1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 #include <linux/quotaops.h> 31 32 #define MLOG_MASK_PREFIX ML_FILE_IO 33 #include <cluster/masklog.h> 34 35 #include "ocfs2.h" 36 37 #include "alloc.h" 38 #include "aops.h" 39 #include "dlmglue.h" 40 #include "extent_map.h" 41 #include "file.h" 42 #include "inode.h" 43 #include "journal.h" 44 #include "suballoc.h" 45 #include "super.h" 46 #include "symlink.h" 47 48 #include "buffer_head_io.h" 49 50 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 51 struct buffer_head *bh_result, int create) 52 { 53 int err = -EIO; 54 int status; 55 struct ocfs2_dinode *fe = NULL; 56 struct buffer_head *bh = NULL; 57 struct buffer_head *buffer_cache_bh = NULL; 58 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 59 void *kaddr; 60 61 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, 62 (unsigned long long)iblock, bh_result, create); 63 64 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 65 66 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 67 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 68 (unsigned long long)iblock); 69 goto bail; 70 } 71 72 status = ocfs2_read_inode_block(inode, &bh); 73 if (status < 0) { 74 mlog_errno(status); 75 goto bail; 76 } 77 fe = (struct ocfs2_dinode *) bh->b_data; 78 79 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 80 le32_to_cpu(fe->i_clusters))) { 81 mlog(ML_ERROR, "block offset is outside the allocated size: " 82 "%llu\n", (unsigned long long)iblock); 83 goto bail; 84 } 85 86 /* We don't use the page cache to create symlink data, so if 87 * need be, copy it over from the buffer cache. */ 88 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 89 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 90 iblock; 91 buffer_cache_bh = sb_getblk(osb->sb, blkno); 92 if (!buffer_cache_bh) { 93 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 94 goto bail; 95 } 96 97 /* we haven't locked out transactions, so a commit 98 * could've happened. Since we've got a reference on 99 * the bh, even if it commits while we're doing the 100 * copy, the data is still good. */ 101 if (buffer_jbd(buffer_cache_bh) 102 && ocfs2_inode_is_new(inode)) { 103 kaddr = kmap_atomic(bh_result->b_page, KM_USER0); 104 if (!kaddr) { 105 mlog(ML_ERROR, "couldn't kmap!\n"); 106 goto bail; 107 } 108 memcpy(kaddr + (bh_result->b_size * iblock), 109 buffer_cache_bh->b_data, 110 bh_result->b_size); 111 kunmap_atomic(kaddr, KM_USER0); 112 set_buffer_uptodate(bh_result); 113 } 114 brelse(buffer_cache_bh); 115 } 116 117 map_bh(bh_result, inode->i_sb, 118 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 119 120 err = 0; 121 122 bail: 123 brelse(bh); 124 125 mlog_exit(err); 126 return err; 127 } 128 129 static int ocfs2_get_block(struct inode *inode, sector_t iblock, 130 struct buffer_head *bh_result, int create) 131 { 132 int err = 0; 133 unsigned int ext_flags; 134 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 135 u64 p_blkno, count, past_eof; 136 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 137 138 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, 139 (unsigned long long)iblock, bh_result, create); 140 141 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 142 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 143 inode, inode->i_ino); 144 145 if (S_ISLNK(inode->i_mode)) { 146 /* this always does I/O for some reason. */ 147 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 148 goto bail; 149 } 150 151 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 152 &ext_flags); 153 if (err) { 154 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 155 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 156 (unsigned long long)p_blkno); 157 goto bail; 158 } 159 160 if (max_blocks < count) 161 count = max_blocks; 162 163 /* 164 * ocfs2 never allocates in this function - the only time we 165 * need to use BH_New is when we're extending i_size on a file 166 * system which doesn't support holes, in which case BH_New 167 * allows block_prepare_write() to zero. 168 * 169 * If we see this on a sparse file system, then a truncate has 170 * raced us and removed the cluster. In this case, we clear 171 * the buffers dirty and uptodate bits and let the buffer code 172 * ignore it as a hole. 173 */ 174 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 175 clear_buffer_dirty(bh_result); 176 clear_buffer_uptodate(bh_result); 177 goto bail; 178 } 179 180 /* Treat the unwritten extent as a hole for zeroing purposes. */ 181 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 182 map_bh(bh_result, inode->i_sb, p_blkno); 183 184 bh_result->b_size = count << inode->i_blkbits; 185 186 if (!ocfs2_sparse_alloc(osb)) { 187 if (p_blkno == 0) { 188 err = -EIO; 189 mlog(ML_ERROR, 190 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 191 (unsigned long long)iblock, 192 (unsigned long long)p_blkno, 193 (unsigned long long)OCFS2_I(inode)->ip_blkno); 194 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 195 dump_stack(); 196 } 197 198 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 199 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino, 200 (unsigned long long)past_eof); 201 202 if (create && (iblock >= past_eof)) 203 set_buffer_new(bh_result); 204 } 205 206 bail: 207 if (err < 0) 208 err = -EIO; 209 210 mlog_exit(err); 211 return err; 212 } 213 214 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 215 struct buffer_head *di_bh) 216 { 217 void *kaddr; 218 loff_t size; 219 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 220 221 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 222 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag", 223 (unsigned long long)OCFS2_I(inode)->ip_blkno); 224 return -EROFS; 225 } 226 227 size = i_size_read(inode); 228 229 if (size > PAGE_CACHE_SIZE || 230 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 231 ocfs2_error(inode->i_sb, 232 "Inode %llu has with inline data has bad size: %Lu", 233 (unsigned long long)OCFS2_I(inode)->ip_blkno, 234 (unsigned long long)size); 235 return -EROFS; 236 } 237 238 kaddr = kmap_atomic(page, KM_USER0); 239 if (size) 240 memcpy(kaddr, di->id2.i_data.id_data, size); 241 /* Clear the remaining part of the page */ 242 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); 243 flush_dcache_page(page); 244 kunmap_atomic(kaddr, KM_USER0); 245 246 SetPageUptodate(page); 247 248 return 0; 249 } 250 251 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 252 { 253 int ret; 254 struct buffer_head *di_bh = NULL; 255 256 BUG_ON(!PageLocked(page)); 257 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 258 259 ret = ocfs2_read_inode_block(inode, &di_bh); 260 if (ret) { 261 mlog_errno(ret); 262 goto out; 263 } 264 265 ret = ocfs2_read_inline_data(inode, page, di_bh); 266 out: 267 unlock_page(page); 268 269 brelse(di_bh); 270 return ret; 271 } 272 273 static int ocfs2_readpage(struct file *file, struct page *page) 274 { 275 struct inode *inode = page->mapping->host; 276 struct ocfs2_inode_info *oi = OCFS2_I(inode); 277 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; 278 int ret, unlock = 1; 279 280 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0)); 281 282 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 283 if (ret != 0) { 284 if (ret == AOP_TRUNCATED_PAGE) 285 unlock = 0; 286 mlog_errno(ret); 287 goto out; 288 } 289 290 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 291 ret = AOP_TRUNCATED_PAGE; 292 goto out_inode_unlock; 293 } 294 295 /* 296 * i_size might have just been updated as we grabed the meta lock. We 297 * might now be discovering a truncate that hit on another node. 298 * block_read_full_page->get_block freaks out if it is asked to read 299 * beyond the end of a file, so we check here. Callers 300 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 301 * and notice that the page they just read isn't needed. 302 * 303 * XXX sys_readahead() seems to get that wrong? 304 */ 305 if (start >= i_size_read(inode)) { 306 zero_user(page, 0, PAGE_SIZE); 307 SetPageUptodate(page); 308 ret = 0; 309 goto out_alloc; 310 } 311 312 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 313 ret = ocfs2_readpage_inline(inode, page); 314 else 315 ret = block_read_full_page(page, ocfs2_get_block); 316 unlock = 0; 317 318 out_alloc: 319 up_read(&OCFS2_I(inode)->ip_alloc_sem); 320 out_inode_unlock: 321 ocfs2_inode_unlock(inode, 0); 322 out: 323 if (unlock) 324 unlock_page(page); 325 mlog_exit(ret); 326 return ret; 327 } 328 329 /* 330 * This is used only for read-ahead. Failures or difficult to handle 331 * situations are safe to ignore. 332 * 333 * Right now, we don't bother with BH_Boundary - in-inode extent lists 334 * are quite large (243 extents on 4k blocks), so most inodes don't 335 * grow out to a tree. If need be, detecting boundary extents could 336 * trivially be added in a future version of ocfs2_get_block(). 337 */ 338 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 339 struct list_head *pages, unsigned nr_pages) 340 { 341 int ret, err = -EIO; 342 struct inode *inode = mapping->host; 343 struct ocfs2_inode_info *oi = OCFS2_I(inode); 344 loff_t start; 345 struct page *last; 346 347 /* 348 * Use the nonblocking flag for the dlm code to avoid page 349 * lock inversion, but don't bother with retrying. 350 */ 351 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 352 if (ret) 353 return err; 354 355 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 356 ocfs2_inode_unlock(inode, 0); 357 return err; 358 } 359 360 /* 361 * Don't bother with inline-data. There isn't anything 362 * to read-ahead in that case anyway... 363 */ 364 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 365 goto out_unlock; 366 367 /* 368 * Check whether a remote node truncated this file - we just 369 * drop out in that case as it's not worth handling here. 370 */ 371 last = list_entry(pages->prev, struct page, lru); 372 start = (loff_t)last->index << PAGE_CACHE_SHIFT; 373 if (start >= i_size_read(inode)) 374 goto out_unlock; 375 376 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 377 378 out_unlock: 379 up_read(&oi->ip_alloc_sem); 380 ocfs2_inode_unlock(inode, 0); 381 382 return err; 383 } 384 385 /* Note: Because we don't support holes, our allocation has 386 * already happened (allocation writes zeros to the file data) 387 * so we don't have to worry about ordered writes in 388 * ocfs2_writepage. 389 * 390 * ->writepage is called during the process of invalidating the page cache 391 * during blocked lock processing. It can't block on any cluster locks 392 * to during block mapping. It's relying on the fact that the block 393 * mapping can't have disappeared under the dirty pages that it is 394 * being asked to write back. 395 */ 396 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 397 { 398 int ret; 399 400 mlog_entry("(0x%p)\n", page); 401 402 ret = block_write_full_page(page, ocfs2_get_block, wbc); 403 404 mlog_exit(ret); 405 406 return ret; 407 } 408 409 /* 410 * This is called from ocfs2_write_zero_page() which has handled it's 411 * own cluster locking and has ensured allocation exists for those 412 * blocks to be written. 413 */ 414 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page, 415 unsigned from, unsigned to) 416 { 417 int ret; 418 419 ret = block_prepare_write(page, from, to, ocfs2_get_block); 420 421 return ret; 422 } 423 424 /* Taken from ext3. We don't necessarily need the full blown 425 * functionality yet, but IMHO it's better to cut and paste the whole 426 * thing so we can avoid introducing our own bugs (and easily pick up 427 * their fixes when they happen) --Mark */ 428 int walk_page_buffers( handle_t *handle, 429 struct buffer_head *head, 430 unsigned from, 431 unsigned to, 432 int *partial, 433 int (*fn)( handle_t *handle, 434 struct buffer_head *bh)) 435 { 436 struct buffer_head *bh; 437 unsigned block_start, block_end; 438 unsigned blocksize = head->b_size; 439 int err, ret = 0; 440 struct buffer_head *next; 441 442 for ( bh = head, block_start = 0; 443 ret == 0 && (bh != head || !block_start); 444 block_start = block_end, bh = next) 445 { 446 next = bh->b_this_page; 447 block_end = block_start + blocksize; 448 if (block_end <= from || block_start >= to) { 449 if (partial && !buffer_uptodate(bh)) 450 *partial = 1; 451 continue; 452 } 453 err = (*fn)(handle, bh); 454 if (!ret) 455 ret = err; 456 } 457 return ret; 458 } 459 460 handle_t *ocfs2_start_walk_page_trans(struct inode *inode, 461 struct page *page, 462 unsigned from, 463 unsigned to) 464 { 465 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 466 handle_t *handle; 467 int ret = 0; 468 469 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 470 if (IS_ERR(handle)) { 471 ret = -ENOMEM; 472 mlog_errno(ret); 473 goto out; 474 } 475 476 if (ocfs2_should_order_data(inode)) { 477 ret = ocfs2_jbd2_file_inode(handle, inode); 478 if (ret < 0) 479 mlog_errno(ret); 480 } 481 out: 482 if (ret) { 483 if (!IS_ERR(handle)) 484 ocfs2_commit_trans(osb, handle); 485 handle = ERR_PTR(ret); 486 } 487 return handle; 488 } 489 490 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 491 { 492 sector_t status; 493 u64 p_blkno = 0; 494 int err = 0; 495 struct inode *inode = mapping->host; 496 497 mlog_entry("(block = %llu)\n", (unsigned long long)block); 498 499 /* We don't need to lock journal system files, since they aren't 500 * accessed concurrently from multiple nodes. 501 */ 502 if (!INODE_JOURNAL(inode)) { 503 err = ocfs2_inode_lock(inode, NULL, 0); 504 if (err) { 505 if (err != -ENOENT) 506 mlog_errno(err); 507 goto bail; 508 } 509 down_read(&OCFS2_I(inode)->ip_alloc_sem); 510 } 511 512 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 513 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 514 NULL); 515 516 if (!INODE_JOURNAL(inode)) { 517 up_read(&OCFS2_I(inode)->ip_alloc_sem); 518 ocfs2_inode_unlock(inode, 0); 519 } 520 521 if (err) { 522 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 523 (unsigned long long)block); 524 mlog_errno(err); 525 goto bail; 526 } 527 528 bail: 529 status = err ? 0 : p_blkno; 530 531 mlog_exit((int)status); 532 533 return status; 534 } 535 536 /* 537 * TODO: Make this into a generic get_blocks function. 538 * 539 * From do_direct_io in direct-io.c: 540 * "So what we do is to permit the ->get_blocks function to populate 541 * bh.b_size with the size of IO which is permitted at this offset and 542 * this i_blkbits." 543 * 544 * This function is called directly from get_more_blocks in direct-io.c. 545 * 546 * called like this: dio->get_blocks(dio->inode, fs_startblk, 547 * fs_count, map_bh, dio->rw == WRITE); 548 */ 549 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, 550 struct buffer_head *bh_result, int create) 551 { 552 int ret; 553 u64 p_blkno, inode_blocks, contig_blocks; 554 unsigned int ext_flags; 555 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 556 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; 557 558 /* This function won't even be called if the request isn't all 559 * nicely aligned and of the right size, so there's no need 560 * for us to check any of that. */ 561 562 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 563 564 /* 565 * Any write past EOF is not allowed because we'd be extending. 566 */ 567 if (create && (iblock + max_blocks) > inode_blocks) { 568 ret = -EIO; 569 goto bail; 570 } 571 572 /* This figures out the size of the next contiguous block, and 573 * our logical offset */ 574 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 575 &contig_blocks, &ext_flags); 576 if (ret) { 577 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 578 (unsigned long long)iblock); 579 ret = -EIO; 580 goto bail; 581 } 582 583 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) { 584 ocfs2_error(inode->i_sb, 585 "Inode %llu has a hole at block %llu\n", 586 (unsigned long long)OCFS2_I(inode)->ip_blkno, 587 (unsigned long long)iblock); 588 ret = -EROFS; 589 goto bail; 590 } 591 592 /* 593 * get_more_blocks() expects us to describe a hole by clearing 594 * the mapped bit on bh_result(). 595 * 596 * Consider an unwritten extent as a hole. 597 */ 598 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 599 map_bh(bh_result, inode->i_sb, p_blkno); 600 else { 601 /* 602 * ocfs2_prepare_inode_for_write() should have caught 603 * the case where we'd be filling a hole and triggered 604 * a buffered write instead. 605 */ 606 if (create) { 607 ret = -EIO; 608 mlog_errno(ret); 609 goto bail; 610 } 611 612 clear_buffer_mapped(bh_result); 613 } 614 615 /* make sure we don't map more than max_blocks blocks here as 616 that's all the kernel will handle at this point. */ 617 if (max_blocks < contig_blocks) 618 contig_blocks = max_blocks; 619 bh_result->b_size = contig_blocks << blocksize_bits; 620 bail: 621 return ret; 622 } 623 624 /* 625 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 626 * particularly interested in the aio/dio case. Like the core uses 627 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from 628 * truncation on another. 629 */ 630 static void ocfs2_dio_end_io(struct kiocb *iocb, 631 loff_t offset, 632 ssize_t bytes, 633 void *private) 634 { 635 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 636 int level; 637 638 /* this io's submitter should not have unlocked this before we could */ 639 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 640 641 ocfs2_iocb_clear_rw_locked(iocb); 642 643 level = ocfs2_iocb_rw_locked_level(iocb); 644 if (!level) 645 up_read(&inode->i_alloc_sem); 646 ocfs2_rw_unlock(inode, level); 647 } 648 649 /* 650 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen 651 * from ext3. PageChecked() bits have been removed as OCFS2 does not 652 * do journalled data. 653 */ 654 static void ocfs2_invalidatepage(struct page *page, unsigned long offset) 655 { 656 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 657 658 jbd2_journal_invalidatepage(journal, page, offset); 659 } 660 661 static int ocfs2_releasepage(struct page *page, gfp_t wait) 662 { 663 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 664 665 if (!page_has_buffers(page)) 666 return 0; 667 return jbd2_journal_try_to_free_buffers(journal, page, wait); 668 } 669 670 static ssize_t ocfs2_direct_IO(int rw, 671 struct kiocb *iocb, 672 const struct iovec *iov, 673 loff_t offset, 674 unsigned long nr_segs) 675 { 676 struct file *file = iocb->ki_filp; 677 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host; 678 int ret; 679 680 mlog_entry_void(); 681 682 /* 683 * Fallback to buffered I/O if we see an inode without 684 * extents. 685 */ 686 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 687 return 0; 688 689 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, 690 inode->i_sb->s_bdev, iov, offset, 691 nr_segs, 692 ocfs2_direct_IO_get_blocks, 693 ocfs2_dio_end_io); 694 695 mlog_exit(ret); 696 return ret; 697 } 698 699 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 700 u32 cpos, 701 unsigned int *start, 702 unsigned int *end) 703 { 704 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; 705 706 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { 707 unsigned int cpp; 708 709 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); 710 711 cluster_start = cpos % cpp; 712 cluster_start = cluster_start << osb->s_clustersize_bits; 713 714 cluster_end = cluster_start + osb->s_clustersize; 715 } 716 717 BUG_ON(cluster_start > PAGE_SIZE); 718 BUG_ON(cluster_end > PAGE_SIZE); 719 720 if (start) 721 *start = cluster_start; 722 if (end) 723 *end = cluster_end; 724 } 725 726 /* 727 * 'from' and 'to' are the region in the page to avoid zeroing. 728 * 729 * If pagesize > clustersize, this function will avoid zeroing outside 730 * of the cluster boundary. 731 * 732 * from == to == 0 is code for "zero the entire cluster region" 733 */ 734 static void ocfs2_clear_page_regions(struct page *page, 735 struct ocfs2_super *osb, u32 cpos, 736 unsigned from, unsigned to) 737 { 738 void *kaddr; 739 unsigned int cluster_start, cluster_end; 740 741 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 742 743 kaddr = kmap_atomic(page, KM_USER0); 744 745 if (from || to) { 746 if (from > cluster_start) 747 memset(kaddr + cluster_start, 0, from - cluster_start); 748 if (to < cluster_end) 749 memset(kaddr + to, 0, cluster_end - to); 750 } else { 751 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 752 } 753 754 kunmap_atomic(kaddr, KM_USER0); 755 } 756 757 /* 758 * Nonsparse file systems fully allocate before we get to the write 759 * code. This prevents ocfs2_write() from tagging the write as an 760 * allocating one, which means ocfs2_map_page_blocks() might try to 761 * read-in the blocks at the tail of our file. Avoid reading them by 762 * testing i_size against each block offset. 763 */ 764 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 765 unsigned int block_start) 766 { 767 u64 offset = page_offset(page) + block_start; 768 769 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 770 return 1; 771 772 if (i_size_read(inode) > offset) 773 return 1; 774 775 return 0; 776 } 777 778 /* 779 * Some of this taken from block_prepare_write(). We already have our 780 * mapping by now though, and the entire write will be allocating or 781 * it won't, so not much need to use BH_New. 782 * 783 * This will also skip zeroing, which is handled externally. 784 */ 785 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 786 struct inode *inode, unsigned int from, 787 unsigned int to, int new) 788 { 789 int ret = 0; 790 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 791 unsigned int block_end, block_start; 792 unsigned int bsize = 1 << inode->i_blkbits; 793 794 if (!page_has_buffers(page)) 795 create_empty_buffers(page, bsize, 0); 796 797 head = page_buffers(page); 798 for (bh = head, block_start = 0; bh != head || !block_start; 799 bh = bh->b_this_page, block_start += bsize) { 800 block_end = block_start + bsize; 801 802 clear_buffer_new(bh); 803 804 /* 805 * Ignore blocks outside of our i/o range - 806 * they may belong to unallocated clusters. 807 */ 808 if (block_start >= to || block_end <= from) { 809 if (PageUptodate(page)) 810 set_buffer_uptodate(bh); 811 continue; 812 } 813 814 /* 815 * For an allocating write with cluster size >= page 816 * size, we always write the entire page. 817 */ 818 if (new) 819 set_buffer_new(bh); 820 821 if (!buffer_mapped(bh)) { 822 map_bh(bh, inode->i_sb, *p_blkno); 823 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 824 } 825 826 if (PageUptodate(page)) { 827 if (!buffer_uptodate(bh)) 828 set_buffer_uptodate(bh); 829 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 830 !buffer_new(bh) && 831 ocfs2_should_read_blk(inode, page, block_start) && 832 (block_start < from || block_end > to)) { 833 ll_rw_block(READ, 1, &bh); 834 *wait_bh++=bh; 835 } 836 837 *p_blkno = *p_blkno + 1; 838 } 839 840 /* 841 * If we issued read requests - let them complete. 842 */ 843 while(wait_bh > wait) { 844 wait_on_buffer(*--wait_bh); 845 if (!buffer_uptodate(*wait_bh)) 846 ret = -EIO; 847 } 848 849 if (ret == 0 || !new) 850 return ret; 851 852 /* 853 * If we get -EIO above, zero out any newly allocated blocks 854 * to avoid exposing stale data. 855 */ 856 bh = head; 857 block_start = 0; 858 do { 859 block_end = block_start + bsize; 860 if (block_end <= from) 861 goto next_bh; 862 if (block_start >= to) 863 break; 864 865 zero_user(page, block_start, bh->b_size); 866 set_buffer_uptodate(bh); 867 mark_buffer_dirty(bh); 868 869 next_bh: 870 block_start = block_end; 871 bh = bh->b_this_page; 872 } while (bh != head); 873 874 return ret; 875 } 876 877 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 878 #define OCFS2_MAX_CTXT_PAGES 1 879 #else 880 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) 881 #endif 882 883 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) 884 885 /* 886 * Describe the state of a single cluster to be written to. 887 */ 888 struct ocfs2_write_cluster_desc { 889 u32 c_cpos; 890 u32 c_phys; 891 /* 892 * Give this a unique field because c_phys eventually gets 893 * filled. 894 */ 895 unsigned c_new; 896 unsigned c_unwritten; 897 }; 898 899 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d) 900 { 901 return d->c_new || d->c_unwritten; 902 } 903 904 struct ocfs2_write_ctxt { 905 /* Logical cluster position / len of write */ 906 u32 w_cpos; 907 u32 w_clen; 908 909 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 910 911 /* 912 * This is true if page_size > cluster_size. 913 * 914 * It triggers a set of special cases during write which might 915 * have to deal with allocating writes to partial pages. 916 */ 917 unsigned int w_large_pages; 918 919 /* 920 * Pages involved in this write. 921 * 922 * w_target_page is the page being written to by the user. 923 * 924 * w_pages is an array of pages which always contains 925 * w_target_page, and in the case of an allocating write with 926 * page_size < cluster size, it will contain zero'd and mapped 927 * pages adjacent to w_target_page which need to be written 928 * out in so that future reads from that region will get 929 * zero's. 930 */ 931 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 932 unsigned int w_num_pages; 933 struct page *w_target_page; 934 935 /* 936 * ocfs2_write_end() uses this to know what the real range to 937 * write in the target should be. 938 */ 939 unsigned int w_target_from; 940 unsigned int w_target_to; 941 942 /* 943 * We could use journal_current_handle() but this is cleaner, 944 * IMHO -Mark 945 */ 946 handle_t *w_handle; 947 948 struct buffer_head *w_di_bh; 949 950 struct ocfs2_cached_dealloc_ctxt w_dealloc; 951 }; 952 953 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 954 { 955 int i; 956 957 for(i = 0; i < num_pages; i++) { 958 if (pages[i]) { 959 unlock_page(pages[i]); 960 mark_page_accessed(pages[i]); 961 page_cache_release(pages[i]); 962 } 963 } 964 } 965 966 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) 967 { 968 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 969 970 brelse(wc->w_di_bh); 971 kfree(wc); 972 } 973 974 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 975 struct ocfs2_super *osb, loff_t pos, 976 unsigned len, struct buffer_head *di_bh) 977 { 978 u32 cend; 979 struct ocfs2_write_ctxt *wc; 980 981 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 982 if (!wc) 983 return -ENOMEM; 984 985 wc->w_cpos = pos >> osb->s_clustersize_bits; 986 cend = (pos + len - 1) >> osb->s_clustersize_bits; 987 wc->w_clen = cend - wc->w_cpos + 1; 988 get_bh(di_bh); 989 wc->w_di_bh = di_bh; 990 991 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) 992 wc->w_large_pages = 1; 993 else 994 wc->w_large_pages = 0; 995 996 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 997 998 *wcp = wc; 999 1000 return 0; 1001 } 1002 1003 /* 1004 * If a page has any new buffers, zero them out here, and mark them uptodate 1005 * and dirty so they'll be written out (in order to prevent uninitialised 1006 * block data from leaking). And clear the new bit. 1007 */ 1008 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1009 { 1010 unsigned int block_start, block_end; 1011 struct buffer_head *head, *bh; 1012 1013 BUG_ON(!PageLocked(page)); 1014 if (!page_has_buffers(page)) 1015 return; 1016 1017 bh = head = page_buffers(page); 1018 block_start = 0; 1019 do { 1020 block_end = block_start + bh->b_size; 1021 1022 if (buffer_new(bh)) { 1023 if (block_end > from && block_start < to) { 1024 if (!PageUptodate(page)) { 1025 unsigned start, end; 1026 1027 start = max(from, block_start); 1028 end = min(to, block_end); 1029 1030 zero_user_segment(page, start, end); 1031 set_buffer_uptodate(bh); 1032 } 1033 1034 clear_buffer_new(bh); 1035 mark_buffer_dirty(bh); 1036 } 1037 } 1038 1039 block_start = block_end; 1040 bh = bh->b_this_page; 1041 } while (bh != head); 1042 } 1043 1044 /* 1045 * Only called when we have a failure during allocating write to write 1046 * zero's to the newly allocated region. 1047 */ 1048 static void ocfs2_write_failure(struct inode *inode, 1049 struct ocfs2_write_ctxt *wc, 1050 loff_t user_pos, unsigned user_len) 1051 { 1052 int i; 1053 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), 1054 to = user_pos + user_len; 1055 struct page *tmppage; 1056 1057 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 1058 1059 for(i = 0; i < wc->w_num_pages; i++) { 1060 tmppage = wc->w_pages[i]; 1061 1062 if (page_has_buffers(tmppage)) { 1063 if (ocfs2_should_order_data(inode)) 1064 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1065 1066 block_commit_write(tmppage, from, to); 1067 } 1068 } 1069 } 1070 1071 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 1072 struct ocfs2_write_ctxt *wc, 1073 struct page *page, u32 cpos, 1074 loff_t user_pos, unsigned user_len, 1075 int new) 1076 { 1077 int ret; 1078 unsigned int map_from = 0, map_to = 0; 1079 unsigned int cluster_start, cluster_end; 1080 unsigned int user_data_from = 0, user_data_to = 0; 1081 1082 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 1083 &cluster_start, &cluster_end); 1084 1085 if (page == wc->w_target_page) { 1086 map_from = user_pos & (PAGE_CACHE_SIZE - 1); 1087 map_to = map_from + user_len; 1088 1089 if (new) 1090 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1091 cluster_start, cluster_end, 1092 new); 1093 else 1094 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1095 map_from, map_to, new); 1096 if (ret) { 1097 mlog_errno(ret); 1098 goto out; 1099 } 1100 1101 user_data_from = map_from; 1102 user_data_to = map_to; 1103 if (new) { 1104 map_from = cluster_start; 1105 map_to = cluster_end; 1106 } 1107 } else { 1108 /* 1109 * If we haven't allocated the new page yet, we 1110 * shouldn't be writing it out without copying user 1111 * data. This is likely a math error from the caller. 1112 */ 1113 BUG_ON(!new); 1114 1115 map_from = cluster_start; 1116 map_to = cluster_end; 1117 1118 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1119 cluster_start, cluster_end, new); 1120 if (ret) { 1121 mlog_errno(ret); 1122 goto out; 1123 } 1124 } 1125 1126 /* 1127 * Parts of newly allocated pages need to be zero'd. 1128 * 1129 * Above, we have also rewritten 'to' and 'from' - as far as 1130 * the rest of the function is concerned, the entire cluster 1131 * range inside of a page needs to be written. 1132 * 1133 * We can skip this if the page is up to date - it's already 1134 * been zero'd from being read in as a hole. 1135 */ 1136 if (new && !PageUptodate(page)) 1137 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1138 cpos, user_data_from, user_data_to); 1139 1140 flush_dcache_page(page); 1141 1142 out: 1143 return ret; 1144 } 1145 1146 /* 1147 * This function will only grab one clusters worth of pages. 1148 */ 1149 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1150 struct ocfs2_write_ctxt *wc, 1151 u32 cpos, loff_t user_pos, int new, 1152 struct page *mmap_page) 1153 { 1154 int ret = 0, i; 1155 unsigned long start, target_index, index; 1156 struct inode *inode = mapping->host; 1157 1158 target_index = user_pos >> PAGE_CACHE_SHIFT; 1159 1160 /* 1161 * Figure out how many pages we'll be manipulating here. For 1162 * non allocating write, we just change the one 1163 * page. Otherwise, we'll need a whole clusters worth. 1164 */ 1165 if (new) { 1166 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1167 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1168 } else { 1169 wc->w_num_pages = 1; 1170 start = target_index; 1171 } 1172 1173 for(i = 0; i < wc->w_num_pages; i++) { 1174 index = start + i; 1175 1176 if (index == target_index && mmap_page) { 1177 /* 1178 * ocfs2_pagemkwrite() is a little different 1179 * and wants us to directly use the page 1180 * passed in. 1181 */ 1182 lock_page(mmap_page); 1183 1184 if (mmap_page->mapping != mapping) { 1185 unlock_page(mmap_page); 1186 /* 1187 * Sanity check - the locking in 1188 * ocfs2_pagemkwrite() should ensure 1189 * that this code doesn't trigger. 1190 */ 1191 ret = -EINVAL; 1192 mlog_errno(ret); 1193 goto out; 1194 } 1195 1196 page_cache_get(mmap_page); 1197 wc->w_pages[i] = mmap_page; 1198 } else { 1199 wc->w_pages[i] = find_or_create_page(mapping, index, 1200 GFP_NOFS); 1201 if (!wc->w_pages[i]) { 1202 ret = -ENOMEM; 1203 mlog_errno(ret); 1204 goto out; 1205 } 1206 } 1207 1208 if (index == target_index) 1209 wc->w_target_page = wc->w_pages[i]; 1210 } 1211 out: 1212 return ret; 1213 } 1214 1215 /* 1216 * Prepare a single cluster for write one cluster into the file. 1217 */ 1218 static int ocfs2_write_cluster(struct address_space *mapping, 1219 u32 phys, unsigned int unwritten, 1220 struct ocfs2_alloc_context *data_ac, 1221 struct ocfs2_alloc_context *meta_ac, 1222 struct ocfs2_write_ctxt *wc, u32 cpos, 1223 loff_t user_pos, unsigned user_len) 1224 { 1225 int ret, i, new, should_zero = 0; 1226 u64 v_blkno, p_blkno; 1227 struct inode *inode = mapping->host; 1228 struct ocfs2_extent_tree et; 1229 1230 new = phys == 0 ? 1 : 0; 1231 if (new || unwritten) 1232 should_zero = 1; 1233 1234 if (new) { 1235 u32 tmp_pos; 1236 1237 /* 1238 * This is safe to call with the page locks - it won't take 1239 * any additional semaphores or cluster locks. 1240 */ 1241 tmp_pos = cpos; 1242 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1243 &tmp_pos, 1, 0, wc->w_di_bh, 1244 wc->w_handle, data_ac, 1245 meta_ac, NULL); 1246 /* 1247 * This shouldn't happen because we must have already 1248 * calculated the correct meta data allocation required. The 1249 * internal tree allocation code should know how to increase 1250 * transaction credits itself. 1251 * 1252 * If need be, we could handle -EAGAIN for a 1253 * RESTART_TRANS here. 1254 */ 1255 mlog_bug_on_msg(ret == -EAGAIN, 1256 "Inode %llu: EAGAIN return during allocation.\n", 1257 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1258 if (ret < 0) { 1259 mlog_errno(ret); 1260 goto out; 1261 } 1262 } else if (unwritten) { 1263 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh); 1264 ret = ocfs2_mark_extent_written(inode, &et, 1265 wc->w_handle, cpos, 1, phys, 1266 meta_ac, &wc->w_dealloc); 1267 if (ret < 0) { 1268 mlog_errno(ret); 1269 goto out; 1270 } 1271 } 1272 1273 if (should_zero) 1274 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); 1275 else 1276 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; 1277 1278 /* 1279 * The only reason this should fail is due to an inability to 1280 * find the extent added. 1281 */ 1282 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, 1283 NULL); 1284 if (ret < 0) { 1285 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, " 1286 "at logical block %llu", 1287 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1288 (unsigned long long)v_blkno); 1289 goto out; 1290 } 1291 1292 BUG_ON(p_blkno == 0); 1293 1294 for(i = 0; i < wc->w_num_pages; i++) { 1295 int tmpret; 1296 1297 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1298 wc->w_pages[i], cpos, 1299 user_pos, user_len, 1300 should_zero); 1301 if (tmpret) { 1302 mlog_errno(tmpret); 1303 if (ret == 0) 1304 tmpret = ret; 1305 } 1306 } 1307 1308 /* 1309 * We only have cleanup to do in case of allocating write. 1310 */ 1311 if (ret && new) 1312 ocfs2_write_failure(inode, wc, user_pos, user_len); 1313 1314 out: 1315 1316 return ret; 1317 } 1318 1319 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1320 struct ocfs2_alloc_context *data_ac, 1321 struct ocfs2_alloc_context *meta_ac, 1322 struct ocfs2_write_ctxt *wc, 1323 loff_t pos, unsigned len) 1324 { 1325 int ret, i; 1326 loff_t cluster_off; 1327 unsigned int local_len = len; 1328 struct ocfs2_write_cluster_desc *desc; 1329 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1330 1331 for (i = 0; i < wc->w_clen; i++) { 1332 desc = &wc->w_desc[i]; 1333 1334 /* 1335 * We have to make sure that the total write passed in 1336 * doesn't extend past a single cluster. 1337 */ 1338 local_len = len; 1339 cluster_off = pos & (osb->s_clustersize - 1); 1340 if ((cluster_off + local_len) > osb->s_clustersize) 1341 local_len = osb->s_clustersize - cluster_off; 1342 1343 ret = ocfs2_write_cluster(mapping, desc->c_phys, 1344 desc->c_unwritten, data_ac, meta_ac, 1345 wc, desc->c_cpos, pos, local_len); 1346 if (ret) { 1347 mlog_errno(ret); 1348 goto out; 1349 } 1350 1351 len -= local_len; 1352 pos += local_len; 1353 } 1354 1355 ret = 0; 1356 out: 1357 return ret; 1358 } 1359 1360 /* 1361 * ocfs2_write_end() wants to know which parts of the target page it 1362 * should complete the write on. It's easiest to compute them ahead of 1363 * time when a more complete view of the write is available. 1364 */ 1365 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1366 struct ocfs2_write_ctxt *wc, 1367 loff_t pos, unsigned len, int alloc) 1368 { 1369 struct ocfs2_write_cluster_desc *desc; 1370 1371 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); 1372 wc->w_target_to = wc->w_target_from + len; 1373 1374 if (alloc == 0) 1375 return; 1376 1377 /* 1378 * Allocating write - we may have different boundaries based 1379 * on page size and cluster size. 1380 * 1381 * NOTE: We can no longer compute one value from the other as 1382 * the actual write length and user provided length may be 1383 * different. 1384 */ 1385 1386 if (wc->w_large_pages) { 1387 /* 1388 * We only care about the 1st and last cluster within 1389 * our range and whether they should be zero'd or not. Either 1390 * value may be extended out to the start/end of a 1391 * newly allocated cluster. 1392 */ 1393 desc = &wc->w_desc[0]; 1394 if (ocfs2_should_zero_cluster(desc)) 1395 ocfs2_figure_cluster_boundaries(osb, 1396 desc->c_cpos, 1397 &wc->w_target_from, 1398 NULL); 1399 1400 desc = &wc->w_desc[wc->w_clen - 1]; 1401 if (ocfs2_should_zero_cluster(desc)) 1402 ocfs2_figure_cluster_boundaries(osb, 1403 desc->c_cpos, 1404 NULL, 1405 &wc->w_target_to); 1406 } else { 1407 wc->w_target_from = 0; 1408 wc->w_target_to = PAGE_CACHE_SIZE; 1409 } 1410 } 1411 1412 /* 1413 * Populate each single-cluster write descriptor in the write context 1414 * with information about the i/o to be done. 1415 * 1416 * Returns the number of clusters that will have to be allocated, as 1417 * well as a worst case estimate of the number of extent records that 1418 * would have to be created during a write to an unwritten region. 1419 */ 1420 static int ocfs2_populate_write_desc(struct inode *inode, 1421 struct ocfs2_write_ctxt *wc, 1422 unsigned int *clusters_to_alloc, 1423 unsigned int *extents_to_split) 1424 { 1425 int ret; 1426 struct ocfs2_write_cluster_desc *desc; 1427 unsigned int num_clusters = 0; 1428 unsigned int ext_flags = 0; 1429 u32 phys = 0; 1430 int i; 1431 1432 *clusters_to_alloc = 0; 1433 *extents_to_split = 0; 1434 1435 for (i = 0; i < wc->w_clen; i++) { 1436 desc = &wc->w_desc[i]; 1437 desc->c_cpos = wc->w_cpos + i; 1438 1439 if (num_clusters == 0) { 1440 /* 1441 * Need to look up the next extent record. 1442 */ 1443 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1444 &num_clusters, &ext_flags); 1445 if (ret) { 1446 mlog_errno(ret); 1447 goto out; 1448 } 1449 1450 /* 1451 * Assume worst case - that we're writing in 1452 * the middle of the extent. 1453 * 1454 * We can assume that the write proceeds from 1455 * left to right, in which case the extent 1456 * insert code is smart enough to coalesce the 1457 * next splits into the previous records created. 1458 */ 1459 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1460 *extents_to_split = *extents_to_split + 2; 1461 } else if (phys) { 1462 /* 1463 * Only increment phys if it doesn't describe 1464 * a hole. 1465 */ 1466 phys++; 1467 } 1468 1469 desc->c_phys = phys; 1470 if (phys == 0) { 1471 desc->c_new = 1; 1472 *clusters_to_alloc = *clusters_to_alloc + 1; 1473 } 1474 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1475 desc->c_unwritten = 1; 1476 1477 num_clusters--; 1478 } 1479 1480 ret = 0; 1481 out: 1482 return ret; 1483 } 1484 1485 static int ocfs2_write_begin_inline(struct address_space *mapping, 1486 struct inode *inode, 1487 struct ocfs2_write_ctxt *wc) 1488 { 1489 int ret; 1490 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1491 struct page *page; 1492 handle_t *handle; 1493 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1494 1495 page = find_or_create_page(mapping, 0, GFP_NOFS); 1496 if (!page) { 1497 ret = -ENOMEM; 1498 mlog_errno(ret); 1499 goto out; 1500 } 1501 /* 1502 * If we don't set w_num_pages then this page won't get unlocked 1503 * and freed on cleanup of the write context. 1504 */ 1505 wc->w_pages[0] = wc->w_target_page = page; 1506 wc->w_num_pages = 1; 1507 1508 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1509 if (IS_ERR(handle)) { 1510 ret = PTR_ERR(handle); 1511 mlog_errno(ret); 1512 goto out; 1513 } 1514 1515 ret = ocfs2_journal_access_di(handle, inode, wc->w_di_bh, 1516 OCFS2_JOURNAL_ACCESS_WRITE); 1517 if (ret) { 1518 ocfs2_commit_trans(osb, handle); 1519 1520 mlog_errno(ret); 1521 goto out; 1522 } 1523 1524 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1525 ocfs2_set_inode_data_inline(inode, di); 1526 1527 if (!PageUptodate(page)) { 1528 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1529 if (ret) { 1530 ocfs2_commit_trans(osb, handle); 1531 1532 goto out; 1533 } 1534 } 1535 1536 wc->w_handle = handle; 1537 out: 1538 return ret; 1539 } 1540 1541 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1542 { 1543 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1544 1545 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1546 return 1; 1547 return 0; 1548 } 1549 1550 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1551 struct inode *inode, loff_t pos, 1552 unsigned len, struct page *mmap_page, 1553 struct ocfs2_write_ctxt *wc) 1554 { 1555 int ret, written = 0; 1556 loff_t end = pos + len; 1557 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1558 struct ocfs2_dinode *di = NULL; 1559 1560 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n", 1561 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos, 1562 oi->ip_dyn_features); 1563 1564 /* 1565 * Handle inodes which already have inline data 1st. 1566 */ 1567 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1568 if (mmap_page == NULL && 1569 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1570 goto do_inline_write; 1571 1572 /* 1573 * The write won't fit - we have to give this inode an 1574 * inline extent list now. 1575 */ 1576 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1577 if (ret) 1578 mlog_errno(ret); 1579 goto out; 1580 } 1581 1582 /* 1583 * Check whether the inode can accept inline data. 1584 */ 1585 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1586 return 0; 1587 1588 /* 1589 * Check whether the write can fit. 1590 */ 1591 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1592 if (mmap_page || 1593 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1594 return 0; 1595 1596 do_inline_write: 1597 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1598 if (ret) { 1599 mlog_errno(ret); 1600 goto out; 1601 } 1602 1603 /* 1604 * This signals to the caller that the data can be written 1605 * inline. 1606 */ 1607 written = 1; 1608 out: 1609 return written ? written : ret; 1610 } 1611 1612 /* 1613 * This function only does anything for file systems which can't 1614 * handle sparse files. 1615 * 1616 * What we want to do here is fill in any hole between the current end 1617 * of allocation and the end of our write. That way the rest of the 1618 * write path can treat it as an non-allocating write, which has no 1619 * special case code for sparse/nonsparse files. 1620 */ 1621 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos, 1622 unsigned len, 1623 struct ocfs2_write_ctxt *wc) 1624 { 1625 int ret; 1626 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1627 loff_t newsize = pos + len; 1628 1629 if (ocfs2_sparse_alloc(osb)) 1630 return 0; 1631 1632 if (newsize <= i_size_read(inode)) 1633 return 0; 1634 1635 ret = ocfs2_extend_no_holes(inode, newsize, newsize - len); 1636 if (ret) 1637 mlog_errno(ret); 1638 1639 return ret; 1640 } 1641 1642 int ocfs2_write_begin_nolock(struct address_space *mapping, 1643 loff_t pos, unsigned len, unsigned flags, 1644 struct page **pagep, void **fsdata, 1645 struct buffer_head *di_bh, struct page *mmap_page) 1646 { 1647 int ret, credits = OCFS2_INODE_UPDATE_CREDITS; 1648 unsigned int clusters_to_alloc, extents_to_split; 1649 struct ocfs2_write_ctxt *wc; 1650 struct inode *inode = mapping->host; 1651 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1652 struct ocfs2_dinode *di; 1653 struct ocfs2_alloc_context *data_ac = NULL; 1654 struct ocfs2_alloc_context *meta_ac = NULL; 1655 handle_t *handle; 1656 struct ocfs2_extent_tree et; 1657 1658 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); 1659 if (ret) { 1660 mlog_errno(ret); 1661 return ret; 1662 } 1663 1664 if (ocfs2_supports_inline_data(osb)) { 1665 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1666 mmap_page, wc); 1667 if (ret == 1) { 1668 ret = 0; 1669 goto success; 1670 } 1671 if (ret < 0) { 1672 mlog_errno(ret); 1673 goto out; 1674 } 1675 } 1676 1677 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc); 1678 if (ret) { 1679 mlog_errno(ret); 1680 goto out; 1681 } 1682 1683 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1684 &extents_to_split); 1685 if (ret) { 1686 mlog_errno(ret); 1687 goto out; 1688 } 1689 1690 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1691 1692 /* 1693 * We set w_target_from, w_target_to here so that 1694 * ocfs2_write_end() knows which range in the target page to 1695 * write out. An allocation requires that we write the entire 1696 * cluster range. 1697 */ 1698 if (clusters_to_alloc || extents_to_split) { 1699 /* 1700 * XXX: We are stretching the limits of 1701 * ocfs2_lock_allocators(). It greatly over-estimates 1702 * the work to be done. 1703 */ 1704 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u," 1705 " clusters_to_add = %u, extents_to_split = %u\n", 1706 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1707 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters), 1708 clusters_to_alloc, extents_to_split); 1709 1710 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh); 1711 ret = ocfs2_lock_allocators(inode, &et, 1712 clusters_to_alloc, extents_to_split, 1713 &data_ac, &meta_ac); 1714 if (ret) { 1715 mlog_errno(ret); 1716 goto out; 1717 } 1718 1719 credits = ocfs2_calc_extend_credits(inode->i_sb, 1720 &di->id2.i_list, 1721 clusters_to_alloc); 1722 1723 } 1724 1725 ocfs2_set_target_boundaries(osb, wc, pos, len, 1726 clusters_to_alloc + extents_to_split); 1727 1728 handle = ocfs2_start_trans(osb, credits); 1729 if (IS_ERR(handle)) { 1730 ret = PTR_ERR(handle); 1731 mlog_errno(ret); 1732 goto out; 1733 } 1734 1735 wc->w_handle = handle; 1736 1737 if (clusters_to_alloc && vfs_dq_alloc_space_nodirty(inode, 1738 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc))) { 1739 ret = -EDQUOT; 1740 goto out_commit; 1741 } 1742 /* 1743 * We don't want this to fail in ocfs2_write_end(), so do it 1744 * here. 1745 */ 1746 ret = ocfs2_journal_access_di(handle, inode, wc->w_di_bh, 1747 OCFS2_JOURNAL_ACCESS_WRITE); 1748 if (ret) { 1749 mlog_errno(ret); 1750 goto out_quota; 1751 } 1752 1753 /* 1754 * Fill our page array first. That way we've grabbed enough so 1755 * that we can zero and flush if we error after adding the 1756 * extent. 1757 */ 1758 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, 1759 clusters_to_alloc + extents_to_split, 1760 mmap_page); 1761 if (ret) { 1762 mlog_errno(ret); 1763 goto out_quota; 1764 } 1765 1766 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1767 len); 1768 if (ret) { 1769 mlog_errno(ret); 1770 goto out_quota; 1771 } 1772 1773 if (data_ac) 1774 ocfs2_free_alloc_context(data_ac); 1775 if (meta_ac) 1776 ocfs2_free_alloc_context(meta_ac); 1777 1778 success: 1779 *pagep = wc->w_target_page; 1780 *fsdata = wc; 1781 return 0; 1782 out_quota: 1783 if (clusters_to_alloc) 1784 vfs_dq_free_space(inode, 1785 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1786 out_commit: 1787 ocfs2_commit_trans(osb, handle); 1788 1789 out: 1790 ocfs2_free_write_ctxt(wc); 1791 1792 if (data_ac) 1793 ocfs2_free_alloc_context(data_ac); 1794 if (meta_ac) 1795 ocfs2_free_alloc_context(meta_ac); 1796 return ret; 1797 } 1798 1799 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1800 loff_t pos, unsigned len, unsigned flags, 1801 struct page **pagep, void **fsdata) 1802 { 1803 int ret; 1804 struct buffer_head *di_bh = NULL; 1805 struct inode *inode = mapping->host; 1806 1807 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1808 if (ret) { 1809 mlog_errno(ret); 1810 return ret; 1811 } 1812 1813 /* 1814 * Take alloc sem here to prevent concurrent lookups. That way 1815 * the mapping, zeroing and tree manipulation within 1816 * ocfs2_write() will be safe against ->readpage(). This 1817 * should also serve to lock out allocation from a shared 1818 * writeable region. 1819 */ 1820 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1821 1822 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep, 1823 fsdata, di_bh, NULL); 1824 if (ret) { 1825 mlog_errno(ret); 1826 goto out_fail; 1827 } 1828 1829 brelse(di_bh); 1830 1831 return 0; 1832 1833 out_fail: 1834 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1835 1836 brelse(di_bh); 1837 ocfs2_inode_unlock(inode, 1); 1838 1839 return ret; 1840 } 1841 1842 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1843 unsigned len, unsigned *copied, 1844 struct ocfs2_dinode *di, 1845 struct ocfs2_write_ctxt *wc) 1846 { 1847 void *kaddr; 1848 1849 if (unlikely(*copied < len)) { 1850 if (!PageUptodate(wc->w_target_page)) { 1851 *copied = 0; 1852 return; 1853 } 1854 } 1855 1856 kaddr = kmap_atomic(wc->w_target_page, KM_USER0); 1857 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1858 kunmap_atomic(kaddr, KM_USER0); 1859 1860 mlog(0, "Data written to inode at offset %llu. " 1861 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n", 1862 (unsigned long long)pos, *copied, 1863 le16_to_cpu(di->id2.i_data.id_count), 1864 le16_to_cpu(di->i_dyn_features)); 1865 } 1866 1867 int ocfs2_write_end_nolock(struct address_space *mapping, 1868 loff_t pos, unsigned len, unsigned copied, 1869 struct page *page, void *fsdata) 1870 { 1871 int i; 1872 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); 1873 struct inode *inode = mapping->host; 1874 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1875 struct ocfs2_write_ctxt *wc = fsdata; 1876 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1877 handle_t *handle = wc->w_handle; 1878 struct page *tmppage; 1879 1880 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1881 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1882 goto out_write_size; 1883 } 1884 1885 if (unlikely(copied < len)) { 1886 if (!PageUptodate(wc->w_target_page)) 1887 copied = 0; 1888 1889 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1890 start+len); 1891 } 1892 flush_dcache_page(wc->w_target_page); 1893 1894 for(i = 0; i < wc->w_num_pages; i++) { 1895 tmppage = wc->w_pages[i]; 1896 1897 if (tmppage == wc->w_target_page) { 1898 from = wc->w_target_from; 1899 to = wc->w_target_to; 1900 1901 BUG_ON(from > PAGE_CACHE_SIZE || 1902 to > PAGE_CACHE_SIZE || 1903 to < from); 1904 } else { 1905 /* 1906 * Pages adjacent to the target (if any) imply 1907 * a hole-filling write in which case we want 1908 * to flush their entire range. 1909 */ 1910 from = 0; 1911 to = PAGE_CACHE_SIZE; 1912 } 1913 1914 if (page_has_buffers(tmppage)) { 1915 if (ocfs2_should_order_data(inode)) 1916 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1917 block_commit_write(tmppage, from, to); 1918 } 1919 } 1920 1921 out_write_size: 1922 pos += copied; 1923 if (pos > inode->i_size) { 1924 i_size_write(inode, pos); 1925 mark_inode_dirty(inode); 1926 } 1927 inode->i_blocks = ocfs2_inode_sector_count(inode); 1928 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 1929 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1930 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 1931 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 1932 ocfs2_journal_dirty(handle, wc->w_di_bh); 1933 1934 ocfs2_commit_trans(osb, handle); 1935 1936 ocfs2_run_deallocs(osb, &wc->w_dealloc); 1937 1938 ocfs2_free_write_ctxt(wc); 1939 1940 return copied; 1941 } 1942 1943 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 1944 loff_t pos, unsigned len, unsigned copied, 1945 struct page *page, void *fsdata) 1946 { 1947 int ret; 1948 struct inode *inode = mapping->host; 1949 1950 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 1951 1952 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1953 ocfs2_inode_unlock(inode, 1); 1954 1955 return ret; 1956 } 1957 1958 const struct address_space_operations ocfs2_aops = { 1959 .readpage = ocfs2_readpage, 1960 .readpages = ocfs2_readpages, 1961 .writepage = ocfs2_writepage, 1962 .write_begin = ocfs2_write_begin, 1963 .write_end = ocfs2_write_end, 1964 .bmap = ocfs2_bmap, 1965 .sync_page = block_sync_page, 1966 .direct_IO = ocfs2_direct_IO, 1967 .invalidatepage = ocfs2_invalidatepage, 1968 .releasepage = ocfs2_releasepage, 1969 .migratepage = buffer_migrate_page, 1970 .is_partially_uptodate = block_is_partially_uptodate, 1971 }; 1972