1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/highmem.h> 9 #include <linux/pagemap.h> 10 #include <asm/byteorder.h> 11 #include <linux/swap.h> 12 #include <linux/mpage.h> 13 #include <linux/quotaops.h> 14 #include <linux/blkdev.h> 15 #include <linux/uio.h> 16 #include <linux/mm.h> 17 18 #include <cluster/masklog.h> 19 20 #include "ocfs2.h" 21 22 #include "alloc.h" 23 #include "aops.h" 24 #include "dlmglue.h" 25 #include "extent_map.h" 26 #include "file.h" 27 #include "inode.h" 28 #include "journal.h" 29 #include "suballoc.h" 30 #include "super.h" 31 #include "symlink.h" 32 #include "refcounttree.h" 33 #include "ocfs2_trace.h" 34 35 #include "buffer_head_io.h" 36 #include "dir.h" 37 #include "namei.h" 38 #include "sysfile.h" 39 40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 41 struct buffer_head *bh_result, int create) 42 { 43 int err = -EIO; 44 int status; 45 struct ocfs2_dinode *fe = NULL; 46 struct buffer_head *bh = NULL; 47 struct buffer_head *buffer_cache_bh = NULL; 48 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 49 void *kaddr; 50 51 trace_ocfs2_symlink_get_block( 52 (unsigned long long)OCFS2_I(inode)->ip_blkno, 53 (unsigned long long)iblock, bh_result, create); 54 55 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 56 57 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 58 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 59 (unsigned long long)iblock); 60 goto bail; 61 } 62 63 status = ocfs2_read_inode_block(inode, &bh); 64 if (status < 0) { 65 mlog_errno(status); 66 goto bail; 67 } 68 fe = (struct ocfs2_dinode *) bh->b_data; 69 70 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 71 le32_to_cpu(fe->i_clusters))) { 72 err = -ENOMEM; 73 mlog(ML_ERROR, "block offset is outside the allocated size: " 74 "%llu\n", (unsigned long long)iblock); 75 goto bail; 76 } 77 78 /* We don't use the page cache to create symlink data, so if 79 * need be, copy it over from the buffer cache. */ 80 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 81 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 82 iblock; 83 buffer_cache_bh = sb_getblk(osb->sb, blkno); 84 if (!buffer_cache_bh) { 85 err = -ENOMEM; 86 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 87 goto bail; 88 } 89 90 /* we haven't locked out transactions, so a commit 91 * could've happened. Since we've got a reference on 92 * the bh, even if it commits while we're doing the 93 * copy, the data is still good. */ 94 if (buffer_jbd(buffer_cache_bh) 95 && ocfs2_inode_is_new(inode)) { 96 kaddr = kmap_atomic(bh_result->b_page); 97 if (!kaddr) { 98 mlog(ML_ERROR, "couldn't kmap!\n"); 99 goto bail; 100 } 101 memcpy(kaddr + (bh_result->b_size * iblock), 102 buffer_cache_bh->b_data, 103 bh_result->b_size); 104 kunmap_atomic(kaddr); 105 set_buffer_uptodate(bh_result); 106 } 107 brelse(buffer_cache_bh); 108 } 109 110 map_bh(bh_result, inode->i_sb, 111 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 112 113 err = 0; 114 115 bail: 116 brelse(bh); 117 118 return err; 119 } 120 121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock, 122 struct buffer_head *bh_result, int create) 123 { 124 int ret = 0; 125 struct ocfs2_inode_info *oi = OCFS2_I(inode); 126 127 down_read(&oi->ip_alloc_sem); 128 ret = ocfs2_get_block(inode, iblock, bh_result, create); 129 up_read(&oi->ip_alloc_sem); 130 131 return ret; 132 } 133 134 int ocfs2_get_block(struct inode *inode, sector_t iblock, 135 struct buffer_head *bh_result, int create) 136 { 137 int err = 0; 138 unsigned int ext_flags; 139 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 140 u64 p_blkno, count, past_eof; 141 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 142 143 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 144 (unsigned long long)iblock, bh_result, create); 145 146 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 147 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 148 inode, inode->i_ino); 149 150 if (S_ISLNK(inode->i_mode)) { 151 /* this always does I/O for some reason. */ 152 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 153 goto bail; 154 } 155 156 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 157 &ext_flags); 158 if (err) { 159 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 160 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 161 (unsigned long long)p_blkno); 162 goto bail; 163 } 164 165 if (max_blocks < count) 166 count = max_blocks; 167 168 /* 169 * ocfs2 never allocates in this function - the only time we 170 * need to use BH_New is when we're extending i_size on a file 171 * system which doesn't support holes, in which case BH_New 172 * allows __block_write_begin() to zero. 173 * 174 * If we see this on a sparse file system, then a truncate has 175 * raced us and removed the cluster. In this case, we clear 176 * the buffers dirty and uptodate bits and let the buffer code 177 * ignore it as a hole. 178 */ 179 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 180 clear_buffer_dirty(bh_result); 181 clear_buffer_uptodate(bh_result); 182 goto bail; 183 } 184 185 /* Treat the unwritten extent as a hole for zeroing purposes. */ 186 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 187 map_bh(bh_result, inode->i_sb, p_blkno); 188 189 bh_result->b_size = count << inode->i_blkbits; 190 191 if (!ocfs2_sparse_alloc(osb)) { 192 if (p_blkno == 0) { 193 err = -EIO; 194 mlog(ML_ERROR, 195 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 196 (unsigned long long)iblock, 197 (unsigned long long)p_blkno, 198 (unsigned long long)OCFS2_I(inode)->ip_blkno); 199 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 200 dump_stack(); 201 goto bail; 202 } 203 } 204 205 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 206 207 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 208 (unsigned long long)past_eof); 209 if (create && (iblock >= past_eof)) 210 set_buffer_new(bh_result); 211 212 bail: 213 if (err < 0) 214 err = -EIO; 215 216 return err; 217 } 218 219 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 220 struct buffer_head *di_bh) 221 { 222 void *kaddr; 223 loff_t size; 224 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 225 226 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 227 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 228 (unsigned long long)OCFS2_I(inode)->ip_blkno); 229 return -EROFS; 230 } 231 232 size = i_size_read(inode); 233 234 if (size > PAGE_SIZE || 235 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 236 ocfs2_error(inode->i_sb, 237 "Inode %llu has with inline data has bad size: %Lu\n", 238 (unsigned long long)OCFS2_I(inode)->ip_blkno, 239 (unsigned long long)size); 240 return -EROFS; 241 } 242 243 kaddr = kmap_atomic(page); 244 if (size) 245 memcpy(kaddr, di->id2.i_data.id_data, size); 246 /* Clear the remaining part of the page */ 247 memset(kaddr + size, 0, PAGE_SIZE - size); 248 flush_dcache_page(page); 249 kunmap_atomic(kaddr); 250 251 SetPageUptodate(page); 252 253 return 0; 254 } 255 256 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 257 { 258 int ret; 259 struct buffer_head *di_bh = NULL; 260 261 BUG_ON(!PageLocked(page)); 262 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 263 264 ret = ocfs2_read_inode_block(inode, &di_bh); 265 if (ret) { 266 mlog_errno(ret); 267 goto out; 268 } 269 270 ret = ocfs2_read_inline_data(inode, page, di_bh); 271 out: 272 unlock_page(page); 273 274 brelse(di_bh); 275 return ret; 276 } 277 278 static int ocfs2_read_folio(struct file *file, struct folio *folio) 279 { 280 struct page *page = &folio->page; 281 struct inode *inode = page->mapping->host; 282 struct ocfs2_inode_info *oi = OCFS2_I(inode); 283 loff_t start = (loff_t)page->index << PAGE_SHIFT; 284 int ret, unlock = 1; 285 286 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 287 (page ? page->index : 0)); 288 289 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 290 if (ret != 0) { 291 if (ret == AOP_TRUNCATED_PAGE) 292 unlock = 0; 293 mlog_errno(ret); 294 goto out; 295 } 296 297 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 298 /* 299 * Unlock the page and cycle ip_alloc_sem so that we don't 300 * busyloop waiting for ip_alloc_sem to unlock 301 */ 302 ret = AOP_TRUNCATED_PAGE; 303 unlock_page(page); 304 unlock = 0; 305 down_read(&oi->ip_alloc_sem); 306 up_read(&oi->ip_alloc_sem); 307 goto out_inode_unlock; 308 } 309 310 /* 311 * i_size might have just been updated as we grabed the meta lock. We 312 * might now be discovering a truncate that hit on another node. 313 * block_read_full_folio->get_block freaks out if it is asked to read 314 * beyond the end of a file, so we check here. Callers 315 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 316 * and notice that the page they just read isn't needed. 317 * 318 * XXX sys_readahead() seems to get that wrong? 319 */ 320 if (start >= i_size_read(inode)) { 321 zero_user(page, 0, PAGE_SIZE); 322 SetPageUptodate(page); 323 ret = 0; 324 goto out_alloc; 325 } 326 327 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 328 ret = ocfs2_readpage_inline(inode, page); 329 else 330 ret = block_read_full_folio(page_folio(page), ocfs2_get_block); 331 unlock = 0; 332 333 out_alloc: 334 up_read(&oi->ip_alloc_sem); 335 out_inode_unlock: 336 ocfs2_inode_unlock(inode, 0); 337 out: 338 if (unlock) 339 unlock_page(page); 340 return ret; 341 } 342 343 /* 344 * This is used only for read-ahead. Failures or difficult to handle 345 * situations are safe to ignore. 346 * 347 * Right now, we don't bother with BH_Boundary - in-inode extent lists 348 * are quite large (243 extents on 4k blocks), so most inodes don't 349 * grow out to a tree. If need be, detecting boundary extents could 350 * trivially be added in a future version of ocfs2_get_block(). 351 */ 352 static void ocfs2_readahead(struct readahead_control *rac) 353 { 354 int ret; 355 struct inode *inode = rac->mapping->host; 356 struct ocfs2_inode_info *oi = OCFS2_I(inode); 357 358 /* 359 * Use the nonblocking flag for the dlm code to avoid page 360 * lock inversion, but don't bother with retrying. 361 */ 362 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 363 if (ret) 364 return; 365 366 if (down_read_trylock(&oi->ip_alloc_sem) == 0) 367 goto out_unlock; 368 369 /* 370 * Don't bother with inline-data. There isn't anything 371 * to read-ahead in that case anyway... 372 */ 373 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 374 goto out_up; 375 376 /* 377 * Check whether a remote node truncated this file - we just 378 * drop out in that case as it's not worth handling here. 379 */ 380 if (readahead_pos(rac) >= i_size_read(inode)) 381 goto out_up; 382 383 mpage_readahead(rac, ocfs2_get_block); 384 385 out_up: 386 up_read(&oi->ip_alloc_sem); 387 out_unlock: 388 ocfs2_inode_unlock(inode, 0); 389 } 390 391 /* Note: Because we don't support holes, our allocation has 392 * already happened (allocation writes zeros to the file data) 393 * so we don't have to worry about ordered writes in 394 * ocfs2_writepage. 395 * 396 * ->writepage is called during the process of invalidating the page cache 397 * during blocked lock processing. It can't block on any cluster locks 398 * to during block mapping. It's relying on the fact that the block 399 * mapping can't have disappeared under the dirty pages that it is 400 * being asked to write back. 401 */ 402 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 403 { 404 trace_ocfs2_writepage( 405 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 406 page->index); 407 408 return block_write_full_page(page, ocfs2_get_block, wbc); 409 } 410 411 /* Taken from ext3. We don't necessarily need the full blown 412 * functionality yet, but IMHO it's better to cut and paste the whole 413 * thing so we can avoid introducing our own bugs (and easily pick up 414 * their fixes when they happen) --Mark */ 415 int walk_page_buffers( handle_t *handle, 416 struct buffer_head *head, 417 unsigned from, 418 unsigned to, 419 int *partial, 420 int (*fn)( handle_t *handle, 421 struct buffer_head *bh)) 422 { 423 struct buffer_head *bh; 424 unsigned block_start, block_end; 425 unsigned blocksize = head->b_size; 426 int err, ret = 0; 427 struct buffer_head *next; 428 429 for ( bh = head, block_start = 0; 430 ret == 0 && (bh != head || !block_start); 431 block_start = block_end, bh = next) 432 { 433 next = bh->b_this_page; 434 block_end = block_start + blocksize; 435 if (block_end <= from || block_start >= to) { 436 if (partial && !buffer_uptodate(bh)) 437 *partial = 1; 438 continue; 439 } 440 err = (*fn)(handle, bh); 441 if (!ret) 442 ret = err; 443 } 444 return ret; 445 } 446 447 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 448 { 449 sector_t status; 450 u64 p_blkno = 0; 451 int err = 0; 452 struct inode *inode = mapping->host; 453 454 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 455 (unsigned long long)block); 456 457 /* 458 * The swap code (ab-)uses ->bmap to get a block mapping and then 459 * bypasseѕ the file system for actual I/O. We really can't allow 460 * that on refcounted inodes, so we have to skip out here. And yes, 461 * 0 is the magic code for a bmap error.. 462 */ 463 if (ocfs2_is_refcount_inode(inode)) 464 return 0; 465 466 /* We don't need to lock journal system files, since they aren't 467 * accessed concurrently from multiple nodes. 468 */ 469 if (!INODE_JOURNAL(inode)) { 470 err = ocfs2_inode_lock(inode, NULL, 0); 471 if (err) { 472 if (err != -ENOENT) 473 mlog_errno(err); 474 goto bail; 475 } 476 down_read(&OCFS2_I(inode)->ip_alloc_sem); 477 } 478 479 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 480 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 481 NULL); 482 483 if (!INODE_JOURNAL(inode)) { 484 up_read(&OCFS2_I(inode)->ip_alloc_sem); 485 ocfs2_inode_unlock(inode, 0); 486 } 487 488 if (err) { 489 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 490 (unsigned long long)block); 491 mlog_errno(err); 492 goto bail; 493 } 494 495 bail: 496 status = err ? 0 : p_blkno; 497 498 return status; 499 } 500 501 static bool ocfs2_release_folio(struct folio *folio, gfp_t wait) 502 { 503 if (!folio_buffers(folio)) 504 return false; 505 return try_to_free_buffers(folio); 506 } 507 508 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 509 u32 cpos, 510 unsigned int *start, 511 unsigned int *end) 512 { 513 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE; 514 515 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) { 516 unsigned int cpp; 517 518 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits); 519 520 cluster_start = cpos % cpp; 521 cluster_start = cluster_start << osb->s_clustersize_bits; 522 523 cluster_end = cluster_start + osb->s_clustersize; 524 } 525 526 BUG_ON(cluster_start > PAGE_SIZE); 527 BUG_ON(cluster_end > PAGE_SIZE); 528 529 if (start) 530 *start = cluster_start; 531 if (end) 532 *end = cluster_end; 533 } 534 535 /* 536 * 'from' and 'to' are the region in the page to avoid zeroing. 537 * 538 * If pagesize > clustersize, this function will avoid zeroing outside 539 * of the cluster boundary. 540 * 541 * from == to == 0 is code for "zero the entire cluster region" 542 */ 543 static void ocfs2_clear_page_regions(struct page *page, 544 struct ocfs2_super *osb, u32 cpos, 545 unsigned from, unsigned to) 546 { 547 void *kaddr; 548 unsigned int cluster_start, cluster_end; 549 550 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 551 552 kaddr = kmap_atomic(page); 553 554 if (from || to) { 555 if (from > cluster_start) 556 memset(kaddr + cluster_start, 0, from - cluster_start); 557 if (to < cluster_end) 558 memset(kaddr + to, 0, cluster_end - to); 559 } else { 560 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 561 } 562 563 kunmap_atomic(kaddr); 564 } 565 566 /* 567 * Nonsparse file systems fully allocate before we get to the write 568 * code. This prevents ocfs2_write() from tagging the write as an 569 * allocating one, which means ocfs2_map_page_blocks() might try to 570 * read-in the blocks at the tail of our file. Avoid reading them by 571 * testing i_size against each block offset. 572 */ 573 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 574 unsigned int block_start) 575 { 576 u64 offset = page_offset(page) + block_start; 577 578 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 579 return 1; 580 581 if (i_size_read(inode) > offset) 582 return 1; 583 584 return 0; 585 } 586 587 /* 588 * Some of this taken from __block_write_begin(). We already have our 589 * mapping by now though, and the entire write will be allocating or 590 * it won't, so not much need to use BH_New. 591 * 592 * This will also skip zeroing, which is handled externally. 593 */ 594 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 595 struct inode *inode, unsigned int from, 596 unsigned int to, int new) 597 { 598 int ret = 0; 599 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 600 unsigned int block_end, block_start; 601 unsigned int bsize = i_blocksize(inode); 602 603 if (!page_has_buffers(page)) 604 create_empty_buffers(page, bsize, 0); 605 606 head = page_buffers(page); 607 for (bh = head, block_start = 0; bh != head || !block_start; 608 bh = bh->b_this_page, block_start += bsize) { 609 block_end = block_start + bsize; 610 611 clear_buffer_new(bh); 612 613 /* 614 * Ignore blocks outside of our i/o range - 615 * they may belong to unallocated clusters. 616 */ 617 if (block_start >= to || block_end <= from) { 618 if (PageUptodate(page)) 619 set_buffer_uptodate(bh); 620 continue; 621 } 622 623 /* 624 * For an allocating write with cluster size >= page 625 * size, we always write the entire page. 626 */ 627 if (new) 628 set_buffer_new(bh); 629 630 if (!buffer_mapped(bh)) { 631 map_bh(bh, inode->i_sb, *p_blkno); 632 clean_bdev_bh_alias(bh); 633 } 634 635 if (PageUptodate(page)) { 636 set_buffer_uptodate(bh); 637 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 638 !buffer_new(bh) && 639 ocfs2_should_read_blk(inode, page, block_start) && 640 (block_start < from || block_end > to)) { 641 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 642 *wait_bh++=bh; 643 } 644 645 *p_blkno = *p_blkno + 1; 646 } 647 648 /* 649 * If we issued read requests - let them complete. 650 */ 651 while(wait_bh > wait) { 652 wait_on_buffer(*--wait_bh); 653 if (!buffer_uptodate(*wait_bh)) 654 ret = -EIO; 655 } 656 657 if (ret == 0 || !new) 658 return ret; 659 660 /* 661 * If we get -EIO above, zero out any newly allocated blocks 662 * to avoid exposing stale data. 663 */ 664 bh = head; 665 block_start = 0; 666 do { 667 block_end = block_start + bsize; 668 if (block_end <= from) 669 goto next_bh; 670 if (block_start >= to) 671 break; 672 673 zero_user(page, block_start, bh->b_size); 674 set_buffer_uptodate(bh); 675 mark_buffer_dirty(bh); 676 677 next_bh: 678 block_start = block_end; 679 bh = bh->b_this_page; 680 } while (bh != head); 681 682 return ret; 683 } 684 685 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 686 #define OCFS2_MAX_CTXT_PAGES 1 687 #else 688 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE) 689 #endif 690 691 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE) 692 693 struct ocfs2_unwritten_extent { 694 struct list_head ue_node; 695 struct list_head ue_ip_node; 696 u32 ue_cpos; 697 u32 ue_phys; 698 }; 699 700 /* 701 * Describe the state of a single cluster to be written to. 702 */ 703 struct ocfs2_write_cluster_desc { 704 u32 c_cpos; 705 u32 c_phys; 706 /* 707 * Give this a unique field because c_phys eventually gets 708 * filled. 709 */ 710 unsigned c_new; 711 unsigned c_clear_unwritten; 712 unsigned c_needs_zero; 713 }; 714 715 struct ocfs2_write_ctxt { 716 /* Logical cluster position / len of write */ 717 u32 w_cpos; 718 u32 w_clen; 719 720 /* First cluster allocated in a nonsparse extend */ 721 u32 w_first_new_cpos; 722 723 /* Type of caller. Must be one of buffer, mmap, direct. */ 724 ocfs2_write_type_t w_type; 725 726 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 727 728 /* 729 * This is true if page_size > cluster_size. 730 * 731 * It triggers a set of special cases during write which might 732 * have to deal with allocating writes to partial pages. 733 */ 734 unsigned int w_large_pages; 735 736 /* 737 * Pages involved in this write. 738 * 739 * w_target_page is the page being written to by the user. 740 * 741 * w_pages is an array of pages which always contains 742 * w_target_page, and in the case of an allocating write with 743 * page_size < cluster size, it will contain zero'd and mapped 744 * pages adjacent to w_target_page which need to be written 745 * out in so that future reads from that region will get 746 * zero's. 747 */ 748 unsigned int w_num_pages; 749 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 750 struct page *w_target_page; 751 752 /* 753 * w_target_locked is used for page_mkwrite path indicating no unlocking 754 * against w_target_page in ocfs2_write_end_nolock. 755 */ 756 unsigned int w_target_locked:1; 757 758 /* 759 * ocfs2_write_end() uses this to know what the real range to 760 * write in the target should be. 761 */ 762 unsigned int w_target_from; 763 unsigned int w_target_to; 764 765 /* 766 * We could use journal_current_handle() but this is cleaner, 767 * IMHO -Mark 768 */ 769 handle_t *w_handle; 770 771 struct buffer_head *w_di_bh; 772 773 struct ocfs2_cached_dealloc_ctxt w_dealloc; 774 775 struct list_head w_unwritten_list; 776 unsigned int w_unwritten_count; 777 }; 778 779 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 780 { 781 int i; 782 783 for(i = 0; i < num_pages; i++) { 784 if (pages[i]) { 785 unlock_page(pages[i]); 786 mark_page_accessed(pages[i]); 787 put_page(pages[i]); 788 } 789 } 790 } 791 792 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 793 { 794 int i; 795 796 /* 797 * w_target_locked is only set to true in the page_mkwrite() case. 798 * The intent is to allow us to lock the target page from write_begin() 799 * to write_end(). The caller must hold a ref on w_target_page. 800 */ 801 if (wc->w_target_locked) { 802 BUG_ON(!wc->w_target_page); 803 for (i = 0; i < wc->w_num_pages; i++) { 804 if (wc->w_target_page == wc->w_pages[i]) { 805 wc->w_pages[i] = NULL; 806 break; 807 } 808 } 809 mark_page_accessed(wc->w_target_page); 810 put_page(wc->w_target_page); 811 } 812 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 813 } 814 815 static void ocfs2_free_unwritten_list(struct inode *inode, 816 struct list_head *head) 817 { 818 struct ocfs2_inode_info *oi = OCFS2_I(inode); 819 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL; 820 821 list_for_each_entry_safe(ue, tmp, head, ue_node) { 822 list_del(&ue->ue_node); 823 spin_lock(&oi->ip_lock); 824 list_del(&ue->ue_ip_node); 825 spin_unlock(&oi->ip_lock); 826 kfree(ue); 827 } 828 } 829 830 static void ocfs2_free_write_ctxt(struct inode *inode, 831 struct ocfs2_write_ctxt *wc) 832 { 833 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list); 834 ocfs2_unlock_pages(wc); 835 brelse(wc->w_di_bh); 836 kfree(wc); 837 } 838 839 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 840 struct ocfs2_super *osb, loff_t pos, 841 unsigned len, ocfs2_write_type_t type, 842 struct buffer_head *di_bh) 843 { 844 u32 cend; 845 struct ocfs2_write_ctxt *wc; 846 847 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 848 if (!wc) 849 return -ENOMEM; 850 851 wc->w_cpos = pos >> osb->s_clustersize_bits; 852 wc->w_first_new_cpos = UINT_MAX; 853 cend = (pos + len - 1) >> osb->s_clustersize_bits; 854 wc->w_clen = cend - wc->w_cpos + 1; 855 get_bh(di_bh); 856 wc->w_di_bh = di_bh; 857 wc->w_type = type; 858 859 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) 860 wc->w_large_pages = 1; 861 else 862 wc->w_large_pages = 0; 863 864 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 865 INIT_LIST_HEAD(&wc->w_unwritten_list); 866 867 *wcp = wc; 868 869 return 0; 870 } 871 872 /* 873 * If a page has any new buffers, zero them out here, and mark them uptodate 874 * and dirty so they'll be written out (in order to prevent uninitialised 875 * block data from leaking). And clear the new bit. 876 */ 877 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 878 { 879 unsigned int block_start, block_end; 880 struct buffer_head *head, *bh; 881 882 BUG_ON(!PageLocked(page)); 883 if (!page_has_buffers(page)) 884 return; 885 886 bh = head = page_buffers(page); 887 block_start = 0; 888 do { 889 block_end = block_start + bh->b_size; 890 891 if (buffer_new(bh)) { 892 if (block_end > from && block_start < to) { 893 if (!PageUptodate(page)) { 894 unsigned start, end; 895 896 start = max(from, block_start); 897 end = min(to, block_end); 898 899 zero_user_segment(page, start, end); 900 set_buffer_uptodate(bh); 901 } 902 903 clear_buffer_new(bh); 904 mark_buffer_dirty(bh); 905 } 906 } 907 908 block_start = block_end; 909 bh = bh->b_this_page; 910 } while (bh != head); 911 } 912 913 /* 914 * Only called when we have a failure during allocating write to write 915 * zero's to the newly allocated region. 916 */ 917 static void ocfs2_write_failure(struct inode *inode, 918 struct ocfs2_write_ctxt *wc, 919 loff_t user_pos, unsigned user_len) 920 { 921 int i; 922 unsigned from = user_pos & (PAGE_SIZE - 1), 923 to = user_pos + user_len; 924 struct page *tmppage; 925 926 if (wc->w_target_page) 927 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 928 929 for(i = 0; i < wc->w_num_pages; i++) { 930 tmppage = wc->w_pages[i]; 931 932 if (tmppage && page_has_buffers(tmppage)) { 933 if (ocfs2_should_order_data(inode)) 934 ocfs2_jbd2_inode_add_write(wc->w_handle, inode, 935 user_pos, user_len); 936 937 block_commit_write(tmppage, from, to); 938 } 939 } 940 } 941 942 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 943 struct ocfs2_write_ctxt *wc, 944 struct page *page, u32 cpos, 945 loff_t user_pos, unsigned user_len, 946 int new) 947 { 948 int ret; 949 unsigned int map_from = 0, map_to = 0; 950 unsigned int cluster_start, cluster_end; 951 unsigned int user_data_from = 0, user_data_to = 0; 952 953 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 954 &cluster_start, &cluster_end); 955 956 /* treat the write as new if the a hole/lseek spanned across 957 * the page boundary. 958 */ 959 new = new | ((i_size_read(inode) <= page_offset(page)) && 960 (page_offset(page) <= user_pos)); 961 962 if (page == wc->w_target_page) { 963 map_from = user_pos & (PAGE_SIZE - 1); 964 map_to = map_from + user_len; 965 966 if (new) 967 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 968 cluster_start, cluster_end, 969 new); 970 else 971 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 972 map_from, map_to, new); 973 if (ret) { 974 mlog_errno(ret); 975 goto out; 976 } 977 978 user_data_from = map_from; 979 user_data_to = map_to; 980 if (new) { 981 map_from = cluster_start; 982 map_to = cluster_end; 983 } 984 } else { 985 /* 986 * If we haven't allocated the new page yet, we 987 * shouldn't be writing it out without copying user 988 * data. This is likely a math error from the caller. 989 */ 990 BUG_ON(!new); 991 992 map_from = cluster_start; 993 map_to = cluster_end; 994 995 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 996 cluster_start, cluster_end, new); 997 if (ret) { 998 mlog_errno(ret); 999 goto out; 1000 } 1001 } 1002 1003 /* 1004 * Parts of newly allocated pages need to be zero'd. 1005 * 1006 * Above, we have also rewritten 'to' and 'from' - as far as 1007 * the rest of the function is concerned, the entire cluster 1008 * range inside of a page needs to be written. 1009 * 1010 * We can skip this if the page is up to date - it's already 1011 * been zero'd from being read in as a hole. 1012 */ 1013 if (new && !PageUptodate(page)) 1014 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1015 cpos, user_data_from, user_data_to); 1016 1017 flush_dcache_page(page); 1018 1019 out: 1020 return ret; 1021 } 1022 1023 /* 1024 * This function will only grab one clusters worth of pages. 1025 */ 1026 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1027 struct ocfs2_write_ctxt *wc, 1028 u32 cpos, loff_t user_pos, 1029 unsigned user_len, int new, 1030 struct page *mmap_page) 1031 { 1032 int ret = 0, i; 1033 unsigned long start, target_index, end_index, index; 1034 struct inode *inode = mapping->host; 1035 loff_t last_byte; 1036 1037 target_index = user_pos >> PAGE_SHIFT; 1038 1039 /* 1040 * Figure out how many pages we'll be manipulating here. For 1041 * non allocating write, we just change the one 1042 * page. Otherwise, we'll need a whole clusters worth. If we're 1043 * writing past i_size, we only need enough pages to cover the 1044 * last page of the write. 1045 */ 1046 if (new) { 1047 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1048 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1049 /* 1050 * We need the index *past* the last page we could possibly 1051 * touch. This is the page past the end of the write or 1052 * i_size, whichever is greater. 1053 */ 1054 last_byte = max(user_pos + user_len, i_size_read(inode)); 1055 BUG_ON(last_byte < 1); 1056 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1; 1057 if ((start + wc->w_num_pages) > end_index) 1058 wc->w_num_pages = end_index - start; 1059 } else { 1060 wc->w_num_pages = 1; 1061 start = target_index; 1062 } 1063 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT; 1064 1065 for(i = 0; i < wc->w_num_pages; i++) { 1066 index = start + i; 1067 1068 if (index >= target_index && index <= end_index && 1069 wc->w_type == OCFS2_WRITE_MMAP) { 1070 /* 1071 * ocfs2_pagemkwrite() is a little different 1072 * and wants us to directly use the page 1073 * passed in. 1074 */ 1075 lock_page(mmap_page); 1076 1077 /* Exit and let the caller retry */ 1078 if (mmap_page->mapping != mapping) { 1079 WARN_ON(mmap_page->mapping); 1080 unlock_page(mmap_page); 1081 ret = -EAGAIN; 1082 goto out; 1083 } 1084 1085 get_page(mmap_page); 1086 wc->w_pages[i] = mmap_page; 1087 wc->w_target_locked = true; 1088 } else if (index >= target_index && index <= end_index && 1089 wc->w_type == OCFS2_WRITE_DIRECT) { 1090 /* Direct write has no mapping page. */ 1091 wc->w_pages[i] = NULL; 1092 continue; 1093 } else { 1094 wc->w_pages[i] = find_or_create_page(mapping, index, 1095 GFP_NOFS); 1096 if (!wc->w_pages[i]) { 1097 ret = -ENOMEM; 1098 mlog_errno(ret); 1099 goto out; 1100 } 1101 } 1102 wait_for_stable_page(wc->w_pages[i]); 1103 1104 if (index == target_index) 1105 wc->w_target_page = wc->w_pages[i]; 1106 } 1107 out: 1108 if (ret) 1109 wc->w_target_locked = false; 1110 return ret; 1111 } 1112 1113 /* 1114 * Prepare a single cluster for write one cluster into the file. 1115 */ 1116 static int ocfs2_write_cluster(struct address_space *mapping, 1117 u32 *phys, unsigned int new, 1118 unsigned int clear_unwritten, 1119 unsigned int should_zero, 1120 struct ocfs2_alloc_context *data_ac, 1121 struct ocfs2_alloc_context *meta_ac, 1122 struct ocfs2_write_ctxt *wc, u32 cpos, 1123 loff_t user_pos, unsigned user_len) 1124 { 1125 int ret, i; 1126 u64 p_blkno; 1127 struct inode *inode = mapping->host; 1128 struct ocfs2_extent_tree et; 1129 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); 1130 1131 if (new) { 1132 u32 tmp_pos; 1133 1134 /* 1135 * This is safe to call with the page locks - it won't take 1136 * any additional semaphores or cluster locks. 1137 */ 1138 tmp_pos = cpos; 1139 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1140 &tmp_pos, 1, !clear_unwritten, 1141 wc->w_di_bh, wc->w_handle, 1142 data_ac, meta_ac, NULL); 1143 /* 1144 * This shouldn't happen because we must have already 1145 * calculated the correct meta data allocation required. The 1146 * internal tree allocation code should know how to increase 1147 * transaction credits itself. 1148 * 1149 * If need be, we could handle -EAGAIN for a 1150 * RESTART_TRANS here. 1151 */ 1152 mlog_bug_on_msg(ret == -EAGAIN, 1153 "Inode %llu: EAGAIN return during allocation.\n", 1154 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1155 if (ret < 0) { 1156 mlog_errno(ret); 1157 goto out; 1158 } 1159 } else if (clear_unwritten) { 1160 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1161 wc->w_di_bh); 1162 ret = ocfs2_mark_extent_written(inode, &et, 1163 wc->w_handle, cpos, 1, *phys, 1164 meta_ac, &wc->w_dealloc); 1165 if (ret < 0) { 1166 mlog_errno(ret); 1167 goto out; 1168 } 1169 } 1170 1171 /* 1172 * The only reason this should fail is due to an inability to 1173 * find the extent added. 1174 */ 1175 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL); 1176 if (ret < 0) { 1177 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1178 "at logical cluster %u", 1179 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 1180 goto out; 1181 } 1182 1183 BUG_ON(*phys == 0); 1184 1185 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys); 1186 if (!should_zero) 1187 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1); 1188 1189 for(i = 0; i < wc->w_num_pages; i++) { 1190 int tmpret; 1191 1192 /* This is the direct io target page. */ 1193 if (wc->w_pages[i] == NULL) { 1194 p_blkno++; 1195 continue; 1196 } 1197 1198 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1199 wc->w_pages[i], cpos, 1200 user_pos, user_len, 1201 should_zero); 1202 if (tmpret) { 1203 mlog_errno(tmpret); 1204 if (ret == 0) 1205 ret = tmpret; 1206 } 1207 } 1208 1209 /* 1210 * We only have cleanup to do in case of allocating write. 1211 */ 1212 if (ret && new) 1213 ocfs2_write_failure(inode, wc, user_pos, user_len); 1214 1215 out: 1216 1217 return ret; 1218 } 1219 1220 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1221 struct ocfs2_alloc_context *data_ac, 1222 struct ocfs2_alloc_context *meta_ac, 1223 struct ocfs2_write_ctxt *wc, 1224 loff_t pos, unsigned len) 1225 { 1226 int ret, i; 1227 loff_t cluster_off; 1228 unsigned int local_len = len; 1229 struct ocfs2_write_cluster_desc *desc; 1230 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1231 1232 for (i = 0; i < wc->w_clen; i++) { 1233 desc = &wc->w_desc[i]; 1234 1235 /* 1236 * We have to make sure that the total write passed in 1237 * doesn't extend past a single cluster. 1238 */ 1239 local_len = len; 1240 cluster_off = pos & (osb->s_clustersize - 1); 1241 if ((cluster_off + local_len) > osb->s_clustersize) 1242 local_len = osb->s_clustersize - cluster_off; 1243 1244 ret = ocfs2_write_cluster(mapping, &desc->c_phys, 1245 desc->c_new, 1246 desc->c_clear_unwritten, 1247 desc->c_needs_zero, 1248 data_ac, meta_ac, 1249 wc, desc->c_cpos, pos, local_len); 1250 if (ret) { 1251 mlog_errno(ret); 1252 goto out; 1253 } 1254 1255 len -= local_len; 1256 pos += local_len; 1257 } 1258 1259 ret = 0; 1260 out: 1261 return ret; 1262 } 1263 1264 /* 1265 * ocfs2_write_end() wants to know which parts of the target page it 1266 * should complete the write on. It's easiest to compute them ahead of 1267 * time when a more complete view of the write is available. 1268 */ 1269 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1270 struct ocfs2_write_ctxt *wc, 1271 loff_t pos, unsigned len, int alloc) 1272 { 1273 struct ocfs2_write_cluster_desc *desc; 1274 1275 wc->w_target_from = pos & (PAGE_SIZE - 1); 1276 wc->w_target_to = wc->w_target_from + len; 1277 1278 if (alloc == 0) 1279 return; 1280 1281 /* 1282 * Allocating write - we may have different boundaries based 1283 * on page size and cluster size. 1284 * 1285 * NOTE: We can no longer compute one value from the other as 1286 * the actual write length and user provided length may be 1287 * different. 1288 */ 1289 1290 if (wc->w_large_pages) { 1291 /* 1292 * We only care about the 1st and last cluster within 1293 * our range and whether they should be zero'd or not. Either 1294 * value may be extended out to the start/end of a 1295 * newly allocated cluster. 1296 */ 1297 desc = &wc->w_desc[0]; 1298 if (desc->c_needs_zero) 1299 ocfs2_figure_cluster_boundaries(osb, 1300 desc->c_cpos, 1301 &wc->w_target_from, 1302 NULL); 1303 1304 desc = &wc->w_desc[wc->w_clen - 1]; 1305 if (desc->c_needs_zero) 1306 ocfs2_figure_cluster_boundaries(osb, 1307 desc->c_cpos, 1308 NULL, 1309 &wc->w_target_to); 1310 } else { 1311 wc->w_target_from = 0; 1312 wc->w_target_to = PAGE_SIZE; 1313 } 1314 } 1315 1316 /* 1317 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to 1318 * do the zero work. And should not to clear UNWRITTEN since it will be cleared 1319 * by the direct io procedure. 1320 * If this is a new extent that allocated by direct io, we should mark it in 1321 * the ip_unwritten_list. 1322 */ 1323 static int ocfs2_unwritten_check(struct inode *inode, 1324 struct ocfs2_write_ctxt *wc, 1325 struct ocfs2_write_cluster_desc *desc) 1326 { 1327 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1328 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL; 1329 int ret = 0; 1330 1331 if (!desc->c_needs_zero) 1332 return 0; 1333 1334 retry: 1335 spin_lock(&oi->ip_lock); 1336 /* Needs not to zero no metter buffer or direct. The one who is zero 1337 * the cluster is doing zero. And he will clear unwritten after all 1338 * cluster io finished. */ 1339 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) { 1340 if (desc->c_cpos == ue->ue_cpos) { 1341 BUG_ON(desc->c_new); 1342 desc->c_needs_zero = 0; 1343 desc->c_clear_unwritten = 0; 1344 goto unlock; 1345 } 1346 } 1347 1348 if (wc->w_type != OCFS2_WRITE_DIRECT) 1349 goto unlock; 1350 1351 if (new == NULL) { 1352 spin_unlock(&oi->ip_lock); 1353 new = kmalloc(sizeof(struct ocfs2_unwritten_extent), 1354 GFP_NOFS); 1355 if (new == NULL) { 1356 ret = -ENOMEM; 1357 goto out; 1358 } 1359 goto retry; 1360 } 1361 /* This direct write will doing zero. */ 1362 new->ue_cpos = desc->c_cpos; 1363 new->ue_phys = desc->c_phys; 1364 desc->c_clear_unwritten = 0; 1365 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list); 1366 list_add_tail(&new->ue_node, &wc->w_unwritten_list); 1367 wc->w_unwritten_count++; 1368 new = NULL; 1369 unlock: 1370 spin_unlock(&oi->ip_lock); 1371 out: 1372 kfree(new); 1373 return ret; 1374 } 1375 1376 /* 1377 * Populate each single-cluster write descriptor in the write context 1378 * with information about the i/o to be done. 1379 * 1380 * Returns the number of clusters that will have to be allocated, as 1381 * well as a worst case estimate of the number of extent records that 1382 * would have to be created during a write to an unwritten region. 1383 */ 1384 static int ocfs2_populate_write_desc(struct inode *inode, 1385 struct ocfs2_write_ctxt *wc, 1386 unsigned int *clusters_to_alloc, 1387 unsigned int *extents_to_split) 1388 { 1389 int ret; 1390 struct ocfs2_write_cluster_desc *desc; 1391 unsigned int num_clusters = 0; 1392 unsigned int ext_flags = 0; 1393 u32 phys = 0; 1394 int i; 1395 1396 *clusters_to_alloc = 0; 1397 *extents_to_split = 0; 1398 1399 for (i = 0; i < wc->w_clen; i++) { 1400 desc = &wc->w_desc[i]; 1401 desc->c_cpos = wc->w_cpos + i; 1402 1403 if (num_clusters == 0) { 1404 /* 1405 * Need to look up the next extent record. 1406 */ 1407 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1408 &num_clusters, &ext_flags); 1409 if (ret) { 1410 mlog_errno(ret); 1411 goto out; 1412 } 1413 1414 /* We should already CoW the refcountd extent. */ 1415 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1416 1417 /* 1418 * Assume worst case - that we're writing in 1419 * the middle of the extent. 1420 * 1421 * We can assume that the write proceeds from 1422 * left to right, in which case the extent 1423 * insert code is smart enough to coalesce the 1424 * next splits into the previous records created. 1425 */ 1426 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1427 *extents_to_split = *extents_to_split + 2; 1428 } else if (phys) { 1429 /* 1430 * Only increment phys if it doesn't describe 1431 * a hole. 1432 */ 1433 phys++; 1434 } 1435 1436 /* 1437 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1438 * file that got extended. w_first_new_cpos tells us 1439 * where the newly allocated clusters are so we can 1440 * zero them. 1441 */ 1442 if (desc->c_cpos >= wc->w_first_new_cpos) { 1443 BUG_ON(phys == 0); 1444 desc->c_needs_zero = 1; 1445 } 1446 1447 desc->c_phys = phys; 1448 if (phys == 0) { 1449 desc->c_new = 1; 1450 desc->c_needs_zero = 1; 1451 desc->c_clear_unwritten = 1; 1452 *clusters_to_alloc = *clusters_to_alloc + 1; 1453 } 1454 1455 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1456 desc->c_clear_unwritten = 1; 1457 desc->c_needs_zero = 1; 1458 } 1459 1460 ret = ocfs2_unwritten_check(inode, wc, desc); 1461 if (ret) { 1462 mlog_errno(ret); 1463 goto out; 1464 } 1465 1466 num_clusters--; 1467 } 1468 1469 ret = 0; 1470 out: 1471 return ret; 1472 } 1473 1474 static int ocfs2_write_begin_inline(struct address_space *mapping, 1475 struct inode *inode, 1476 struct ocfs2_write_ctxt *wc) 1477 { 1478 int ret; 1479 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1480 struct page *page; 1481 handle_t *handle; 1482 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1483 1484 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1485 if (IS_ERR(handle)) { 1486 ret = PTR_ERR(handle); 1487 mlog_errno(ret); 1488 goto out; 1489 } 1490 1491 page = find_or_create_page(mapping, 0, GFP_NOFS); 1492 if (!page) { 1493 ocfs2_commit_trans(osb, handle); 1494 ret = -ENOMEM; 1495 mlog_errno(ret); 1496 goto out; 1497 } 1498 /* 1499 * If we don't set w_num_pages then this page won't get unlocked 1500 * and freed on cleanup of the write context. 1501 */ 1502 wc->w_pages[0] = wc->w_target_page = page; 1503 wc->w_num_pages = 1; 1504 1505 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1506 OCFS2_JOURNAL_ACCESS_WRITE); 1507 if (ret) { 1508 ocfs2_commit_trans(osb, handle); 1509 1510 mlog_errno(ret); 1511 goto out; 1512 } 1513 1514 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1515 ocfs2_set_inode_data_inline(inode, di); 1516 1517 if (!PageUptodate(page)) { 1518 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1519 if (ret) { 1520 ocfs2_commit_trans(osb, handle); 1521 1522 goto out; 1523 } 1524 } 1525 1526 wc->w_handle = handle; 1527 out: 1528 return ret; 1529 } 1530 1531 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1532 { 1533 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1534 1535 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1536 return 1; 1537 return 0; 1538 } 1539 1540 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1541 struct inode *inode, loff_t pos, 1542 unsigned len, struct page *mmap_page, 1543 struct ocfs2_write_ctxt *wc) 1544 { 1545 int ret, written = 0; 1546 loff_t end = pos + len; 1547 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1548 struct ocfs2_dinode *di = NULL; 1549 1550 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1551 len, (unsigned long long)pos, 1552 oi->ip_dyn_features); 1553 1554 /* 1555 * Handle inodes which already have inline data 1st. 1556 */ 1557 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1558 if (mmap_page == NULL && 1559 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1560 goto do_inline_write; 1561 1562 /* 1563 * The write won't fit - we have to give this inode an 1564 * inline extent list now. 1565 */ 1566 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1567 if (ret) 1568 mlog_errno(ret); 1569 goto out; 1570 } 1571 1572 /* 1573 * Check whether the inode can accept inline data. 1574 */ 1575 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1576 return 0; 1577 1578 /* 1579 * Check whether the write can fit. 1580 */ 1581 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1582 if (mmap_page || 1583 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1584 return 0; 1585 1586 do_inline_write: 1587 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1588 if (ret) { 1589 mlog_errno(ret); 1590 goto out; 1591 } 1592 1593 /* 1594 * This signals to the caller that the data can be written 1595 * inline. 1596 */ 1597 written = 1; 1598 out: 1599 return written ? written : ret; 1600 } 1601 1602 /* 1603 * This function only does anything for file systems which can't 1604 * handle sparse files. 1605 * 1606 * What we want to do here is fill in any hole between the current end 1607 * of allocation and the end of our write. That way the rest of the 1608 * write path can treat it as an non-allocating write, which has no 1609 * special case code for sparse/nonsparse files. 1610 */ 1611 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1612 struct buffer_head *di_bh, 1613 loff_t pos, unsigned len, 1614 struct ocfs2_write_ctxt *wc) 1615 { 1616 int ret; 1617 loff_t newsize = pos + len; 1618 1619 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1620 1621 if (newsize <= i_size_read(inode)) 1622 return 0; 1623 1624 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1625 if (ret) 1626 mlog_errno(ret); 1627 1628 /* There is no wc if this is call from direct. */ 1629 if (wc) 1630 wc->w_first_new_cpos = 1631 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1632 1633 return ret; 1634 } 1635 1636 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1637 loff_t pos) 1638 { 1639 int ret = 0; 1640 1641 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1642 if (pos > i_size_read(inode)) 1643 ret = ocfs2_zero_extend(inode, di_bh, pos); 1644 1645 return ret; 1646 } 1647 1648 int ocfs2_write_begin_nolock(struct address_space *mapping, 1649 loff_t pos, unsigned len, ocfs2_write_type_t type, 1650 struct page **pagep, void **fsdata, 1651 struct buffer_head *di_bh, struct page *mmap_page) 1652 { 1653 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1654 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1655 struct ocfs2_write_ctxt *wc; 1656 struct inode *inode = mapping->host; 1657 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1658 struct ocfs2_dinode *di; 1659 struct ocfs2_alloc_context *data_ac = NULL; 1660 struct ocfs2_alloc_context *meta_ac = NULL; 1661 handle_t *handle; 1662 struct ocfs2_extent_tree et; 1663 int try_free = 1, ret1; 1664 1665 try_again: 1666 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh); 1667 if (ret) { 1668 mlog_errno(ret); 1669 return ret; 1670 } 1671 1672 if (ocfs2_supports_inline_data(osb)) { 1673 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1674 mmap_page, wc); 1675 if (ret == 1) { 1676 ret = 0; 1677 goto success; 1678 } 1679 if (ret < 0) { 1680 mlog_errno(ret); 1681 goto out; 1682 } 1683 } 1684 1685 /* Direct io change i_size late, should not zero tail here. */ 1686 if (type != OCFS2_WRITE_DIRECT) { 1687 if (ocfs2_sparse_alloc(osb)) 1688 ret = ocfs2_zero_tail(inode, di_bh, pos); 1689 else 1690 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 1691 len, wc); 1692 if (ret) { 1693 mlog_errno(ret); 1694 goto out; 1695 } 1696 } 1697 1698 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1699 if (ret < 0) { 1700 mlog_errno(ret); 1701 goto out; 1702 } else if (ret == 1) { 1703 clusters_need = wc->w_clen; 1704 ret = ocfs2_refcount_cow(inode, di_bh, 1705 wc->w_cpos, wc->w_clen, UINT_MAX); 1706 if (ret) { 1707 mlog_errno(ret); 1708 goto out; 1709 } 1710 } 1711 1712 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1713 &extents_to_split); 1714 if (ret) { 1715 mlog_errno(ret); 1716 goto out; 1717 } 1718 clusters_need += clusters_to_alloc; 1719 1720 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1721 1722 trace_ocfs2_write_begin_nolock( 1723 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1724 (long long)i_size_read(inode), 1725 le32_to_cpu(di->i_clusters), 1726 pos, len, type, mmap_page, 1727 clusters_to_alloc, extents_to_split); 1728 1729 /* 1730 * We set w_target_from, w_target_to here so that 1731 * ocfs2_write_end() knows which range in the target page to 1732 * write out. An allocation requires that we write the entire 1733 * cluster range. 1734 */ 1735 if (clusters_to_alloc || extents_to_split) { 1736 /* 1737 * XXX: We are stretching the limits of 1738 * ocfs2_lock_allocators(). It greatly over-estimates 1739 * the work to be done. 1740 */ 1741 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1742 wc->w_di_bh); 1743 ret = ocfs2_lock_allocators(inode, &et, 1744 clusters_to_alloc, extents_to_split, 1745 &data_ac, &meta_ac); 1746 if (ret) { 1747 mlog_errno(ret); 1748 goto out; 1749 } 1750 1751 if (data_ac) 1752 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1753 1754 credits = ocfs2_calc_extend_credits(inode->i_sb, 1755 &di->id2.i_list); 1756 } else if (type == OCFS2_WRITE_DIRECT) 1757 /* direct write needs not to start trans if no extents alloc. */ 1758 goto success; 1759 1760 /* 1761 * We have to zero sparse allocated clusters, unwritten extent clusters, 1762 * and non-sparse clusters we just extended. For non-sparse writes, 1763 * we know zeros will only be needed in the first and/or last cluster. 1764 */ 1765 if (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1766 wc->w_desc[wc->w_clen - 1].c_needs_zero)) 1767 cluster_of_pages = 1; 1768 else 1769 cluster_of_pages = 0; 1770 1771 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1772 1773 handle = ocfs2_start_trans(osb, credits); 1774 if (IS_ERR(handle)) { 1775 ret = PTR_ERR(handle); 1776 mlog_errno(ret); 1777 goto out; 1778 } 1779 1780 wc->w_handle = handle; 1781 1782 if (clusters_to_alloc) { 1783 ret = dquot_alloc_space_nodirty(inode, 1784 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1785 if (ret) 1786 goto out_commit; 1787 } 1788 1789 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1790 OCFS2_JOURNAL_ACCESS_WRITE); 1791 if (ret) { 1792 mlog_errno(ret); 1793 goto out_quota; 1794 } 1795 1796 /* 1797 * Fill our page array first. That way we've grabbed enough so 1798 * that we can zero and flush if we error after adding the 1799 * extent. 1800 */ 1801 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1802 cluster_of_pages, mmap_page); 1803 if (ret) { 1804 /* 1805 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 1806 * the target page. In this case, we exit with no error and no target 1807 * page. This will trigger the caller, page_mkwrite(), to re-try 1808 * the operation. 1809 */ 1810 if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) { 1811 BUG_ON(wc->w_target_page); 1812 ret = 0; 1813 goto out_quota; 1814 } 1815 1816 mlog_errno(ret); 1817 goto out_quota; 1818 } 1819 1820 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1821 len); 1822 if (ret) { 1823 mlog_errno(ret); 1824 goto out_quota; 1825 } 1826 1827 if (data_ac) 1828 ocfs2_free_alloc_context(data_ac); 1829 if (meta_ac) 1830 ocfs2_free_alloc_context(meta_ac); 1831 1832 success: 1833 if (pagep) 1834 *pagep = wc->w_target_page; 1835 *fsdata = wc; 1836 return 0; 1837 out_quota: 1838 if (clusters_to_alloc) 1839 dquot_free_space(inode, 1840 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1841 out_commit: 1842 ocfs2_commit_trans(osb, handle); 1843 1844 out: 1845 /* 1846 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(), 1847 * even in case of error here like ENOSPC and ENOMEM. So, we need 1848 * to unlock the target page manually to prevent deadlocks when 1849 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED 1850 * to VM code. 1851 */ 1852 if (wc->w_target_locked) 1853 unlock_page(mmap_page); 1854 1855 ocfs2_free_write_ctxt(inode, wc); 1856 1857 if (data_ac) { 1858 ocfs2_free_alloc_context(data_ac); 1859 data_ac = NULL; 1860 } 1861 if (meta_ac) { 1862 ocfs2_free_alloc_context(meta_ac); 1863 meta_ac = NULL; 1864 } 1865 1866 if (ret == -ENOSPC && try_free) { 1867 /* 1868 * Try to free some truncate log so that we can have enough 1869 * clusters to allocate. 1870 */ 1871 try_free = 0; 1872 1873 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1874 if (ret1 == 1) 1875 goto try_again; 1876 1877 if (ret1 < 0) 1878 mlog_errno(ret1); 1879 } 1880 1881 return ret; 1882 } 1883 1884 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1885 loff_t pos, unsigned len, 1886 struct page **pagep, void **fsdata) 1887 { 1888 int ret; 1889 struct buffer_head *di_bh = NULL; 1890 struct inode *inode = mapping->host; 1891 1892 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1893 if (ret) { 1894 mlog_errno(ret); 1895 return ret; 1896 } 1897 1898 /* 1899 * Take alloc sem here to prevent concurrent lookups. That way 1900 * the mapping, zeroing and tree manipulation within 1901 * ocfs2_write() will be safe against ->read_folio(). This 1902 * should also serve to lock out allocation from a shared 1903 * writeable region. 1904 */ 1905 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1906 1907 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER, 1908 pagep, fsdata, di_bh, NULL); 1909 if (ret) { 1910 mlog_errno(ret); 1911 goto out_fail; 1912 } 1913 1914 brelse(di_bh); 1915 1916 return 0; 1917 1918 out_fail: 1919 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1920 1921 brelse(di_bh); 1922 ocfs2_inode_unlock(inode, 1); 1923 1924 return ret; 1925 } 1926 1927 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1928 unsigned len, unsigned *copied, 1929 struct ocfs2_dinode *di, 1930 struct ocfs2_write_ctxt *wc) 1931 { 1932 void *kaddr; 1933 1934 if (unlikely(*copied < len)) { 1935 if (!PageUptodate(wc->w_target_page)) { 1936 *copied = 0; 1937 return; 1938 } 1939 } 1940 1941 kaddr = kmap_atomic(wc->w_target_page); 1942 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1943 kunmap_atomic(kaddr); 1944 1945 trace_ocfs2_write_end_inline( 1946 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1947 (unsigned long long)pos, *copied, 1948 le16_to_cpu(di->id2.i_data.id_count), 1949 le16_to_cpu(di->i_dyn_features)); 1950 } 1951 1952 int ocfs2_write_end_nolock(struct address_space *mapping, 1953 loff_t pos, unsigned len, unsigned copied, void *fsdata) 1954 { 1955 int i, ret; 1956 unsigned from, to, start = pos & (PAGE_SIZE - 1); 1957 struct inode *inode = mapping->host; 1958 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1959 struct ocfs2_write_ctxt *wc = fsdata; 1960 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1961 handle_t *handle = wc->w_handle; 1962 struct page *tmppage; 1963 1964 BUG_ON(!list_empty(&wc->w_unwritten_list)); 1965 1966 if (handle) { 1967 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), 1968 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); 1969 if (ret) { 1970 copied = ret; 1971 mlog_errno(ret); 1972 goto out; 1973 } 1974 } 1975 1976 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1977 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1978 goto out_write_size; 1979 } 1980 1981 if (unlikely(copied < len) && wc->w_target_page) { 1982 if (!PageUptodate(wc->w_target_page)) 1983 copied = 0; 1984 1985 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1986 start+len); 1987 } 1988 if (wc->w_target_page) 1989 flush_dcache_page(wc->w_target_page); 1990 1991 for(i = 0; i < wc->w_num_pages; i++) { 1992 tmppage = wc->w_pages[i]; 1993 1994 /* This is the direct io target page. */ 1995 if (tmppage == NULL) 1996 continue; 1997 1998 if (tmppage == wc->w_target_page) { 1999 from = wc->w_target_from; 2000 to = wc->w_target_to; 2001 2002 BUG_ON(from > PAGE_SIZE || 2003 to > PAGE_SIZE || 2004 to < from); 2005 } else { 2006 /* 2007 * Pages adjacent to the target (if any) imply 2008 * a hole-filling write in which case we want 2009 * to flush their entire range. 2010 */ 2011 from = 0; 2012 to = PAGE_SIZE; 2013 } 2014 2015 if (page_has_buffers(tmppage)) { 2016 if (handle && ocfs2_should_order_data(inode)) { 2017 loff_t start_byte = 2018 ((loff_t)tmppage->index << PAGE_SHIFT) + 2019 from; 2020 loff_t length = to - from; 2021 ocfs2_jbd2_inode_add_write(handle, inode, 2022 start_byte, length); 2023 } 2024 block_commit_write(tmppage, from, to); 2025 } 2026 } 2027 2028 out_write_size: 2029 /* Direct io do not update i_size here. */ 2030 if (wc->w_type != OCFS2_WRITE_DIRECT) { 2031 pos += copied; 2032 if (pos > i_size_read(inode)) { 2033 i_size_write(inode, pos); 2034 mark_inode_dirty(inode); 2035 } 2036 inode->i_blocks = ocfs2_inode_sector_count(inode); 2037 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2038 inode->i_mtime = inode->i_ctime = current_time(inode); 2039 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2040 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2041 if (handle) 2042 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2043 } 2044 if (handle) 2045 ocfs2_journal_dirty(handle, wc->w_di_bh); 2046 2047 out: 2048 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2049 * lock, or it will cause a deadlock since journal commit threads holds 2050 * this lock and will ask for the page lock when flushing the data. 2051 * put it here to preserve the unlock order. 2052 */ 2053 ocfs2_unlock_pages(wc); 2054 2055 if (handle) 2056 ocfs2_commit_trans(osb, handle); 2057 2058 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2059 2060 brelse(wc->w_di_bh); 2061 kfree(wc); 2062 2063 return copied; 2064 } 2065 2066 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2067 loff_t pos, unsigned len, unsigned copied, 2068 struct page *page, void *fsdata) 2069 { 2070 int ret; 2071 struct inode *inode = mapping->host; 2072 2073 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata); 2074 2075 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2076 ocfs2_inode_unlock(inode, 1); 2077 2078 return ret; 2079 } 2080 2081 struct ocfs2_dio_write_ctxt { 2082 struct list_head dw_zero_list; 2083 unsigned dw_zero_count; 2084 int dw_orphaned; 2085 pid_t dw_writer_pid; 2086 }; 2087 2088 static struct ocfs2_dio_write_ctxt * 2089 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc) 2090 { 2091 struct ocfs2_dio_write_ctxt *dwc = NULL; 2092 2093 if (bh->b_private) 2094 return bh->b_private; 2095 2096 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS); 2097 if (dwc == NULL) 2098 return NULL; 2099 INIT_LIST_HEAD(&dwc->dw_zero_list); 2100 dwc->dw_zero_count = 0; 2101 dwc->dw_orphaned = 0; 2102 dwc->dw_writer_pid = task_pid_nr(current); 2103 bh->b_private = dwc; 2104 *alloc = 1; 2105 2106 return dwc; 2107 } 2108 2109 static void ocfs2_dio_free_write_ctx(struct inode *inode, 2110 struct ocfs2_dio_write_ctxt *dwc) 2111 { 2112 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list); 2113 kfree(dwc); 2114 } 2115 2116 /* 2117 * TODO: Make this into a generic get_blocks function. 2118 * 2119 * From do_direct_io in direct-io.c: 2120 * "So what we do is to permit the ->get_blocks function to populate 2121 * bh.b_size with the size of IO which is permitted at this offset and 2122 * this i_blkbits." 2123 * 2124 * This function is called directly from get_more_blocks in direct-io.c. 2125 * 2126 * called like this: dio->get_blocks(dio->inode, fs_startblk, 2127 * fs_count, map_bh, dio->rw == WRITE); 2128 */ 2129 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock, 2130 struct buffer_head *bh_result, int create) 2131 { 2132 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2133 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2134 struct ocfs2_write_ctxt *wc; 2135 struct ocfs2_write_cluster_desc *desc = NULL; 2136 struct ocfs2_dio_write_ctxt *dwc = NULL; 2137 struct buffer_head *di_bh = NULL; 2138 u64 p_blkno; 2139 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits; 2140 loff_t pos = iblock << i_blkbits; 2141 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits; 2142 unsigned len, total_len = bh_result->b_size; 2143 int ret = 0, first_get_block = 0; 2144 2145 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1)); 2146 len = min(total_len, len); 2147 2148 /* 2149 * bh_result->b_size is count in get_more_blocks according to write 2150 * "pos" and "end", we need map twice to return different buffer state: 2151 * 1. area in file size, not set NEW; 2152 * 2. area out file size, set NEW. 2153 * 2154 * iblock endblk 2155 * |--------|---------|---------|--------- 2156 * |<-------area in file------->| 2157 */ 2158 2159 if ((iblock <= endblk) && 2160 ((iblock + ((len - 1) >> i_blkbits)) > endblk)) 2161 len = (endblk - iblock + 1) << i_blkbits; 2162 2163 mlog(0, "get block of %lu at %llu:%u req %u\n", 2164 inode->i_ino, pos, len, total_len); 2165 2166 /* 2167 * Because we need to change file size in ocfs2_dio_end_io_write(), or 2168 * we may need to add it to orphan dir. So can not fall to fast path 2169 * while file size will be changed. 2170 */ 2171 if (pos + total_len <= i_size_read(inode)) { 2172 2173 /* This is the fast path for re-write. */ 2174 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create); 2175 if (buffer_mapped(bh_result) && 2176 !buffer_new(bh_result) && 2177 ret == 0) 2178 goto out; 2179 2180 /* Clear state set by ocfs2_get_block. */ 2181 bh_result->b_state = 0; 2182 } 2183 2184 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block); 2185 if (unlikely(dwc == NULL)) { 2186 ret = -ENOMEM; 2187 mlog_errno(ret); 2188 goto out; 2189 } 2190 2191 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) > 2192 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) && 2193 !dwc->dw_orphaned) { 2194 /* 2195 * when we are going to alloc extents beyond file size, add the 2196 * inode to orphan dir, so we can recall those spaces when 2197 * system crashed during write. 2198 */ 2199 ret = ocfs2_add_inode_to_orphan(osb, inode); 2200 if (ret < 0) { 2201 mlog_errno(ret); 2202 goto out; 2203 } 2204 dwc->dw_orphaned = 1; 2205 } 2206 2207 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2208 if (ret) { 2209 mlog_errno(ret); 2210 goto out; 2211 } 2212 2213 down_write(&oi->ip_alloc_sem); 2214 2215 if (first_get_block) { 2216 if (ocfs2_sparse_alloc(osb)) 2217 ret = ocfs2_zero_tail(inode, di_bh, pos); 2218 else 2219 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 2220 total_len, NULL); 2221 if (ret < 0) { 2222 mlog_errno(ret); 2223 goto unlock; 2224 } 2225 } 2226 2227 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len, 2228 OCFS2_WRITE_DIRECT, NULL, 2229 (void **)&wc, di_bh, NULL); 2230 if (ret) { 2231 mlog_errno(ret); 2232 goto unlock; 2233 } 2234 2235 desc = &wc->w_desc[0]; 2236 2237 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys); 2238 BUG_ON(p_blkno == 0); 2239 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1); 2240 2241 map_bh(bh_result, inode->i_sb, p_blkno); 2242 bh_result->b_size = len; 2243 if (desc->c_needs_zero) 2244 set_buffer_new(bh_result); 2245 2246 if (iblock > endblk) 2247 set_buffer_new(bh_result); 2248 2249 /* May sleep in end_io. It should not happen in a irq context. So defer 2250 * it to dio work queue. */ 2251 set_buffer_defer_completion(bh_result); 2252 2253 if (!list_empty(&wc->w_unwritten_list)) { 2254 struct ocfs2_unwritten_extent *ue = NULL; 2255 2256 ue = list_first_entry(&wc->w_unwritten_list, 2257 struct ocfs2_unwritten_extent, 2258 ue_node); 2259 BUG_ON(ue->ue_cpos != desc->c_cpos); 2260 /* The physical address may be 0, fill it. */ 2261 ue->ue_phys = desc->c_phys; 2262 2263 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list); 2264 dwc->dw_zero_count += wc->w_unwritten_count; 2265 } 2266 2267 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc); 2268 BUG_ON(ret != len); 2269 ret = 0; 2270 unlock: 2271 up_write(&oi->ip_alloc_sem); 2272 ocfs2_inode_unlock(inode, 1); 2273 brelse(di_bh); 2274 out: 2275 if (ret < 0) 2276 ret = -EIO; 2277 return ret; 2278 } 2279 2280 static int ocfs2_dio_end_io_write(struct inode *inode, 2281 struct ocfs2_dio_write_ctxt *dwc, 2282 loff_t offset, 2283 ssize_t bytes) 2284 { 2285 struct ocfs2_cached_dealloc_ctxt dealloc; 2286 struct ocfs2_extent_tree et; 2287 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2288 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2289 struct ocfs2_unwritten_extent *ue = NULL; 2290 struct buffer_head *di_bh = NULL; 2291 struct ocfs2_dinode *di; 2292 struct ocfs2_alloc_context *data_ac = NULL; 2293 struct ocfs2_alloc_context *meta_ac = NULL; 2294 handle_t *handle = NULL; 2295 loff_t end = offset + bytes; 2296 int ret = 0, credits = 0; 2297 2298 ocfs2_init_dealloc_ctxt(&dealloc); 2299 2300 /* We do clear unwritten, delete orphan, change i_size here. If neither 2301 * of these happen, we can skip all this. */ 2302 if (list_empty(&dwc->dw_zero_list) && 2303 end <= i_size_read(inode) && 2304 !dwc->dw_orphaned) 2305 goto out; 2306 2307 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2308 if (ret < 0) { 2309 mlog_errno(ret); 2310 goto out; 2311 } 2312 2313 down_write(&oi->ip_alloc_sem); 2314 2315 /* Delete orphan before acquire i_rwsem. */ 2316 if (dwc->dw_orphaned) { 2317 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current)); 2318 2319 end = end > i_size_read(inode) ? end : 0; 2320 2321 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 2322 !!end, end); 2323 if (ret < 0) 2324 mlog_errno(ret); 2325 } 2326 2327 di = (struct ocfs2_dinode *)di_bh->b_data; 2328 2329 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 2330 2331 /* Attach dealloc with extent tree in case that we may reuse extents 2332 * which are already unlinked from current extent tree due to extent 2333 * rotation and merging. 2334 */ 2335 et.et_dealloc = &dealloc; 2336 2337 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2, 2338 &data_ac, &meta_ac); 2339 if (ret) { 2340 mlog_errno(ret); 2341 goto unlock; 2342 } 2343 2344 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list); 2345 2346 handle = ocfs2_start_trans(osb, credits); 2347 if (IS_ERR(handle)) { 2348 ret = PTR_ERR(handle); 2349 mlog_errno(ret); 2350 goto unlock; 2351 } 2352 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 2353 OCFS2_JOURNAL_ACCESS_WRITE); 2354 if (ret) { 2355 mlog_errno(ret); 2356 goto commit; 2357 } 2358 2359 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) { 2360 ret = ocfs2_mark_extent_written(inode, &et, handle, 2361 ue->ue_cpos, 1, 2362 ue->ue_phys, 2363 meta_ac, &dealloc); 2364 if (ret < 0) { 2365 mlog_errno(ret); 2366 break; 2367 } 2368 } 2369 2370 if (end > i_size_read(inode)) { 2371 ret = ocfs2_set_inode_size(handle, inode, di_bh, end); 2372 if (ret < 0) 2373 mlog_errno(ret); 2374 } 2375 commit: 2376 ocfs2_commit_trans(osb, handle); 2377 unlock: 2378 up_write(&oi->ip_alloc_sem); 2379 ocfs2_inode_unlock(inode, 1); 2380 brelse(di_bh); 2381 out: 2382 if (data_ac) 2383 ocfs2_free_alloc_context(data_ac); 2384 if (meta_ac) 2385 ocfs2_free_alloc_context(meta_ac); 2386 ocfs2_run_deallocs(osb, &dealloc); 2387 ocfs2_dio_free_write_ctx(inode, dwc); 2388 2389 return ret; 2390 } 2391 2392 /* 2393 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 2394 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 2395 * to protect io on one node from truncation on another. 2396 */ 2397 static int ocfs2_dio_end_io(struct kiocb *iocb, 2398 loff_t offset, 2399 ssize_t bytes, 2400 void *private) 2401 { 2402 struct inode *inode = file_inode(iocb->ki_filp); 2403 int level; 2404 int ret = 0; 2405 2406 /* this io's submitter should not have unlocked this before we could */ 2407 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 2408 2409 if (bytes <= 0) 2410 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld", 2411 (long long)bytes); 2412 if (private) { 2413 if (bytes > 0) 2414 ret = ocfs2_dio_end_io_write(inode, private, offset, 2415 bytes); 2416 else 2417 ocfs2_dio_free_write_ctx(inode, private); 2418 } 2419 2420 ocfs2_iocb_clear_rw_locked(iocb); 2421 2422 level = ocfs2_iocb_rw_locked_level(iocb); 2423 ocfs2_rw_unlock(inode, level); 2424 return ret; 2425 } 2426 2427 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2428 { 2429 struct file *file = iocb->ki_filp; 2430 struct inode *inode = file->f_mapping->host; 2431 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2432 get_block_t *get_block; 2433 2434 /* 2435 * Fallback to buffered I/O if we see an inode without 2436 * extents. 2437 */ 2438 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2439 return 0; 2440 2441 /* Fallback to buffered I/O if we do not support append dio. */ 2442 if (iocb->ki_pos + iter->count > i_size_read(inode) && 2443 !ocfs2_supports_append_dio(osb)) 2444 return 0; 2445 2446 if (iov_iter_rw(iter) == READ) 2447 get_block = ocfs2_lock_get_block; 2448 else 2449 get_block = ocfs2_dio_wr_get_block; 2450 2451 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2452 iter, get_block, 2453 ocfs2_dio_end_io, NULL, 0); 2454 } 2455 2456 const struct address_space_operations ocfs2_aops = { 2457 .dirty_folio = block_dirty_folio, 2458 .read_folio = ocfs2_read_folio, 2459 .readahead = ocfs2_readahead, 2460 .writepage = ocfs2_writepage, 2461 .write_begin = ocfs2_write_begin, 2462 .write_end = ocfs2_write_end, 2463 .bmap = ocfs2_bmap, 2464 .direct_IO = ocfs2_direct_IO, 2465 .invalidate_folio = block_invalidate_folio, 2466 .release_folio = ocfs2_release_folio, 2467 .migratepage = buffer_migrate_page, 2468 .is_partially_uptodate = block_is_partially_uptodate, 2469 .error_remove_page = generic_error_remove_page, 2470 }; 2471