritten extent clusters, 2183 * and non-sparse clusters we just extended. For non-sparse writes, 2184 * we know zeros will only be needed in the first and/or last cluster. 2185 */ 2186 if (clusters_to_alloc || extents_to_split || 2187 (wc->w_clen && (wc->w_desc[0].c_needs_zero || 2188 wc->w_desc[wc->w_clen - 1].c_needs_zero))) 2189 cluster_of_pages = 1; 2190 else 2191 cluster_of_pages = 0; 2192 2193 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 2194 2195 handle = ocfs2_start_trans(osb, credits); 2196 if (IS_ERR(handle)) { 2197 ret = PTR_ERR(handle); 2198 mlog_errno(ret); 2199 goto out; 2200 } 2201 2202 wc->w_handle = handle; 2203 2204 if (clusters_to_alloc) { 2205 ret = dquot_alloc_space_nodirty(inode, 2206 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 2207 if (ret) 2208 goto out_commit; 2209 } 2210 2211 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 2212 OCFS2_JOURNAL_ACCESS_WRITE); 2213 if (ret) { 2214 mlog_errno(ret); 2215 goto out_quota; 2216 } 2217 2218 /* 2219 * Fill our page array first. That way we've grabbed enough so 2220 * that we can zero and flush if we error after adding the 2221 * extent. 2222 */ 2223 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 2224 cluster_of_pages, mmap_page); 2225 if (ret && ret != -EAGAIN) { 2226 mlog_errno(ret); 2227 goto out_quota; 2228 } 2229 2230 /* 2231 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 2232 * the target page. In this case, we exit with no error and no target 2233 * page. This will trigger the caller, page_mkwrite(), to re-try 2234 * the operation. 2235 */ 2236 if (ret == -EAGAIN) { 2237 BUG_ON(wc->w_target_page); 2238 ret = 0; 2239 goto out_quota; 2240 } 2241 2242 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 2243 len); 2244 if (ret) { 2245 mlog_errno(ret); 2246 goto out_quota; 2247 } 2248 2249 if (data_ac) 2250 ocfs2_free_alloc_context(data_ac); 2251 if (meta_ac) 2252 ocfs2_free_alloc_context(meta_ac); 2253 2254 success: 2255 *pagep = wc->w_target_page; 2256 *fsdata = wc; 2257 return 0; 2258 out_quota: 2259 if (clusters_to_alloc) 2260 dquot_free_space(inode, 2261 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 2262 out_commit: 2263 ocfs2_commit_trans(osb, handle); 2264 2265 out: 2266 ocfs2_free_write_ctxt(wc); 2267 2268 if (data_ac) { 2269 ocfs2_free_alloc_context(data_ac); 2270 data_ac = NULL; 2271 } 2272 if (meta_ac) { 2273 ocfs2_free_alloc_context(meta_ac); 2274 meta_ac = NULL; 2275 } 2276 2277 if (ret == -ENOSPC && try_free) { 2278 /* 2279 * Try to free some truncate log so that we can have enough 2280 * clusters to allocate. 2281 */ 2282 try_free = 0; 2283 2284 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 2285 if (ret1 == 1) 2286 goto try_again; 2287 2288 if (ret1 < 0) 2289 mlog_errno(ret1); 2290 } 2291 2292 return ret; 2293 } 2294 2295 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 2296 loff_t pos, unsigned len, unsigned flags, 2297 struct page **pagep, void **fsdata) 2298 { 2299 int ret; 2300 struct buffer_head *di_bh = NULL; 2301 struct inode *inode = mapping->host; 2302 2303 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2304 if (ret) { 2305 mlog_errno(ret); 2306 return ret; 2307 } 2308 2309 /* 2310 * Take alloc sem here to prevent concurrent lookups. That way 2311 * the mapping, zeroing and tree manipulation within 2312 * ocfs2_write() will be safe against ->readpage(). This 2313 * should also serve to lock out allocation from a shared 2314 * writeable region. 2315 */ 2316 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2317 2318 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep, 2319 fsdata, di_bh, NULL); 2320 if (ret) { 2321 mlog_errno(ret); 2322 goto out_fail; 2323 } 2324 2325 brelse(di_bh); 2326 2327 return 0; 2328 2329 out_fail: 2330 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2331 2332 brelse(di_bh); 2333 ocfs2_inode_unlock(inode, 1); 2334 2335 return ret; 2336 } 2337 2338 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 2339 unsigned len, unsigned *copied, 2340 struct ocfs2_dinode *di, 2341 struct ocfs2_write_ctxt *wc) 2342 { 2343 void *kaddr; 2344 2345 if (unlikely(*copied < len)) { 2346 if (!PageUptodate(wc->w_target_page)) { 2347 *copied = 0; 2348 return; 2349 } 2350 } 2351 2352 kaddr = kmap_atomic(wc->w_target_page); 2353 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 2354 kunmap_atomic(kaddr); 2355 2356 trace_ocfs2_write_end_inline( 2357 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2358 (unsigned long long)pos, *copied, 2359 le16_to_cpu(di->id2.i_data.id_count), 2360 le16_to_cpu(di->i_dyn_features)); 2361 } 2362 2363 int ocfs2_write_end_nolock(struct address_space *mapping, 2364 loff_t pos, unsigned len, unsigned copied, 2365 struct page *page, void *fsdata) 2366 { 2367 int i, ret; 2368 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); 2369 struct inode *inode = mapping->host; 2370 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2371 struct ocfs2_write_ctxt *wc = fsdata; 2372 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 2373 handle_t *handle = wc->w_handle; 2374 struct page *tmppage; 2375 2376 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 2377 OCFS2_JOURNAL_ACCESS_WRITE); 2378 if (ret) { 2379 copied = ret; 2380 mlog_errno(ret); 2381 goto out; 2382 } 2383 2384 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2385 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 2386 goto out_write_size; 2387 } 2388 2389 if (unlikely(copied < len)) { 2390 if (!PageUptodate(wc->w_target_page)) 2391 copied = 0; 2392 2393 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 2394 start+len); 2395 } 2396 flush_dcache_page(wc->w_target_page); 2397 2398 for(i = 0; i < wc->w_num_pages; i++) { 2399 tmppage = wc->w_pages[i]; 2400 2401 if (tmppage == wc->w_target_page) { 2402 from = wc->w_target_from; 2403 to = wc->w_target_to; 2404 2405 BUG_ON(from > PAGE_CACHE_SIZE || 2406 to > PAGE_CACHE_SIZE || 2407 to < from); 2408 } else { 2409 /* 2410 * Pages adjacent to the target (if any) imply 2411 * a hole-filling write in which case we want 2412 * to flush their entire range. 2413 */ 2414 from = 0; 2415 to = PAGE_CACHE_SIZE; 2416 } 2417 2418 if (page_has_buffers(tmppage)) { 2419 if (ocfs2_should_order_data(inode)) 2420 ocfs2_jbd2_file_inode(wc->w_handle, inode); 2421 block_commit_write(tmppage, from, to); 2422 } 2423 } 2424 2425 out_write_size: 2426 pos += copied; 2427 if (pos > i_size_read(inode)) { 2428 i_size_write(inode, pos); 2429 mark_inode_dirty(inode); 2430 } 2431 inode->i_blocks = ocfs2_inode_sector_count(inode); 2432 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2433 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2434 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2435 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2436 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2437 ocfs2_journal_dirty(handle, wc->w_di_bh); 2438 2439 out: 2440 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2441 * lock, or it will cause a deadlock since journal commit threads holds 2442 * this lock and will ask for the page lock when flushing the data. 2443 * put it here to preserve the unlock order. 2444 */ 2445 ocfs2_unlock_pages(wc); 2446 2447 ocfs2_commit_trans(osb, handle); 2448 2449 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2450 2451 brelse(wc->w_di_bh); 2452 kfree(wc); 2453 2454 return copied; 2455 } 2456 2457 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2458 loff_t pos, unsigned len, unsigned copied, 2459 struct page *page, void *fsdata) 2460 { 2461 int ret; 2462 struct inode *inode = mapping->host; 2463 2464 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 2465 2466 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2467 ocfs2_inode_unlock(inode, 1); 2468 2469 return ret; 2470 } 2471 2472 const struct address_space_operations ocfs2_aops = { 2473 .readpage = ocfs2_readpage, 2474 .readpages = ocfs2_readpages, 2475 .writepage = ocfs2_writepage, 2476 .write_begin = ocfs2_write_begin, 2477 .write_end = ocfs2_write_end, 2478 .bmap = ocfs2_bmap, 2479 .direct_IO = ocfs2_direct_IO, 2480 .invalidatepage = block_invalidatepage, 2481 .releasepage = ocfs2_releasepage, 2482 .migratepage = buffer_migrate_page, 2483 .is_partially_uptodate = block_is_partially_uptodate, 2484 .error_remove_page = generic_error_remove_page, 2485 }; 2486