xref: /openbmc/linux/fs/ocfs2/aops.c (revision a44f9d6f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/highmem.h>
9 #include <linux/pagemap.h>
10 #include <asm/byteorder.h>
11 #include <linux/swap.h>
12 #include <linux/mpage.h>
13 #include <linux/quotaops.h>
14 #include <linux/blkdev.h>
15 #include <linux/uio.h>
16 #include <linux/mm.h>
17 
18 #include <cluster/masklog.h>
19 
20 #include "ocfs2.h"
21 
22 #include "alloc.h"
23 #include "aops.h"
24 #include "dlmglue.h"
25 #include "extent_map.h"
26 #include "file.h"
27 #include "inode.h"
28 #include "journal.h"
29 #include "suballoc.h"
30 #include "super.h"
31 #include "symlink.h"
32 #include "refcounttree.h"
33 #include "ocfs2_trace.h"
34 
35 #include "buffer_head_io.h"
36 #include "dir.h"
37 #include "namei.h"
38 #include "sysfile.h"
39 
40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
41 				   struct buffer_head *bh_result, int create)
42 {
43 	int err = -EIO;
44 	int status;
45 	struct ocfs2_dinode *fe = NULL;
46 	struct buffer_head *bh = NULL;
47 	struct buffer_head *buffer_cache_bh = NULL;
48 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
49 	void *kaddr;
50 
51 	trace_ocfs2_symlink_get_block(
52 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
53 			(unsigned long long)iblock, bh_result, create);
54 
55 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
56 
57 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
58 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
59 		     (unsigned long long)iblock);
60 		goto bail;
61 	}
62 
63 	status = ocfs2_read_inode_block(inode, &bh);
64 	if (status < 0) {
65 		mlog_errno(status);
66 		goto bail;
67 	}
68 	fe = (struct ocfs2_dinode *) bh->b_data;
69 
70 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
71 						    le32_to_cpu(fe->i_clusters))) {
72 		err = -ENOMEM;
73 		mlog(ML_ERROR, "block offset is outside the allocated size: "
74 		     "%llu\n", (unsigned long long)iblock);
75 		goto bail;
76 	}
77 
78 	/* We don't use the page cache to create symlink data, so if
79 	 * need be, copy it over from the buffer cache. */
80 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
81 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
82 			    iblock;
83 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
84 		if (!buffer_cache_bh) {
85 			err = -ENOMEM;
86 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
87 			goto bail;
88 		}
89 
90 		/* we haven't locked out transactions, so a commit
91 		 * could've happened. Since we've got a reference on
92 		 * the bh, even if it commits while we're doing the
93 		 * copy, the data is still good. */
94 		if (buffer_jbd(buffer_cache_bh)
95 		    && ocfs2_inode_is_new(inode)) {
96 			kaddr = kmap_atomic(bh_result->b_page);
97 			if (!kaddr) {
98 				mlog(ML_ERROR, "couldn't kmap!\n");
99 				goto bail;
100 			}
101 			memcpy(kaddr + (bh_result->b_size * iblock),
102 			       buffer_cache_bh->b_data,
103 			       bh_result->b_size);
104 			kunmap_atomic(kaddr);
105 			set_buffer_uptodate(bh_result);
106 		}
107 		brelse(buffer_cache_bh);
108 	}
109 
110 	map_bh(bh_result, inode->i_sb,
111 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
112 
113 	err = 0;
114 
115 bail:
116 	brelse(bh);
117 
118 	return err;
119 }
120 
121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122 		    struct buffer_head *bh_result, int create)
123 {
124 	int ret = 0;
125 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
126 
127 	down_read(&oi->ip_alloc_sem);
128 	ret = ocfs2_get_block(inode, iblock, bh_result, create);
129 	up_read(&oi->ip_alloc_sem);
130 
131 	return ret;
132 }
133 
134 int ocfs2_get_block(struct inode *inode, sector_t iblock,
135 		    struct buffer_head *bh_result, int create)
136 {
137 	int err = 0;
138 	unsigned int ext_flags;
139 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140 	u64 p_blkno, count, past_eof;
141 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
142 
143 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144 			      (unsigned long long)iblock, bh_result, create);
145 
146 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148 		     inode, inode->i_ino);
149 
150 	if (S_ISLNK(inode->i_mode)) {
151 		/* this always does I/O for some reason. */
152 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153 		goto bail;
154 	}
155 
156 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
157 					  &ext_flags);
158 	if (err) {
159 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
160 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
161 		     (unsigned long long)p_blkno);
162 		goto bail;
163 	}
164 
165 	if (max_blocks < count)
166 		count = max_blocks;
167 
168 	/*
169 	 * ocfs2 never allocates in this function - the only time we
170 	 * need to use BH_New is when we're extending i_size on a file
171 	 * system which doesn't support holes, in which case BH_New
172 	 * allows __block_write_begin() to zero.
173 	 *
174 	 * If we see this on a sparse file system, then a truncate has
175 	 * raced us and removed the cluster. In this case, we clear
176 	 * the buffers dirty and uptodate bits and let the buffer code
177 	 * ignore it as a hole.
178 	 */
179 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
180 		clear_buffer_dirty(bh_result);
181 		clear_buffer_uptodate(bh_result);
182 		goto bail;
183 	}
184 
185 	/* Treat the unwritten extent as a hole for zeroing purposes. */
186 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
187 		map_bh(bh_result, inode->i_sb, p_blkno);
188 
189 	bh_result->b_size = count << inode->i_blkbits;
190 
191 	if (!ocfs2_sparse_alloc(osb)) {
192 		if (p_blkno == 0) {
193 			err = -EIO;
194 			mlog(ML_ERROR,
195 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
196 			     (unsigned long long)iblock,
197 			     (unsigned long long)p_blkno,
198 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
199 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
200 			dump_stack();
201 			goto bail;
202 		}
203 	}
204 
205 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
206 
207 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
208 				  (unsigned long long)past_eof);
209 	if (create && (iblock >= past_eof))
210 		set_buffer_new(bh_result);
211 
212 bail:
213 	if (err < 0)
214 		err = -EIO;
215 
216 	return err;
217 }
218 
219 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
220 			   struct buffer_head *di_bh)
221 {
222 	void *kaddr;
223 	loff_t size;
224 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
225 
226 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
227 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
228 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
229 		return -EROFS;
230 	}
231 
232 	size = i_size_read(inode);
233 
234 	if (size > PAGE_SIZE ||
235 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
236 		ocfs2_error(inode->i_sb,
237 			    "Inode %llu has with inline data has bad size: %Lu\n",
238 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
239 			    (unsigned long long)size);
240 		return -EROFS;
241 	}
242 
243 	kaddr = kmap_atomic(page);
244 	if (size)
245 		memcpy(kaddr, di->id2.i_data.id_data, size);
246 	/* Clear the remaining part of the page */
247 	memset(kaddr + size, 0, PAGE_SIZE - size);
248 	flush_dcache_page(page);
249 	kunmap_atomic(kaddr);
250 
251 	SetPageUptodate(page);
252 
253 	return 0;
254 }
255 
256 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
257 {
258 	int ret;
259 	struct buffer_head *di_bh = NULL;
260 
261 	BUG_ON(!PageLocked(page));
262 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
263 
264 	ret = ocfs2_read_inode_block(inode, &di_bh);
265 	if (ret) {
266 		mlog_errno(ret);
267 		goto out;
268 	}
269 
270 	ret = ocfs2_read_inline_data(inode, page, di_bh);
271 out:
272 	unlock_page(page);
273 
274 	brelse(di_bh);
275 	return ret;
276 }
277 
278 static int ocfs2_readpage(struct file *file, struct page *page)
279 {
280 	struct inode *inode = page->mapping->host;
281 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
282 	loff_t start = (loff_t)page->index << PAGE_SHIFT;
283 	int ret, unlock = 1;
284 
285 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
286 			     (page ? page->index : 0));
287 
288 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
289 	if (ret != 0) {
290 		if (ret == AOP_TRUNCATED_PAGE)
291 			unlock = 0;
292 		mlog_errno(ret);
293 		goto out;
294 	}
295 
296 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
297 		/*
298 		 * Unlock the page and cycle ip_alloc_sem so that we don't
299 		 * busyloop waiting for ip_alloc_sem to unlock
300 		 */
301 		ret = AOP_TRUNCATED_PAGE;
302 		unlock_page(page);
303 		unlock = 0;
304 		down_read(&oi->ip_alloc_sem);
305 		up_read(&oi->ip_alloc_sem);
306 		goto out_inode_unlock;
307 	}
308 
309 	/*
310 	 * i_size might have just been updated as we grabed the meta lock.  We
311 	 * might now be discovering a truncate that hit on another node.
312 	 * block_read_full_page->get_block freaks out if it is asked to read
313 	 * beyond the end of a file, so we check here.  Callers
314 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
315 	 * and notice that the page they just read isn't needed.
316 	 *
317 	 * XXX sys_readahead() seems to get that wrong?
318 	 */
319 	if (start >= i_size_read(inode)) {
320 		zero_user(page, 0, PAGE_SIZE);
321 		SetPageUptodate(page);
322 		ret = 0;
323 		goto out_alloc;
324 	}
325 
326 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
327 		ret = ocfs2_readpage_inline(inode, page);
328 	else
329 		ret = block_read_full_page(page, ocfs2_get_block);
330 	unlock = 0;
331 
332 out_alloc:
333 	up_read(&oi->ip_alloc_sem);
334 out_inode_unlock:
335 	ocfs2_inode_unlock(inode, 0);
336 out:
337 	if (unlock)
338 		unlock_page(page);
339 	return ret;
340 }
341 
342 /*
343  * This is used only for read-ahead. Failures or difficult to handle
344  * situations are safe to ignore.
345  *
346  * Right now, we don't bother with BH_Boundary - in-inode extent lists
347  * are quite large (243 extents on 4k blocks), so most inodes don't
348  * grow out to a tree. If need be, detecting boundary extents could
349  * trivially be added in a future version of ocfs2_get_block().
350  */
351 static void ocfs2_readahead(struct readahead_control *rac)
352 {
353 	int ret;
354 	struct inode *inode = rac->mapping->host;
355 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
356 
357 	/*
358 	 * Use the nonblocking flag for the dlm code to avoid page
359 	 * lock inversion, but don't bother with retrying.
360 	 */
361 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
362 	if (ret)
363 		return;
364 
365 	if (down_read_trylock(&oi->ip_alloc_sem) == 0)
366 		goto out_unlock;
367 
368 	/*
369 	 * Don't bother with inline-data. There isn't anything
370 	 * to read-ahead in that case anyway...
371 	 */
372 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
373 		goto out_up;
374 
375 	/*
376 	 * Check whether a remote node truncated this file - we just
377 	 * drop out in that case as it's not worth handling here.
378 	 */
379 	if (readahead_pos(rac) >= i_size_read(inode))
380 		goto out_up;
381 
382 	mpage_readahead(rac, ocfs2_get_block);
383 
384 out_up:
385 	up_read(&oi->ip_alloc_sem);
386 out_unlock:
387 	ocfs2_inode_unlock(inode, 0);
388 }
389 
390 /* Note: Because we don't support holes, our allocation has
391  * already happened (allocation writes zeros to the file data)
392  * so we don't have to worry about ordered writes in
393  * ocfs2_writepage.
394  *
395  * ->writepage is called during the process of invalidating the page cache
396  * during blocked lock processing.  It can't block on any cluster locks
397  * to during block mapping.  It's relying on the fact that the block
398  * mapping can't have disappeared under the dirty pages that it is
399  * being asked to write back.
400  */
401 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
402 {
403 	trace_ocfs2_writepage(
404 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
405 		page->index);
406 
407 	return block_write_full_page(page, ocfs2_get_block, wbc);
408 }
409 
410 /* Taken from ext3. We don't necessarily need the full blown
411  * functionality yet, but IMHO it's better to cut and paste the whole
412  * thing so we can avoid introducing our own bugs (and easily pick up
413  * their fixes when they happen) --Mark */
414 int walk_page_buffers(	handle_t *handle,
415 			struct buffer_head *head,
416 			unsigned from,
417 			unsigned to,
418 			int *partial,
419 			int (*fn)(	handle_t *handle,
420 					struct buffer_head *bh))
421 {
422 	struct buffer_head *bh;
423 	unsigned block_start, block_end;
424 	unsigned blocksize = head->b_size;
425 	int err, ret = 0;
426 	struct buffer_head *next;
427 
428 	for (	bh = head, block_start = 0;
429 		ret == 0 && (bh != head || !block_start);
430 	    	block_start = block_end, bh = next)
431 	{
432 		next = bh->b_this_page;
433 		block_end = block_start + blocksize;
434 		if (block_end <= from || block_start >= to) {
435 			if (partial && !buffer_uptodate(bh))
436 				*partial = 1;
437 			continue;
438 		}
439 		err = (*fn)(handle, bh);
440 		if (!ret)
441 			ret = err;
442 	}
443 	return ret;
444 }
445 
446 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
447 {
448 	sector_t status;
449 	u64 p_blkno = 0;
450 	int err = 0;
451 	struct inode *inode = mapping->host;
452 
453 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
454 			 (unsigned long long)block);
455 
456 	/*
457 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
458 	 * bypasseѕ the file system for actual I/O.  We really can't allow
459 	 * that on refcounted inodes, so we have to skip out here.  And yes,
460 	 * 0 is the magic code for a bmap error..
461 	 */
462 	if (ocfs2_is_refcount_inode(inode))
463 		return 0;
464 
465 	/* We don't need to lock journal system files, since they aren't
466 	 * accessed concurrently from multiple nodes.
467 	 */
468 	if (!INODE_JOURNAL(inode)) {
469 		err = ocfs2_inode_lock(inode, NULL, 0);
470 		if (err) {
471 			if (err != -ENOENT)
472 				mlog_errno(err);
473 			goto bail;
474 		}
475 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
476 	}
477 
478 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
479 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
480 						  NULL);
481 
482 	if (!INODE_JOURNAL(inode)) {
483 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
484 		ocfs2_inode_unlock(inode, 0);
485 	}
486 
487 	if (err) {
488 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
489 		     (unsigned long long)block);
490 		mlog_errno(err);
491 		goto bail;
492 	}
493 
494 bail:
495 	status = err ? 0 : p_blkno;
496 
497 	return status;
498 }
499 
500 static int ocfs2_releasepage(struct page *page, gfp_t wait)
501 {
502 	if (!page_has_buffers(page))
503 		return 0;
504 	return try_to_free_buffers(page);
505 }
506 
507 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
508 					    u32 cpos,
509 					    unsigned int *start,
510 					    unsigned int *end)
511 {
512 	unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
513 
514 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
515 		unsigned int cpp;
516 
517 		cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
518 
519 		cluster_start = cpos % cpp;
520 		cluster_start = cluster_start << osb->s_clustersize_bits;
521 
522 		cluster_end = cluster_start + osb->s_clustersize;
523 	}
524 
525 	BUG_ON(cluster_start > PAGE_SIZE);
526 	BUG_ON(cluster_end > PAGE_SIZE);
527 
528 	if (start)
529 		*start = cluster_start;
530 	if (end)
531 		*end = cluster_end;
532 }
533 
534 /*
535  * 'from' and 'to' are the region in the page to avoid zeroing.
536  *
537  * If pagesize > clustersize, this function will avoid zeroing outside
538  * of the cluster boundary.
539  *
540  * from == to == 0 is code for "zero the entire cluster region"
541  */
542 static void ocfs2_clear_page_regions(struct page *page,
543 				     struct ocfs2_super *osb, u32 cpos,
544 				     unsigned from, unsigned to)
545 {
546 	void *kaddr;
547 	unsigned int cluster_start, cluster_end;
548 
549 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
550 
551 	kaddr = kmap_atomic(page);
552 
553 	if (from || to) {
554 		if (from > cluster_start)
555 			memset(kaddr + cluster_start, 0, from - cluster_start);
556 		if (to < cluster_end)
557 			memset(kaddr + to, 0, cluster_end - to);
558 	} else {
559 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
560 	}
561 
562 	kunmap_atomic(kaddr);
563 }
564 
565 /*
566  * Nonsparse file systems fully allocate before we get to the write
567  * code. This prevents ocfs2_write() from tagging the write as an
568  * allocating one, which means ocfs2_map_page_blocks() might try to
569  * read-in the blocks at the tail of our file. Avoid reading them by
570  * testing i_size against each block offset.
571  */
572 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
573 				 unsigned int block_start)
574 {
575 	u64 offset = page_offset(page) + block_start;
576 
577 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
578 		return 1;
579 
580 	if (i_size_read(inode) > offset)
581 		return 1;
582 
583 	return 0;
584 }
585 
586 /*
587  * Some of this taken from __block_write_begin(). We already have our
588  * mapping by now though, and the entire write will be allocating or
589  * it won't, so not much need to use BH_New.
590  *
591  * This will also skip zeroing, which is handled externally.
592  */
593 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
594 			  struct inode *inode, unsigned int from,
595 			  unsigned int to, int new)
596 {
597 	int ret = 0;
598 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
599 	unsigned int block_end, block_start;
600 	unsigned int bsize = i_blocksize(inode);
601 
602 	if (!page_has_buffers(page))
603 		create_empty_buffers(page, bsize, 0);
604 
605 	head = page_buffers(page);
606 	for (bh = head, block_start = 0; bh != head || !block_start;
607 	     bh = bh->b_this_page, block_start += bsize) {
608 		block_end = block_start + bsize;
609 
610 		clear_buffer_new(bh);
611 
612 		/*
613 		 * Ignore blocks outside of our i/o range -
614 		 * they may belong to unallocated clusters.
615 		 */
616 		if (block_start >= to || block_end <= from) {
617 			if (PageUptodate(page))
618 				set_buffer_uptodate(bh);
619 			continue;
620 		}
621 
622 		/*
623 		 * For an allocating write with cluster size >= page
624 		 * size, we always write the entire page.
625 		 */
626 		if (new)
627 			set_buffer_new(bh);
628 
629 		if (!buffer_mapped(bh)) {
630 			map_bh(bh, inode->i_sb, *p_blkno);
631 			clean_bdev_bh_alias(bh);
632 		}
633 
634 		if (PageUptodate(page)) {
635 			set_buffer_uptodate(bh);
636 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
637 			   !buffer_new(bh) &&
638 			   ocfs2_should_read_blk(inode, page, block_start) &&
639 			   (block_start < from || block_end > to)) {
640 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
641 			*wait_bh++=bh;
642 		}
643 
644 		*p_blkno = *p_blkno + 1;
645 	}
646 
647 	/*
648 	 * If we issued read requests - let them complete.
649 	 */
650 	while(wait_bh > wait) {
651 		wait_on_buffer(*--wait_bh);
652 		if (!buffer_uptodate(*wait_bh))
653 			ret = -EIO;
654 	}
655 
656 	if (ret == 0 || !new)
657 		return ret;
658 
659 	/*
660 	 * If we get -EIO above, zero out any newly allocated blocks
661 	 * to avoid exposing stale data.
662 	 */
663 	bh = head;
664 	block_start = 0;
665 	do {
666 		block_end = block_start + bsize;
667 		if (block_end <= from)
668 			goto next_bh;
669 		if (block_start >= to)
670 			break;
671 
672 		zero_user(page, block_start, bh->b_size);
673 		set_buffer_uptodate(bh);
674 		mark_buffer_dirty(bh);
675 
676 next_bh:
677 		block_start = block_end;
678 		bh = bh->b_this_page;
679 	} while (bh != head);
680 
681 	return ret;
682 }
683 
684 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
685 #define OCFS2_MAX_CTXT_PAGES	1
686 #else
687 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
688 #endif
689 
690 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
691 
692 struct ocfs2_unwritten_extent {
693 	struct list_head	ue_node;
694 	struct list_head	ue_ip_node;
695 	u32			ue_cpos;
696 	u32			ue_phys;
697 };
698 
699 /*
700  * Describe the state of a single cluster to be written to.
701  */
702 struct ocfs2_write_cluster_desc {
703 	u32		c_cpos;
704 	u32		c_phys;
705 	/*
706 	 * Give this a unique field because c_phys eventually gets
707 	 * filled.
708 	 */
709 	unsigned	c_new;
710 	unsigned	c_clear_unwritten;
711 	unsigned	c_needs_zero;
712 };
713 
714 struct ocfs2_write_ctxt {
715 	/* Logical cluster position / len of write */
716 	u32				w_cpos;
717 	u32				w_clen;
718 
719 	/* First cluster allocated in a nonsparse extend */
720 	u32				w_first_new_cpos;
721 
722 	/* Type of caller. Must be one of buffer, mmap, direct.  */
723 	ocfs2_write_type_t		w_type;
724 
725 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
726 
727 	/*
728 	 * This is true if page_size > cluster_size.
729 	 *
730 	 * It triggers a set of special cases during write which might
731 	 * have to deal with allocating writes to partial pages.
732 	 */
733 	unsigned int			w_large_pages;
734 
735 	/*
736 	 * Pages involved in this write.
737 	 *
738 	 * w_target_page is the page being written to by the user.
739 	 *
740 	 * w_pages is an array of pages which always contains
741 	 * w_target_page, and in the case of an allocating write with
742 	 * page_size < cluster size, it will contain zero'd and mapped
743 	 * pages adjacent to w_target_page which need to be written
744 	 * out in so that future reads from that region will get
745 	 * zero's.
746 	 */
747 	unsigned int			w_num_pages;
748 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
749 	struct page			*w_target_page;
750 
751 	/*
752 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
753 	 * against w_target_page in ocfs2_write_end_nolock.
754 	 */
755 	unsigned int			w_target_locked:1;
756 
757 	/*
758 	 * ocfs2_write_end() uses this to know what the real range to
759 	 * write in the target should be.
760 	 */
761 	unsigned int			w_target_from;
762 	unsigned int			w_target_to;
763 
764 	/*
765 	 * We could use journal_current_handle() but this is cleaner,
766 	 * IMHO -Mark
767 	 */
768 	handle_t			*w_handle;
769 
770 	struct buffer_head		*w_di_bh;
771 
772 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
773 
774 	struct list_head		w_unwritten_list;
775 	unsigned int			w_unwritten_count;
776 };
777 
778 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
779 {
780 	int i;
781 
782 	for(i = 0; i < num_pages; i++) {
783 		if (pages[i]) {
784 			unlock_page(pages[i]);
785 			mark_page_accessed(pages[i]);
786 			put_page(pages[i]);
787 		}
788 	}
789 }
790 
791 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
792 {
793 	int i;
794 
795 	/*
796 	 * w_target_locked is only set to true in the page_mkwrite() case.
797 	 * The intent is to allow us to lock the target page from write_begin()
798 	 * to write_end(). The caller must hold a ref on w_target_page.
799 	 */
800 	if (wc->w_target_locked) {
801 		BUG_ON(!wc->w_target_page);
802 		for (i = 0; i < wc->w_num_pages; i++) {
803 			if (wc->w_target_page == wc->w_pages[i]) {
804 				wc->w_pages[i] = NULL;
805 				break;
806 			}
807 		}
808 		mark_page_accessed(wc->w_target_page);
809 		put_page(wc->w_target_page);
810 	}
811 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
812 }
813 
814 static void ocfs2_free_unwritten_list(struct inode *inode,
815 				 struct list_head *head)
816 {
817 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
818 	struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
819 
820 	list_for_each_entry_safe(ue, tmp, head, ue_node) {
821 		list_del(&ue->ue_node);
822 		spin_lock(&oi->ip_lock);
823 		list_del(&ue->ue_ip_node);
824 		spin_unlock(&oi->ip_lock);
825 		kfree(ue);
826 	}
827 }
828 
829 static void ocfs2_free_write_ctxt(struct inode *inode,
830 				  struct ocfs2_write_ctxt *wc)
831 {
832 	ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
833 	ocfs2_unlock_pages(wc);
834 	brelse(wc->w_di_bh);
835 	kfree(wc);
836 }
837 
838 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
839 				  struct ocfs2_super *osb, loff_t pos,
840 				  unsigned len, ocfs2_write_type_t type,
841 				  struct buffer_head *di_bh)
842 {
843 	u32 cend;
844 	struct ocfs2_write_ctxt *wc;
845 
846 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
847 	if (!wc)
848 		return -ENOMEM;
849 
850 	wc->w_cpos = pos >> osb->s_clustersize_bits;
851 	wc->w_first_new_cpos = UINT_MAX;
852 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
853 	wc->w_clen = cend - wc->w_cpos + 1;
854 	get_bh(di_bh);
855 	wc->w_di_bh = di_bh;
856 	wc->w_type = type;
857 
858 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
859 		wc->w_large_pages = 1;
860 	else
861 		wc->w_large_pages = 0;
862 
863 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
864 	INIT_LIST_HEAD(&wc->w_unwritten_list);
865 
866 	*wcp = wc;
867 
868 	return 0;
869 }
870 
871 /*
872  * If a page has any new buffers, zero them out here, and mark them uptodate
873  * and dirty so they'll be written out (in order to prevent uninitialised
874  * block data from leaking). And clear the new bit.
875  */
876 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
877 {
878 	unsigned int block_start, block_end;
879 	struct buffer_head *head, *bh;
880 
881 	BUG_ON(!PageLocked(page));
882 	if (!page_has_buffers(page))
883 		return;
884 
885 	bh = head = page_buffers(page);
886 	block_start = 0;
887 	do {
888 		block_end = block_start + bh->b_size;
889 
890 		if (buffer_new(bh)) {
891 			if (block_end > from && block_start < to) {
892 				if (!PageUptodate(page)) {
893 					unsigned start, end;
894 
895 					start = max(from, block_start);
896 					end = min(to, block_end);
897 
898 					zero_user_segment(page, start, end);
899 					set_buffer_uptodate(bh);
900 				}
901 
902 				clear_buffer_new(bh);
903 				mark_buffer_dirty(bh);
904 			}
905 		}
906 
907 		block_start = block_end;
908 		bh = bh->b_this_page;
909 	} while (bh != head);
910 }
911 
912 /*
913  * Only called when we have a failure during allocating write to write
914  * zero's to the newly allocated region.
915  */
916 static void ocfs2_write_failure(struct inode *inode,
917 				struct ocfs2_write_ctxt *wc,
918 				loff_t user_pos, unsigned user_len)
919 {
920 	int i;
921 	unsigned from = user_pos & (PAGE_SIZE - 1),
922 		to = user_pos + user_len;
923 	struct page *tmppage;
924 
925 	if (wc->w_target_page)
926 		ocfs2_zero_new_buffers(wc->w_target_page, from, to);
927 
928 	for(i = 0; i < wc->w_num_pages; i++) {
929 		tmppage = wc->w_pages[i];
930 
931 		if (tmppage && page_has_buffers(tmppage)) {
932 			if (ocfs2_should_order_data(inode))
933 				ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
934 							   user_pos, user_len);
935 
936 			block_commit_write(tmppage, from, to);
937 		}
938 	}
939 }
940 
941 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
942 					struct ocfs2_write_ctxt *wc,
943 					struct page *page, u32 cpos,
944 					loff_t user_pos, unsigned user_len,
945 					int new)
946 {
947 	int ret;
948 	unsigned int map_from = 0, map_to = 0;
949 	unsigned int cluster_start, cluster_end;
950 	unsigned int user_data_from = 0, user_data_to = 0;
951 
952 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
953 					&cluster_start, &cluster_end);
954 
955 	/* treat the write as new if the a hole/lseek spanned across
956 	 * the page boundary.
957 	 */
958 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
959 			(page_offset(page) <= user_pos));
960 
961 	if (page == wc->w_target_page) {
962 		map_from = user_pos & (PAGE_SIZE - 1);
963 		map_to = map_from + user_len;
964 
965 		if (new)
966 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
967 						    cluster_start, cluster_end,
968 						    new);
969 		else
970 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
971 						    map_from, map_to, new);
972 		if (ret) {
973 			mlog_errno(ret);
974 			goto out;
975 		}
976 
977 		user_data_from = map_from;
978 		user_data_to = map_to;
979 		if (new) {
980 			map_from = cluster_start;
981 			map_to = cluster_end;
982 		}
983 	} else {
984 		/*
985 		 * If we haven't allocated the new page yet, we
986 		 * shouldn't be writing it out without copying user
987 		 * data. This is likely a math error from the caller.
988 		 */
989 		BUG_ON(!new);
990 
991 		map_from = cluster_start;
992 		map_to = cluster_end;
993 
994 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
995 					    cluster_start, cluster_end, new);
996 		if (ret) {
997 			mlog_errno(ret);
998 			goto out;
999 		}
1000 	}
1001 
1002 	/*
1003 	 * Parts of newly allocated pages need to be zero'd.
1004 	 *
1005 	 * Above, we have also rewritten 'to' and 'from' - as far as
1006 	 * the rest of the function is concerned, the entire cluster
1007 	 * range inside of a page needs to be written.
1008 	 *
1009 	 * We can skip this if the page is up to date - it's already
1010 	 * been zero'd from being read in as a hole.
1011 	 */
1012 	if (new && !PageUptodate(page))
1013 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1014 					 cpos, user_data_from, user_data_to);
1015 
1016 	flush_dcache_page(page);
1017 
1018 out:
1019 	return ret;
1020 }
1021 
1022 /*
1023  * This function will only grab one clusters worth of pages.
1024  */
1025 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1026 				      struct ocfs2_write_ctxt *wc,
1027 				      u32 cpos, loff_t user_pos,
1028 				      unsigned user_len, int new,
1029 				      struct page *mmap_page)
1030 {
1031 	int ret = 0, i;
1032 	unsigned long start, target_index, end_index, index;
1033 	struct inode *inode = mapping->host;
1034 	loff_t last_byte;
1035 
1036 	target_index = user_pos >> PAGE_SHIFT;
1037 
1038 	/*
1039 	 * Figure out how many pages we'll be manipulating here. For
1040 	 * non allocating write, we just change the one
1041 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1042 	 * writing past i_size, we only need enough pages to cover the
1043 	 * last page of the write.
1044 	 */
1045 	if (new) {
1046 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1047 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1048 		/*
1049 		 * We need the index *past* the last page we could possibly
1050 		 * touch.  This is the page past the end of the write or
1051 		 * i_size, whichever is greater.
1052 		 */
1053 		last_byte = max(user_pos + user_len, i_size_read(inode));
1054 		BUG_ON(last_byte < 1);
1055 		end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1056 		if ((start + wc->w_num_pages) > end_index)
1057 			wc->w_num_pages = end_index - start;
1058 	} else {
1059 		wc->w_num_pages = 1;
1060 		start = target_index;
1061 	}
1062 	end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1063 
1064 	for(i = 0; i < wc->w_num_pages; i++) {
1065 		index = start + i;
1066 
1067 		if (index >= target_index && index <= end_index &&
1068 		    wc->w_type == OCFS2_WRITE_MMAP) {
1069 			/*
1070 			 * ocfs2_pagemkwrite() is a little different
1071 			 * and wants us to directly use the page
1072 			 * passed in.
1073 			 */
1074 			lock_page(mmap_page);
1075 
1076 			/* Exit and let the caller retry */
1077 			if (mmap_page->mapping != mapping) {
1078 				WARN_ON(mmap_page->mapping);
1079 				unlock_page(mmap_page);
1080 				ret = -EAGAIN;
1081 				goto out;
1082 			}
1083 
1084 			get_page(mmap_page);
1085 			wc->w_pages[i] = mmap_page;
1086 			wc->w_target_locked = true;
1087 		} else if (index >= target_index && index <= end_index &&
1088 			   wc->w_type == OCFS2_WRITE_DIRECT) {
1089 			/* Direct write has no mapping page. */
1090 			wc->w_pages[i] = NULL;
1091 			continue;
1092 		} else {
1093 			wc->w_pages[i] = find_or_create_page(mapping, index,
1094 							     GFP_NOFS);
1095 			if (!wc->w_pages[i]) {
1096 				ret = -ENOMEM;
1097 				mlog_errno(ret);
1098 				goto out;
1099 			}
1100 		}
1101 		wait_for_stable_page(wc->w_pages[i]);
1102 
1103 		if (index == target_index)
1104 			wc->w_target_page = wc->w_pages[i];
1105 	}
1106 out:
1107 	if (ret)
1108 		wc->w_target_locked = false;
1109 	return ret;
1110 }
1111 
1112 /*
1113  * Prepare a single cluster for write one cluster into the file.
1114  */
1115 static int ocfs2_write_cluster(struct address_space *mapping,
1116 			       u32 *phys, unsigned int new,
1117 			       unsigned int clear_unwritten,
1118 			       unsigned int should_zero,
1119 			       struct ocfs2_alloc_context *data_ac,
1120 			       struct ocfs2_alloc_context *meta_ac,
1121 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1122 			       loff_t user_pos, unsigned user_len)
1123 {
1124 	int ret, i;
1125 	u64 p_blkno;
1126 	struct inode *inode = mapping->host;
1127 	struct ocfs2_extent_tree et;
1128 	int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1129 
1130 	if (new) {
1131 		u32 tmp_pos;
1132 
1133 		/*
1134 		 * This is safe to call with the page locks - it won't take
1135 		 * any additional semaphores or cluster locks.
1136 		 */
1137 		tmp_pos = cpos;
1138 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1139 					   &tmp_pos, 1, !clear_unwritten,
1140 					   wc->w_di_bh, wc->w_handle,
1141 					   data_ac, meta_ac, NULL);
1142 		/*
1143 		 * This shouldn't happen because we must have already
1144 		 * calculated the correct meta data allocation required. The
1145 		 * internal tree allocation code should know how to increase
1146 		 * transaction credits itself.
1147 		 *
1148 		 * If need be, we could handle -EAGAIN for a
1149 		 * RESTART_TRANS here.
1150 		 */
1151 		mlog_bug_on_msg(ret == -EAGAIN,
1152 				"Inode %llu: EAGAIN return during allocation.\n",
1153 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1154 		if (ret < 0) {
1155 			mlog_errno(ret);
1156 			goto out;
1157 		}
1158 	} else if (clear_unwritten) {
1159 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1160 					      wc->w_di_bh);
1161 		ret = ocfs2_mark_extent_written(inode, &et,
1162 						wc->w_handle, cpos, 1, *phys,
1163 						meta_ac, &wc->w_dealloc);
1164 		if (ret < 0) {
1165 			mlog_errno(ret);
1166 			goto out;
1167 		}
1168 	}
1169 
1170 	/*
1171 	 * The only reason this should fail is due to an inability to
1172 	 * find the extent added.
1173 	 */
1174 	ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1175 	if (ret < 0) {
1176 		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1177 			    "at logical cluster %u",
1178 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1179 		goto out;
1180 	}
1181 
1182 	BUG_ON(*phys == 0);
1183 
1184 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1185 	if (!should_zero)
1186 		p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1187 
1188 	for(i = 0; i < wc->w_num_pages; i++) {
1189 		int tmpret;
1190 
1191 		/* This is the direct io target page. */
1192 		if (wc->w_pages[i] == NULL) {
1193 			p_blkno++;
1194 			continue;
1195 		}
1196 
1197 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1198 						      wc->w_pages[i], cpos,
1199 						      user_pos, user_len,
1200 						      should_zero);
1201 		if (tmpret) {
1202 			mlog_errno(tmpret);
1203 			if (ret == 0)
1204 				ret = tmpret;
1205 		}
1206 	}
1207 
1208 	/*
1209 	 * We only have cleanup to do in case of allocating write.
1210 	 */
1211 	if (ret && new)
1212 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1213 
1214 out:
1215 
1216 	return ret;
1217 }
1218 
1219 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1220 				       struct ocfs2_alloc_context *data_ac,
1221 				       struct ocfs2_alloc_context *meta_ac,
1222 				       struct ocfs2_write_ctxt *wc,
1223 				       loff_t pos, unsigned len)
1224 {
1225 	int ret, i;
1226 	loff_t cluster_off;
1227 	unsigned int local_len = len;
1228 	struct ocfs2_write_cluster_desc *desc;
1229 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1230 
1231 	for (i = 0; i < wc->w_clen; i++) {
1232 		desc = &wc->w_desc[i];
1233 
1234 		/*
1235 		 * We have to make sure that the total write passed in
1236 		 * doesn't extend past a single cluster.
1237 		 */
1238 		local_len = len;
1239 		cluster_off = pos & (osb->s_clustersize - 1);
1240 		if ((cluster_off + local_len) > osb->s_clustersize)
1241 			local_len = osb->s_clustersize - cluster_off;
1242 
1243 		ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1244 					  desc->c_new,
1245 					  desc->c_clear_unwritten,
1246 					  desc->c_needs_zero,
1247 					  data_ac, meta_ac,
1248 					  wc, desc->c_cpos, pos, local_len);
1249 		if (ret) {
1250 			mlog_errno(ret);
1251 			goto out;
1252 		}
1253 
1254 		len -= local_len;
1255 		pos += local_len;
1256 	}
1257 
1258 	ret = 0;
1259 out:
1260 	return ret;
1261 }
1262 
1263 /*
1264  * ocfs2_write_end() wants to know which parts of the target page it
1265  * should complete the write on. It's easiest to compute them ahead of
1266  * time when a more complete view of the write is available.
1267  */
1268 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1269 					struct ocfs2_write_ctxt *wc,
1270 					loff_t pos, unsigned len, int alloc)
1271 {
1272 	struct ocfs2_write_cluster_desc *desc;
1273 
1274 	wc->w_target_from = pos & (PAGE_SIZE - 1);
1275 	wc->w_target_to = wc->w_target_from + len;
1276 
1277 	if (alloc == 0)
1278 		return;
1279 
1280 	/*
1281 	 * Allocating write - we may have different boundaries based
1282 	 * on page size and cluster size.
1283 	 *
1284 	 * NOTE: We can no longer compute one value from the other as
1285 	 * the actual write length and user provided length may be
1286 	 * different.
1287 	 */
1288 
1289 	if (wc->w_large_pages) {
1290 		/*
1291 		 * We only care about the 1st and last cluster within
1292 		 * our range and whether they should be zero'd or not. Either
1293 		 * value may be extended out to the start/end of a
1294 		 * newly allocated cluster.
1295 		 */
1296 		desc = &wc->w_desc[0];
1297 		if (desc->c_needs_zero)
1298 			ocfs2_figure_cluster_boundaries(osb,
1299 							desc->c_cpos,
1300 							&wc->w_target_from,
1301 							NULL);
1302 
1303 		desc = &wc->w_desc[wc->w_clen - 1];
1304 		if (desc->c_needs_zero)
1305 			ocfs2_figure_cluster_boundaries(osb,
1306 							desc->c_cpos,
1307 							NULL,
1308 							&wc->w_target_to);
1309 	} else {
1310 		wc->w_target_from = 0;
1311 		wc->w_target_to = PAGE_SIZE;
1312 	}
1313 }
1314 
1315 /*
1316  * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1317  * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1318  * by the direct io procedure.
1319  * If this is a new extent that allocated by direct io, we should mark it in
1320  * the ip_unwritten_list.
1321  */
1322 static int ocfs2_unwritten_check(struct inode *inode,
1323 				 struct ocfs2_write_ctxt *wc,
1324 				 struct ocfs2_write_cluster_desc *desc)
1325 {
1326 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1327 	struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1328 	int ret = 0;
1329 
1330 	if (!desc->c_needs_zero)
1331 		return 0;
1332 
1333 retry:
1334 	spin_lock(&oi->ip_lock);
1335 	/* Needs not to zero no metter buffer or direct. The one who is zero
1336 	 * the cluster is doing zero. And he will clear unwritten after all
1337 	 * cluster io finished. */
1338 	list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1339 		if (desc->c_cpos == ue->ue_cpos) {
1340 			BUG_ON(desc->c_new);
1341 			desc->c_needs_zero = 0;
1342 			desc->c_clear_unwritten = 0;
1343 			goto unlock;
1344 		}
1345 	}
1346 
1347 	if (wc->w_type != OCFS2_WRITE_DIRECT)
1348 		goto unlock;
1349 
1350 	if (new == NULL) {
1351 		spin_unlock(&oi->ip_lock);
1352 		new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1353 			     GFP_NOFS);
1354 		if (new == NULL) {
1355 			ret = -ENOMEM;
1356 			goto out;
1357 		}
1358 		goto retry;
1359 	}
1360 	/* This direct write will doing zero. */
1361 	new->ue_cpos = desc->c_cpos;
1362 	new->ue_phys = desc->c_phys;
1363 	desc->c_clear_unwritten = 0;
1364 	list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1365 	list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1366 	wc->w_unwritten_count++;
1367 	new = NULL;
1368 unlock:
1369 	spin_unlock(&oi->ip_lock);
1370 out:
1371 	kfree(new);
1372 	return ret;
1373 }
1374 
1375 /*
1376  * Populate each single-cluster write descriptor in the write context
1377  * with information about the i/o to be done.
1378  *
1379  * Returns the number of clusters that will have to be allocated, as
1380  * well as a worst case estimate of the number of extent records that
1381  * would have to be created during a write to an unwritten region.
1382  */
1383 static int ocfs2_populate_write_desc(struct inode *inode,
1384 				     struct ocfs2_write_ctxt *wc,
1385 				     unsigned int *clusters_to_alloc,
1386 				     unsigned int *extents_to_split)
1387 {
1388 	int ret;
1389 	struct ocfs2_write_cluster_desc *desc;
1390 	unsigned int num_clusters = 0;
1391 	unsigned int ext_flags = 0;
1392 	u32 phys = 0;
1393 	int i;
1394 
1395 	*clusters_to_alloc = 0;
1396 	*extents_to_split = 0;
1397 
1398 	for (i = 0; i < wc->w_clen; i++) {
1399 		desc = &wc->w_desc[i];
1400 		desc->c_cpos = wc->w_cpos + i;
1401 
1402 		if (num_clusters == 0) {
1403 			/*
1404 			 * Need to look up the next extent record.
1405 			 */
1406 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1407 						 &num_clusters, &ext_flags);
1408 			if (ret) {
1409 				mlog_errno(ret);
1410 				goto out;
1411 			}
1412 
1413 			/* We should already CoW the refcountd extent. */
1414 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1415 
1416 			/*
1417 			 * Assume worst case - that we're writing in
1418 			 * the middle of the extent.
1419 			 *
1420 			 * We can assume that the write proceeds from
1421 			 * left to right, in which case the extent
1422 			 * insert code is smart enough to coalesce the
1423 			 * next splits into the previous records created.
1424 			 */
1425 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1426 				*extents_to_split = *extents_to_split + 2;
1427 		} else if (phys) {
1428 			/*
1429 			 * Only increment phys if it doesn't describe
1430 			 * a hole.
1431 			 */
1432 			phys++;
1433 		}
1434 
1435 		/*
1436 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1437 		 * file that got extended.  w_first_new_cpos tells us
1438 		 * where the newly allocated clusters are so we can
1439 		 * zero them.
1440 		 */
1441 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1442 			BUG_ON(phys == 0);
1443 			desc->c_needs_zero = 1;
1444 		}
1445 
1446 		desc->c_phys = phys;
1447 		if (phys == 0) {
1448 			desc->c_new = 1;
1449 			desc->c_needs_zero = 1;
1450 			desc->c_clear_unwritten = 1;
1451 			*clusters_to_alloc = *clusters_to_alloc + 1;
1452 		}
1453 
1454 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1455 			desc->c_clear_unwritten = 1;
1456 			desc->c_needs_zero = 1;
1457 		}
1458 
1459 		ret = ocfs2_unwritten_check(inode, wc, desc);
1460 		if (ret) {
1461 			mlog_errno(ret);
1462 			goto out;
1463 		}
1464 
1465 		num_clusters--;
1466 	}
1467 
1468 	ret = 0;
1469 out:
1470 	return ret;
1471 }
1472 
1473 static int ocfs2_write_begin_inline(struct address_space *mapping,
1474 				    struct inode *inode,
1475 				    struct ocfs2_write_ctxt *wc)
1476 {
1477 	int ret;
1478 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1479 	struct page *page;
1480 	handle_t *handle;
1481 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1482 
1483 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1484 	if (IS_ERR(handle)) {
1485 		ret = PTR_ERR(handle);
1486 		mlog_errno(ret);
1487 		goto out;
1488 	}
1489 
1490 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1491 	if (!page) {
1492 		ocfs2_commit_trans(osb, handle);
1493 		ret = -ENOMEM;
1494 		mlog_errno(ret);
1495 		goto out;
1496 	}
1497 	/*
1498 	 * If we don't set w_num_pages then this page won't get unlocked
1499 	 * and freed on cleanup of the write context.
1500 	 */
1501 	wc->w_pages[0] = wc->w_target_page = page;
1502 	wc->w_num_pages = 1;
1503 
1504 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1505 				      OCFS2_JOURNAL_ACCESS_WRITE);
1506 	if (ret) {
1507 		ocfs2_commit_trans(osb, handle);
1508 
1509 		mlog_errno(ret);
1510 		goto out;
1511 	}
1512 
1513 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1514 		ocfs2_set_inode_data_inline(inode, di);
1515 
1516 	if (!PageUptodate(page)) {
1517 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1518 		if (ret) {
1519 			ocfs2_commit_trans(osb, handle);
1520 
1521 			goto out;
1522 		}
1523 	}
1524 
1525 	wc->w_handle = handle;
1526 out:
1527 	return ret;
1528 }
1529 
1530 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1531 {
1532 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1533 
1534 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1535 		return 1;
1536 	return 0;
1537 }
1538 
1539 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1540 					  struct inode *inode, loff_t pos,
1541 					  unsigned len, struct page *mmap_page,
1542 					  struct ocfs2_write_ctxt *wc)
1543 {
1544 	int ret, written = 0;
1545 	loff_t end = pos + len;
1546 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1547 	struct ocfs2_dinode *di = NULL;
1548 
1549 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1550 					     len, (unsigned long long)pos,
1551 					     oi->ip_dyn_features);
1552 
1553 	/*
1554 	 * Handle inodes which already have inline data 1st.
1555 	 */
1556 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1557 		if (mmap_page == NULL &&
1558 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1559 			goto do_inline_write;
1560 
1561 		/*
1562 		 * The write won't fit - we have to give this inode an
1563 		 * inline extent list now.
1564 		 */
1565 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1566 		if (ret)
1567 			mlog_errno(ret);
1568 		goto out;
1569 	}
1570 
1571 	/*
1572 	 * Check whether the inode can accept inline data.
1573 	 */
1574 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1575 		return 0;
1576 
1577 	/*
1578 	 * Check whether the write can fit.
1579 	 */
1580 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1581 	if (mmap_page ||
1582 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1583 		return 0;
1584 
1585 do_inline_write:
1586 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1587 	if (ret) {
1588 		mlog_errno(ret);
1589 		goto out;
1590 	}
1591 
1592 	/*
1593 	 * This signals to the caller that the data can be written
1594 	 * inline.
1595 	 */
1596 	written = 1;
1597 out:
1598 	return written ? written : ret;
1599 }
1600 
1601 /*
1602  * This function only does anything for file systems which can't
1603  * handle sparse files.
1604  *
1605  * What we want to do here is fill in any hole between the current end
1606  * of allocation and the end of our write. That way the rest of the
1607  * write path can treat it as an non-allocating write, which has no
1608  * special case code for sparse/nonsparse files.
1609  */
1610 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1611 					struct buffer_head *di_bh,
1612 					loff_t pos, unsigned len,
1613 					struct ocfs2_write_ctxt *wc)
1614 {
1615 	int ret;
1616 	loff_t newsize = pos + len;
1617 
1618 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1619 
1620 	if (newsize <= i_size_read(inode))
1621 		return 0;
1622 
1623 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1624 	if (ret)
1625 		mlog_errno(ret);
1626 
1627 	/* There is no wc if this is call from direct. */
1628 	if (wc)
1629 		wc->w_first_new_cpos =
1630 			ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1631 
1632 	return ret;
1633 }
1634 
1635 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1636 			   loff_t pos)
1637 {
1638 	int ret = 0;
1639 
1640 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1641 	if (pos > i_size_read(inode))
1642 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1643 
1644 	return ret;
1645 }
1646 
1647 int ocfs2_write_begin_nolock(struct address_space *mapping,
1648 			     loff_t pos, unsigned len, ocfs2_write_type_t type,
1649 			     struct page **pagep, void **fsdata,
1650 			     struct buffer_head *di_bh, struct page *mmap_page)
1651 {
1652 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1653 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1654 	struct ocfs2_write_ctxt *wc;
1655 	struct inode *inode = mapping->host;
1656 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1657 	struct ocfs2_dinode *di;
1658 	struct ocfs2_alloc_context *data_ac = NULL;
1659 	struct ocfs2_alloc_context *meta_ac = NULL;
1660 	handle_t *handle;
1661 	struct ocfs2_extent_tree et;
1662 	int try_free = 1, ret1;
1663 
1664 try_again:
1665 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1666 	if (ret) {
1667 		mlog_errno(ret);
1668 		return ret;
1669 	}
1670 
1671 	if (ocfs2_supports_inline_data(osb)) {
1672 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1673 						     mmap_page, wc);
1674 		if (ret == 1) {
1675 			ret = 0;
1676 			goto success;
1677 		}
1678 		if (ret < 0) {
1679 			mlog_errno(ret);
1680 			goto out;
1681 		}
1682 	}
1683 
1684 	/* Direct io change i_size late, should not zero tail here. */
1685 	if (type != OCFS2_WRITE_DIRECT) {
1686 		if (ocfs2_sparse_alloc(osb))
1687 			ret = ocfs2_zero_tail(inode, di_bh, pos);
1688 		else
1689 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1690 							   len, wc);
1691 		if (ret) {
1692 			mlog_errno(ret);
1693 			goto out;
1694 		}
1695 	}
1696 
1697 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1698 	if (ret < 0) {
1699 		mlog_errno(ret);
1700 		goto out;
1701 	} else if (ret == 1) {
1702 		clusters_need = wc->w_clen;
1703 		ret = ocfs2_refcount_cow(inode, di_bh,
1704 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1705 		if (ret) {
1706 			mlog_errno(ret);
1707 			goto out;
1708 		}
1709 	}
1710 
1711 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1712 					&extents_to_split);
1713 	if (ret) {
1714 		mlog_errno(ret);
1715 		goto out;
1716 	}
1717 	clusters_need += clusters_to_alloc;
1718 
1719 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1720 
1721 	trace_ocfs2_write_begin_nolock(
1722 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1723 			(long long)i_size_read(inode),
1724 			le32_to_cpu(di->i_clusters),
1725 			pos, len, type, mmap_page,
1726 			clusters_to_alloc, extents_to_split);
1727 
1728 	/*
1729 	 * We set w_target_from, w_target_to here so that
1730 	 * ocfs2_write_end() knows which range in the target page to
1731 	 * write out. An allocation requires that we write the entire
1732 	 * cluster range.
1733 	 */
1734 	if (clusters_to_alloc || extents_to_split) {
1735 		/*
1736 		 * XXX: We are stretching the limits of
1737 		 * ocfs2_lock_allocators(). It greatly over-estimates
1738 		 * the work to be done.
1739 		 */
1740 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1741 					      wc->w_di_bh);
1742 		ret = ocfs2_lock_allocators(inode, &et,
1743 					    clusters_to_alloc, extents_to_split,
1744 					    &data_ac, &meta_ac);
1745 		if (ret) {
1746 			mlog_errno(ret);
1747 			goto out;
1748 		}
1749 
1750 		if (data_ac)
1751 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1752 
1753 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1754 						    &di->id2.i_list);
1755 	} else if (type == OCFS2_WRITE_DIRECT)
1756 		/* direct write needs not to start trans if no extents alloc. */
1757 		goto success;
1758 
1759 	/*
1760 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1761 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1762 	 * we know zeros will only be needed in the first and/or last cluster.
1763 	 */
1764 	if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1765 			   wc->w_desc[wc->w_clen - 1].c_needs_zero))
1766 		cluster_of_pages = 1;
1767 	else
1768 		cluster_of_pages = 0;
1769 
1770 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1771 
1772 	handle = ocfs2_start_trans(osb, credits);
1773 	if (IS_ERR(handle)) {
1774 		ret = PTR_ERR(handle);
1775 		mlog_errno(ret);
1776 		goto out;
1777 	}
1778 
1779 	wc->w_handle = handle;
1780 
1781 	if (clusters_to_alloc) {
1782 		ret = dquot_alloc_space_nodirty(inode,
1783 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1784 		if (ret)
1785 			goto out_commit;
1786 	}
1787 
1788 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1789 				      OCFS2_JOURNAL_ACCESS_WRITE);
1790 	if (ret) {
1791 		mlog_errno(ret);
1792 		goto out_quota;
1793 	}
1794 
1795 	/*
1796 	 * Fill our page array first. That way we've grabbed enough so
1797 	 * that we can zero and flush if we error after adding the
1798 	 * extent.
1799 	 */
1800 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1801 					 cluster_of_pages, mmap_page);
1802 	if (ret && ret != -EAGAIN) {
1803 		mlog_errno(ret);
1804 		goto out_quota;
1805 	}
1806 
1807 	/*
1808 	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1809 	 * the target page. In this case, we exit with no error and no target
1810 	 * page. This will trigger the caller, page_mkwrite(), to re-try
1811 	 * the operation.
1812 	 */
1813 	if (ret == -EAGAIN) {
1814 		BUG_ON(wc->w_target_page);
1815 		ret = 0;
1816 		goto out_quota;
1817 	}
1818 
1819 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1820 					  len);
1821 	if (ret) {
1822 		mlog_errno(ret);
1823 		goto out_quota;
1824 	}
1825 
1826 	if (data_ac)
1827 		ocfs2_free_alloc_context(data_ac);
1828 	if (meta_ac)
1829 		ocfs2_free_alloc_context(meta_ac);
1830 
1831 success:
1832 	if (pagep)
1833 		*pagep = wc->w_target_page;
1834 	*fsdata = wc;
1835 	return 0;
1836 out_quota:
1837 	if (clusters_to_alloc)
1838 		dquot_free_space(inode,
1839 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1840 out_commit:
1841 	ocfs2_commit_trans(osb, handle);
1842 
1843 out:
1844 	/*
1845 	 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1846 	 * even in case of error here like ENOSPC and ENOMEM. So, we need
1847 	 * to unlock the target page manually to prevent deadlocks when
1848 	 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1849 	 * to VM code.
1850 	 */
1851 	if (wc->w_target_locked)
1852 		unlock_page(mmap_page);
1853 
1854 	ocfs2_free_write_ctxt(inode, wc);
1855 
1856 	if (data_ac) {
1857 		ocfs2_free_alloc_context(data_ac);
1858 		data_ac = NULL;
1859 	}
1860 	if (meta_ac) {
1861 		ocfs2_free_alloc_context(meta_ac);
1862 		meta_ac = NULL;
1863 	}
1864 
1865 	if (ret == -ENOSPC && try_free) {
1866 		/*
1867 		 * Try to free some truncate log so that we can have enough
1868 		 * clusters to allocate.
1869 		 */
1870 		try_free = 0;
1871 
1872 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1873 		if (ret1 == 1)
1874 			goto try_again;
1875 
1876 		if (ret1 < 0)
1877 			mlog_errno(ret1);
1878 	}
1879 
1880 	return ret;
1881 }
1882 
1883 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1884 			     loff_t pos, unsigned len, unsigned flags,
1885 			     struct page **pagep, void **fsdata)
1886 {
1887 	int ret;
1888 	struct buffer_head *di_bh = NULL;
1889 	struct inode *inode = mapping->host;
1890 
1891 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1892 	if (ret) {
1893 		mlog_errno(ret);
1894 		return ret;
1895 	}
1896 
1897 	/*
1898 	 * Take alloc sem here to prevent concurrent lookups. That way
1899 	 * the mapping, zeroing and tree manipulation within
1900 	 * ocfs2_write() will be safe against ->readpage(). This
1901 	 * should also serve to lock out allocation from a shared
1902 	 * writeable region.
1903 	 */
1904 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1905 
1906 	ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1907 				       pagep, fsdata, di_bh, NULL);
1908 	if (ret) {
1909 		mlog_errno(ret);
1910 		goto out_fail;
1911 	}
1912 
1913 	brelse(di_bh);
1914 
1915 	return 0;
1916 
1917 out_fail:
1918 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1919 
1920 	brelse(di_bh);
1921 	ocfs2_inode_unlock(inode, 1);
1922 
1923 	return ret;
1924 }
1925 
1926 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1927 				   unsigned len, unsigned *copied,
1928 				   struct ocfs2_dinode *di,
1929 				   struct ocfs2_write_ctxt *wc)
1930 {
1931 	void *kaddr;
1932 
1933 	if (unlikely(*copied < len)) {
1934 		if (!PageUptodate(wc->w_target_page)) {
1935 			*copied = 0;
1936 			return;
1937 		}
1938 	}
1939 
1940 	kaddr = kmap_atomic(wc->w_target_page);
1941 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1942 	kunmap_atomic(kaddr);
1943 
1944 	trace_ocfs2_write_end_inline(
1945 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1946 	     (unsigned long long)pos, *copied,
1947 	     le16_to_cpu(di->id2.i_data.id_count),
1948 	     le16_to_cpu(di->i_dyn_features));
1949 }
1950 
1951 int ocfs2_write_end_nolock(struct address_space *mapping,
1952 			   loff_t pos, unsigned len, unsigned copied, void *fsdata)
1953 {
1954 	int i, ret;
1955 	unsigned from, to, start = pos & (PAGE_SIZE - 1);
1956 	struct inode *inode = mapping->host;
1957 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1958 	struct ocfs2_write_ctxt *wc = fsdata;
1959 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1960 	handle_t *handle = wc->w_handle;
1961 	struct page *tmppage;
1962 
1963 	BUG_ON(!list_empty(&wc->w_unwritten_list));
1964 
1965 	if (handle) {
1966 		ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1967 				wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1968 		if (ret) {
1969 			copied = ret;
1970 			mlog_errno(ret);
1971 			goto out;
1972 		}
1973 	}
1974 
1975 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1976 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1977 		goto out_write_size;
1978 	}
1979 
1980 	if (unlikely(copied < len) && wc->w_target_page) {
1981 		if (!PageUptodate(wc->w_target_page))
1982 			copied = 0;
1983 
1984 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1985 				       start+len);
1986 	}
1987 	if (wc->w_target_page)
1988 		flush_dcache_page(wc->w_target_page);
1989 
1990 	for(i = 0; i < wc->w_num_pages; i++) {
1991 		tmppage = wc->w_pages[i];
1992 
1993 		/* This is the direct io target page. */
1994 		if (tmppage == NULL)
1995 			continue;
1996 
1997 		if (tmppage == wc->w_target_page) {
1998 			from = wc->w_target_from;
1999 			to = wc->w_target_to;
2000 
2001 			BUG_ON(from > PAGE_SIZE ||
2002 			       to > PAGE_SIZE ||
2003 			       to < from);
2004 		} else {
2005 			/*
2006 			 * Pages adjacent to the target (if any) imply
2007 			 * a hole-filling write in which case we want
2008 			 * to flush their entire range.
2009 			 */
2010 			from = 0;
2011 			to = PAGE_SIZE;
2012 		}
2013 
2014 		if (page_has_buffers(tmppage)) {
2015 			if (handle && ocfs2_should_order_data(inode)) {
2016 				loff_t start_byte =
2017 					((loff_t)tmppage->index << PAGE_SHIFT) +
2018 					from;
2019 				loff_t length = to - from;
2020 				ocfs2_jbd2_inode_add_write(handle, inode,
2021 							   start_byte, length);
2022 			}
2023 			block_commit_write(tmppage, from, to);
2024 		}
2025 	}
2026 
2027 out_write_size:
2028 	/* Direct io do not update i_size here. */
2029 	if (wc->w_type != OCFS2_WRITE_DIRECT) {
2030 		pos += copied;
2031 		if (pos > i_size_read(inode)) {
2032 			i_size_write(inode, pos);
2033 			mark_inode_dirty(inode);
2034 		}
2035 		inode->i_blocks = ocfs2_inode_sector_count(inode);
2036 		di->i_size = cpu_to_le64((u64)i_size_read(inode));
2037 		inode->i_mtime = inode->i_ctime = current_time(inode);
2038 		di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2039 		di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2040 		if (handle)
2041 			ocfs2_update_inode_fsync_trans(handle, inode, 1);
2042 	}
2043 	if (handle)
2044 		ocfs2_journal_dirty(handle, wc->w_di_bh);
2045 
2046 out:
2047 	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2048 	 * lock, or it will cause a deadlock since journal commit threads holds
2049 	 * this lock and will ask for the page lock when flushing the data.
2050 	 * put it here to preserve the unlock order.
2051 	 */
2052 	ocfs2_unlock_pages(wc);
2053 
2054 	if (handle)
2055 		ocfs2_commit_trans(osb, handle);
2056 
2057 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2058 
2059 	brelse(wc->w_di_bh);
2060 	kfree(wc);
2061 
2062 	return copied;
2063 }
2064 
2065 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2066 			   loff_t pos, unsigned len, unsigned copied,
2067 			   struct page *page, void *fsdata)
2068 {
2069 	int ret;
2070 	struct inode *inode = mapping->host;
2071 
2072 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2073 
2074 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2075 	ocfs2_inode_unlock(inode, 1);
2076 
2077 	return ret;
2078 }
2079 
2080 struct ocfs2_dio_write_ctxt {
2081 	struct list_head	dw_zero_list;
2082 	unsigned		dw_zero_count;
2083 	int			dw_orphaned;
2084 	pid_t			dw_writer_pid;
2085 };
2086 
2087 static struct ocfs2_dio_write_ctxt *
2088 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2089 {
2090 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2091 
2092 	if (bh->b_private)
2093 		return bh->b_private;
2094 
2095 	dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2096 	if (dwc == NULL)
2097 		return NULL;
2098 	INIT_LIST_HEAD(&dwc->dw_zero_list);
2099 	dwc->dw_zero_count = 0;
2100 	dwc->dw_orphaned = 0;
2101 	dwc->dw_writer_pid = task_pid_nr(current);
2102 	bh->b_private = dwc;
2103 	*alloc = 1;
2104 
2105 	return dwc;
2106 }
2107 
2108 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2109 				     struct ocfs2_dio_write_ctxt *dwc)
2110 {
2111 	ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2112 	kfree(dwc);
2113 }
2114 
2115 /*
2116  * TODO: Make this into a generic get_blocks function.
2117  *
2118  * From do_direct_io in direct-io.c:
2119  *  "So what we do is to permit the ->get_blocks function to populate
2120  *   bh.b_size with the size of IO which is permitted at this offset and
2121  *   this i_blkbits."
2122  *
2123  * This function is called directly from get_more_blocks in direct-io.c.
2124  *
2125  * called like this: dio->get_blocks(dio->inode, fs_startblk,
2126  * 					fs_count, map_bh, dio->rw == WRITE);
2127  */
2128 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2129 			       struct buffer_head *bh_result, int create)
2130 {
2131 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2132 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2133 	struct ocfs2_write_ctxt *wc;
2134 	struct ocfs2_write_cluster_desc *desc = NULL;
2135 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2136 	struct buffer_head *di_bh = NULL;
2137 	u64 p_blkno;
2138 	unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2139 	loff_t pos = iblock << i_blkbits;
2140 	sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2141 	unsigned len, total_len = bh_result->b_size;
2142 	int ret = 0, first_get_block = 0;
2143 
2144 	len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2145 	len = min(total_len, len);
2146 
2147 	/*
2148 	 * bh_result->b_size is count in get_more_blocks according to write
2149 	 * "pos" and "end", we need map twice to return different buffer state:
2150 	 * 1. area in file size, not set NEW;
2151 	 * 2. area out file size, set  NEW.
2152 	 *
2153 	 *		   iblock    endblk
2154 	 * |--------|---------|---------|---------
2155 	 * |<-------area in file------->|
2156 	 */
2157 
2158 	if ((iblock <= endblk) &&
2159 	    ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2160 		len = (endblk - iblock + 1) << i_blkbits;
2161 
2162 	mlog(0, "get block of %lu at %llu:%u req %u\n",
2163 			inode->i_ino, pos, len, total_len);
2164 
2165 	/*
2166 	 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2167 	 * we may need to add it to orphan dir. So can not fall to fast path
2168 	 * while file size will be changed.
2169 	 */
2170 	if (pos + total_len <= i_size_read(inode)) {
2171 
2172 		/* This is the fast path for re-write. */
2173 		ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2174 		if (buffer_mapped(bh_result) &&
2175 		    !buffer_new(bh_result) &&
2176 		    ret == 0)
2177 			goto out;
2178 
2179 		/* Clear state set by ocfs2_get_block. */
2180 		bh_result->b_state = 0;
2181 	}
2182 
2183 	dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2184 	if (unlikely(dwc == NULL)) {
2185 		ret = -ENOMEM;
2186 		mlog_errno(ret);
2187 		goto out;
2188 	}
2189 
2190 	if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2191 	    ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2192 	    !dwc->dw_orphaned) {
2193 		/*
2194 		 * when we are going to alloc extents beyond file size, add the
2195 		 * inode to orphan dir, so we can recall those spaces when
2196 		 * system crashed during write.
2197 		 */
2198 		ret = ocfs2_add_inode_to_orphan(osb, inode);
2199 		if (ret < 0) {
2200 			mlog_errno(ret);
2201 			goto out;
2202 		}
2203 		dwc->dw_orphaned = 1;
2204 	}
2205 
2206 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2207 	if (ret) {
2208 		mlog_errno(ret);
2209 		goto out;
2210 	}
2211 
2212 	down_write(&oi->ip_alloc_sem);
2213 
2214 	if (first_get_block) {
2215 		if (ocfs2_sparse_alloc(osb))
2216 			ret = ocfs2_zero_tail(inode, di_bh, pos);
2217 		else
2218 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2219 							   total_len, NULL);
2220 		if (ret < 0) {
2221 			mlog_errno(ret);
2222 			goto unlock;
2223 		}
2224 	}
2225 
2226 	ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2227 				       OCFS2_WRITE_DIRECT, NULL,
2228 				       (void **)&wc, di_bh, NULL);
2229 	if (ret) {
2230 		mlog_errno(ret);
2231 		goto unlock;
2232 	}
2233 
2234 	desc = &wc->w_desc[0];
2235 
2236 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2237 	BUG_ON(p_blkno == 0);
2238 	p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2239 
2240 	map_bh(bh_result, inode->i_sb, p_blkno);
2241 	bh_result->b_size = len;
2242 	if (desc->c_needs_zero)
2243 		set_buffer_new(bh_result);
2244 
2245 	if (iblock > endblk)
2246 		set_buffer_new(bh_result);
2247 
2248 	/* May sleep in end_io. It should not happen in a irq context. So defer
2249 	 * it to dio work queue. */
2250 	set_buffer_defer_completion(bh_result);
2251 
2252 	if (!list_empty(&wc->w_unwritten_list)) {
2253 		struct ocfs2_unwritten_extent *ue = NULL;
2254 
2255 		ue = list_first_entry(&wc->w_unwritten_list,
2256 				      struct ocfs2_unwritten_extent,
2257 				      ue_node);
2258 		BUG_ON(ue->ue_cpos != desc->c_cpos);
2259 		/* The physical address may be 0, fill it. */
2260 		ue->ue_phys = desc->c_phys;
2261 
2262 		list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2263 		dwc->dw_zero_count += wc->w_unwritten_count;
2264 	}
2265 
2266 	ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2267 	BUG_ON(ret != len);
2268 	ret = 0;
2269 unlock:
2270 	up_write(&oi->ip_alloc_sem);
2271 	ocfs2_inode_unlock(inode, 1);
2272 	brelse(di_bh);
2273 out:
2274 	if (ret < 0)
2275 		ret = -EIO;
2276 	return ret;
2277 }
2278 
2279 static int ocfs2_dio_end_io_write(struct inode *inode,
2280 				  struct ocfs2_dio_write_ctxt *dwc,
2281 				  loff_t offset,
2282 				  ssize_t bytes)
2283 {
2284 	struct ocfs2_cached_dealloc_ctxt dealloc;
2285 	struct ocfs2_extent_tree et;
2286 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2287 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2288 	struct ocfs2_unwritten_extent *ue = NULL;
2289 	struct buffer_head *di_bh = NULL;
2290 	struct ocfs2_dinode *di;
2291 	struct ocfs2_alloc_context *data_ac = NULL;
2292 	struct ocfs2_alloc_context *meta_ac = NULL;
2293 	handle_t *handle = NULL;
2294 	loff_t end = offset + bytes;
2295 	int ret = 0, credits = 0;
2296 
2297 	ocfs2_init_dealloc_ctxt(&dealloc);
2298 
2299 	/* We do clear unwritten, delete orphan, change i_size here. If neither
2300 	 * of these happen, we can skip all this. */
2301 	if (list_empty(&dwc->dw_zero_list) &&
2302 	    end <= i_size_read(inode) &&
2303 	    !dwc->dw_orphaned)
2304 		goto out;
2305 
2306 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2307 	if (ret < 0) {
2308 		mlog_errno(ret);
2309 		goto out;
2310 	}
2311 
2312 	down_write(&oi->ip_alloc_sem);
2313 
2314 	/* Delete orphan before acquire i_mutex. */
2315 	if (dwc->dw_orphaned) {
2316 		BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2317 
2318 		end = end > i_size_read(inode) ? end : 0;
2319 
2320 		ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2321 				!!end, end);
2322 		if (ret < 0)
2323 			mlog_errno(ret);
2324 	}
2325 
2326 	di = (struct ocfs2_dinode *)di_bh->b_data;
2327 
2328 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2329 
2330 	/* Attach dealloc with extent tree in case that we may reuse extents
2331 	 * which are already unlinked from current extent tree due to extent
2332 	 * rotation and merging.
2333 	 */
2334 	et.et_dealloc = &dealloc;
2335 
2336 	ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2337 				    &data_ac, &meta_ac);
2338 	if (ret) {
2339 		mlog_errno(ret);
2340 		goto unlock;
2341 	}
2342 
2343 	credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2344 
2345 	handle = ocfs2_start_trans(osb, credits);
2346 	if (IS_ERR(handle)) {
2347 		ret = PTR_ERR(handle);
2348 		mlog_errno(ret);
2349 		goto unlock;
2350 	}
2351 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2352 				      OCFS2_JOURNAL_ACCESS_WRITE);
2353 	if (ret) {
2354 		mlog_errno(ret);
2355 		goto commit;
2356 	}
2357 
2358 	list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2359 		ret = ocfs2_mark_extent_written(inode, &et, handle,
2360 						ue->ue_cpos, 1,
2361 						ue->ue_phys,
2362 						meta_ac, &dealloc);
2363 		if (ret < 0) {
2364 			mlog_errno(ret);
2365 			break;
2366 		}
2367 	}
2368 
2369 	if (end > i_size_read(inode)) {
2370 		ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2371 		if (ret < 0)
2372 			mlog_errno(ret);
2373 	}
2374 commit:
2375 	ocfs2_commit_trans(osb, handle);
2376 unlock:
2377 	up_write(&oi->ip_alloc_sem);
2378 	ocfs2_inode_unlock(inode, 1);
2379 	brelse(di_bh);
2380 out:
2381 	if (data_ac)
2382 		ocfs2_free_alloc_context(data_ac);
2383 	if (meta_ac)
2384 		ocfs2_free_alloc_context(meta_ac);
2385 	ocfs2_run_deallocs(osb, &dealloc);
2386 	ocfs2_dio_free_write_ctx(inode, dwc);
2387 
2388 	return ret;
2389 }
2390 
2391 /*
2392  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2393  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2394  * to protect io on one node from truncation on another.
2395  */
2396 static int ocfs2_dio_end_io(struct kiocb *iocb,
2397 			    loff_t offset,
2398 			    ssize_t bytes,
2399 			    void *private)
2400 {
2401 	struct inode *inode = file_inode(iocb->ki_filp);
2402 	int level;
2403 	int ret = 0;
2404 
2405 	/* this io's submitter should not have unlocked this before we could */
2406 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2407 
2408 	if (bytes <= 0)
2409 		mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2410 				 (long long)bytes);
2411 	if (private) {
2412 		if (bytes > 0)
2413 			ret = ocfs2_dio_end_io_write(inode, private, offset,
2414 						     bytes);
2415 		else
2416 			ocfs2_dio_free_write_ctx(inode, private);
2417 	}
2418 
2419 	ocfs2_iocb_clear_rw_locked(iocb);
2420 
2421 	level = ocfs2_iocb_rw_locked_level(iocb);
2422 	ocfs2_rw_unlock(inode, level);
2423 	return ret;
2424 }
2425 
2426 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2427 {
2428 	struct file *file = iocb->ki_filp;
2429 	struct inode *inode = file->f_mapping->host;
2430 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2431 	get_block_t *get_block;
2432 
2433 	/*
2434 	 * Fallback to buffered I/O if we see an inode without
2435 	 * extents.
2436 	 */
2437 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2438 		return 0;
2439 
2440 	/* Fallback to buffered I/O if we do not support append dio. */
2441 	if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2442 	    !ocfs2_supports_append_dio(osb))
2443 		return 0;
2444 
2445 	if (iov_iter_rw(iter) == READ)
2446 		get_block = ocfs2_lock_get_block;
2447 	else
2448 		get_block = ocfs2_dio_wr_get_block;
2449 
2450 	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2451 				    iter, get_block,
2452 				    ocfs2_dio_end_io, NULL, 0);
2453 }
2454 
2455 const struct address_space_operations ocfs2_aops = {
2456 	.set_page_dirty		= __set_page_dirty_buffers,
2457 	.readpage		= ocfs2_readpage,
2458 	.readahead		= ocfs2_readahead,
2459 	.writepage		= ocfs2_writepage,
2460 	.write_begin		= ocfs2_write_begin,
2461 	.write_end		= ocfs2_write_end,
2462 	.bmap			= ocfs2_bmap,
2463 	.direct_IO		= ocfs2_direct_IO,
2464 	.invalidatepage		= block_invalidatepage,
2465 	.releasepage		= ocfs2_releasepage,
2466 	.migratepage		= buffer_migrate_page,
2467 	.is_partially_uptodate	= block_is_partially_uptodate,
2468 	.error_remove_page	= generic_error_remove_page,
2469 };
2470