1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* -*- mode: c; c-basic-offset: 8; -*- 3 * vim: noexpandtab sw=8 ts=8 sts=0: 4 * 5 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 6 */ 7 8 #include <linux/fs.h> 9 #include <linux/slab.h> 10 #include <linux/highmem.h> 11 #include <linux/pagemap.h> 12 #include <asm/byteorder.h> 13 #include <linux/swap.h> 14 #include <linux/pipe_fs_i.h> 15 #include <linux/mpage.h> 16 #include <linux/quotaops.h> 17 #include <linux/blkdev.h> 18 #include <linux/uio.h> 19 #include <linux/mm.h> 20 21 #include <cluster/masklog.h> 22 23 #include "ocfs2.h" 24 25 #include "alloc.h" 26 #include "aops.h" 27 #include "dlmglue.h" 28 #include "extent_map.h" 29 #include "file.h" 30 #include "inode.h" 31 #include "journal.h" 32 #include "suballoc.h" 33 #include "super.h" 34 #include "symlink.h" 35 #include "refcounttree.h" 36 #include "ocfs2_trace.h" 37 38 #include "buffer_head_io.h" 39 #include "dir.h" 40 #include "namei.h" 41 #include "sysfile.h" 42 43 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 44 struct buffer_head *bh_result, int create) 45 { 46 int err = -EIO; 47 int status; 48 struct ocfs2_dinode *fe = NULL; 49 struct buffer_head *bh = NULL; 50 struct buffer_head *buffer_cache_bh = NULL; 51 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 52 void *kaddr; 53 54 trace_ocfs2_symlink_get_block( 55 (unsigned long long)OCFS2_I(inode)->ip_blkno, 56 (unsigned long long)iblock, bh_result, create); 57 58 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 59 60 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 61 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 62 (unsigned long long)iblock); 63 goto bail; 64 } 65 66 status = ocfs2_read_inode_block(inode, &bh); 67 if (status < 0) { 68 mlog_errno(status); 69 goto bail; 70 } 71 fe = (struct ocfs2_dinode *) bh->b_data; 72 73 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 74 le32_to_cpu(fe->i_clusters))) { 75 err = -ENOMEM; 76 mlog(ML_ERROR, "block offset is outside the allocated size: " 77 "%llu\n", (unsigned long long)iblock); 78 goto bail; 79 } 80 81 /* We don't use the page cache to create symlink data, so if 82 * need be, copy it over from the buffer cache. */ 83 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 84 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 85 iblock; 86 buffer_cache_bh = sb_getblk(osb->sb, blkno); 87 if (!buffer_cache_bh) { 88 err = -ENOMEM; 89 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 90 goto bail; 91 } 92 93 /* we haven't locked out transactions, so a commit 94 * could've happened. Since we've got a reference on 95 * the bh, even if it commits while we're doing the 96 * copy, the data is still good. */ 97 if (buffer_jbd(buffer_cache_bh) 98 && ocfs2_inode_is_new(inode)) { 99 kaddr = kmap_atomic(bh_result->b_page); 100 if (!kaddr) { 101 mlog(ML_ERROR, "couldn't kmap!\n"); 102 goto bail; 103 } 104 memcpy(kaddr + (bh_result->b_size * iblock), 105 buffer_cache_bh->b_data, 106 bh_result->b_size); 107 kunmap_atomic(kaddr); 108 set_buffer_uptodate(bh_result); 109 } 110 brelse(buffer_cache_bh); 111 } 112 113 map_bh(bh_result, inode->i_sb, 114 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 115 116 err = 0; 117 118 bail: 119 brelse(bh); 120 121 return err; 122 } 123 124 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock, 125 struct buffer_head *bh_result, int create) 126 { 127 int ret = 0; 128 struct ocfs2_inode_info *oi = OCFS2_I(inode); 129 130 down_read(&oi->ip_alloc_sem); 131 ret = ocfs2_get_block(inode, iblock, bh_result, create); 132 up_read(&oi->ip_alloc_sem); 133 134 return ret; 135 } 136 137 int ocfs2_get_block(struct inode *inode, sector_t iblock, 138 struct buffer_head *bh_result, int create) 139 { 140 int err = 0; 141 unsigned int ext_flags; 142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 143 u64 p_blkno, count, past_eof; 144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 145 146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 147 (unsigned long long)iblock, bh_result, create); 148 149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 151 inode, inode->i_ino); 152 153 if (S_ISLNK(inode->i_mode)) { 154 /* this always does I/O for some reason. */ 155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 156 goto bail; 157 } 158 159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 160 &ext_flags); 161 if (err) { 162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 164 (unsigned long long)p_blkno); 165 goto bail; 166 } 167 168 if (max_blocks < count) 169 count = max_blocks; 170 171 /* 172 * ocfs2 never allocates in this function - the only time we 173 * need to use BH_New is when we're extending i_size on a file 174 * system which doesn't support holes, in which case BH_New 175 * allows __block_write_begin() to zero. 176 * 177 * If we see this on a sparse file system, then a truncate has 178 * raced us and removed the cluster. In this case, we clear 179 * the buffers dirty and uptodate bits and let the buffer code 180 * ignore it as a hole. 181 */ 182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 183 clear_buffer_dirty(bh_result); 184 clear_buffer_uptodate(bh_result); 185 goto bail; 186 } 187 188 /* Treat the unwritten extent as a hole for zeroing purposes. */ 189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 190 map_bh(bh_result, inode->i_sb, p_blkno); 191 192 bh_result->b_size = count << inode->i_blkbits; 193 194 if (!ocfs2_sparse_alloc(osb)) { 195 if (p_blkno == 0) { 196 err = -EIO; 197 mlog(ML_ERROR, 198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 199 (unsigned long long)iblock, 200 (unsigned long long)p_blkno, 201 (unsigned long long)OCFS2_I(inode)->ip_blkno); 202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 203 dump_stack(); 204 goto bail; 205 } 206 } 207 208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 209 210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 211 (unsigned long long)past_eof); 212 if (create && (iblock >= past_eof)) 213 set_buffer_new(bh_result); 214 215 bail: 216 if (err < 0) 217 err = -EIO; 218 219 return err; 220 } 221 222 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 223 struct buffer_head *di_bh) 224 { 225 void *kaddr; 226 loff_t size; 227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 228 229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 231 (unsigned long long)OCFS2_I(inode)->ip_blkno); 232 return -EROFS; 233 } 234 235 size = i_size_read(inode); 236 237 if (size > PAGE_SIZE || 238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 239 ocfs2_error(inode->i_sb, 240 "Inode %llu has with inline data has bad size: %Lu\n", 241 (unsigned long long)OCFS2_I(inode)->ip_blkno, 242 (unsigned long long)size); 243 return -EROFS; 244 } 245 246 kaddr = kmap_atomic(page); 247 if (size) 248 memcpy(kaddr, di->id2.i_data.id_data, size); 249 /* Clear the remaining part of the page */ 250 memset(kaddr + size, 0, PAGE_SIZE - size); 251 flush_dcache_page(page); 252 kunmap_atomic(kaddr); 253 254 SetPageUptodate(page); 255 256 return 0; 257 } 258 259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 260 { 261 int ret; 262 struct buffer_head *di_bh = NULL; 263 264 BUG_ON(!PageLocked(page)); 265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 266 267 ret = ocfs2_read_inode_block(inode, &di_bh); 268 if (ret) { 269 mlog_errno(ret); 270 goto out; 271 } 272 273 ret = ocfs2_read_inline_data(inode, page, di_bh); 274 out: 275 unlock_page(page); 276 277 brelse(di_bh); 278 return ret; 279 } 280 281 static int ocfs2_readpage(struct file *file, struct page *page) 282 { 283 struct inode *inode = page->mapping->host; 284 struct ocfs2_inode_info *oi = OCFS2_I(inode); 285 loff_t start = (loff_t)page->index << PAGE_SHIFT; 286 int ret, unlock = 1; 287 288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 289 (page ? page->index : 0)); 290 291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 292 if (ret != 0) { 293 if (ret == AOP_TRUNCATED_PAGE) 294 unlock = 0; 295 mlog_errno(ret); 296 goto out; 297 } 298 299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 300 /* 301 * Unlock the page and cycle ip_alloc_sem so that we don't 302 * busyloop waiting for ip_alloc_sem to unlock 303 */ 304 ret = AOP_TRUNCATED_PAGE; 305 unlock_page(page); 306 unlock = 0; 307 down_read(&oi->ip_alloc_sem); 308 up_read(&oi->ip_alloc_sem); 309 goto out_inode_unlock; 310 } 311 312 /* 313 * i_size might have just been updated as we grabed the meta lock. We 314 * might now be discovering a truncate that hit on another node. 315 * block_read_full_page->get_block freaks out if it is asked to read 316 * beyond the end of a file, so we check here. Callers 317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 318 * and notice that the page they just read isn't needed. 319 * 320 * XXX sys_readahead() seems to get that wrong? 321 */ 322 if (start >= i_size_read(inode)) { 323 zero_user(page, 0, PAGE_SIZE); 324 SetPageUptodate(page); 325 ret = 0; 326 goto out_alloc; 327 } 328 329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 330 ret = ocfs2_readpage_inline(inode, page); 331 else 332 ret = block_read_full_page(page, ocfs2_get_block); 333 unlock = 0; 334 335 out_alloc: 336 up_read(&oi->ip_alloc_sem); 337 out_inode_unlock: 338 ocfs2_inode_unlock(inode, 0); 339 out: 340 if (unlock) 341 unlock_page(page); 342 return ret; 343 } 344 345 /* 346 * This is used only for read-ahead. Failures or difficult to handle 347 * situations are safe to ignore. 348 * 349 * Right now, we don't bother with BH_Boundary - in-inode extent lists 350 * are quite large (243 extents on 4k blocks), so most inodes don't 351 * grow out to a tree. If need be, detecting boundary extents could 352 * trivially be added in a future version of ocfs2_get_block(). 353 */ 354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 355 struct list_head *pages, unsigned nr_pages) 356 { 357 int ret, err = -EIO; 358 struct inode *inode = mapping->host; 359 struct ocfs2_inode_info *oi = OCFS2_I(inode); 360 loff_t start; 361 struct page *last; 362 363 /* 364 * Use the nonblocking flag for the dlm code to avoid page 365 * lock inversion, but don't bother with retrying. 366 */ 367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 368 if (ret) 369 return err; 370 371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 372 ocfs2_inode_unlock(inode, 0); 373 return err; 374 } 375 376 /* 377 * Don't bother with inline-data. There isn't anything 378 * to read-ahead in that case anyway... 379 */ 380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 381 goto out_unlock; 382 383 /* 384 * Check whether a remote node truncated this file - we just 385 * drop out in that case as it's not worth handling here. 386 */ 387 last = lru_to_page(pages); 388 start = (loff_t)last->index << PAGE_SHIFT; 389 if (start >= i_size_read(inode)) 390 goto out_unlock; 391 392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 393 394 out_unlock: 395 up_read(&oi->ip_alloc_sem); 396 ocfs2_inode_unlock(inode, 0); 397 398 return err; 399 } 400 401 /* Note: Because we don't support holes, our allocation has 402 * already happened (allocation writes zeros to the file data) 403 * so we don't have to worry about ordered writes in 404 * ocfs2_writepage. 405 * 406 * ->writepage is called during the process of invalidating the page cache 407 * during blocked lock processing. It can't block on any cluster locks 408 * to during block mapping. It's relying on the fact that the block 409 * mapping can't have disappeared under the dirty pages that it is 410 * being asked to write back. 411 */ 412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 413 { 414 trace_ocfs2_writepage( 415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 416 page->index); 417 418 return block_write_full_page(page, ocfs2_get_block, wbc); 419 } 420 421 /* Taken from ext3. We don't necessarily need the full blown 422 * functionality yet, but IMHO it's better to cut and paste the whole 423 * thing so we can avoid introducing our own bugs (and easily pick up 424 * their fixes when they happen) --Mark */ 425 int walk_page_buffers( handle_t *handle, 426 struct buffer_head *head, 427 unsigned from, 428 unsigned to, 429 int *partial, 430 int (*fn)( handle_t *handle, 431 struct buffer_head *bh)) 432 { 433 struct buffer_head *bh; 434 unsigned block_start, block_end; 435 unsigned blocksize = head->b_size; 436 int err, ret = 0; 437 struct buffer_head *next; 438 439 for ( bh = head, block_start = 0; 440 ret == 0 && (bh != head || !block_start); 441 block_start = block_end, bh = next) 442 { 443 next = bh->b_this_page; 444 block_end = block_start + blocksize; 445 if (block_end <= from || block_start >= to) { 446 if (partial && !buffer_uptodate(bh)) 447 *partial = 1; 448 continue; 449 } 450 err = (*fn)(handle, bh); 451 if (!ret) 452 ret = err; 453 } 454 return ret; 455 } 456 457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 458 { 459 sector_t status; 460 u64 p_blkno = 0; 461 int err = 0; 462 struct inode *inode = mapping->host; 463 464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 465 (unsigned long long)block); 466 467 /* 468 * The swap code (ab-)uses ->bmap to get a block mapping and then 469 * bypasseѕ the file system for actual I/O. We really can't allow 470 * that on refcounted inodes, so we have to skip out here. And yes, 471 * 0 is the magic code for a bmap error.. 472 */ 473 if (ocfs2_is_refcount_inode(inode)) 474 return 0; 475 476 /* We don't need to lock journal system files, since they aren't 477 * accessed concurrently from multiple nodes. 478 */ 479 if (!INODE_JOURNAL(inode)) { 480 err = ocfs2_inode_lock(inode, NULL, 0); 481 if (err) { 482 if (err != -ENOENT) 483 mlog_errno(err); 484 goto bail; 485 } 486 down_read(&OCFS2_I(inode)->ip_alloc_sem); 487 } 488 489 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 490 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 491 NULL); 492 493 if (!INODE_JOURNAL(inode)) { 494 up_read(&OCFS2_I(inode)->ip_alloc_sem); 495 ocfs2_inode_unlock(inode, 0); 496 } 497 498 if (err) { 499 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 500 (unsigned long long)block); 501 mlog_errno(err); 502 goto bail; 503 } 504 505 bail: 506 status = err ? 0 : p_blkno; 507 508 return status; 509 } 510 511 static int ocfs2_releasepage(struct page *page, gfp_t wait) 512 { 513 if (!page_has_buffers(page)) 514 return 0; 515 return try_to_free_buffers(page); 516 } 517 518 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 519 u32 cpos, 520 unsigned int *start, 521 unsigned int *end) 522 { 523 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE; 524 525 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) { 526 unsigned int cpp; 527 528 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits); 529 530 cluster_start = cpos % cpp; 531 cluster_start = cluster_start << osb->s_clustersize_bits; 532 533 cluster_end = cluster_start + osb->s_clustersize; 534 } 535 536 BUG_ON(cluster_start > PAGE_SIZE); 537 BUG_ON(cluster_end > PAGE_SIZE); 538 539 if (start) 540 *start = cluster_start; 541 if (end) 542 *end = cluster_end; 543 } 544 545 /* 546 * 'from' and 'to' are the region in the page to avoid zeroing. 547 * 548 * If pagesize > clustersize, this function will avoid zeroing outside 549 * of the cluster boundary. 550 * 551 * from == to == 0 is code for "zero the entire cluster region" 552 */ 553 static void ocfs2_clear_page_regions(struct page *page, 554 struct ocfs2_super *osb, u32 cpos, 555 unsigned from, unsigned to) 556 { 557 void *kaddr; 558 unsigned int cluster_start, cluster_end; 559 560 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 561 562 kaddr = kmap_atomic(page); 563 564 if (from || to) { 565 if (from > cluster_start) 566 memset(kaddr + cluster_start, 0, from - cluster_start); 567 if (to < cluster_end) 568 memset(kaddr + to, 0, cluster_end - to); 569 } else { 570 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 571 } 572 573 kunmap_atomic(kaddr); 574 } 575 576 /* 577 * Nonsparse file systems fully allocate before we get to the write 578 * code. This prevents ocfs2_write() from tagging the write as an 579 * allocating one, which means ocfs2_map_page_blocks() might try to 580 * read-in the blocks at the tail of our file. Avoid reading them by 581 * testing i_size against each block offset. 582 */ 583 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 584 unsigned int block_start) 585 { 586 u64 offset = page_offset(page) + block_start; 587 588 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 589 return 1; 590 591 if (i_size_read(inode) > offset) 592 return 1; 593 594 return 0; 595 } 596 597 /* 598 * Some of this taken from __block_write_begin(). We already have our 599 * mapping by now though, and the entire write will be allocating or 600 * it won't, so not much need to use BH_New. 601 * 602 * This will also skip zeroing, which is handled externally. 603 */ 604 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 605 struct inode *inode, unsigned int from, 606 unsigned int to, int new) 607 { 608 int ret = 0; 609 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 610 unsigned int block_end, block_start; 611 unsigned int bsize = i_blocksize(inode); 612 613 if (!page_has_buffers(page)) 614 create_empty_buffers(page, bsize, 0); 615 616 head = page_buffers(page); 617 for (bh = head, block_start = 0; bh != head || !block_start; 618 bh = bh->b_this_page, block_start += bsize) { 619 block_end = block_start + bsize; 620 621 clear_buffer_new(bh); 622 623 /* 624 * Ignore blocks outside of our i/o range - 625 * they may belong to unallocated clusters. 626 */ 627 if (block_start >= to || block_end <= from) { 628 if (PageUptodate(page)) 629 set_buffer_uptodate(bh); 630 continue; 631 } 632 633 /* 634 * For an allocating write with cluster size >= page 635 * size, we always write the entire page. 636 */ 637 if (new) 638 set_buffer_new(bh); 639 640 if (!buffer_mapped(bh)) { 641 map_bh(bh, inode->i_sb, *p_blkno); 642 clean_bdev_bh_alias(bh); 643 } 644 645 if (PageUptodate(page)) { 646 if (!buffer_uptodate(bh)) 647 set_buffer_uptodate(bh); 648 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 649 !buffer_new(bh) && 650 ocfs2_should_read_blk(inode, page, block_start) && 651 (block_start < from || block_end > to)) { 652 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 653 *wait_bh++=bh; 654 } 655 656 *p_blkno = *p_blkno + 1; 657 } 658 659 /* 660 * If we issued read requests - let them complete. 661 */ 662 while(wait_bh > wait) { 663 wait_on_buffer(*--wait_bh); 664 if (!buffer_uptodate(*wait_bh)) 665 ret = -EIO; 666 } 667 668 if (ret == 0 || !new) 669 return ret; 670 671 /* 672 * If we get -EIO above, zero out any newly allocated blocks 673 * to avoid exposing stale data. 674 */ 675 bh = head; 676 block_start = 0; 677 do { 678 block_end = block_start + bsize; 679 if (block_end <= from) 680 goto next_bh; 681 if (block_start >= to) 682 break; 683 684 zero_user(page, block_start, bh->b_size); 685 set_buffer_uptodate(bh); 686 mark_buffer_dirty(bh); 687 688 next_bh: 689 block_start = block_end; 690 bh = bh->b_this_page; 691 } while (bh != head); 692 693 return ret; 694 } 695 696 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 697 #define OCFS2_MAX_CTXT_PAGES 1 698 #else 699 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE) 700 #endif 701 702 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE) 703 704 struct ocfs2_unwritten_extent { 705 struct list_head ue_node; 706 struct list_head ue_ip_node; 707 u32 ue_cpos; 708 u32 ue_phys; 709 }; 710 711 /* 712 * Describe the state of a single cluster to be written to. 713 */ 714 struct ocfs2_write_cluster_desc { 715 u32 c_cpos; 716 u32 c_phys; 717 /* 718 * Give this a unique field because c_phys eventually gets 719 * filled. 720 */ 721 unsigned c_new; 722 unsigned c_clear_unwritten; 723 unsigned c_needs_zero; 724 }; 725 726 struct ocfs2_write_ctxt { 727 /* Logical cluster position / len of write */ 728 u32 w_cpos; 729 u32 w_clen; 730 731 /* First cluster allocated in a nonsparse extend */ 732 u32 w_first_new_cpos; 733 734 /* Type of caller. Must be one of buffer, mmap, direct. */ 735 ocfs2_write_type_t w_type; 736 737 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 738 739 /* 740 * This is true if page_size > cluster_size. 741 * 742 * It triggers a set of special cases during write which might 743 * have to deal with allocating writes to partial pages. 744 */ 745 unsigned int w_large_pages; 746 747 /* 748 * Pages involved in this write. 749 * 750 * w_target_page is the page being written to by the user. 751 * 752 * w_pages is an array of pages which always contains 753 * w_target_page, and in the case of an allocating write with 754 * page_size < cluster size, it will contain zero'd and mapped 755 * pages adjacent to w_target_page which need to be written 756 * out in so that future reads from that region will get 757 * zero's. 758 */ 759 unsigned int w_num_pages; 760 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 761 struct page *w_target_page; 762 763 /* 764 * w_target_locked is used for page_mkwrite path indicating no unlocking 765 * against w_target_page in ocfs2_write_end_nolock. 766 */ 767 unsigned int w_target_locked:1; 768 769 /* 770 * ocfs2_write_end() uses this to know what the real range to 771 * write in the target should be. 772 */ 773 unsigned int w_target_from; 774 unsigned int w_target_to; 775 776 /* 777 * We could use journal_current_handle() but this is cleaner, 778 * IMHO -Mark 779 */ 780 handle_t *w_handle; 781 782 struct buffer_head *w_di_bh; 783 784 struct ocfs2_cached_dealloc_ctxt w_dealloc; 785 786 struct list_head w_unwritten_list; 787 unsigned int w_unwritten_count; 788 }; 789 790 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 791 { 792 int i; 793 794 for(i = 0; i < num_pages; i++) { 795 if (pages[i]) { 796 unlock_page(pages[i]); 797 mark_page_accessed(pages[i]); 798 put_page(pages[i]); 799 } 800 } 801 } 802 803 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 804 { 805 int i; 806 807 /* 808 * w_target_locked is only set to true in the page_mkwrite() case. 809 * The intent is to allow us to lock the target page from write_begin() 810 * to write_end(). The caller must hold a ref on w_target_page. 811 */ 812 if (wc->w_target_locked) { 813 BUG_ON(!wc->w_target_page); 814 for (i = 0; i < wc->w_num_pages; i++) { 815 if (wc->w_target_page == wc->w_pages[i]) { 816 wc->w_pages[i] = NULL; 817 break; 818 } 819 } 820 mark_page_accessed(wc->w_target_page); 821 put_page(wc->w_target_page); 822 } 823 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 824 } 825 826 static void ocfs2_free_unwritten_list(struct inode *inode, 827 struct list_head *head) 828 { 829 struct ocfs2_inode_info *oi = OCFS2_I(inode); 830 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL; 831 832 list_for_each_entry_safe(ue, tmp, head, ue_node) { 833 list_del(&ue->ue_node); 834 spin_lock(&oi->ip_lock); 835 list_del(&ue->ue_ip_node); 836 spin_unlock(&oi->ip_lock); 837 kfree(ue); 838 } 839 } 840 841 static void ocfs2_free_write_ctxt(struct inode *inode, 842 struct ocfs2_write_ctxt *wc) 843 { 844 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list); 845 ocfs2_unlock_pages(wc); 846 brelse(wc->w_di_bh); 847 kfree(wc); 848 } 849 850 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 851 struct ocfs2_super *osb, loff_t pos, 852 unsigned len, ocfs2_write_type_t type, 853 struct buffer_head *di_bh) 854 { 855 u32 cend; 856 struct ocfs2_write_ctxt *wc; 857 858 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 859 if (!wc) 860 return -ENOMEM; 861 862 wc->w_cpos = pos >> osb->s_clustersize_bits; 863 wc->w_first_new_cpos = UINT_MAX; 864 cend = (pos + len - 1) >> osb->s_clustersize_bits; 865 wc->w_clen = cend - wc->w_cpos + 1; 866 get_bh(di_bh); 867 wc->w_di_bh = di_bh; 868 wc->w_type = type; 869 870 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) 871 wc->w_large_pages = 1; 872 else 873 wc->w_large_pages = 0; 874 875 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 876 INIT_LIST_HEAD(&wc->w_unwritten_list); 877 878 *wcp = wc; 879 880 return 0; 881 } 882 883 /* 884 * If a page has any new buffers, zero them out here, and mark them uptodate 885 * and dirty so they'll be written out (in order to prevent uninitialised 886 * block data from leaking). And clear the new bit. 887 */ 888 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 889 { 890 unsigned int block_start, block_end; 891 struct buffer_head *head, *bh; 892 893 BUG_ON(!PageLocked(page)); 894 if (!page_has_buffers(page)) 895 return; 896 897 bh = head = page_buffers(page); 898 block_start = 0; 899 do { 900 block_end = block_start + bh->b_size; 901 902 if (buffer_new(bh)) { 903 if (block_end > from && block_start < to) { 904 if (!PageUptodate(page)) { 905 unsigned start, end; 906 907 start = max(from, block_start); 908 end = min(to, block_end); 909 910 zero_user_segment(page, start, end); 911 set_buffer_uptodate(bh); 912 } 913 914 clear_buffer_new(bh); 915 mark_buffer_dirty(bh); 916 } 917 } 918 919 block_start = block_end; 920 bh = bh->b_this_page; 921 } while (bh != head); 922 } 923 924 /* 925 * Only called when we have a failure during allocating write to write 926 * zero's to the newly allocated region. 927 */ 928 static void ocfs2_write_failure(struct inode *inode, 929 struct ocfs2_write_ctxt *wc, 930 loff_t user_pos, unsigned user_len) 931 { 932 int i; 933 unsigned from = user_pos & (PAGE_SIZE - 1), 934 to = user_pos + user_len; 935 struct page *tmppage; 936 937 if (wc->w_target_page) 938 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 939 940 for(i = 0; i < wc->w_num_pages; i++) { 941 tmppage = wc->w_pages[i]; 942 943 if (tmppage && page_has_buffers(tmppage)) { 944 if (ocfs2_should_order_data(inode)) 945 ocfs2_jbd2_inode_add_write(wc->w_handle, inode, 946 user_pos, user_len); 947 948 block_commit_write(tmppage, from, to); 949 } 950 } 951 } 952 953 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 954 struct ocfs2_write_ctxt *wc, 955 struct page *page, u32 cpos, 956 loff_t user_pos, unsigned user_len, 957 int new) 958 { 959 int ret; 960 unsigned int map_from = 0, map_to = 0; 961 unsigned int cluster_start, cluster_end; 962 unsigned int user_data_from = 0, user_data_to = 0; 963 964 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 965 &cluster_start, &cluster_end); 966 967 /* treat the write as new if the a hole/lseek spanned across 968 * the page boundary. 969 */ 970 new = new | ((i_size_read(inode) <= page_offset(page)) && 971 (page_offset(page) <= user_pos)); 972 973 if (page == wc->w_target_page) { 974 map_from = user_pos & (PAGE_SIZE - 1); 975 map_to = map_from + user_len; 976 977 if (new) 978 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 979 cluster_start, cluster_end, 980 new); 981 else 982 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 983 map_from, map_to, new); 984 if (ret) { 985 mlog_errno(ret); 986 goto out; 987 } 988 989 user_data_from = map_from; 990 user_data_to = map_to; 991 if (new) { 992 map_from = cluster_start; 993 map_to = cluster_end; 994 } 995 } else { 996 /* 997 * If we haven't allocated the new page yet, we 998 * shouldn't be writing it out without copying user 999 * data. This is likely a math error from the caller. 1000 */ 1001 BUG_ON(!new); 1002 1003 map_from = cluster_start; 1004 map_to = cluster_end; 1005 1006 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1007 cluster_start, cluster_end, new); 1008 if (ret) { 1009 mlog_errno(ret); 1010 goto out; 1011 } 1012 } 1013 1014 /* 1015 * Parts of newly allocated pages need to be zero'd. 1016 * 1017 * Above, we have also rewritten 'to' and 'from' - as far as 1018 * the rest of the function is concerned, the entire cluster 1019 * range inside of a page needs to be written. 1020 * 1021 * We can skip this if the page is up to date - it's already 1022 * been zero'd from being read in as a hole. 1023 */ 1024 if (new && !PageUptodate(page)) 1025 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1026 cpos, user_data_from, user_data_to); 1027 1028 flush_dcache_page(page); 1029 1030 out: 1031 return ret; 1032 } 1033 1034 /* 1035 * This function will only grab one clusters worth of pages. 1036 */ 1037 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1038 struct ocfs2_write_ctxt *wc, 1039 u32 cpos, loff_t user_pos, 1040 unsigned user_len, int new, 1041 struct page *mmap_page) 1042 { 1043 int ret = 0, i; 1044 unsigned long start, target_index, end_index, index; 1045 struct inode *inode = mapping->host; 1046 loff_t last_byte; 1047 1048 target_index = user_pos >> PAGE_SHIFT; 1049 1050 /* 1051 * Figure out how many pages we'll be manipulating here. For 1052 * non allocating write, we just change the one 1053 * page. Otherwise, we'll need a whole clusters worth. If we're 1054 * writing past i_size, we only need enough pages to cover the 1055 * last page of the write. 1056 */ 1057 if (new) { 1058 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1059 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1060 /* 1061 * We need the index *past* the last page we could possibly 1062 * touch. This is the page past the end of the write or 1063 * i_size, whichever is greater. 1064 */ 1065 last_byte = max(user_pos + user_len, i_size_read(inode)); 1066 BUG_ON(last_byte < 1); 1067 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1; 1068 if ((start + wc->w_num_pages) > end_index) 1069 wc->w_num_pages = end_index - start; 1070 } else { 1071 wc->w_num_pages = 1; 1072 start = target_index; 1073 } 1074 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT; 1075 1076 for(i = 0; i < wc->w_num_pages; i++) { 1077 index = start + i; 1078 1079 if (index >= target_index && index <= end_index && 1080 wc->w_type == OCFS2_WRITE_MMAP) { 1081 /* 1082 * ocfs2_pagemkwrite() is a little different 1083 * and wants us to directly use the page 1084 * passed in. 1085 */ 1086 lock_page(mmap_page); 1087 1088 /* Exit and let the caller retry */ 1089 if (mmap_page->mapping != mapping) { 1090 WARN_ON(mmap_page->mapping); 1091 unlock_page(mmap_page); 1092 ret = -EAGAIN; 1093 goto out; 1094 } 1095 1096 get_page(mmap_page); 1097 wc->w_pages[i] = mmap_page; 1098 wc->w_target_locked = true; 1099 } else if (index >= target_index && index <= end_index && 1100 wc->w_type == OCFS2_WRITE_DIRECT) { 1101 /* Direct write has no mapping page. */ 1102 wc->w_pages[i] = NULL; 1103 continue; 1104 } else { 1105 wc->w_pages[i] = find_or_create_page(mapping, index, 1106 GFP_NOFS); 1107 if (!wc->w_pages[i]) { 1108 ret = -ENOMEM; 1109 mlog_errno(ret); 1110 goto out; 1111 } 1112 } 1113 wait_for_stable_page(wc->w_pages[i]); 1114 1115 if (index == target_index) 1116 wc->w_target_page = wc->w_pages[i]; 1117 } 1118 out: 1119 if (ret) 1120 wc->w_target_locked = false; 1121 return ret; 1122 } 1123 1124 /* 1125 * Prepare a single cluster for write one cluster into the file. 1126 */ 1127 static int ocfs2_write_cluster(struct address_space *mapping, 1128 u32 *phys, unsigned int new, 1129 unsigned int clear_unwritten, 1130 unsigned int should_zero, 1131 struct ocfs2_alloc_context *data_ac, 1132 struct ocfs2_alloc_context *meta_ac, 1133 struct ocfs2_write_ctxt *wc, u32 cpos, 1134 loff_t user_pos, unsigned user_len) 1135 { 1136 int ret, i; 1137 u64 p_blkno; 1138 struct inode *inode = mapping->host; 1139 struct ocfs2_extent_tree et; 1140 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); 1141 1142 if (new) { 1143 u32 tmp_pos; 1144 1145 /* 1146 * This is safe to call with the page locks - it won't take 1147 * any additional semaphores or cluster locks. 1148 */ 1149 tmp_pos = cpos; 1150 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1151 &tmp_pos, 1, !clear_unwritten, 1152 wc->w_di_bh, wc->w_handle, 1153 data_ac, meta_ac, NULL); 1154 /* 1155 * This shouldn't happen because we must have already 1156 * calculated the correct meta data allocation required. The 1157 * internal tree allocation code should know how to increase 1158 * transaction credits itself. 1159 * 1160 * If need be, we could handle -EAGAIN for a 1161 * RESTART_TRANS here. 1162 */ 1163 mlog_bug_on_msg(ret == -EAGAIN, 1164 "Inode %llu: EAGAIN return during allocation.\n", 1165 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1166 if (ret < 0) { 1167 mlog_errno(ret); 1168 goto out; 1169 } 1170 } else if (clear_unwritten) { 1171 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1172 wc->w_di_bh); 1173 ret = ocfs2_mark_extent_written(inode, &et, 1174 wc->w_handle, cpos, 1, *phys, 1175 meta_ac, &wc->w_dealloc); 1176 if (ret < 0) { 1177 mlog_errno(ret); 1178 goto out; 1179 } 1180 } 1181 1182 /* 1183 * The only reason this should fail is due to an inability to 1184 * find the extent added. 1185 */ 1186 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL); 1187 if (ret < 0) { 1188 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1189 "at logical cluster %u", 1190 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 1191 goto out; 1192 } 1193 1194 BUG_ON(*phys == 0); 1195 1196 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys); 1197 if (!should_zero) 1198 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1); 1199 1200 for(i = 0; i < wc->w_num_pages; i++) { 1201 int tmpret; 1202 1203 /* This is the direct io target page. */ 1204 if (wc->w_pages[i] == NULL) { 1205 p_blkno++; 1206 continue; 1207 } 1208 1209 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1210 wc->w_pages[i], cpos, 1211 user_pos, user_len, 1212 should_zero); 1213 if (tmpret) { 1214 mlog_errno(tmpret); 1215 if (ret == 0) 1216 ret = tmpret; 1217 } 1218 } 1219 1220 /* 1221 * We only have cleanup to do in case of allocating write. 1222 */ 1223 if (ret && new) 1224 ocfs2_write_failure(inode, wc, user_pos, user_len); 1225 1226 out: 1227 1228 return ret; 1229 } 1230 1231 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1232 struct ocfs2_alloc_context *data_ac, 1233 struct ocfs2_alloc_context *meta_ac, 1234 struct ocfs2_write_ctxt *wc, 1235 loff_t pos, unsigned len) 1236 { 1237 int ret, i; 1238 loff_t cluster_off; 1239 unsigned int local_len = len; 1240 struct ocfs2_write_cluster_desc *desc; 1241 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1242 1243 for (i = 0; i < wc->w_clen; i++) { 1244 desc = &wc->w_desc[i]; 1245 1246 /* 1247 * We have to make sure that the total write passed in 1248 * doesn't extend past a single cluster. 1249 */ 1250 local_len = len; 1251 cluster_off = pos & (osb->s_clustersize - 1); 1252 if ((cluster_off + local_len) > osb->s_clustersize) 1253 local_len = osb->s_clustersize - cluster_off; 1254 1255 ret = ocfs2_write_cluster(mapping, &desc->c_phys, 1256 desc->c_new, 1257 desc->c_clear_unwritten, 1258 desc->c_needs_zero, 1259 data_ac, meta_ac, 1260 wc, desc->c_cpos, pos, local_len); 1261 if (ret) { 1262 mlog_errno(ret); 1263 goto out; 1264 } 1265 1266 len -= local_len; 1267 pos += local_len; 1268 } 1269 1270 ret = 0; 1271 out: 1272 return ret; 1273 } 1274 1275 /* 1276 * ocfs2_write_end() wants to know which parts of the target page it 1277 * should complete the write on. It's easiest to compute them ahead of 1278 * time when a more complete view of the write is available. 1279 */ 1280 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1281 struct ocfs2_write_ctxt *wc, 1282 loff_t pos, unsigned len, int alloc) 1283 { 1284 struct ocfs2_write_cluster_desc *desc; 1285 1286 wc->w_target_from = pos & (PAGE_SIZE - 1); 1287 wc->w_target_to = wc->w_target_from + len; 1288 1289 if (alloc == 0) 1290 return; 1291 1292 /* 1293 * Allocating write - we may have different boundaries based 1294 * on page size and cluster size. 1295 * 1296 * NOTE: We can no longer compute one value from the other as 1297 * the actual write length and user provided length may be 1298 * different. 1299 */ 1300 1301 if (wc->w_large_pages) { 1302 /* 1303 * We only care about the 1st and last cluster within 1304 * our range and whether they should be zero'd or not. Either 1305 * value may be extended out to the start/end of a 1306 * newly allocated cluster. 1307 */ 1308 desc = &wc->w_desc[0]; 1309 if (desc->c_needs_zero) 1310 ocfs2_figure_cluster_boundaries(osb, 1311 desc->c_cpos, 1312 &wc->w_target_from, 1313 NULL); 1314 1315 desc = &wc->w_desc[wc->w_clen - 1]; 1316 if (desc->c_needs_zero) 1317 ocfs2_figure_cluster_boundaries(osb, 1318 desc->c_cpos, 1319 NULL, 1320 &wc->w_target_to); 1321 } else { 1322 wc->w_target_from = 0; 1323 wc->w_target_to = PAGE_SIZE; 1324 } 1325 } 1326 1327 /* 1328 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to 1329 * do the zero work. And should not to clear UNWRITTEN since it will be cleared 1330 * by the direct io procedure. 1331 * If this is a new extent that allocated by direct io, we should mark it in 1332 * the ip_unwritten_list. 1333 */ 1334 static int ocfs2_unwritten_check(struct inode *inode, 1335 struct ocfs2_write_ctxt *wc, 1336 struct ocfs2_write_cluster_desc *desc) 1337 { 1338 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1339 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL; 1340 int ret = 0; 1341 1342 if (!desc->c_needs_zero) 1343 return 0; 1344 1345 retry: 1346 spin_lock(&oi->ip_lock); 1347 /* Needs not to zero no metter buffer or direct. The one who is zero 1348 * the cluster is doing zero. And he will clear unwritten after all 1349 * cluster io finished. */ 1350 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) { 1351 if (desc->c_cpos == ue->ue_cpos) { 1352 BUG_ON(desc->c_new); 1353 desc->c_needs_zero = 0; 1354 desc->c_clear_unwritten = 0; 1355 goto unlock; 1356 } 1357 } 1358 1359 if (wc->w_type != OCFS2_WRITE_DIRECT) 1360 goto unlock; 1361 1362 if (new == NULL) { 1363 spin_unlock(&oi->ip_lock); 1364 new = kmalloc(sizeof(struct ocfs2_unwritten_extent), 1365 GFP_NOFS); 1366 if (new == NULL) { 1367 ret = -ENOMEM; 1368 goto out; 1369 } 1370 goto retry; 1371 } 1372 /* This direct write will doing zero. */ 1373 new->ue_cpos = desc->c_cpos; 1374 new->ue_phys = desc->c_phys; 1375 desc->c_clear_unwritten = 0; 1376 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list); 1377 list_add_tail(&new->ue_node, &wc->w_unwritten_list); 1378 wc->w_unwritten_count++; 1379 new = NULL; 1380 unlock: 1381 spin_unlock(&oi->ip_lock); 1382 out: 1383 kfree(new); 1384 return ret; 1385 } 1386 1387 /* 1388 * Populate each single-cluster write descriptor in the write context 1389 * with information about the i/o to be done. 1390 * 1391 * Returns the number of clusters that will have to be allocated, as 1392 * well as a worst case estimate of the number of extent records that 1393 * would have to be created during a write to an unwritten region. 1394 */ 1395 static int ocfs2_populate_write_desc(struct inode *inode, 1396 struct ocfs2_write_ctxt *wc, 1397 unsigned int *clusters_to_alloc, 1398 unsigned int *extents_to_split) 1399 { 1400 int ret; 1401 struct ocfs2_write_cluster_desc *desc; 1402 unsigned int num_clusters = 0; 1403 unsigned int ext_flags = 0; 1404 u32 phys = 0; 1405 int i; 1406 1407 *clusters_to_alloc = 0; 1408 *extents_to_split = 0; 1409 1410 for (i = 0; i < wc->w_clen; i++) { 1411 desc = &wc->w_desc[i]; 1412 desc->c_cpos = wc->w_cpos + i; 1413 1414 if (num_clusters == 0) { 1415 /* 1416 * Need to look up the next extent record. 1417 */ 1418 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1419 &num_clusters, &ext_flags); 1420 if (ret) { 1421 mlog_errno(ret); 1422 goto out; 1423 } 1424 1425 /* We should already CoW the refcountd extent. */ 1426 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1427 1428 /* 1429 * Assume worst case - that we're writing in 1430 * the middle of the extent. 1431 * 1432 * We can assume that the write proceeds from 1433 * left to right, in which case the extent 1434 * insert code is smart enough to coalesce the 1435 * next splits into the previous records created. 1436 */ 1437 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1438 *extents_to_split = *extents_to_split + 2; 1439 } else if (phys) { 1440 /* 1441 * Only increment phys if it doesn't describe 1442 * a hole. 1443 */ 1444 phys++; 1445 } 1446 1447 /* 1448 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1449 * file that got extended. w_first_new_cpos tells us 1450 * where the newly allocated clusters are so we can 1451 * zero them. 1452 */ 1453 if (desc->c_cpos >= wc->w_first_new_cpos) { 1454 BUG_ON(phys == 0); 1455 desc->c_needs_zero = 1; 1456 } 1457 1458 desc->c_phys = phys; 1459 if (phys == 0) { 1460 desc->c_new = 1; 1461 desc->c_needs_zero = 1; 1462 desc->c_clear_unwritten = 1; 1463 *clusters_to_alloc = *clusters_to_alloc + 1; 1464 } 1465 1466 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1467 desc->c_clear_unwritten = 1; 1468 desc->c_needs_zero = 1; 1469 } 1470 1471 ret = ocfs2_unwritten_check(inode, wc, desc); 1472 if (ret) { 1473 mlog_errno(ret); 1474 goto out; 1475 } 1476 1477 num_clusters--; 1478 } 1479 1480 ret = 0; 1481 out: 1482 return ret; 1483 } 1484 1485 static int ocfs2_write_begin_inline(struct address_space *mapping, 1486 struct inode *inode, 1487 struct ocfs2_write_ctxt *wc) 1488 { 1489 int ret; 1490 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1491 struct page *page; 1492 handle_t *handle; 1493 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1494 1495 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1496 if (IS_ERR(handle)) { 1497 ret = PTR_ERR(handle); 1498 mlog_errno(ret); 1499 goto out; 1500 } 1501 1502 page = find_or_create_page(mapping, 0, GFP_NOFS); 1503 if (!page) { 1504 ocfs2_commit_trans(osb, handle); 1505 ret = -ENOMEM; 1506 mlog_errno(ret); 1507 goto out; 1508 } 1509 /* 1510 * If we don't set w_num_pages then this page won't get unlocked 1511 * and freed on cleanup of the write context. 1512 */ 1513 wc->w_pages[0] = wc->w_target_page = page; 1514 wc->w_num_pages = 1; 1515 1516 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1517 OCFS2_JOURNAL_ACCESS_WRITE); 1518 if (ret) { 1519 ocfs2_commit_trans(osb, handle); 1520 1521 mlog_errno(ret); 1522 goto out; 1523 } 1524 1525 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1526 ocfs2_set_inode_data_inline(inode, di); 1527 1528 if (!PageUptodate(page)) { 1529 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1530 if (ret) { 1531 ocfs2_commit_trans(osb, handle); 1532 1533 goto out; 1534 } 1535 } 1536 1537 wc->w_handle = handle; 1538 out: 1539 return ret; 1540 } 1541 1542 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1543 { 1544 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1545 1546 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1547 return 1; 1548 return 0; 1549 } 1550 1551 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1552 struct inode *inode, loff_t pos, 1553 unsigned len, struct page *mmap_page, 1554 struct ocfs2_write_ctxt *wc) 1555 { 1556 int ret, written = 0; 1557 loff_t end = pos + len; 1558 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1559 struct ocfs2_dinode *di = NULL; 1560 1561 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1562 len, (unsigned long long)pos, 1563 oi->ip_dyn_features); 1564 1565 /* 1566 * Handle inodes which already have inline data 1st. 1567 */ 1568 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1569 if (mmap_page == NULL && 1570 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1571 goto do_inline_write; 1572 1573 /* 1574 * The write won't fit - we have to give this inode an 1575 * inline extent list now. 1576 */ 1577 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1578 if (ret) 1579 mlog_errno(ret); 1580 goto out; 1581 } 1582 1583 /* 1584 * Check whether the inode can accept inline data. 1585 */ 1586 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1587 return 0; 1588 1589 /* 1590 * Check whether the write can fit. 1591 */ 1592 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1593 if (mmap_page || 1594 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1595 return 0; 1596 1597 do_inline_write: 1598 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1599 if (ret) { 1600 mlog_errno(ret); 1601 goto out; 1602 } 1603 1604 /* 1605 * This signals to the caller that the data can be written 1606 * inline. 1607 */ 1608 written = 1; 1609 out: 1610 return written ? written : ret; 1611 } 1612 1613 /* 1614 * This function only does anything for file systems which can't 1615 * handle sparse files. 1616 * 1617 * What we want to do here is fill in any hole between the current end 1618 * of allocation and the end of our write. That way the rest of the 1619 * write path can treat it as an non-allocating write, which has no 1620 * special case code for sparse/nonsparse files. 1621 */ 1622 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1623 struct buffer_head *di_bh, 1624 loff_t pos, unsigned len, 1625 struct ocfs2_write_ctxt *wc) 1626 { 1627 int ret; 1628 loff_t newsize = pos + len; 1629 1630 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1631 1632 if (newsize <= i_size_read(inode)) 1633 return 0; 1634 1635 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1636 if (ret) 1637 mlog_errno(ret); 1638 1639 /* There is no wc if this is call from direct. */ 1640 if (wc) 1641 wc->w_first_new_cpos = 1642 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1643 1644 return ret; 1645 } 1646 1647 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1648 loff_t pos) 1649 { 1650 int ret = 0; 1651 1652 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1653 if (pos > i_size_read(inode)) 1654 ret = ocfs2_zero_extend(inode, di_bh, pos); 1655 1656 return ret; 1657 } 1658 1659 int ocfs2_write_begin_nolock(struct address_space *mapping, 1660 loff_t pos, unsigned len, ocfs2_write_type_t type, 1661 struct page **pagep, void **fsdata, 1662 struct buffer_head *di_bh, struct page *mmap_page) 1663 { 1664 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1665 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1666 struct ocfs2_write_ctxt *wc; 1667 struct inode *inode = mapping->host; 1668 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1669 struct ocfs2_dinode *di; 1670 struct ocfs2_alloc_context *data_ac = NULL; 1671 struct ocfs2_alloc_context *meta_ac = NULL; 1672 handle_t *handle; 1673 struct ocfs2_extent_tree et; 1674 int try_free = 1, ret1; 1675 1676 try_again: 1677 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh); 1678 if (ret) { 1679 mlog_errno(ret); 1680 return ret; 1681 } 1682 1683 if (ocfs2_supports_inline_data(osb)) { 1684 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1685 mmap_page, wc); 1686 if (ret == 1) { 1687 ret = 0; 1688 goto success; 1689 } 1690 if (ret < 0) { 1691 mlog_errno(ret); 1692 goto out; 1693 } 1694 } 1695 1696 /* Direct io change i_size late, should not zero tail here. */ 1697 if (type != OCFS2_WRITE_DIRECT) { 1698 if (ocfs2_sparse_alloc(osb)) 1699 ret = ocfs2_zero_tail(inode, di_bh, pos); 1700 else 1701 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 1702 len, wc); 1703 if (ret) { 1704 mlog_errno(ret); 1705 goto out; 1706 } 1707 } 1708 1709 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1710 if (ret < 0) { 1711 mlog_errno(ret); 1712 goto out; 1713 } else if (ret == 1) { 1714 clusters_need = wc->w_clen; 1715 ret = ocfs2_refcount_cow(inode, di_bh, 1716 wc->w_cpos, wc->w_clen, UINT_MAX); 1717 if (ret) { 1718 mlog_errno(ret); 1719 goto out; 1720 } 1721 } 1722 1723 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1724 &extents_to_split); 1725 if (ret) { 1726 mlog_errno(ret); 1727 goto out; 1728 } 1729 clusters_need += clusters_to_alloc; 1730 1731 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1732 1733 trace_ocfs2_write_begin_nolock( 1734 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1735 (long long)i_size_read(inode), 1736 le32_to_cpu(di->i_clusters), 1737 pos, len, type, mmap_page, 1738 clusters_to_alloc, extents_to_split); 1739 1740 /* 1741 * We set w_target_from, w_target_to here so that 1742 * ocfs2_write_end() knows which range in the target page to 1743 * write out. An allocation requires that we write the entire 1744 * cluster range. 1745 */ 1746 if (clusters_to_alloc || extents_to_split) { 1747 /* 1748 * XXX: We are stretching the limits of 1749 * ocfs2_lock_allocators(). It greatly over-estimates 1750 * the work to be done. 1751 */ 1752 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1753 wc->w_di_bh); 1754 ret = ocfs2_lock_allocators(inode, &et, 1755 clusters_to_alloc, extents_to_split, 1756 &data_ac, &meta_ac); 1757 if (ret) { 1758 mlog_errno(ret); 1759 goto out; 1760 } 1761 1762 if (data_ac) 1763 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1764 1765 credits = ocfs2_calc_extend_credits(inode->i_sb, 1766 &di->id2.i_list); 1767 } else if (type == OCFS2_WRITE_DIRECT) 1768 /* direct write needs not to start trans if no extents alloc. */ 1769 goto success; 1770 1771 /* 1772 * We have to zero sparse allocated clusters, unwritten extent clusters, 1773 * and non-sparse clusters we just extended. For non-sparse writes, 1774 * we know zeros will only be needed in the first and/or last cluster. 1775 */ 1776 if (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1777 wc->w_desc[wc->w_clen - 1].c_needs_zero)) 1778 cluster_of_pages = 1; 1779 else 1780 cluster_of_pages = 0; 1781 1782 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1783 1784 handle = ocfs2_start_trans(osb, credits); 1785 if (IS_ERR(handle)) { 1786 ret = PTR_ERR(handle); 1787 mlog_errno(ret); 1788 goto out; 1789 } 1790 1791 wc->w_handle = handle; 1792 1793 if (clusters_to_alloc) { 1794 ret = dquot_alloc_space_nodirty(inode, 1795 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1796 if (ret) 1797 goto out_commit; 1798 } 1799 1800 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1801 OCFS2_JOURNAL_ACCESS_WRITE); 1802 if (ret) { 1803 mlog_errno(ret); 1804 goto out_quota; 1805 } 1806 1807 /* 1808 * Fill our page array first. That way we've grabbed enough so 1809 * that we can zero and flush if we error after adding the 1810 * extent. 1811 */ 1812 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1813 cluster_of_pages, mmap_page); 1814 if (ret && ret != -EAGAIN) { 1815 mlog_errno(ret); 1816 goto out_quota; 1817 } 1818 1819 /* 1820 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 1821 * the target page. In this case, we exit with no error and no target 1822 * page. This will trigger the caller, page_mkwrite(), to re-try 1823 * the operation. 1824 */ 1825 if (ret == -EAGAIN) { 1826 BUG_ON(wc->w_target_page); 1827 ret = 0; 1828 goto out_quota; 1829 } 1830 1831 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1832 len); 1833 if (ret) { 1834 mlog_errno(ret); 1835 goto out_quota; 1836 } 1837 1838 if (data_ac) 1839 ocfs2_free_alloc_context(data_ac); 1840 if (meta_ac) 1841 ocfs2_free_alloc_context(meta_ac); 1842 1843 success: 1844 if (pagep) 1845 *pagep = wc->w_target_page; 1846 *fsdata = wc; 1847 return 0; 1848 out_quota: 1849 if (clusters_to_alloc) 1850 dquot_free_space(inode, 1851 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1852 out_commit: 1853 ocfs2_commit_trans(osb, handle); 1854 1855 out: 1856 /* 1857 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(), 1858 * even in case of error here like ENOSPC and ENOMEM. So, we need 1859 * to unlock the target page manually to prevent deadlocks when 1860 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED 1861 * to VM code. 1862 */ 1863 if (wc->w_target_locked) 1864 unlock_page(mmap_page); 1865 1866 ocfs2_free_write_ctxt(inode, wc); 1867 1868 if (data_ac) { 1869 ocfs2_free_alloc_context(data_ac); 1870 data_ac = NULL; 1871 } 1872 if (meta_ac) { 1873 ocfs2_free_alloc_context(meta_ac); 1874 meta_ac = NULL; 1875 } 1876 1877 if (ret == -ENOSPC && try_free) { 1878 /* 1879 * Try to free some truncate log so that we can have enough 1880 * clusters to allocate. 1881 */ 1882 try_free = 0; 1883 1884 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1885 if (ret1 == 1) 1886 goto try_again; 1887 1888 if (ret1 < 0) 1889 mlog_errno(ret1); 1890 } 1891 1892 return ret; 1893 } 1894 1895 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1896 loff_t pos, unsigned len, unsigned flags, 1897 struct page **pagep, void **fsdata) 1898 { 1899 int ret; 1900 struct buffer_head *di_bh = NULL; 1901 struct inode *inode = mapping->host; 1902 1903 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1904 if (ret) { 1905 mlog_errno(ret); 1906 return ret; 1907 } 1908 1909 /* 1910 * Take alloc sem here to prevent concurrent lookups. That way 1911 * the mapping, zeroing and tree manipulation within 1912 * ocfs2_write() will be safe against ->readpage(). This 1913 * should also serve to lock out allocation from a shared 1914 * writeable region. 1915 */ 1916 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1917 1918 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER, 1919 pagep, fsdata, di_bh, NULL); 1920 if (ret) { 1921 mlog_errno(ret); 1922 goto out_fail; 1923 } 1924 1925 brelse(di_bh); 1926 1927 return 0; 1928 1929 out_fail: 1930 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1931 1932 brelse(di_bh); 1933 ocfs2_inode_unlock(inode, 1); 1934 1935 return ret; 1936 } 1937 1938 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1939 unsigned len, unsigned *copied, 1940 struct ocfs2_dinode *di, 1941 struct ocfs2_write_ctxt *wc) 1942 { 1943 void *kaddr; 1944 1945 if (unlikely(*copied < len)) { 1946 if (!PageUptodate(wc->w_target_page)) { 1947 *copied = 0; 1948 return; 1949 } 1950 } 1951 1952 kaddr = kmap_atomic(wc->w_target_page); 1953 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1954 kunmap_atomic(kaddr); 1955 1956 trace_ocfs2_write_end_inline( 1957 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1958 (unsigned long long)pos, *copied, 1959 le16_to_cpu(di->id2.i_data.id_count), 1960 le16_to_cpu(di->i_dyn_features)); 1961 } 1962 1963 int ocfs2_write_end_nolock(struct address_space *mapping, 1964 loff_t pos, unsigned len, unsigned copied, void *fsdata) 1965 { 1966 int i, ret; 1967 unsigned from, to, start = pos & (PAGE_SIZE - 1); 1968 struct inode *inode = mapping->host; 1969 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1970 struct ocfs2_write_ctxt *wc = fsdata; 1971 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1972 handle_t *handle = wc->w_handle; 1973 struct page *tmppage; 1974 1975 BUG_ON(!list_empty(&wc->w_unwritten_list)); 1976 1977 if (handle) { 1978 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), 1979 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); 1980 if (ret) { 1981 copied = ret; 1982 mlog_errno(ret); 1983 goto out; 1984 } 1985 } 1986 1987 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1988 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1989 goto out_write_size; 1990 } 1991 1992 if (unlikely(copied < len) && wc->w_target_page) { 1993 if (!PageUptodate(wc->w_target_page)) 1994 copied = 0; 1995 1996 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1997 start+len); 1998 } 1999 if (wc->w_target_page) 2000 flush_dcache_page(wc->w_target_page); 2001 2002 for(i = 0; i < wc->w_num_pages; i++) { 2003 tmppage = wc->w_pages[i]; 2004 2005 /* This is the direct io target page. */ 2006 if (tmppage == NULL) 2007 continue; 2008 2009 if (tmppage == wc->w_target_page) { 2010 from = wc->w_target_from; 2011 to = wc->w_target_to; 2012 2013 BUG_ON(from > PAGE_SIZE || 2014 to > PAGE_SIZE || 2015 to < from); 2016 } else { 2017 /* 2018 * Pages adjacent to the target (if any) imply 2019 * a hole-filling write in which case we want 2020 * to flush their entire range. 2021 */ 2022 from = 0; 2023 to = PAGE_SIZE; 2024 } 2025 2026 if (page_has_buffers(tmppage)) { 2027 if (handle && ocfs2_should_order_data(inode)) { 2028 loff_t start_byte = 2029 ((loff_t)tmppage->index << PAGE_SHIFT) + 2030 from; 2031 loff_t length = to - from; 2032 ocfs2_jbd2_inode_add_write(handle, inode, 2033 start_byte, length); 2034 } 2035 block_commit_write(tmppage, from, to); 2036 } 2037 } 2038 2039 out_write_size: 2040 /* Direct io do not update i_size here. */ 2041 if (wc->w_type != OCFS2_WRITE_DIRECT) { 2042 pos += copied; 2043 if (pos > i_size_read(inode)) { 2044 i_size_write(inode, pos); 2045 mark_inode_dirty(inode); 2046 } 2047 inode->i_blocks = ocfs2_inode_sector_count(inode); 2048 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2049 inode->i_mtime = inode->i_ctime = current_time(inode); 2050 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2051 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2052 if (handle) 2053 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2054 } 2055 if (handle) 2056 ocfs2_journal_dirty(handle, wc->w_di_bh); 2057 2058 out: 2059 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2060 * lock, or it will cause a deadlock since journal commit threads holds 2061 * this lock and will ask for the page lock when flushing the data. 2062 * put it here to preserve the unlock order. 2063 */ 2064 ocfs2_unlock_pages(wc); 2065 2066 if (handle) 2067 ocfs2_commit_trans(osb, handle); 2068 2069 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2070 2071 brelse(wc->w_di_bh); 2072 kfree(wc); 2073 2074 return copied; 2075 } 2076 2077 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2078 loff_t pos, unsigned len, unsigned copied, 2079 struct page *page, void *fsdata) 2080 { 2081 int ret; 2082 struct inode *inode = mapping->host; 2083 2084 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata); 2085 2086 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2087 ocfs2_inode_unlock(inode, 1); 2088 2089 return ret; 2090 } 2091 2092 struct ocfs2_dio_write_ctxt { 2093 struct list_head dw_zero_list; 2094 unsigned dw_zero_count; 2095 int dw_orphaned; 2096 pid_t dw_writer_pid; 2097 }; 2098 2099 static struct ocfs2_dio_write_ctxt * 2100 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc) 2101 { 2102 struct ocfs2_dio_write_ctxt *dwc = NULL; 2103 2104 if (bh->b_private) 2105 return bh->b_private; 2106 2107 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS); 2108 if (dwc == NULL) 2109 return NULL; 2110 INIT_LIST_HEAD(&dwc->dw_zero_list); 2111 dwc->dw_zero_count = 0; 2112 dwc->dw_orphaned = 0; 2113 dwc->dw_writer_pid = task_pid_nr(current); 2114 bh->b_private = dwc; 2115 *alloc = 1; 2116 2117 return dwc; 2118 } 2119 2120 static void ocfs2_dio_free_write_ctx(struct inode *inode, 2121 struct ocfs2_dio_write_ctxt *dwc) 2122 { 2123 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list); 2124 kfree(dwc); 2125 } 2126 2127 /* 2128 * TODO: Make this into a generic get_blocks function. 2129 * 2130 * From do_direct_io in direct-io.c: 2131 * "So what we do is to permit the ->get_blocks function to populate 2132 * bh.b_size with the size of IO which is permitted at this offset and 2133 * this i_blkbits." 2134 * 2135 * This function is called directly from get_more_blocks in direct-io.c. 2136 * 2137 * called like this: dio->get_blocks(dio->inode, fs_startblk, 2138 * fs_count, map_bh, dio->rw == WRITE); 2139 */ 2140 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock, 2141 struct buffer_head *bh_result, int create) 2142 { 2143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2144 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2145 struct ocfs2_write_ctxt *wc; 2146 struct ocfs2_write_cluster_desc *desc = NULL; 2147 struct ocfs2_dio_write_ctxt *dwc = NULL; 2148 struct buffer_head *di_bh = NULL; 2149 u64 p_blkno; 2150 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits; 2151 loff_t pos = iblock << i_blkbits; 2152 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits; 2153 unsigned len, total_len = bh_result->b_size; 2154 int ret = 0, first_get_block = 0; 2155 2156 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1)); 2157 len = min(total_len, len); 2158 2159 /* 2160 * bh_result->b_size is count in get_more_blocks according to write 2161 * "pos" and "end", we need map twice to return different buffer state: 2162 * 1. area in file size, not set NEW; 2163 * 2. area out file size, set NEW. 2164 * 2165 * iblock endblk 2166 * |--------|---------|---------|--------- 2167 * |<-------area in file------->| 2168 */ 2169 2170 if ((iblock <= endblk) && 2171 ((iblock + ((len - 1) >> i_blkbits)) > endblk)) 2172 len = (endblk - iblock + 1) << i_blkbits; 2173 2174 mlog(0, "get block of %lu at %llu:%u req %u\n", 2175 inode->i_ino, pos, len, total_len); 2176 2177 /* 2178 * Because we need to change file size in ocfs2_dio_end_io_write(), or 2179 * we may need to add it to orphan dir. So can not fall to fast path 2180 * while file size will be changed. 2181 */ 2182 if (pos + total_len <= i_size_read(inode)) { 2183 2184 /* This is the fast path for re-write. */ 2185 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create); 2186 if (buffer_mapped(bh_result) && 2187 !buffer_new(bh_result) && 2188 ret == 0) 2189 goto out; 2190 2191 /* Clear state set by ocfs2_get_block. */ 2192 bh_result->b_state = 0; 2193 } 2194 2195 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block); 2196 if (unlikely(dwc == NULL)) { 2197 ret = -ENOMEM; 2198 mlog_errno(ret); 2199 goto out; 2200 } 2201 2202 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) > 2203 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) && 2204 !dwc->dw_orphaned) { 2205 /* 2206 * when we are going to alloc extents beyond file size, add the 2207 * inode to orphan dir, so we can recall those spaces when 2208 * system crashed during write. 2209 */ 2210 ret = ocfs2_add_inode_to_orphan(osb, inode); 2211 if (ret < 0) { 2212 mlog_errno(ret); 2213 goto out; 2214 } 2215 dwc->dw_orphaned = 1; 2216 } 2217 2218 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2219 if (ret) { 2220 mlog_errno(ret); 2221 goto out; 2222 } 2223 2224 down_write(&oi->ip_alloc_sem); 2225 2226 if (first_get_block) { 2227 if (ocfs2_sparse_alloc(osb)) 2228 ret = ocfs2_zero_tail(inode, di_bh, pos); 2229 else 2230 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 2231 total_len, NULL); 2232 if (ret < 0) { 2233 mlog_errno(ret); 2234 goto unlock; 2235 } 2236 } 2237 2238 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len, 2239 OCFS2_WRITE_DIRECT, NULL, 2240 (void **)&wc, di_bh, NULL); 2241 if (ret) { 2242 mlog_errno(ret); 2243 goto unlock; 2244 } 2245 2246 desc = &wc->w_desc[0]; 2247 2248 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys); 2249 BUG_ON(p_blkno == 0); 2250 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1); 2251 2252 map_bh(bh_result, inode->i_sb, p_blkno); 2253 bh_result->b_size = len; 2254 if (desc->c_needs_zero) 2255 set_buffer_new(bh_result); 2256 2257 if (iblock > endblk) 2258 set_buffer_new(bh_result); 2259 2260 /* May sleep in end_io. It should not happen in a irq context. So defer 2261 * it to dio work queue. */ 2262 set_buffer_defer_completion(bh_result); 2263 2264 if (!list_empty(&wc->w_unwritten_list)) { 2265 struct ocfs2_unwritten_extent *ue = NULL; 2266 2267 ue = list_first_entry(&wc->w_unwritten_list, 2268 struct ocfs2_unwritten_extent, 2269 ue_node); 2270 BUG_ON(ue->ue_cpos != desc->c_cpos); 2271 /* The physical address may be 0, fill it. */ 2272 ue->ue_phys = desc->c_phys; 2273 2274 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list); 2275 dwc->dw_zero_count += wc->w_unwritten_count; 2276 } 2277 2278 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc); 2279 BUG_ON(ret != len); 2280 ret = 0; 2281 unlock: 2282 up_write(&oi->ip_alloc_sem); 2283 ocfs2_inode_unlock(inode, 1); 2284 brelse(di_bh); 2285 out: 2286 if (ret < 0) 2287 ret = -EIO; 2288 return ret; 2289 } 2290 2291 static int ocfs2_dio_end_io_write(struct inode *inode, 2292 struct ocfs2_dio_write_ctxt *dwc, 2293 loff_t offset, 2294 ssize_t bytes) 2295 { 2296 struct ocfs2_cached_dealloc_ctxt dealloc; 2297 struct ocfs2_extent_tree et; 2298 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2299 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2300 struct ocfs2_unwritten_extent *ue = NULL; 2301 struct buffer_head *di_bh = NULL; 2302 struct ocfs2_dinode *di; 2303 struct ocfs2_alloc_context *data_ac = NULL; 2304 struct ocfs2_alloc_context *meta_ac = NULL; 2305 handle_t *handle = NULL; 2306 loff_t end = offset + bytes; 2307 int ret = 0, credits = 0, locked = 0; 2308 2309 ocfs2_init_dealloc_ctxt(&dealloc); 2310 2311 /* We do clear unwritten, delete orphan, change i_size here. If neither 2312 * of these happen, we can skip all this. */ 2313 if (list_empty(&dwc->dw_zero_list) && 2314 end <= i_size_read(inode) && 2315 !dwc->dw_orphaned) 2316 goto out; 2317 2318 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we 2319 * are in that context. */ 2320 if (dwc->dw_writer_pid != task_pid_nr(current)) { 2321 inode_lock(inode); 2322 locked = 1; 2323 } 2324 2325 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2326 if (ret < 0) { 2327 mlog_errno(ret); 2328 goto out; 2329 } 2330 2331 down_write(&oi->ip_alloc_sem); 2332 2333 /* Delete orphan before acquire i_mutex. */ 2334 if (dwc->dw_orphaned) { 2335 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current)); 2336 2337 end = end > i_size_read(inode) ? end : 0; 2338 2339 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 2340 !!end, end); 2341 if (ret < 0) 2342 mlog_errno(ret); 2343 } 2344 2345 di = (struct ocfs2_dinode *)di_bh->b_data; 2346 2347 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 2348 2349 /* Attach dealloc with extent tree in case that we may reuse extents 2350 * which are already unlinked from current extent tree due to extent 2351 * rotation and merging. 2352 */ 2353 et.et_dealloc = &dealloc; 2354 2355 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2, 2356 &data_ac, &meta_ac); 2357 if (ret) { 2358 mlog_errno(ret); 2359 goto unlock; 2360 } 2361 2362 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list); 2363 2364 handle = ocfs2_start_trans(osb, credits); 2365 if (IS_ERR(handle)) { 2366 ret = PTR_ERR(handle); 2367 mlog_errno(ret); 2368 goto unlock; 2369 } 2370 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 2371 OCFS2_JOURNAL_ACCESS_WRITE); 2372 if (ret) { 2373 mlog_errno(ret); 2374 goto commit; 2375 } 2376 2377 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) { 2378 ret = ocfs2_mark_extent_written(inode, &et, handle, 2379 ue->ue_cpos, 1, 2380 ue->ue_phys, 2381 meta_ac, &dealloc); 2382 if (ret < 0) { 2383 mlog_errno(ret); 2384 break; 2385 } 2386 } 2387 2388 if (end > i_size_read(inode)) { 2389 ret = ocfs2_set_inode_size(handle, inode, di_bh, end); 2390 if (ret < 0) 2391 mlog_errno(ret); 2392 } 2393 commit: 2394 ocfs2_commit_trans(osb, handle); 2395 unlock: 2396 up_write(&oi->ip_alloc_sem); 2397 ocfs2_inode_unlock(inode, 1); 2398 brelse(di_bh); 2399 out: 2400 if (data_ac) 2401 ocfs2_free_alloc_context(data_ac); 2402 if (meta_ac) 2403 ocfs2_free_alloc_context(meta_ac); 2404 ocfs2_run_deallocs(osb, &dealloc); 2405 if (locked) 2406 inode_unlock(inode); 2407 ocfs2_dio_free_write_ctx(inode, dwc); 2408 2409 return ret; 2410 } 2411 2412 /* 2413 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 2414 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 2415 * to protect io on one node from truncation on another. 2416 */ 2417 static int ocfs2_dio_end_io(struct kiocb *iocb, 2418 loff_t offset, 2419 ssize_t bytes, 2420 void *private) 2421 { 2422 struct inode *inode = file_inode(iocb->ki_filp); 2423 int level; 2424 int ret = 0; 2425 2426 /* this io's submitter should not have unlocked this before we could */ 2427 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 2428 2429 if (bytes <= 0) 2430 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld", 2431 (long long)bytes); 2432 if (private) { 2433 if (bytes > 0) 2434 ret = ocfs2_dio_end_io_write(inode, private, offset, 2435 bytes); 2436 else 2437 ocfs2_dio_free_write_ctx(inode, private); 2438 } 2439 2440 ocfs2_iocb_clear_rw_locked(iocb); 2441 2442 level = ocfs2_iocb_rw_locked_level(iocb); 2443 ocfs2_rw_unlock(inode, level); 2444 return ret; 2445 } 2446 2447 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2448 { 2449 struct file *file = iocb->ki_filp; 2450 struct inode *inode = file->f_mapping->host; 2451 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2452 get_block_t *get_block; 2453 2454 /* 2455 * Fallback to buffered I/O if we see an inode without 2456 * extents. 2457 */ 2458 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2459 return 0; 2460 2461 /* Fallback to buffered I/O if we do not support append dio. */ 2462 if (iocb->ki_pos + iter->count > i_size_read(inode) && 2463 !ocfs2_supports_append_dio(osb)) 2464 return 0; 2465 2466 if (iov_iter_rw(iter) == READ) 2467 get_block = ocfs2_lock_get_block; 2468 else 2469 get_block = ocfs2_dio_wr_get_block; 2470 2471 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2472 iter, get_block, 2473 ocfs2_dio_end_io, NULL, 0); 2474 } 2475 2476 const struct address_space_operations ocfs2_aops = { 2477 .readpage = ocfs2_readpage, 2478 .readpages = ocfs2_readpages, 2479 .writepage = ocfs2_writepage, 2480 .write_begin = ocfs2_write_begin, 2481 .write_end = ocfs2_write_end, 2482 .bmap = ocfs2_bmap, 2483 .direct_IO = ocfs2_direct_IO, 2484 .invalidatepage = block_invalidatepage, 2485 .releasepage = ocfs2_releasepage, 2486 .migratepage = buffer_migrate_page, 2487 .is_partially_uptodate = block_is_partially_uptodate, 2488 .error_remove_page = generic_error_remove_page, 2489 }; 2490