xref: /openbmc/linux/fs/ocfs2/aops.c (revision a36954f5)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33 
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50 
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55 
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 				   struct buffer_head *bh_result, int create)
58 {
59 	int err = -EIO;
60 	int status;
61 	struct ocfs2_dinode *fe = NULL;
62 	struct buffer_head *bh = NULL;
63 	struct buffer_head *buffer_cache_bh = NULL;
64 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 	void *kaddr;
66 
67 	trace_ocfs2_symlink_get_block(
68 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
69 			(unsigned long long)iblock, bh_result, create);
70 
71 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72 
73 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 		     (unsigned long long)iblock);
76 		goto bail;
77 	}
78 
79 	status = ocfs2_read_inode_block(inode, &bh);
80 	if (status < 0) {
81 		mlog_errno(status);
82 		goto bail;
83 	}
84 	fe = (struct ocfs2_dinode *) bh->b_data;
85 
86 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 						    le32_to_cpu(fe->i_clusters))) {
88 		err = -ENOMEM;
89 		mlog(ML_ERROR, "block offset is outside the allocated size: "
90 		     "%llu\n", (unsigned long long)iblock);
91 		goto bail;
92 	}
93 
94 	/* We don't use the page cache to create symlink data, so if
95 	 * need be, copy it over from the buffer cache. */
96 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 			    iblock;
99 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 		if (!buffer_cache_bh) {
101 			err = -ENOMEM;
102 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 			goto bail;
104 		}
105 
106 		/* we haven't locked out transactions, so a commit
107 		 * could've happened. Since we've got a reference on
108 		 * the bh, even if it commits while we're doing the
109 		 * copy, the data is still good. */
110 		if (buffer_jbd(buffer_cache_bh)
111 		    && ocfs2_inode_is_new(inode)) {
112 			kaddr = kmap_atomic(bh_result->b_page);
113 			if (!kaddr) {
114 				mlog(ML_ERROR, "couldn't kmap!\n");
115 				goto bail;
116 			}
117 			memcpy(kaddr + (bh_result->b_size * iblock),
118 			       buffer_cache_bh->b_data,
119 			       bh_result->b_size);
120 			kunmap_atomic(kaddr);
121 			set_buffer_uptodate(bh_result);
122 		}
123 		brelse(buffer_cache_bh);
124 	}
125 
126 	map_bh(bh_result, inode->i_sb,
127 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128 
129 	err = 0;
130 
131 bail:
132 	brelse(bh);
133 
134 	return err;
135 }
136 
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 		    struct buffer_head *bh_result, int create)
139 {
140 	int err = 0;
141 	unsigned int ext_flags;
142 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 	u64 p_blkno, count, past_eof;
144 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145 
146 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 			      (unsigned long long)iblock, bh_result, create);
148 
149 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 		     inode, inode->i_ino);
152 
153 	if (S_ISLNK(inode->i_mode)) {
154 		/* this always does I/O for some reason. */
155 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 		goto bail;
157 	}
158 
159 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 					  &ext_flags);
161 	if (err) {
162 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 		     (unsigned long long)p_blkno);
165 		goto bail;
166 	}
167 
168 	if (max_blocks < count)
169 		count = max_blocks;
170 
171 	/*
172 	 * ocfs2 never allocates in this function - the only time we
173 	 * need to use BH_New is when we're extending i_size on a file
174 	 * system which doesn't support holes, in which case BH_New
175 	 * allows __block_write_begin() to zero.
176 	 *
177 	 * If we see this on a sparse file system, then a truncate has
178 	 * raced us and removed the cluster. In this case, we clear
179 	 * the buffers dirty and uptodate bits and let the buffer code
180 	 * ignore it as a hole.
181 	 */
182 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 		clear_buffer_dirty(bh_result);
184 		clear_buffer_uptodate(bh_result);
185 		goto bail;
186 	}
187 
188 	/* Treat the unwritten extent as a hole for zeroing purposes. */
189 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190 		map_bh(bh_result, inode->i_sb, p_blkno);
191 
192 	bh_result->b_size = count << inode->i_blkbits;
193 
194 	if (!ocfs2_sparse_alloc(osb)) {
195 		if (p_blkno == 0) {
196 			err = -EIO;
197 			mlog(ML_ERROR,
198 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 			     (unsigned long long)iblock,
200 			     (unsigned long long)p_blkno,
201 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 			dump_stack();
204 			goto bail;
205 		}
206 	}
207 
208 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209 
210 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 				  (unsigned long long)past_eof);
212 	if (create && (iblock >= past_eof))
213 		set_buffer_new(bh_result);
214 
215 bail:
216 	if (err < 0)
217 		err = -EIO;
218 
219 	return err;
220 }
221 
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 			   struct buffer_head *di_bh)
224 {
225 	void *kaddr;
226 	loff_t size;
227 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228 
229 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
231 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 		return -EROFS;
233 	}
234 
235 	size = i_size_read(inode);
236 
237 	if (size > PAGE_SIZE ||
238 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239 		ocfs2_error(inode->i_sb,
240 			    "Inode %llu has with inline data has bad size: %Lu\n",
241 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 			    (unsigned long long)size);
243 		return -EROFS;
244 	}
245 
246 	kaddr = kmap_atomic(page);
247 	if (size)
248 		memcpy(kaddr, di->id2.i_data.id_data, size);
249 	/* Clear the remaining part of the page */
250 	memset(kaddr + size, 0, PAGE_SIZE - size);
251 	flush_dcache_page(page);
252 	kunmap_atomic(kaddr);
253 
254 	SetPageUptodate(page);
255 
256 	return 0;
257 }
258 
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261 	int ret;
262 	struct buffer_head *di_bh = NULL;
263 
264 	BUG_ON(!PageLocked(page));
265 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266 
267 	ret = ocfs2_read_inode_block(inode, &di_bh);
268 	if (ret) {
269 		mlog_errno(ret);
270 		goto out;
271 	}
272 
273 	ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275 	unlock_page(page);
276 
277 	brelse(di_bh);
278 	return ret;
279 }
280 
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283 	struct inode *inode = page->mapping->host;
284 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
285 	loff_t start = (loff_t)page->index << PAGE_SHIFT;
286 	int ret, unlock = 1;
287 
288 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 			     (page ? page->index : 0));
290 
291 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292 	if (ret != 0) {
293 		if (ret == AOP_TRUNCATED_PAGE)
294 			unlock = 0;
295 		mlog_errno(ret);
296 		goto out;
297 	}
298 
299 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300 		/*
301 		 * Unlock the page and cycle ip_alloc_sem so that we don't
302 		 * busyloop waiting for ip_alloc_sem to unlock
303 		 */
304 		ret = AOP_TRUNCATED_PAGE;
305 		unlock_page(page);
306 		unlock = 0;
307 		down_read(&oi->ip_alloc_sem);
308 		up_read(&oi->ip_alloc_sem);
309 		goto out_inode_unlock;
310 	}
311 
312 	/*
313 	 * i_size might have just been updated as we grabed the meta lock.  We
314 	 * might now be discovering a truncate that hit on another node.
315 	 * block_read_full_page->get_block freaks out if it is asked to read
316 	 * beyond the end of a file, so we check here.  Callers
317 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 	 * and notice that the page they just read isn't needed.
319 	 *
320 	 * XXX sys_readahead() seems to get that wrong?
321 	 */
322 	if (start >= i_size_read(inode)) {
323 		zero_user(page, 0, PAGE_SIZE);
324 		SetPageUptodate(page);
325 		ret = 0;
326 		goto out_alloc;
327 	}
328 
329 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 		ret = ocfs2_readpage_inline(inode, page);
331 	else
332 		ret = block_read_full_page(page, ocfs2_get_block);
333 	unlock = 0;
334 
335 out_alloc:
336 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338 	ocfs2_inode_unlock(inode, 0);
339 out:
340 	if (unlock)
341 		unlock_page(page);
342 	return ret;
343 }
344 
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 			   struct list_head *pages, unsigned nr_pages)
356 {
357 	int ret, err = -EIO;
358 	struct inode *inode = mapping->host;
359 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 	loff_t start;
361 	struct page *last;
362 
363 	/*
364 	 * Use the nonblocking flag for the dlm code to avoid page
365 	 * lock inversion, but don't bother with retrying.
366 	 */
367 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 	if (ret)
369 		return err;
370 
371 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 		ocfs2_inode_unlock(inode, 0);
373 		return err;
374 	}
375 
376 	/*
377 	 * Don't bother with inline-data. There isn't anything
378 	 * to read-ahead in that case anyway...
379 	 */
380 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 		goto out_unlock;
382 
383 	/*
384 	 * Check whether a remote node truncated this file - we just
385 	 * drop out in that case as it's not worth handling here.
386 	 */
387 	last = list_entry(pages->prev, struct page, lru);
388 	start = (loff_t)last->index << PAGE_SHIFT;
389 	if (start >= i_size_read(inode))
390 		goto out_unlock;
391 
392 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393 
394 out_unlock:
395 	up_read(&oi->ip_alloc_sem);
396 	ocfs2_inode_unlock(inode, 0);
397 
398 	return err;
399 }
400 
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414 	trace_ocfs2_writepage(
415 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 		page->index);
417 
418 	return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420 
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(	handle_t *handle,
426 			struct buffer_head *head,
427 			unsigned from,
428 			unsigned to,
429 			int *partial,
430 			int (*fn)(	handle_t *handle,
431 					struct buffer_head *bh))
432 {
433 	struct buffer_head *bh;
434 	unsigned block_start, block_end;
435 	unsigned blocksize = head->b_size;
436 	int err, ret = 0;
437 	struct buffer_head *next;
438 
439 	for (	bh = head, block_start = 0;
440 		ret == 0 && (bh != head || !block_start);
441 	    	block_start = block_end, bh = next)
442 	{
443 		next = bh->b_this_page;
444 		block_end = block_start + blocksize;
445 		if (block_end <= from || block_start >= to) {
446 			if (partial && !buffer_uptodate(bh))
447 				*partial = 1;
448 			continue;
449 		}
450 		err = (*fn)(handle, bh);
451 		if (!ret)
452 			ret = err;
453 	}
454 	return ret;
455 }
456 
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459 	sector_t status;
460 	u64 p_blkno = 0;
461 	int err = 0;
462 	struct inode *inode = mapping->host;
463 
464 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 			 (unsigned long long)block);
466 
467 	/*
468 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
469 	 * bypasseѕ the file system for actual I/O.  We really can't allow
470 	 * that on refcounted inodes, so we have to skip out here.  And yes,
471 	 * 0 is the magic code for a bmap error..
472 	 */
473 	if (ocfs2_is_refcount_inode(inode))
474 		return 0;
475 
476 	/* We don't need to lock journal system files, since they aren't
477 	 * accessed concurrently from multiple nodes.
478 	 */
479 	if (!INODE_JOURNAL(inode)) {
480 		err = ocfs2_inode_lock(inode, NULL, 0);
481 		if (err) {
482 			if (err != -ENOENT)
483 				mlog_errno(err);
484 			goto bail;
485 		}
486 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
487 	}
488 
489 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
490 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
491 						  NULL);
492 
493 	if (!INODE_JOURNAL(inode)) {
494 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
495 		ocfs2_inode_unlock(inode, 0);
496 	}
497 
498 	if (err) {
499 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
500 		     (unsigned long long)block);
501 		mlog_errno(err);
502 		goto bail;
503 	}
504 
505 bail:
506 	status = err ? 0 : p_blkno;
507 
508 	return status;
509 }
510 
511 static int ocfs2_releasepage(struct page *page, gfp_t wait)
512 {
513 	if (!page_has_buffers(page))
514 		return 0;
515 	return try_to_free_buffers(page);
516 }
517 
518 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
519 					    u32 cpos,
520 					    unsigned int *start,
521 					    unsigned int *end)
522 {
523 	unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
524 
525 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
526 		unsigned int cpp;
527 
528 		cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
529 
530 		cluster_start = cpos % cpp;
531 		cluster_start = cluster_start << osb->s_clustersize_bits;
532 
533 		cluster_end = cluster_start + osb->s_clustersize;
534 	}
535 
536 	BUG_ON(cluster_start > PAGE_SIZE);
537 	BUG_ON(cluster_end > PAGE_SIZE);
538 
539 	if (start)
540 		*start = cluster_start;
541 	if (end)
542 		*end = cluster_end;
543 }
544 
545 /*
546  * 'from' and 'to' are the region in the page to avoid zeroing.
547  *
548  * If pagesize > clustersize, this function will avoid zeroing outside
549  * of the cluster boundary.
550  *
551  * from == to == 0 is code for "zero the entire cluster region"
552  */
553 static void ocfs2_clear_page_regions(struct page *page,
554 				     struct ocfs2_super *osb, u32 cpos,
555 				     unsigned from, unsigned to)
556 {
557 	void *kaddr;
558 	unsigned int cluster_start, cluster_end;
559 
560 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
561 
562 	kaddr = kmap_atomic(page);
563 
564 	if (from || to) {
565 		if (from > cluster_start)
566 			memset(kaddr + cluster_start, 0, from - cluster_start);
567 		if (to < cluster_end)
568 			memset(kaddr + to, 0, cluster_end - to);
569 	} else {
570 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
571 	}
572 
573 	kunmap_atomic(kaddr);
574 }
575 
576 /*
577  * Nonsparse file systems fully allocate before we get to the write
578  * code. This prevents ocfs2_write() from tagging the write as an
579  * allocating one, which means ocfs2_map_page_blocks() might try to
580  * read-in the blocks at the tail of our file. Avoid reading them by
581  * testing i_size against each block offset.
582  */
583 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
584 				 unsigned int block_start)
585 {
586 	u64 offset = page_offset(page) + block_start;
587 
588 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
589 		return 1;
590 
591 	if (i_size_read(inode) > offset)
592 		return 1;
593 
594 	return 0;
595 }
596 
597 /*
598  * Some of this taken from __block_write_begin(). We already have our
599  * mapping by now though, and the entire write will be allocating or
600  * it won't, so not much need to use BH_New.
601  *
602  * This will also skip zeroing, which is handled externally.
603  */
604 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
605 			  struct inode *inode, unsigned int from,
606 			  unsigned int to, int new)
607 {
608 	int ret = 0;
609 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
610 	unsigned int block_end, block_start;
611 	unsigned int bsize = i_blocksize(inode);
612 
613 	if (!page_has_buffers(page))
614 		create_empty_buffers(page, bsize, 0);
615 
616 	head = page_buffers(page);
617 	for (bh = head, block_start = 0; bh != head || !block_start;
618 	     bh = bh->b_this_page, block_start += bsize) {
619 		block_end = block_start + bsize;
620 
621 		clear_buffer_new(bh);
622 
623 		/*
624 		 * Ignore blocks outside of our i/o range -
625 		 * they may belong to unallocated clusters.
626 		 */
627 		if (block_start >= to || block_end <= from) {
628 			if (PageUptodate(page))
629 				set_buffer_uptodate(bh);
630 			continue;
631 		}
632 
633 		/*
634 		 * For an allocating write with cluster size >= page
635 		 * size, we always write the entire page.
636 		 */
637 		if (new)
638 			set_buffer_new(bh);
639 
640 		if (!buffer_mapped(bh)) {
641 			map_bh(bh, inode->i_sb, *p_blkno);
642 			clean_bdev_bh_alias(bh);
643 		}
644 
645 		if (PageUptodate(page)) {
646 			if (!buffer_uptodate(bh))
647 				set_buffer_uptodate(bh);
648 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
649 			   !buffer_new(bh) &&
650 			   ocfs2_should_read_blk(inode, page, block_start) &&
651 			   (block_start < from || block_end > to)) {
652 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
653 			*wait_bh++=bh;
654 		}
655 
656 		*p_blkno = *p_blkno + 1;
657 	}
658 
659 	/*
660 	 * If we issued read requests - let them complete.
661 	 */
662 	while(wait_bh > wait) {
663 		wait_on_buffer(*--wait_bh);
664 		if (!buffer_uptodate(*wait_bh))
665 			ret = -EIO;
666 	}
667 
668 	if (ret == 0 || !new)
669 		return ret;
670 
671 	/*
672 	 * If we get -EIO above, zero out any newly allocated blocks
673 	 * to avoid exposing stale data.
674 	 */
675 	bh = head;
676 	block_start = 0;
677 	do {
678 		block_end = block_start + bsize;
679 		if (block_end <= from)
680 			goto next_bh;
681 		if (block_start >= to)
682 			break;
683 
684 		zero_user(page, block_start, bh->b_size);
685 		set_buffer_uptodate(bh);
686 		mark_buffer_dirty(bh);
687 
688 next_bh:
689 		block_start = block_end;
690 		bh = bh->b_this_page;
691 	} while (bh != head);
692 
693 	return ret;
694 }
695 
696 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
697 #define OCFS2_MAX_CTXT_PAGES	1
698 #else
699 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
700 #endif
701 
702 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
703 
704 struct ocfs2_unwritten_extent {
705 	struct list_head	ue_node;
706 	struct list_head	ue_ip_node;
707 	u32			ue_cpos;
708 	u32			ue_phys;
709 };
710 
711 /*
712  * Describe the state of a single cluster to be written to.
713  */
714 struct ocfs2_write_cluster_desc {
715 	u32		c_cpos;
716 	u32		c_phys;
717 	/*
718 	 * Give this a unique field because c_phys eventually gets
719 	 * filled.
720 	 */
721 	unsigned	c_new;
722 	unsigned	c_clear_unwritten;
723 	unsigned	c_needs_zero;
724 };
725 
726 struct ocfs2_write_ctxt {
727 	/* Logical cluster position / len of write */
728 	u32				w_cpos;
729 	u32				w_clen;
730 
731 	/* First cluster allocated in a nonsparse extend */
732 	u32				w_first_new_cpos;
733 
734 	/* Type of caller. Must be one of buffer, mmap, direct.  */
735 	ocfs2_write_type_t		w_type;
736 
737 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
738 
739 	/*
740 	 * This is true if page_size > cluster_size.
741 	 *
742 	 * It triggers a set of special cases during write which might
743 	 * have to deal with allocating writes to partial pages.
744 	 */
745 	unsigned int			w_large_pages;
746 
747 	/*
748 	 * Pages involved in this write.
749 	 *
750 	 * w_target_page is the page being written to by the user.
751 	 *
752 	 * w_pages is an array of pages which always contains
753 	 * w_target_page, and in the case of an allocating write with
754 	 * page_size < cluster size, it will contain zero'd and mapped
755 	 * pages adjacent to w_target_page which need to be written
756 	 * out in so that future reads from that region will get
757 	 * zero's.
758 	 */
759 	unsigned int			w_num_pages;
760 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
761 	struct page			*w_target_page;
762 
763 	/*
764 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
765 	 * against w_target_page in ocfs2_write_end_nolock.
766 	 */
767 	unsigned int			w_target_locked:1;
768 
769 	/*
770 	 * ocfs2_write_end() uses this to know what the real range to
771 	 * write in the target should be.
772 	 */
773 	unsigned int			w_target_from;
774 	unsigned int			w_target_to;
775 
776 	/*
777 	 * We could use journal_current_handle() but this is cleaner,
778 	 * IMHO -Mark
779 	 */
780 	handle_t			*w_handle;
781 
782 	struct buffer_head		*w_di_bh;
783 
784 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
785 
786 	struct list_head		w_unwritten_list;
787 };
788 
789 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
790 {
791 	int i;
792 
793 	for(i = 0; i < num_pages; i++) {
794 		if (pages[i]) {
795 			unlock_page(pages[i]);
796 			mark_page_accessed(pages[i]);
797 			put_page(pages[i]);
798 		}
799 	}
800 }
801 
802 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
803 {
804 	int i;
805 
806 	/*
807 	 * w_target_locked is only set to true in the page_mkwrite() case.
808 	 * The intent is to allow us to lock the target page from write_begin()
809 	 * to write_end(). The caller must hold a ref on w_target_page.
810 	 */
811 	if (wc->w_target_locked) {
812 		BUG_ON(!wc->w_target_page);
813 		for (i = 0; i < wc->w_num_pages; i++) {
814 			if (wc->w_target_page == wc->w_pages[i]) {
815 				wc->w_pages[i] = NULL;
816 				break;
817 			}
818 		}
819 		mark_page_accessed(wc->w_target_page);
820 		put_page(wc->w_target_page);
821 	}
822 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
823 }
824 
825 static void ocfs2_free_unwritten_list(struct inode *inode,
826 				 struct list_head *head)
827 {
828 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
829 	struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
830 
831 	list_for_each_entry_safe(ue, tmp, head, ue_node) {
832 		list_del(&ue->ue_node);
833 		spin_lock(&oi->ip_lock);
834 		list_del(&ue->ue_ip_node);
835 		spin_unlock(&oi->ip_lock);
836 		kfree(ue);
837 	}
838 }
839 
840 static void ocfs2_free_write_ctxt(struct inode *inode,
841 				  struct ocfs2_write_ctxt *wc)
842 {
843 	ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
844 	ocfs2_unlock_pages(wc);
845 	brelse(wc->w_di_bh);
846 	kfree(wc);
847 }
848 
849 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
850 				  struct ocfs2_super *osb, loff_t pos,
851 				  unsigned len, ocfs2_write_type_t type,
852 				  struct buffer_head *di_bh)
853 {
854 	u32 cend;
855 	struct ocfs2_write_ctxt *wc;
856 
857 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
858 	if (!wc)
859 		return -ENOMEM;
860 
861 	wc->w_cpos = pos >> osb->s_clustersize_bits;
862 	wc->w_first_new_cpos = UINT_MAX;
863 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
864 	wc->w_clen = cend - wc->w_cpos + 1;
865 	get_bh(di_bh);
866 	wc->w_di_bh = di_bh;
867 	wc->w_type = type;
868 
869 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
870 		wc->w_large_pages = 1;
871 	else
872 		wc->w_large_pages = 0;
873 
874 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
875 	INIT_LIST_HEAD(&wc->w_unwritten_list);
876 
877 	*wcp = wc;
878 
879 	return 0;
880 }
881 
882 /*
883  * If a page has any new buffers, zero them out here, and mark them uptodate
884  * and dirty so they'll be written out (in order to prevent uninitialised
885  * block data from leaking). And clear the new bit.
886  */
887 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
888 {
889 	unsigned int block_start, block_end;
890 	struct buffer_head *head, *bh;
891 
892 	BUG_ON(!PageLocked(page));
893 	if (!page_has_buffers(page))
894 		return;
895 
896 	bh = head = page_buffers(page);
897 	block_start = 0;
898 	do {
899 		block_end = block_start + bh->b_size;
900 
901 		if (buffer_new(bh)) {
902 			if (block_end > from && block_start < to) {
903 				if (!PageUptodate(page)) {
904 					unsigned start, end;
905 
906 					start = max(from, block_start);
907 					end = min(to, block_end);
908 
909 					zero_user_segment(page, start, end);
910 					set_buffer_uptodate(bh);
911 				}
912 
913 				clear_buffer_new(bh);
914 				mark_buffer_dirty(bh);
915 			}
916 		}
917 
918 		block_start = block_end;
919 		bh = bh->b_this_page;
920 	} while (bh != head);
921 }
922 
923 /*
924  * Only called when we have a failure during allocating write to write
925  * zero's to the newly allocated region.
926  */
927 static void ocfs2_write_failure(struct inode *inode,
928 				struct ocfs2_write_ctxt *wc,
929 				loff_t user_pos, unsigned user_len)
930 {
931 	int i;
932 	unsigned from = user_pos & (PAGE_SIZE - 1),
933 		to = user_pos + user_len;
934 	struct page *tmppage;
935 
936 	if (wc->w_target_page)
937 		ocfs2_zero_new_buffers(wc->w_target_page, from, to);
938 
939 	for(i = 0; i < wc->w_num_pages; i++) {
940 		tmppage = wc->w_pages[i];
941 
942 		if (tmppage && page_has_buffers(tmppage)) {
943 			if (ocfs2_should_order_data(inode))
944 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
945 
946 			block_commit_write(tmppage, from, to);
947 		}
948 	}
949 }
950 
951 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
952 					struct ocfs2_write_ctxt *wc,
953 					struct page *page, u32 cpos,
954 					loff_t user_pos, unsigned user_len,
955 					int new)
956 {
957 	int ret;
958 	unsigned int map_from = 0, map_to = 0;
959 	unsigned int cluster_start, cluster_end;
960 	unsigned int user_data_from = 0, user_data_to = 0;
961 
962 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
963 					&cluster_start, &cluster_end);
964 
965 	/* treat the write as new if the a hole/lseek spanned across
966 	 * the page boundary.
967 	 */
968 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
969 			(page_offset(page) <= user_pos));
970 
971 	if (page == wc->w_target_page) {
972 		map_from = user_pos & (PAGE_SIZE - 1);
973 		map_to = map_from + user_len;
974 
975 		if (new)
976 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
977 						    cluster_start, cluster_end,
978 						    new);
979 		else
980 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
981 						    map_from, map_to, new);
982 		if (ret) {
983 			mlog_errno(ret);
984 			goto out;
985 		}
986 
987 		user_data_from = map_from;
988 		user_data_to = map_to;
989 		if (new) {
990 			map_from = cluster_start;
991 			map_to = cluster_end;
992 		}
993 	} else {
994 		/*
995 		 * If we haven't allocated the new page yet, we
996 		 * shouldn't be writing it out without copying user
997 		 * data. This is likely a math error from the caller.
998 		 */
999 		BUG_ON(!new);
1000 
1001 		map_from = cluster_start;
1002 		map_to = cluster_end;
1003 
1004 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1005 					    cluster_start, cluster_end, new);
1006 		if (ret) {
1007 			mlog_errno(ret);
1008 			goto out;
1009 		}
1010 	}
1011 
1012 	/*
1013 	 * Parts of newly allocated pages need to be zero'd.
1014 	 *
1015 	 * Above, we have also rewritten 'to' and 'from' - as far as
1016 	 * the rest of the function is concerned, the entire cluster
1017 	 * range inside of a page needs to be written.
1018 	 *
1019 	 * We can skip this if the page is up to date - it's already
1020 	 * been zero'd from being read in as a hole.
1021 	 */
1022 	if (new && !PageUptodate(page))
1023 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1024 					 cpos, user_data_from, user_data_to);
1025 
1026 	flush_dcache_page(page);
1027 
1028 out:
1029 	return ret;
1030 }
1031 
1032 /*
1033  * This function will only grab one clusters worth of pages.
1034  */
1035 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1036 				      struct ocfs2_write_ctxt *wc,
1037 				      u32 cpos, loff_t user_pos,
1038 				      unsigned user_len, int new,
1039 				      struct page *mmap_page)
1040 {
1041 	int ret = 0, i;
1042 	unsigned long start, target_index, end_index, index;
1043 	struct inode *inode = mapping->host;
1044 	loff_t last_byte;
1045 
1046 	target_index = user_pos >> PAGE_SHIFT;
1047 
1048 	/*
1049 	 * Figure out how many pages we'll be manipulating here. For
1050 	 * non allocating write, we just change the one
1051 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1052 	 * writing past i_size, we only need enough pages to cover the
1053 	 * last page of the write.
1054 	 */
1055 	if (new) {
1056 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1057 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1058 		/*
1059 		 * We need the index *past* the last page we could possibly
1060 		 * touch.  This is the page past the end of the write or
1061 		 * i_size, whichever is greater.
1062 		 */
1063 		last_byte = max(user_pos + user_len, i_size_read(inode));
1064 		BUG_ON(last_byte < 1);
1065 		end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1066 		if ((start + wc->w_num_pages) > end_index)
1067 			wc->w_num_pages = end_index - start;
1068 	} else {
1069 		wc->w_num_pages = 1;
1070 		start = target_index;
1071 	}
1072 	end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1073 
1074 	for(i = 0; i < wc->w_num_pages; i++) {
1075 		index = start + i;
1076 
1077 		if (index >= target_index && index <= end_index &&
1078 		    wc->w_type == OCFS2_WRITE_MMAP) {
1079 			/*
1080 			 * ocfs2_pagemkwrite() is a little different
1081 			 * and wants us to directly use the page
1082 			 * passed in.
1083 			 */
1084 			lock_page(mmap_page);
1085 
1086 			/* Exit and let the caller retry */
1087 			if (mmap_page->mapping != mapping) {
1088 				WARN_ON(mmap_page->mapping);
1089 				unlock_page(mmap_page);
1090 				ret = -EAGAIN;
1091 				goto out;
1092 			}
1093 
1094 			get_page(mmap_page);
1095 			wc->w_pages[i] = mmap_page;
1096 			wc->w_target_locked = true;
1097 		} else if (index >= target_index && index <= end_index &&
1098 			   wc->w_type == OCFS2_WRITE_DIRECT) {
1099 			/* Direct write has no mapping page. */
1100 			wc->w_pages[i] = NULL;
1101 			continue;
1102 		} else {
1103 			wc->w_pages[i] = find_or_create_page(mapping, index,
1104 							     GFP_NOFS);
1105 			if (!wc->w_pages[i]) {
1106 				ret = -ENOMEM;
1107 				mlog_errno(ret);
1108 				goto out;
1109 			}
1110 		}
1111 		wait_for_stable_page(wc->w_pages[i]);
1112 
1113 		if (index == target_index)
1114 			wc->w_target_page = wc->w_pages[i];
1115 	}
1116 out:
1117 	if (ret)
1118 		wc->w_target_locked = false;
1119 	return ret;
1120 }
1121 
1122 /*
1123  * Prepare a single cluster for write one cluster into the file.
1124  */
1125 static int ocfs2_write_cluster(struct address_space *mapping,
1126 			       u32 *phys, unsigned int new,
1127 			       unsigned int clear_unwritten,
1128 			       unsigned int should_zero,
1129 			       struct ocfs2_alloc_context *data_ac,
1130 			       struct ocfs2_alloc_context *meta_ac,
1131 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1132 			       loff_t user_pos, unsigned user_len)
1133 {
1134 	int ret, i;
1135 	u64 p_blkno;
1136 	struct inode *inode = mapping->host;
1137 	struct ocfs2_extent_tree et;
1138 	int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1139 
1140 	if (new) {
1141 		u32 tmp_pos;
1142 
1143 		/*
1144 		 * This is safe to call with the page locks - it won't take
1145 		 * any additional semaphores or cluster locks.
1146 		 */
1147 		tmp_pos = cpos;
1148 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1149 					   &tmp_pos, 1, !clear_unwritten,
1150 					   wc->w_di_bh, wc->w_handle,
1151 					   data_ac, meta_ac, NULL);
1152 		/*
1153 		 * This shouldn't happen because we must have already
1154 		 * calculated the correct meta data allocation required. The
1155 		 * internal tree allocation code should know how to increase
1156 		 * transaction credits itself.
1157 		 *
1158 		 * If need be, we could handle -EAGAIN for a
1159 		 * RESTART_TRANS here.
1160 		 */
1161 		mlog_bug_on_msg(ret == -EAGAIN,
1162 				"Inode %llu: EAGAIN return during allocation.\n",
1163 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1164 		if (ret < 0) {
1165 			mlog_errno(ret);
1166 			goto out;
1167 		}
1168 	} else if (clear_unwritten) {
1169 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1170 					      wc->w_di_bh);
1171 		ret = ocfs2_mark_extent_written(inode, &et,
1172 						wc->w_handle, cpos, 1, *phys,
1173 						meta_ac, &wc->w_dealloc);
1174 		if (ret < 0) {
1175 			mlog_errno(ret);
1176 			goto out;
1177 		}
1178 	}
1179 
1180 	/*
1181 	 * The only reason this should fail is due to an inability to
1182 	 * find the extent added.
1183 	 */
1184 	ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1185 	if (ret < 0) {
1186 		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1187 			    "at logical cluster %u",
1188 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1189 		goto out;
1190 	}
1191 
1192 	BUG_ON(*phys == 0);
1193 
1194 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1195 	if (!should_zero)
1196 		p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1197 
1198 	for(i = 0; i < wc->w_num_pages; i++) {
1199 		int tmpret;
1200 
1201 		/* This is the direct io target page. */
1202 		if (wc->w_pages[i] == NULL) {
1203 			p_blkno++;
1204 			continue;
1205 		}
1206 
1207 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1208 						      wc->w_pages[i], cpos,
1209 						      user_pos, user_len,
1210 						      should_zero);
1211 		if (tmpret) {
1212 			mlog_errno(tmpret);
1213 			if (ret == 0)
1214 				ret = tmpret;
1215 		}
1216 	}
1217 
1218 	/*
1219 	 * We only have cleanup to do in case of allocating write.
1220 	 */
1221 	if (ret && new)
1222 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1223 
1224 out:
1225 
1226 	return ret;
1227 }
1228 
1229 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1230 				       struct ocfs2_alloc_context *data_ac,
1231 				       struct ocfs2_alloc_context *meta_ac,
1232 				       struct ocfs2_write_ctxt *wc,
1233 				       loff_t pos, unsigned len)
1234 {
1235 	int ret, i;
1236 	loff_t cluster_off;
1237 	unsigned int local_len = len;
1238 	struct ocfs2_write_cluster_desc *desc;
1239 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1240 
1241 	for (i = 0; i < wc->w_clen; i++) {
1242 		desc = &wc->w_desc[i];
1243 
1244 		/*
1245 		 * We have to make sure that the total write passed in
1246 		 * doesn't extend past a single cluster.
1247 		 */
1248 		local_len = len;
1249 		cluster_off = pos & (osb->s_clustersize - 1);
1250 		if ((cluster_off + local_len) > osb->s_clustersize)
1251 			local_len = osb->s_clustersize - cluster_off;
1252 
1253 		ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1254 					  desc->c_new,
1255 					  desc->c_clear_unwritten,
1256 					  desc->c_needs_zero,
1257 					  data_ac, meta_ac,
1258 					  wc, desc->c_cpos, pos, local_len);
1259 		if (ret) {
1260 			mlog_errno(ret);
1261 			goto out;
1262 		}
1263 
1264 		len -= local_len;
1265 		pos += local_len;
1266 	}
1267 
1268 	ret = 0;
1269 out:
1270 	return ret;
1271 }
1272 
1273 /*
1274  * ocfs2_write_end() wants to know which parts of the target page it
1275  * should complete the write on. It's easiest to compute them ahead of
1276  * time when a more complete view of the write is available.
1277  */
1278 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1279 					struct ocfs2_write_ctxt *wc,
1280 					loff_t pos, unsigned len, int alloc)
1281 {
1282 	struct ocfs2_write_cluster_desc *desc;
1283 
1284 	wc->w_target_from = pos & (PAGE_SIZE - 1);
1285 	wc->w_target_to = wc->w_target_from + len;
1286 
1287 	if (alloc == 0)
1288 		return;
1289 
1290 	/*
1291 	 * Allocating write - we may have different boundaries based
1292 	 * on page size and cluster size.
1293 	 *
1294 	 * NOTE: We can no longer compute one value from the other as
1295 	 * the actual write length and user provided length may be
1296 	 * different.
1297 	 */
1298 
1299 	if (wc->w_large_pages) {
1300 		/*
1301 		 * We only care about the 1st and last cluster within
1302 		 * our range and whether they should be zero'd or not. Either
1303 		 * value may be extended out to the start/end of a
1304 		 * newly allocated cluster.
1305 		 */
1306 		desc = &wc->w_desc[0];
1307 		if (desc->c_needs_zero)
1308 			ocfs2_figure_cluster_boundaries(osb,
1309 							desc->c_cpos,
1310 							&wc->w_target_from,
1311 							NULL);
1312 
1313 		desc = &wc->w_desc[wc->w_clen - 1];
1314 		if (desc->c_needs_zero)
1315 			ocfs2_figure_cluster_boundaries(osb,
1316 							desc->c_cpos,
1317 							NULL,
1318 							&wc->w_target_to);
1319 	} else {
1320 		wc->w_target_from = 0;
1321 		wc->w_target_to = PAGE_SIZE;
1322 	}
1323 }
1324 
1325 /*
1326  * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1327  * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1328  * by the direct io procedure.
1329  * If this is a new extent that allocated by direct io, we should mark it in
1330  * the ip_unwritten_list.
1331  */
1332 static int ocfs2_unwritten_check(struct inode *inode,
1333 				 struct ocfs2_write_ctxt *wc,
1334 				 struct ocfs2_write_cluster_desc *desc)
1335 {
1336 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1337 	struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1338 	int ret = 0;
1339 
1340 	if (!desc->c_needs_zero)
1341 		return 0;
1342 
1343 retry:
1344 	spin_lock(&oi->ip_lock);
1345 	/* Needs not to zero no metter buffer or direct. The one who is zero
1346 	 * the cluster is doing zero. And he will clear unwritten after all
1347 	 * cluster io finished. */
1348 	list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1349 		if (desc->c_cpos == ue->ue_cpos) {
1350 			BUG_ON(desc->c_new);
1351 			desc->c_needs_zero = 0;
1352 			desc->c_clear_unwritten = 0;
1353 			goto unlock;
1354 		}
1355 	}
1356 
1357 	if (wc->w_type != OCFS2_WRITE_DIRECT)
1358 		goto unlock;
1359 
1360 	if (new == NULL) {
1361 		spin_unlock(&oi->ip_lock);
1362 		new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1363 			     GFP_NOFS);
1364 		if (new == NULL) {
1365 			ret = -ENOMEM;
1366 			goto out;
1367 		}
1368 		goto retry;
1369 	}
1370 	/* This direct write will doing zero. */
1371 	new->ue_cpos = desc->c_cpos;
1372 	new->ue_phys = desc->c_phys;
1373 	desc->c_clear_unwritten = 0;
1374 	list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1375 	list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1376 	new = NULL;
1377 unlock:
1378 	spin_unlock(&oi->ip_lock);
1379 out:
1380 	if (new)
1381 		kfree(new);
1382 	return ret;
1383 }
1384 
1385 /*
1386  * Populate each single-cluster write descriptor in the write context
1387  * with information about the i/o to be done.
1388  *
1389  * Returns the number of clusters that will have to be allocated, as
1390  * well as a worst case estimate of the number of extent records that
1391  * would have to be created during a write to an unwritten region.
1392  */
1393 static int ocfs2_populate_write_desc(struct inode *inode,
1394 				     struct ocfs2_write_ctxt *wc,
1395 				     unsigned int *clusters_to_alloc,
1396 				     unsigned int *extents_to_split)
1397 {
1398 	int ret;
1399 	struct ocfs2_write_cluster_desc *desc;
1400 	unsigned int num_clusters = 0;
1401 	unsigned int ext_flags = 0;
1402 	u32 phys = 0;
1403 	int i;
1404 
1405 	*clusters_to_alloc = 0;
1406 	*extents_to_split = 0;
1407 
1408 	for (i = 0; i < wc->w_clen; i++) {
1409 		desc = &wc->w_desc[i];
1410 		desc->c_cpos = wc->w_cpos + i;
1411 
1412 		if (num_clusters == 0) {
1413 			/*
1414 			 * Need to look up the next extent record.
1415 			 */
1416 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1417 						 &num_clusters, &ext_flags);
1418 			if (ret) {
1419 				mlog_errno(ret);
1420 				goto out;
1421 			}
1422 
1423 			/* We should already CoW the refcountd extent. */
1424 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1425 
1426 			/*
1427 			 * Assume worst case - that we're writing in
1428 			 * the middle of the extent.
1429 			 *
1430 			 * We can assume that the write proceeds from
1431 			 * left to right, in which case the extent
1432 			 * insert code is smart enough to coalesce the
1433 			 * next splits into the previous records created.
1434 			 */
1435 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1436 				*extents_to_split = *extents_to_split + 2;
1437 		} else if (phys) {
1438 			/*
1439 			 * Only increment phys if it doesn't describe
1440 			 * a hole.
1441 			 */
1442 			phys++;
1443 		}
1444 
1445 		/*
1446 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1447 		 * file that got extended.  w_first_new_cpos tells us
1448 		 * where the newly allocated clusters are so we can
1449 		 * zero them.
1450 		 */
1451 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1452 			BUG_ON(phys == 0);
1453 			desc->c_needs_zero = 1;
1454 		}
1455 
1456 		desc->c_phys = phys;
1457 		if (phys == 0) {
1458 			desc->c_new = 1;
1459 			desc->c_needs_zero = 1;
1460 			desc->c_clear_unwritten = 1;
1461 			*clusters_to_alloc = *clusters_to_alloc + 1;
1462 		}
1463 
1464 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1465 			desc->c_clear_unwritten = 1;
1466 			desc->c_needs_zero = 1;
1467 		}
1468 
1469 		ret = ocfs2_unwritten_check(inode, wc, desc);
1470 		if (ret) {
1471 			mlog_errno(ret);
1472 			goto out;
1473 		}
1474 
1475 		num_clusters--;
1476 	}
1477 
1478 	ret = 0;
1479 out:
1480 	return ret;
1481 }
1482 
1483 static int ocfs2_write_begin_inline(struct address_space *mapping,
1484 				    struct inode *inode,
1485 				    struct ocfs2_write_ctxt *wc)
1486 {
1487 	int ret;
1488 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1489 	struct page *page;
1490 	handle_t *handle;
1491 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1492 
1493 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1494 	if (IS_ERR(handle)) {
1495 		ret = PTR_ERR(handle);
1496 		mlog_errno(ret);
1497 		goto out;
1498 	}
1499 
1500 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1501 	if (!page) {
1502 		ocfs2_commit_trans(osb, handle);
1503 		ret = -ENOMEM;
1504 		mlog_errno(ret);
1505 		goto out;
1506 	}
1507 	/*
1508 	 * If we don't set w_num_pages then this page won't get unlocked
1509 	 * and freed on cleanup of the write context.
1510 	 */
1511 	wc->w_pages[0] = wc->w_target_page = page;
1512 	wc->w_num_pages = 1;
1513 
1514 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1515 				      OCFS2_JOURNAL_ACCESS_WRITE);
1516 	if (ret) {
1517 		ocfs2_commit_trans(osb, handle);
1518 
1519 		mlog_errno(ret);
1520 		goto out;
1521 	}
1522 
1523 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1524 		ocfs2_set_inode_data_inline(inode, di);
1525 
1526 	if (!PageUptodate(page)) {
1527 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1528 		if (ret) {
1529 			ocfs2_commit_trans(osb, handle);
1530 
1531 			goto out;
1532 		}
1533 	}
1534 
1535 	wc->w_handle = handle;
1536 out:
1537 	return ret;
1538 }
1539 
1540 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1541 {
1542 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1543 
1544 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1545 		return 1;
1546 	return 0;
1547 }
1548 
1549 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1550 					  struct inode *inode, loff_t pos,
1551 					  unsigned len, struct page *mmap_page,
1552 					  struct ocfs2_write_ctxt *wc)
1553 {
1554 	int ret, written = 0;
1555 	loff_t end = pos + len;
1556 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1557 	struct ocfs2_dinode *di = NULL;
1558 
1559 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1560 					     len, (unsigned long long)pos,
1561 					     oi->ip_dyn_features);
1562 
1563 	/*
1564 	 * Handle inodes which already have inline data 1st.
1565 	 */
1566 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1567 		if (mmap_page == NULL &&
1568 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1569 			goto do_inline_write;
1570 
1571 		/*
1572 		 * The write won't fit - we have to give this inode an
1573 		 * inline extent list now.
1574 		 */
1575 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1576 		if (ret)
1577 			mlog_errno(ret);
1578 		goto out;
1579 	}
1580 
1581 	/*
1582 	 * Check whether the inode can accept inline data.
1583 	 */
1584 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1585 		return 0;
1586 
1587 	/*
1588 	 * Check whether the write can fit.
1589 	 */
1590 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1591 	if (mmap_page ||
1592 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1593 		return 0;
1594 
1595 do_inline_write:
1596 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1597 	if (ret) {
1598 		mlog_errno(ret);
1599 		goto out;
1600 	}
1601 
1602 	/*
1603 	 * This signals to the caller that the data can be written
1604 	 * inline.
1605 	 */
1606 	written = 1;
1607 out:
1608 	return written ? written : ret;
1609 }
1610 
1611 /*
1612  * This function only does anything for file systems which can't
1613  * handle sparse files.
1614  *
1615  * What we want to do here is fill in any hole between the current end
1616  * of allocation and the end of our write. That way the rest of the
1617  * write path can treat it as an non-allocating write, which has no
1618  * special case code for sparse/nonsparse files.
1619  */
1620 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1621 					struct buffer_head *di_bh,
1622 					loff_t pos, unsigned len,
1623 					struct ocfs2_write_ctxt *wc)
1624 {
1625 	int ret;
1626 	loff_t newsize = pos + len;
1627 
1628 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1629 
1630 	if (newsize <= i_size_read(inode))
1631 		return 0;
1632 
1633 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1634 	if (ret)
1635 		mlog_errno(ret);
1636 
1637 	/* There is no wc if this is call from direct. */
1638 	if (wc)
1639 		wc->w_first_new_cpos =
1640 			ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1641 
1642 	return ret;
1643 }
1644 
1645 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1646 			   loff_t pos)
1647 {
1648 	int ret = 0;
1649 
1650 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1651 	if (pos > i_size_read(inode))
1652 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1653 
1654 	return ret;
1655 }
1656 
1657 int ocfs2_write_begin_nolock(struct address_space *mapping,
1658 			     loff_t pos, unsigned len, ocfs2_write_type_t type,
1659 			     struct page **pagep, void **fsdata,
1660 			     struct buffer_head *di_bh, struct page *mmap_page)
1661 {
1662 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1663 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1664 	struct ocfs2_write_ctxt *wc;
1665 	struct inode *inode = mapping->host;
1666 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1667 	struct ocfs2_dinode *di;
1668 	struct ocfs2_alloc_context *data_ac = NULL;
1669 	struct ocfs2_alloc_context *meta_ac = NULL;
1670 	handle_t *handle;
1671 	struct ocfs2_extent_tree et;
1672 	int try_free = 1, ret1;
1673 
1674 try_again:
1675 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1676 	if (ret) {
1677 		mlog_errno(ret);
1678 		return ret;
1679 	}
1680 
1681 	if (ocfs2_supports_inline_data(osb)) {
1682 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1683 						     mmap_page, wc);
1684 		if (ret == 1) {
1685 			ret = 0;
1686 			goto success;
1687 		}
1688 		if (ret < 0) {
1689 			mlog_errno(ret);
1690 			goto out;
1691 		}
1692 	}
1693 
1694 	/* Direct io change i_size late, should not zero tail here. */
1695 	if (type != OCFS2_WRITE_DIRECT) {
1696 		if (ocfs2_sparse_alloc(osb))
1697 			ret = ocfs2_zero_tail(inode, di_bh, pos);
1698 		else
1699 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1700 							   len, wc);
1701 		if (ret) {
1702 			mlog_errno(ret);
1703 			goto out;
1704 		}
1705 	}
1706 
1707 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1708 	if (ret < 0) {
1709 		mlog_errno(ret);
1710 		goto out;
1711 	} else if (ret == 1) {
1712 		clusters_need = wc->w_clen;
1713 		ret = ocfs2_refcount_cow(inode, di_bh,
1714 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1715 		if (ret) {
1716 			mlog_errno(ret);
1717 			goto out;
1718 		}
1719 	}
1720 
1721 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1722 					&extents_to_split);
1723 	if (ret) {
1724 		mlog_errno(ret);
1725 		goto out;
1726 	}
1727 	clusters_need += clusters_to_alloc;
1728 
1729 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1730 
1731 	trace_ocfs2_write_begin_nolock(
1732 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1733 			(long long)i_size_read(inode),
1734 			le32_to_cpu(di->i_clusters),
1735 			pos, len, type, mmap_page,
1736 			clusters_to_alloc, extents_to_split);
1737 
1738 	/*
1739 	 * We set w_target_from, w_target_to here so that
1740 	 * ocfs2_write_end() knows which range in the target page to
1741 	 * write out. An allocation requires that we write the entire
1742 	 * cluster range.
1743 	 */
1744 	if (clusters_to_alloc || extents_to_split) {
1745 		/*
1746 		 * XXX: We are stretching the limits of
1747 		 * ocfs2_lock_allocators(). It greatly over-estimates
1748 		 * the work to be done.
1749 		 */
1750 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1751 					      wc->w_di_bh);
1752 		ret = ocfs2_lock_allocators(inode, &et,
1753 					    clusters_to_alloc, extents_to_split,
1754 					    &data_ac, &meta_ac);
1755 		if (ret) {
1756 			mlog_errno(ret);
1757 			goto out;
1758 		}
1759 
1760 		if (data_ac)
1761 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1762 
1763 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1764 						    &di->id2.i_list);
1765 	} else if (type == OCFS2_WRITE_DIRECT)
1766 		/* direct write needs not to start trans if no extents alloc. */
1767 		goto success;
1768 
1769 	/*
1770 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1771 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1772 	 * we know zeros will only be needed in the first and/or last cluster.
1773 	 */
1774 	if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1775 			   wc->w_desc[wc->w_clen - 1].c_needs_zero))
1776 		cluster_of_pages = 1;
1777 	else
1778 		cluster_of_pages = 0;
1779 
1780 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1781 
1782 	handle = ocfs2_start_trans(osb, credits);
1783 	if (IS_ERR(handle)) {
1784 		ret = PTR_ERR(handle);
1785 		mlog_errno(ret);
1786 		goto out;
1787 	}
1788 
1789 	wc->w_handle = handle;
1790 
1791 	if (clusters_to_alloc) {
1792 		ret = dquot_alloc_space_nodirty(inode,
1793 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1794 		if (ret)
1795 			goto out_commit;
1796 	}
1797 
1798 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1799 				      OCFS2_JOURNAL_ACCESS_WRITE);
1800 	if (ret) {
1801 		mlog_errno(ret);
1802 		goto out_quota;
1803 	}
1804 
1805 	/*
1806 	 * Fill our page array first. That way we've grabbed enough so
1807 	 * that we can zero and flush if we error after adding the
1808 	 * extent.
1809 	 */
1810 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1811 					 cluster_of_pages, mmap_page);
1812 	if (ret && ret != -EAGAIN) {
1813 		mlog_errno(ret);
1814 		goto out_quota;
1815 	}
1816 
1817 	/*
1818 	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1819 	 * the target page. In this case, we exit with no error and no target
1820 	 * page. This will trigger the caller, page_mkwrite(), to re-try
1821 	 * the operation.
1822 	 */
1823 	if (ret == -EAGAIN) {
1824 		BUG_ON(wc->w_target_page);
1825 		ret = 0;
1826 		goto out_quota;
1827 	}
1828 
1829 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1830 					  len);
1831 	if (ret) {
1832 		mlog_errno(ret);
1833 		goto out_quota;
1834 	}
1835 
1836 	if (data_ac)
1837 		ocfs2_free_alloc_context(data_ac);
1838 	if (meta_ac)
1839 		ocfs2_free_alloc_context(meta_ac);
1840 
1841 success:
1842 	if (pagep)
1843 		*pagep = wc->w_target_page;
1844 	*fsdata = wc;
1845 	return 0;
1846 out_quota:
1847 	if (clusters_to_alloc)
1848 		dquot_free_space(inode,
1849 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1850 out_commit:
1851 	ocfs2_commit_trans(osb, handle);
1852 
1853 out:
1854 	/*
1855 	 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1856 	 * even in case of error here like ENOSPC and ENOMEM. So, we need
1857 	 * to unlock the target page manually to prevent deadlocks when
1858 	 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1859 	 * to VM code.
1860 	 */
1861 	if (wc->w_target_locked)
1862 		unlock_page(mmap_page);
1863 
1864 	ocfs2_free_write_ctxt(inode, wc);
1865 
1866 	if (data_ac) {
1867 		ocfs2_free_alloc_context(data_ac);
1868 		data_ac = NULL;
1869 	}
1870 	if (meta_ac) {
1871 		ocfs2_free_alloc_context(meta_ac);
1872 		meta_ac = NULL;
1873 	}
1874 
1875 	if (ret == -ENOSPC && try_free) {
1876 		/*
1877 		 * Try to free some truncate log so that we can have enough
1878 		 * clusters to allocate.
1879 		 */
1880 		try_free = 0;
1881 
1882 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1883 		if (ret1 == 1)
1884 			goto try_again;
1885 
1886 		if (ret1 < 0)
1887 			mlog_errno(ret1);
1888 	}
1889 
1890 	return ret;
1891 }
1892 
1893 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1894 			     loff_t pos, unsigned len, unsigned flags,
1895 			     struct page **pagep, void **fsdata)
1896 {
1897 	int ret;
1898 	struct buffer_head *di_bh = NULL;
1899 	struct inode *inode = mapping->host;
1900 
1901 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1902 	if (ret) {
1903 		mlog_errno(ret);
1904 		return ret;
1905 	}
1906 
1907 	/*
1908 	 * Take alloc sem here to prevent concurrent lookups. That way
1909 	 * the mapping, zeroing and tree manipulation within
1910 	 * ocfs2_write() will be safe against ->readpage(). This
1911 	 * should also serve to lock out allocation from a shared
1912 	 * writeable region.
1913 	 */
1914 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1915 
1916 	ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1917 				       pagep, fsdata, di_bh, NULL);
1918 	if (ret) {
1919 		mlog_errno(ret);
1920 		goto out_fail;
1921 	}
1922 
1923 	brelse(di_bh);
1924 
1925 	return 0;
1926 
1927 out_fail:
1928 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1929 
1930 	brelse(di_bh);
1931 	ocfs2_inode_unlock(inode, 1);
1932 
1933 	return ret;
1934 }
1935 
1936 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1937 				   unsigned len, unsigned *copied,
1938 				   struct ocfs2_dinode *di,
1939 				   struct ocfs2_write_ctxt *wc)
1940 {
1941 	void *kaddr;
1942 
1943 	if (unlikely(*copied < len)) {
1944 		if (!PageUptodate(wc->w_target_page)) {
1945 			*copied = 0;
1946 			return;
1947 		}
1948 	}
1949 
1950 	kaddr = kmap_atomic(wc->w_target_page);
1951 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1952 	kunmap_atomic(kaddr);
1953 
1954 	trace_ocfs2_write_end_inline(
1955 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1956 	     (unsigned long long)pos, *copied,
1957 	     le16_to_cpu(di->id2.i_data.id_count),
1958 	     le16_to_cpu(di->i_dyn_features));
1959 }
1960 
1961 int ocfs2_write_end_nolock(struct address_space *mapping,
1962 			   loff_t pos, unsigned len, unsigned copied, void *fsdata)
1963 {
1964 	int i, ret;
1965 	unsigned from, to, start = pos & (PAGE_SIZE - 1);
1966 	struct inode *inode = mapping->host;
1967 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1968 	struct ocfs2_write_ctxt *wc = fsdata;
1969 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1970 	handle_t *handle = wc->w_handle;
1971 	struct page *tmppage;
1972 
1973 	BUG_ON(!list_empty(&wc->w_unwritten_list));
1974 
1975 	if (handle) {
1976 		ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1977 				wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1978 		if (ret) {
1979 			copied = ret;
1980 			mlog_errno(ret);
1981 			goto out;
1982 		}
1983 	}
1984 
1985 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1986 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1987 		goto out_write_size;
1988 	}
1989 
1990 	if (unlikely(copied < len) && wc->w_target_page) {
1991 		if (!PageUptodate(wc->w_target_page))
1992 			copied = 0;
1993 
1994 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1995 				       start+len);
1996 	}
1997 	if (wc->w_target_page)
1998 		flush_dcache_page(wc->w_target_page);
1999 
2000 	for(i = 0; i < wc->w_num_pages; i++) {
2001 		tmppage = wc->w_pages[i];
2002 
2003 		/* This is the direct io target page. */
2004 		if (tmppage == NULL)
2005 			continue;
2006 
2007 		if (tmppage == wc->w_target_page) {
2008 			from = wc->w_target_from;
2009 			to = wc->w_target_to;
2010 
2011 			BUG_ON(from > PAGE_SIZE ||
2012 			       to > PAGE_SIZE ||
2013 			       to < from);
2014 		} else {
2015 			/*
2016 			 * Pages adjacent to the target (if any) imply
2017 			 * a hole-filling write in which case we want
2018 			 * to flush their entire range.
2019 			 */
2020 			from = 0;
2021 			to = PAGE_SIZE;
2022 		}
2023 
2024 		if (page_has_buffers(tmppage)) {
2025 			if (handle && ocfs2_should_order_data(inode))
2026 				ocfs2_jbd2_file_inode(handle, inode);
2027 			block_commit_write(tmppage, from, to);
2028 		}
2029 	}
2030 
2031 out_write_size:
2032 	/* Direct io do not update i_size here. */
2033 	if (wc->w_type != OCFS2_WRITE_DIRECT) {
2034 		pos += copied;
2035 		if (pos > i_size_read(inode)) {
2036 			i_size_write(inode, pos);
2037 			mark_inode_dirty(inode);
2038 		}
2039 		inode->i_blocks = ocfs2_inode_sector_count(inode);
2040 		di->i_size = cpu_to_le64((u64)i_size_read(inode));
2041 		inode->i_mtime = inode->i_ctime = current_time(inode);
2042 		di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2043 		di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2044 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
2045 	}
2046 	if (handle)
2047 		ocfs2_journal_dirty(handle, wc->w_di_bh);
2048 
2049 out:
2050 	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2051 	 * lock, or it will cause a deadlock since journal commit threads holds
2052 	 * this lock and will ask for the page lock when flushing the data.
2053 	 * put it here to preserve the unlock order.
2054 	 */
2055 	ocfs2_unlock_pages(wc);
2056 
2057 	if (handle)
2058 		ocfs2_commit_trans(osb, handle);
2059 
2060 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2061 
2062 	brelse(wc->w_di_bh);
2063 	kfree(wc);
2064 
2065 	return copied;
2066 }
2067 
2068 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2069 			   loff_t pos, unsigned len, unsigned copied,
2070 			   struct page *page, void *fsdata)
2071 {
2072 	int ret;
2073 	struct inode *inode = mapping->host;
2074 
2075 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2076 
2077 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2078 	ocfs2_inode_unlock(inode, 1);
2079 
2080 	return ret;
2081 }
2082 
2083 struct ocfs2_dio_write_ctxt {
2084 	struct list_head	dw_zero_list;
2085 	unsigned		dw_zero_count;
2086 	int			dw_orphaned;
2087 	pid_t			dw_writer_pid;
2088 };
2089 
2090 static struct ocfs2_dio_write_ctxt *
2091 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2092 {
2093 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2094 
2095 	if (bh->b_private)
2096 		return bh->b_private;
2097 
2098 	dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2099 	if (dwc == NULL)
2100 		return NULL;
2101 	INIT_LIST_HEAD(&dwc->dw_zero_list);
2102 	dwc->dw_zero_count = 0;
2103 	dwc->dw_orphaned = 0;
2104 	dwc->dw_writer_pid = task_pid_nr(current);
2105 	bh->b_private = dwc;
2106 	*alloc = 1;
2107 
2108 	return dwc;
2109 }
2110 
2111 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2112 				     struct ocfs2_dio_write_ctxt *dwc)
2113 {
2114 	ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2115 	kfree(dwc);
2116 }
2117 
2118 /*
2119  * TODO: Make this into a generic get_blocks function.
2120  *
2121  * From do_direct_io in direct-io.c:
2122  *  "So what we do is to permit the ->get_blocks function to populate
2123  *   bh.b_size with the size of IO which is permitted at this offset and
2124  *   this i_blkbits."
2125  *
2126  * This function is called directly from get_more_blocks in direct-io.c.
2127  *
2128  * called like this: dio->get_blocks(dio->inode, fs_startblk,
2129  * 					fs_count, map_bh, dio->rw == WRITE);
2130  */
2131 static int ocfs2_dio_get_block(struct inode *inode, sector_t iblock,
2132 			       struct buffer_head *bh_result, int create)
2133 {
2134 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2135 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2136 	struct ocfs2_write_ctxt *wc;
2137 	struct ocfs2_write_cluster_desc *desc = NULL;
2138 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2139 	struct buffer_head *di_bh = NULL;
2140 	u64 p_blkno;
2141 	loff_t pos = iblock << inode->i_sb->s_blocksize_bits;
2142 	unsigned len, total_len = bh_result->b_size;
2143 	int ret = 0, first_get_block = 0;
2144 
2145 	len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2146 	len = min(total_len, len);
2147 
2148 	mlog(0, "get block of %lu at %llu:%u req %u\n",
2149 			inode->i_ino, pos, len, total_len);
2150 
2151 	/*
2152 	 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2153 	 * we may need to add it to orphan dir. So can not fall to fast path
2154 	 * while file size will be changed.
2155 	 */
2156 	if (pos + total_len <= i_size_read(inode)) {
2157 		down_read(&oi->ip_alloc_sem);
2158 		/* This is the fast path for re-write. */
2159 		ret = ocfs2_get_block(inode, iblock, bh_result, create);
2160 
2161 		up_read(&oi->ip_alloc_sem);
2162 
2163 		if (buffer_mapped(bh_result) &&
2164 		    !buffer_new(bh_result) &&
2165 		    ret == 0)
2166 			goto out;
2167 
2168 		/* Clear state set by ocfs2_get_block. */
2169 		bh_result->b_state = 0;
2170 	}
2171 
2172 	dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2173 	if (unlikely(dwc == NULL)) {
2174 		ret = -ENOMEM;
2175 		mlog_errno(ret);
2176 		goto out;
2177 	}
2178 
2179 	if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2180 	    ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2181 	    !dwc->dw_orphaned) {
2182 		/*
2183 		 * when we are going to alloc extents beyond file size, add the
2184 		 * inode to orphan dir, so we can recall those spaces when
2185 		 * system crashed during write.
2186 		 */
2187 		ret = ocfs2_add_inode_to_orphan(osb, inode);
2188 		if (ret < 0) {
2189 			mlog_errno(ret);
2190 			goto out;
2191 		}
2192 		dwc->dw_orphaned = 1;
2193 	}
2194 
2195 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2196 	if (ret) {
2197 		mlog_errno(ret);
2198 		goto out;
2199 	}
2200 
2201 	down_write(&oi->ip_alloc_sem);
2202 
2203 	if (first_get_block) {
2204 		if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
2205 			ret = ocfs2_zero_tail(inode, di_bh, pos);
2206 		else
2207 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2208 							   total_len, NULL);
2209 		if (ret < 0) {
2210 			mlog_errno(ret);
2211 			goto unlock;
2212 		}
2213 	}
2214 
2215 	ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2216 				       OCFS2_WRITE_DIRECT, NULL,
2217 				       (void **)&wc, di_bh, NULL);
2218 	if (ret) {
2219 		mlog_errno(ret);
2220 		goto unlock;
2221 	}
2222 
2223 	desc = &wc->w_desc[0];
2224 
2225 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2226 	BUG_ON(p_blkno == 0);
2227 	p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2228 
2229 	map_bh(bh_result, inode->i_sb, p_blkno);
2230 	bh_result->b_size = len;
2231 	if (desc->c_needs_zero)
2232 		set_buffer_new(bh_result);
2233 
2234 	/* May sleep in end_io. It should not happen in a irq context. So defer
2235 	 * it to dio work queue. */
2236 	set_buffer_defer_completion(bh_result);
2237 
2238 	if (!list_empty(&wc->w_unwritten_list)) {
2239 		struct ocfs2_unwritten_extent *ue = NULL;
2240 
2241 		ue = list_first_entry(&wc->w_unwritten_list,
2242 				      struct ocfs2_unwritten_extent,
2243 				      ue_node);
2244 		BUG_ON(ue->ue_cpos != desc->c_cpos);
2245 		/* The physical address may be 0, fill it. */
2246 		ue->ue_phys = desc->c_phys;
2247 
2248 		list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2249 		dwc->dw_zero_count++;
2250 	}
2251 
2252 	ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2253 	BUG_ON(ret != len);
2254 	ret = 0;
2255 unlock:
2256 	up_write(&oi->ip_alloc_sem);
2257 	ocfs2_inode_unlock(inode, 1);
2258 	brelse(di_bh);
2259 out:
2260 	if (ret < 0)
2261 		ret = -EIO;
2262 	return ret;
2263 }
2264 
2265 static int ocfs2_dio_end_io_write(struct inode *inode,
2266 				  struct ocfs2_dio_write_ctxt *dwc,
2267 				  loff_t offset,
2268 				  ssize_t bytes)
2269 {
2270 	struct ocfs2_cached_dealloc_ctxt dealloc;
2271 	struct ocfs2_extent_tree et;
2272 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2273 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2274 	struct ocfs2_unwritten_extent *ue = NULL;
2275 	struct buffer_head *di_bh = NULL;
2276 	struct ocfs2_dinode *di;
2277 	struct ocfs2_alloc_context *data_ac = NULL;
2278 	struct ocfs2_alloc_context *meta_ac = NULL;
2279 	handle_t *handle = NULL;
2280 	loff_t end = offset + bytes;
2281 	int ret = 0, credits = 0, locked = 0;
2282 
2283 	ocfs2_init_dealloc_ctxt(&dealloc);
2284 
2285 	/* We do clear unwritten, delete orphan, change i_size here. If neither
2286 	 * of these happen, we can skip all this. */
2287 	if (list_empty(&dwc->dw_zero_list) &&
2288 	    end <= i_size_read(inode) &&
2289 	    !dwc->dw_orphaned)
2290 		goto out;
2291 
2292 	/* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2293 	 * are in that context. */
2294 	if (dwc->dw_writer_pid != task_pid_nr(current)) {
2295 		inode_lock(inode);
2296 		locked = 1;
2297 	}
2298 
2299 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2300 	if (ret < 0) {
2301 		mlog_errno(ret);
2302 		goto out;
2303 	}
2304 
2305 	down_write(&oi->ip_alloc_sem);
2306 
2307 	/* Delete orphan before acquire i_mutex. */
2308 	if (dwc->dw_orphaned) {
2309 		BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2310 
2311 		end = end > i_size_read(inode) ? end : 0;
2312 
2313 		ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2314 				!!end, end);
2315 		if (ret < 0)
2316 			mlog_errno(ret);
2317 	}
2318 
2319 	di = (struct ocfs2_dinode *)di_bh->b_data;
2320 
2321 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2322 
2323 	ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2324 				    &data_ac, &meta_ac);
2325 	if (ret) {
2326 		mlog_errno(ret);
2327 		goto unlock;
2328 	}
2329 
2330 	credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2331 
2332 	handle = ocfs2_start_trans(osb, credits);
2333 	if (IS_ERR(handle)) {
2334 		ret = PTR_ERR(handle);
2335 		mlog_errno(ret);
2336 		goto unlock;
2337 	}
2338 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2339 				      OCFS2_JOURNAL_ACCESS_WRITE);
2340 	if (ret) {
2341 		mlog_errno(ret);
2342 		goto commit;
2343 	}
2344 
2345 	list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2346 		ret = ocfs2_mark_extent_written(inode, &et, handle,
2347 						ue->ue_cpos, 1,
2348 						ue->ue_phys,
2349 						meta_ac, &dealloc);
2350 		if (ret < 0) {
2351 			mlog_errno(ret);
2352 			break;
2353 		}
2354 	}
2355 
2356 	if (end > i_size_read(inode)) {
2357 		ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2358 		if (ret < 0)
2359 			mlog_errno(ret);
2360 	}
2361 commit:
2362 	ocfs2_commit_trans(osb, handle);
2363 unlock:
2364 	up_write(&oi->ip_alloc_sem);
2365 	ocfs2_inode_unlock(inode, 1);
2366 	brelse(di_bh);
2367 out:
2368 	if (data_ac)
2369 		ocfs2_free_alloc_context(data_ac);
2370 	if (meta_ac)
2371 		ocfs2_free_alloc_context(meta_ac);
2372 	ocfs2_run_deallocs(osb, &dealloc);
2373 	if (locked)
2374 		inode_unlock(inode);
2375 	ocfs2_dio_free_write_ctx(inode, dwc);
2376 
2377 	return ret;
2378 }
2379 
2380 /*
2381  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2382  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2383  * to protect io on one node from truncation on another.
2384  */
2385 static int ocfs2_dio_end_io(struct kiocb *iocb,
2386 			    loff_t offset,
2387 			    ssize_t bytes,
2388 			    void *private)
2389 {
2390 	struct inode *inode = file_inode(iocb->ki_filp);
2391 	int level;
2392 	int ret = 0;
2393 
2394 	/* this io's submitter should not have unlocked this before we could */
2395 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2396 
2397 	if (bytes > 0 && private)
2398 		ret = ocfs2_dio_end_io_write(inode, private, offset, bytes);
2399 
2400 	ocfs2_iocb_clear_rw_locked(iocb);
2401 
2402 	level = ocfs2_iocb_rw_locked_level(iocb);
2403 	ocfs2_rw_unlock(inode, level);
2404 	return ret;
2405 }
2406 
2407 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2408 {
2409 	struct file *file = iocb->ki_filp;
2410 	struct inode *inode = file->f_mapping->host;
2411 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2412 	get_block_t *get_block;
2413 
2414 	/*
2415 	 * Fallback to buffered I/O if we see an inode without
2416 	 * extents.
2417 	 */
2418 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2419 		return 0;
2420 
2421 	/* Fallback to buffered I/O if we do not support append dio. */
2422 	if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2423 	    !ocfs2_supports_append_dio(osb))
2424 		return 0;
2425 
2426 	if (iov_iter_rw(iter) == READ)
2427 		get_block = ocfs2_get_block;
2428 	else
2429 		get_block = ocfs2_dio_get_block;
2430 
2431 	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2432 				    iter, get_block,
2433 				    ocfs2_dio_end_io, NULL, 0);
2434 }
2435 
2436 const struct address_space_operations ocfs2_aops = {
2437 	.readpage		= ocfs2_readpage,
2438 	.readpages		= ocfs2_readpages,
2439 	.writepage		= ocfs2_writepage,
2440 	.write_begin		= ocfs2_write_begin,
2441 	.write_end		= ocfs2_write_end,
2442 	.bmap			= ocfs2_bmap,
2443 	.direct_IO		= ocfs2_direct_IO,
2444 	.invalidatepage		= block_invalidatepage,
2445 	.releasepage		= ocfs2_releasepage,
2446 	.migratepage		= buffer_migrate_page,
2447 	.is_partially_uptodate	= block_is_partially_uptodate,
2448 	.error_remove_page	= generic_error_remove_page,
2449 };
2450