xref: /openbmc/linux/fs/ocfs2/aops.c (revision a080a92a6f89e716b8a264f6b93123b41a1c004c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3  * vim: noexpandtab sw=8 ts=8 sts=0:
4  *
5  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
6  */
7 
8 #include <linux/fs.h>
9 #include <linux/slab.h>
10 #include <linux/highmem.h>
11 #include <linux/pagemap.h>
12 #include <asm/byteorder.h>
13 #include <linux/swap.h>
14 #include <linux/mpage.h>
15 #include <linux/quotaops.h>
16 #include <linux/blkdev.h>
17 #include <linux/uio.h>
18 #include <linux/mm.h>
19 
20 #include <cluster/masklog.h>
21 
22 #include "ocfs2.h"
23 
24 #include "alloc.h"
25 #include "aops.h"
26 #include "dlmglue.h"
27 #include "extent_map.h"
28 #include "file.h"
29 #include "inode.h"
30 #include "journal.h"
31 #include "suballoc.h"
32 #include "super.h"
33 #include "symlink.h"
34 #include "refcounttree.h"
35 #include "ocfs2_trace.h"
36 
37 #include "buffer_head_io.h"
38 #include "dir.h"
39 #include "namei.h"
40 #include "sysfile.h"
41 
42 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
43 				   struct buffer_head *bh_result, int create)
44 {
45 	int err = -EIO;
46 	int status;
47 	struct ocfs2_dinode *fe = NULL;
48 	struct buffer_head *bh = NULL;
49 	struct buffer_head *buffer_cache_bh = NULL;
50 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
51 	void *kaddr;
52 
53 	trace_ocfs2_symlink_get_block(
54 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
55 			(unsigned long long)iblock, bh_result, create);
56 
57 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
58 
59 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
60 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
61 		     (unsigned long long)iblock);
62 		goto bail;
63 	}
64 
65 	status = ocfs2_read_inode_block(inode, &bh);
66 	if (status < 0) {
67 		mlog_errno(status);
68 		goto bail;
69 	}
70 	fe = (struct ocfs2_dinode *) bh->b_data;
71 
72 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
73 						    le32_to_cpu(fe->i_clusters))) {
74 		err = -ENOMEM;
75 		mlog(ML_ERROR, "block offset is outside the allocated size: "
76 		     "%llu\n", (unsigned long long)iblock);
77 		goto bail;
78 	}
79 
80 	/* We don't use the page cache to create symlink data, so if
81 	 * need be, copy it over from the buffer cache. */
82 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
83 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
84 			    iblock;
85 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
86 		if (!buffer_cache_bh) {
87 			err = -ENOMEM;
88 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
89 			goto bail;
90 		}
91 
92 		/* we haven't locked out transactions, so a commit
93 		 * could've happened. Since we've got a reference on
94 		 * the bh, even if it commits while we're doing the
95 		 * copy, the data is still good. */
96 		if (buffer_jbd(buffer_cache_bh)
97 		    && ocfs2_inode_is_new(inode)) {
98 			kaddr = kmap_atomic(bh_result->b_page);
99 			if (!kaddr) {
100 				mlog(ML_ERROR, "couldn't kmap!\n");
101 				goto bail;
102 			}
103 			memcpy(kaddr + (bh_result->b_size * iblock),
104 			       buffer_cache_bh->b_data,
105 			       bh_result->b_size);
106 			kunmap_atomic(kaddr);
107 			set_buffer_uptodate(bh_result);
108 		}
109 		brelse(buffer_cache_bh);
110 	}
111 
112 	map_bh(bh_result, inode->i_sb,
113 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
114 
115 	err = 0;
116 
117 bail:
118 	brelse(bh);
119 
120 	return err;
121 }
122 
123 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
124 		    struct buffer_head *bh_result, int create)
125 {
126 	int ret = 0;
127 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
128 
129 	down_read(&oi->ip_alloc_sem);
130 	ret = ocfs2_get_block(inode, iblock, bh_result, create);
131 	up_read(&oi->ip_alloc_sem);
132 
133 	return ret;
134 }
135 
136 int ocfs2_get_block(struct inode *inode, sector_t iblock,
137 		    struct buffer_head *bh_result, int create)
138 {
139 	int err = 0;
140 	unsigned int ext_flags;
141 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
142 	u64 p_blkno, count, past_eof;
143 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144 
145 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
146 			      (unsigned long long)iblock, bh_result, create);
147 
148 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150 		     inode, inode->i_ino);
151 
152 	if (S_ISLNK(inode->i_mode)) {
153 		/* this always does I/O for some reason. */
154 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155 		goto bail;
156 	}
157 
158 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
159 					  &ext_flags);
160 	if (err) {
161 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163 		     (unsigned long long)p_blkno);
164 		goto bail;
165 	}
166 
167 	if (max_blocks < count)
168 		count = max_blocks;
169 
170 	/*
171 	 * ocfs2 never allocates in this function - the only time we
172 	 * need to use BH_New is when we're extending i_size on a file
173 	 * system which doesn't support holes, in which case BH_New
174 	 * allows __block_write_begin() to zero.
175 	 *
176 	 * If we see this on a sparse file system, then a truncate has
177 	 * raced us and removed the cluster. In this case, we clear
178 	 * the buffers dirty and uptodate bits and let the buffer code
179 	 * ignore it as a hole.
180 	 */
181 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
182 		clear_buffer_dirty(bh_result);
183 		clear_buffer_uptodate(bh_result);
184 		goto bail;
185 	}
186 
187 	/* Treat the unwritten extent as a hole for zeroing purposes. */
188 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
189 		map_bh(bh_result, inode->i_sb, p_blkno);
190 
191 	bh_result->b_size = count << inode->i_blkbits;
192 
193 	if (!ocfs2_sparse_alloc(osb)) {
194 		if (p_blkno == 0) {
195 			err = -EIO;
196 			mlog(ML_ERROR,
197 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
198 			     (unsigned long long)iblock,
199 			     (unsigned long long)p_blkno,
200 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
201 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
202 			dump_stack();
203 			goto bail;
204 		}
205 	}
206 
207 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
208 
209 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
210 				  (unsigned long long)past_eof);
211 	if (create && (iblock >= past_eof))
212 		set_buffer_new(bh_result);
213 
214 bail:
215 	if (err < 0)
216 		err = -EIO;
217 
218 	return err;
219 }
220 
221 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
222 			   struct buffer_head *di_bh)
223 {
224 	void *kaddr;
225 	loff_t size;
226 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
227 
228 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
229 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
230 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
231 		return -EROFS;
232 	}
233 
234 	size = i_size_read(inode);
235 
236 	if (size > PAGE_SIZE ||
237 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
238 		ocfs2_error(inode->i_sb,
239 			    "Inode %llu has with inline data has bad size: %Lu\n",
240 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
241 			    (unsigned long long)size);
242 		return -EROFS;
243 	}
244 
245 	kaddr = kmap_atomic(page);
246 	if (size)
247 		memcpy(kaddr, di->id2.i_data.id_data, size);
248 	/* Clear the remaining part of the page */
249 	memset(kaddr + size, 0, PAGE_SIZE - size);
250 	flush_dcache_page(page);
251 	kunmap_atomic(kaddr);
252 
253 	SetPageUptodate(page);
254 
255 	return 0;
256 }
257 
258 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
259 {
260 	int ret;
261 	struct buffer_head *di_bh = NULL;
262 
263 	BUG_ON(!PageLocked(page));
264 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
265 
266 	ret = ocfs2_read_inode_block(inode, &di_bh);
267 	if (ret) {
268 		mlog_errno(ret);
269 		goto out;
270 	}
271 
272 	ret = ocfs2_read_inline_data(inode, page, di_bh);
273 out:
274 	unlock_page(page);
275 
276 	brelse(di_bh);
277 	return ret;
278 }
279 
280 static int ocfs2_readpage(struct file *file, struct page *page)
281 {
282 	struct inode *inode = page->mapping->host;
283 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
284 	loff_t start = (loff_t)page->index << PAGE_SHIFT;
285 	int ret, unlock = 1;
286 
287 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
288 			     (page ? page->index : 0));
289 
290 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
291 	if (ret != 0) {
292 		if (ret == AOP_TRUNCATED_PAGE)
293 			unlock = 0;
294 		mlog_errno(ret);
295 		goto out;
296 	}
297 
298 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
299 		/*
300 		 * Unlock the page and cycle ip_alloc_sem so that we don't
301 		 * busyloop waiting for ip_alloc_sem to unlock
302 		 */
303 		ret = AOP_TRUNCATED_PAGE;
304 		unlock_page(page);
305 		unlock = 0;
306 		down_read(&oi->ip_alloc_sem);
307 		up_read(&oi->ip_alloc_sem);
308 		goto out_inode_unlock;
309 	}
310 
311 	/*
312 	 * i_size might have just been updated as we grabed the meta lock.  We
313 	 * might now be discovering a truncate that hit on another node.
314 	 * block_read_full_page->get_block freaks out if it is asked to read
315 	 * beyond the end of a file, so we check here.  Callers
316 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
317 	 * and notice that the page they just read isn't needed.
318 	 *
319 	 * XXX sys_readahead() seems to get that wrong?
320 	 */
321 	if (start >= i_size_read(inode)) {
322 		zero_user(page, 0, PAGE_SIZE);
323 		SetPageUptodate(page);
324 		ret = 0;
325 		goto out_alloc;
326 	}
327 
328 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
329 		ret = ocfs2_readpage_inline(inode, page);
330 	else
331 		ret = block_read_full_page(page, ocfs2_get_block);
332 	unlock = 0;
333 
334 out_alloc:
335 	up_read(&oi->ip_alloc_sem);
336 out_inode_unlock:
337 	ocfs2_inode_unlock(inode, 0);
338 out:
339 	if (unlock)
340 		unlock_page(page);
341 	return ret;
342 }
343 
344 /*
345  * This is used only for read-ahead. Failures or difficult to handle
346  * situations are safe to ignore.
347  *
348  * Right now, we don't bother with BH_Boundary - in-inode extent lists
349  * are quite large (243 extents on 4k blocks), so most inodes don't
350  * grow out to a tree. If need be, detecting boundary extents could
351  * trivially be added in a future version of ocfs2_get_block().
352  */
353 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
354 			   struct list_head *pages, unsigned nr_pages)
355 {
356 	int ret, err = -EIO;
357 	struct inode *inode = mapping->host;
358 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
359 	loff_t start;
360 	struct page *last;
361 
362 	/*
363 	 * Use the nonblocking flag for the dlm code to avoid page
364 	 * lock inversion, but don't bother with retrying.
365 	 */
366 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
367 	if (ret)
368 		return err;
369 
370 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
371 		ocfs2_inode_unlock(inode, 0);
372 		return err;
373 	}
374 
375 	/*
376 	 * Don't bother with inline-data. There isn't anything
377 	 * to read-ahead in that case anyway...
378 	 */
379 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
380 		goto out_unlock;
381 
382 	/*
383 	 * Check whether a remote node truncated this file - we just
384 	 * drop out in that case as it's not worth handling here.
385 	 */
386 	last = lru_to_page(pages);
387 	start = (loff_t)last->index << PAGE_SHIFT;
388 	if (start >= i_size_read(inode))
389 		goto out_unlock;
390 
391 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
392 
393 out_unlock:
394 	up_read(&oi->ip_alloc_sem);
395 	ocfs2_inode_unlock(inode, 0);
396 
397 	return err;
398 }
399 
400 /* Note: Because we don't support holes, our allocation has
401  * already happened (allocation writes zeros to the file data)
402  * so we don't have to worry about ordered writes in
403  * ocfs2_writepage.
404  *
405  * ->writepage is called during the process of invalidating the page cache
406  * during blocked lock processing.  It can't block on any cluster locks
407  * to during block mapping.  It's relying on the fact that the block
408  * mapping can't have disappeared under the dirty pages that it is
409  * being asked to write back.
410  */
411 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
412 {
413 	trace_ocfs2_writepage(
414 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
415 		page->index);
416 
417 	return block_write_full_page(page, ocfs2_get_block, wbc);
418 }
419 
420 /* Taken from ext3. We don't necessarily need the full blown
421  * functionality yet, but IMHO it's better to cut and paste the whole
422  * thing so we can avoid introducing our own bugs (and easily pick up
423  * their fixes when they happen) --Mark */
424 int walk_page_buffers(	handle_t *handle,
425 			struct buffer_head *head,
426 			unsigned from,
427 			unsigned to,
428 			int *partial,
429 			int (*fn)(	handle_t *handle,
430 					struct buffer_head *bh))
431 {
432 	struct buffer_head *bh;
433 	unsigned block_start, block_end;
434 	unsigned blocksize = head->b_size;
435 	int err, ret = 0;
436 	struct buffer_head *next;
437 
438 	for (	bh = head, block_start = 0;
439 		ret == 0 && (bh != head || !block_start);
440 	    	block_start = block_end, bh = next)
441 	{
442 		next = bh->b_this_page;
443 		block_end = block_start + blocksize;
444 		if (block_end <= from || block_start >= to) {
445 			if (partial && !buffer_uptodate(bh))
446 				*partial = 1;
447 			continue;
448 		}
449 		err = (*fn)(handle, bh);
450 		if (!ret)
451 			ret = err;
452 	}
453 	return ret;
454 }
455 
456 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
457 {
458 	sector_t status;
459 	u64 p_blkno = 0;
460 	int err = 0;
461 	struct inode *inode = mapping->host;
462 
463 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
464 			 (unsigned long long)block);
465 
466 	/*
467 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
468 	 * bypasseѕ the file system for actual I/O.  We really can't allow
469 	 * that on refcounted inodes, so we have to skip out here.  And yes,
470 	 * 0 is the magic code for a bmap error..
471 	 */
472 	if (ocfs2_is_refcount_inode(inode))
473 		return 0;
474 
475 	/* We don't need to lock journal system files, since they aren't
476 	 * accessed concurrently from multiple nodes.
477 	 */
478 	if (!INODE_JOURNAL(inode)) {
479 		err = ocfs2_inode_lock(inode, NULL, 0);
480 		if (err) {
481 			if (err != -ENOENT)
482 				mlog_errno(err);
483 			goto bail;
484 		}
485 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
486 	}
487 
488 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
489 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
490 						  NULL);
491 
492 	if (!INODE_JOURNAL(inode)) {
493 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
494 		ocfs2_inode_unlock(inode, 0);
495 	}
496 
497 	if (err) {
498 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
499 		     (unsigned long long)block);
500 		mlog_errno(err);
501 		goto bail;
502 	}
503 
504 bail:
505 	status = err ? 0 : p_blkno;
506 
507 	return status;
508 }
509 
510 static int ocfs2_releasepage(struct page *page, gfp_t wait)
511 {
512 	if (!page_has_buffers(page))
513 		return 0;
514 	return try_to_free_buffers(page);
515 }
516 
517 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
518 					    u32 cpos,
519 					    unsigned int *start,
520 					    unsigned int *end)
521 {
522 	unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
523 
524 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
525 		unsigned int cpp;
526 
527 		cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
528 
529 		cluster_start = cpos % cpp;
530 		cluster_start = cluster_start << osb->s_clustersize_bits;
531 
532 		cluster_end = cluster_start + osb->s_clustersize;
533 	}
534 
535 	BUG_ON(cluster_start > PAGE_SIZE);
536 	BUG_ON(cluster_end > PAGE_SIZE);
537 
538 	if (start)
539 		*start = cluster_start;
540 	if (end)
541 		*end = cluster_end;
542 }
543 
544 /*
545  * 'from' and 'to' are the region in the page to avoid zeroing.
546  *
547  * If pagesize > clustersize, this function will avoid zeroing outside
548  * of the cluster boundary.
549  *
550  * from == to == 0 is code for "zero the entire cluster region"
551  */
552 static void ocfs2_clear_page_regions(struct page *page,
553 				     struct ocfs2_super *osb, u32 cpos,
554 				     unsigned from, unsigned to)
555 {
556 	void *kaddr;
557 	unsigned int cluster_start, cluster_end;
558 
559 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
560 
561 	kaddr = kmap_atomic(page);
562 
563 	if (from || to) {
564 		if (from > cluster_start)
565 			memset(kaddr + cluster_start, 0, from - cluster_start);
566 		if (to < cluster_end)
567 			memset(kaddr + to, 0, cluster_end - to);
568 	} else {
569 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
570 	}
571 
572 	kunmap_atomic(kaddr);
573 }
574 
575 /*
576  * Nonsparse file systems fully allocate before we get to the write
577  * code. This prevents ocfs2_write() from tagging the write as an
578  * allocating one, which means ocfs2_map_page_blocks() might try to
579  * read-in the blocks at the tail of our file. Avoid reading them by
580  * testing i_size against each block offset.
581  */
582 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
583 				 unsigned int block_start)
584 {
585 	u64 offset = page_offset(page) + block_start;
586 
587 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
588 		return 1;
589 
590 	if (i_size_read(inode) > offset)
591 		return 1;
592 
593 	return 0;
594 }
595 
596 /*
597  * Some of this taken from __block_write_begin(). We already have our
598  * mapping by now though, and the entire write will be allocating or
599  * it won't, so not much need to use BH_New.
600  *
601  * This will also skip zeroing, which is handled externally.
602  */
603 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
604 			  struct inode *inode, unsigned int from,
605 			  unsigned int to, int new)
606 {
607 	int ret = 0;
608 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
609 	unsigned int block_end, block_start;
610 	unsigned int bsize = i_blocksize(inode);
611 
612 	if (!page_has_buffers(page))
613 		create_empty_buffers(page, bsize, 0);
614 
615 	head = page_buffers(page);
616 	for (bh = head, block_start = 0; bh != head || !block_start;
617 	     bh = bh->b_this_page, block_start += bsize) {
618 		block_end = block_start + bsize;
619 
620 		clear_buffer_new(bh);
621 
622 		/*
623 		 * Ignore blocks outside of our i/o range -
624 		 * they may belong to unallocated clusters.
625 		 */
626 		if (block_start >= to || block_end <= from) {
627 			if (PageUptodate(page))
628 				set_buffer_uptodate(bh);
629 			continue;
630 		}
631 
632 		/*
633 		 * For an allocating write with cluster size >= page
634 		 * size, we always write the entire page.
635 		 */
636 		if (new)
637 			set_buffer_new(bh);
638 
639 		if (!buffer_mapped(bh)) {
640 			map_bh(bh, inode->i_sb, *p_blkno);
641 			clean_bdev_bh_alias(bh);
642 		}
643 
644 		if (PageUptodate(page)) {
645 			if (!buffer_uptodate(bh))
646 				set_buffer_uptodate(bh);
647 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
648 			   !buffer_new(bh) &&
649 			   ocfs2_should_read_blk(inode, page, block_start) &&
650 			   (block_start < from || block_end > to)) {
651 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
652 			*wait_bh++=bh;
653 		}
654 
655 		*p_blkno = *p_blkno + 1;
656 	}
657 
658 	/*
659 	 * If we issued read requests - let them complete.
660 	 */
661 	while(wait_bh > wait) {
662 		wait_on_buffer(*--wait_bh);
663 		if (!buffer_uptodate(*wait_bh))
664 			ret = -EIO;
665 	}
666 
667 	if (ret == 0 || !new)
668 		return ret;
669 
670 	/*
671 	 * If we get -EIO above, zero out any newly allocated blocks
672 	 * to avoid exposing stale data.
673 	 */
674 	bh = head;
675 	block_start = 0;
676 	do {
677 		block_end = block_start + bsize;
678 		if (block_end <= from)
679 			goto next_bh;
680 		if (block_start >= to)
681 			break;
682 
683 		zero_user(page, block_start, bh->b_size);
684 		set_buffer_uptodate(bh);
685 		mark_buffer_dirty(bh);
686 
687 next_bh:
688 		block_start = block_end;
689 		bh = bh->b_this_page;
690 	} while (bh != head);
691 
692 	return ret;
693 }
694 
695 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
696 #define OCFS2_MAX_CTXT_PAGES	1
697 #else
698 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
699 #endif
700 
701 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
702 
703 struct ocfs2_unwritten_extent {
704 	struct list_head	ue_node;
705 	struct list_head	ue_ip_node;
706 	u32			ue_cpos;
707 	u32			ue_phys;
708 };
709 
710 /*
711  * Describe the state of a single cluster to be written to.
712  */
713 struct ocfs2_write_cluster_desc {
714 	u32		c_cpos;
715 	u32		c_phys;
716 	/*
717 	 * Give this a unique field because c_phys eventually gets
718 	 * filled.
719 	 */
720 	unsigned	c_new;
721 	unsigned	c_clear_unwritten;
722 	unsigned	c_needs_zero;
723 };
724 
725 struct ocfs2_write_ctxt {
726 	/* Logical cluster position / len of write */
727 	u32				w_cpos;
728 	u32				w_clen;
729 
730 	/* First cluster allocated in a nonsparse extend */
731 	u32				w_first_new_cpos;
732 
733 	/* Type of caller. Must be one of buffer, mmap, direct.  */
734 	ocfs2_write_type_t		w_type;
735 
736 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
737 
738 	/*
739 	 * This is true if page_size > cluster_size.
740 	 *
741 	 * It triggers a set of special cases during write which might
742 	 * have to deal with allocating writes to partial pages.
743 	 */
744 	unsigned int			w_large_pages;
745 
746 	/*
747 	 * Pages involved in this write.
748 	 *
749 	 * w_target_page is the page being written to by the user.
750 	 *
751 	 * w_pages is an array of pages which always contains
752 	 * w_target_page, and in the case of an allocating write with
753 	 * page_size < cluster size, it will contain zero'd and mapped
754 	 * pages adjacent to w_target_page which need to be written
755 	 * out in so that future reads from that region will get
756 	 * zero's.
757 	 */
758 	unsigned int			w_num_pages;
759 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
760 	struct page			*w_target_page;
761 
762 	/*
763 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
764 	 * against w_target_page in ocfs2_write_end_nolock.
765 	 */
766 	unsigned int			w_target_locked:1;
767 
768 	/*
769 	 * ocfs2_write_end() uses this to know what the real range to
770 	 * write in the target should be.
771 	 */
772 	unsigned int			w_target_from;
773 	unsigned int			w_target_to;
774 
775 	/*
776 	 * We could use journal_current_handle() but this is cleaner,
777 	 * IMHO -Mark
778 	 */
779 	handle_t			*w_handle;
780 
781 	struct buffer_head		*w_di_bh;
782 
783 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
784 
785 	struct list_head		w_unwritten_list;
786 	unsigned int			w_unwritten_count;
787 };
788 
789 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
790 {
791 	int i;
792 
793 	for(i = 0; i < num_pages; i++) {
794 		if (pages[i]) {
795 			unlock_page(pages[i]);
796 			mark_page_accessed(pages[i]);
797 			put_page(pages[i]);
798 		}
799 	}
800 }
801 
802 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
803 {
804 	int i;
805 
806 	/*
807 	 * w_target_locked is only set to true in the page_mkwrite() case.
808 	 * The intent is to allow us to lock the target page from write_begin()
809 	 * to write_end(). The caller must hold a ref on w_target_page.
810 	 */
811 	if (wc->w_target_locked) {
812 		BUG_ON(!wc->w_target_page);
813 		for (i = 0; i < wc->w_num_pages; i++) {
814 			if (wc->w_target_page == wc->w_pages[i]) {
815 				wc->w_pages[i] = NULL;
816 				break;
817 			}
818 		}
819 		mark_page_accessed(wc->w_target_page);
820 		put_page(wc->w_target_page);
821 	}
822 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
823 }
824 
825 static void ocfs2_free_unwritten_list(struct inode *inode,
826 				 struct list_head *head)
827 {
828 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
829 	struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
830 
831 	list_for_each_entry_safe(ue, tmp, head, ue_node) {
832 		list_del(&ue->ue_node);
833 		spin_lock(&oi->ip_lock);
834 		list_del(&ue->ue_ip_node);
835 		spin_unlock(&oi->ip_lock);
836 		kfree(ue);
837 	}
838 }
839 
840 static void ocfs2_free_write_ctxt(struct inode *inode,
841 				  struct ocfs2_write_ctxt *wc)
842 {
843 	ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
844 	ocfs2_unlock_pages(wc);
845 	brelse(wc->w_di_bh);
846 	kfree(wc);
847 }
848 
849 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
850 				  struct ocfs2_super *osb, loff_t pos,
851 				  unsigned len, ocfs2_write_type_t type,
852 				  struct buffer_head *di_bh)
853 {
854 	u32 cend;
855 	struct ocfs2_write_ctxt *wc;
856 
857 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
858 	if (!wc)
859 		return -ENOMEM;
860 
861 	wc->w_cpos = pos >> osb->s_clustersize_bits;
862 	wc->w_first_new_cpos = UINT_MAX;
863 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
864 	wc->w_clen = cend - wc->w_cpos + 1;
865 	get_bh(di_bh);
866 	wc->w_di_bh = di_bh;
867 	wc->w_type = type;
868 
869 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
870 		wc->w_large_pages = 1;
871 	else
872 		wc->w_large_pages = 0;
873 
874 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
875 	INIT_LIST_HEAD(&wc->w_unwritten_list);
876 
877 	*wcp = wc;
878 
879 	return 0;
880 }
881 
882 /*
883  * If a page has any new buffers, zero them out here, and mark them uptodate
884  * and dirty so they'll be written out (in order to prevent uninitialised
885  * block data from leaking). And clear the new bit.
886  */
887 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
888 {
889 	unsigned int block_start, block_end;
890 	struct buffer_head *head, *bh;
891 
892 	BUG_ON(!PageLocked(page));
893 	if (!page_has_buffers(page))
894 		return;
895 
896 	bh = head = page_buffers(page);
897 	block_start = 0;
898 	do {
899 		block_end = block_start + bh->b_size;
900 
901 		if (buffer_new(bh)) {
902 			if (block_end > from && block_start < to) {
903 				if (!PageUptodate(page)) {
904 					unsigned start, end;
905 
906 					start = max(from, block_start);
907 					end = min(to, block_end);
908 
909 					zero_user_segment(page, start, end);
910 					set_buffer_uptodate(bh);
911 				}
912 
913 				clear_buffer_new(bh);
914 				mark_buffer_dirty(bh);
915 			}
916 		}
917 
918 		block_start = block_end;
919 		bh = bh->b_this_page;
920 	} while (bh != head);
921 }
922 
923 /*
924  * Only called when we have a failure during allocating write to write
925  * zero's to the newly allocated region.
926  */
927 static void ocfs2_write_failure(struct inode *inode,
928 				struct ocfs2_write_ctxt *wc,
929 				loff_t user_pos, unsigned user_len)
930 {
931 	int i;
932 	unsigned from = user_pos & (PAGE_SIZE - 1),
933 		to = user_pos + user_len;
934 	struct page *tmppage;
935 
936 	if (wc->w_target_page)
937 		ocfs2_zero_new_buffers(wc->w_target_page, from, to);
938 
939 	for(i = 0; i < wc->w_num_pages; i++) {
940 		tmppage = wc->w_pages[i];
941 
942 		if (tmppage && page_has_buffers(tmppage)) {
943 			if (ocfs2_should_order_data(inode))
944 				ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
945 							   user_pos, user_len);
946 
947 			block_commit_write(tmppage, from, to);
948 		}
949 	}
950 }
951 
952 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
953 					struct ocfs2_write_ctxt *wc,
954 					struct page *page, u32 cpos,
955 					loff_t user_pos, unsigned user_len,
956 					int new)
957 {
958 	int ret;
959 	unsigned int map_from = 0, map_to = 0;
960 	unsigned int cluster_start, cluster_end;
961 	unsigned int user_data_from = 0, user_data_to = 0;
962 
963 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
964 					&cluster_start, &cluster_end);
965 
966 	/* treat the write as new if the a hole/lseek spanned across
967 	 * the page boundary.
968 	 */
969 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
970 			(page_offset(page) <= user_pos));
971 
972 	if (page == wc->w_target_page) {
973 		map_from = user_pos & (PAGE_SIZE - 1);
974 		map_to = map_from + user_len;
975 
976 		if (new)
977 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
978 						    cluster_start, cluster_end,
979 						    new);
980 		else
981 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
982 						    map_from, map_to, new);
983 		if (ret) {
984 			mlog_errno(ret);
985 			goto out;
986 		}
987 
988 		user_data_from = map_from;
989 		user_data_to = map_to;
990 		if (new) {
991 			map_from = cluster_start;
992 			map_to = cluster_end;
993 		}
994 	} else {
995 		/*
996 		 * If we haven't allocated the new page yet, we
997 		 * shouldn't be writing it out without copying user
998 		 * data. This is likely a math error from the caller.
999 		 */
1000 		BUG_ON(!new);
1001 
1002 		map_from = cluster_start;
1003 		map_to = cluster_end;
1004 
1005 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1006 					    cluster_start, cluster_end, new);
1007 		if (ret) {
1008 			mlog_errno(ret);
1009 			goto out;
1010 		}
1011 	}
1012 
1013 	/*
1014 	 * Parts of newly allocated pages need to be zero'd.
1015 	 *
1016 	 * Above, we have also rewritten 'to' and 'from' - as far as
1017 	 * the rest of the function is concerned, the entire cluster
1018 	 * range inside of a page needs to be written.
1019 	 *
1020 	 * We can skip this if the page is up to date - it's already
1021 	 * been zero'd from being read in as a hole.
1022 	 */
1023 	if (new && !PageUptodate(page))
1024 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1025 					 cpos, user_data_from, user_data_to);
1026 
1027 	flush_dcache_page(page);
1028 
1029 out:
1030 	return ret;
1031 }
1032 
1033 /*
1034  * This function will only grab one clusters worth of pages.
1035  */
1036 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1037 				      struct ocfs2_write_ctxt *wc,
1038 				      u32 cpos, loff_t user_pos,
1039 				      unsigned user_len, int new,
1040 				      struct page *mmap_page)
1041 {
1042 	int ret = 0, i;
1043 	unsigned long start, target_index, end_index, index;
1044 	struct inode *inode = mapping->host;
1045 	loff_t last_byte;
1046 
1047 	target_index = user_pos >> PAGE_SHIFT;
1048 
1049 	/*
1050 	 * Figure out how many pages we'll be manipulating here. For
1051 	 * non allocating write, we just change the one
1052 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1053 	 * writing past i_size, we only need enough pages to cover the
1054 	 * last page of the write.
1055 	 */
1056 	if (new) {
1057 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1058 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1059 		/*
1060 		 * We need the index *past* the last page we could possibly
1061 		 * touch.  This is the page past the end of the write or
1062 		 * i_size, whichever is greater.
1063 		 */
1064 		last_byte = max(user_pos + user_len, i_size_read(inode));
1065 		BUG_ON(last_byte < 1);
1066 		end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1067 		if ((start + wc->w_num_pages) > end_index)
1068 			wc->w_num_pages = end_index - start;
1069 	} else {
1070 		wc->w_num_pages = 1;
1071 		start = target_index;
1072 	}
1073 	end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1074 
1075 	for(i = 0; i < wc->w_num_pages; i++) {
1076 		index = start + i;
1077 
1078 		if (index >= target_index && index <= end_index &&
1079 		    wc->w_type == OCFS2_WRITE_MMAP) {
1080 			/*
1081 			 * ocfs2_pagemkwrite() is a little different
1082 			 * and wants us to directly use the page
1083 			 * passed in.
1084 			 */
1085 			lock_page(mmap_page);
1086 
1087 			/* Exit and let the caller retry */
1088 			if (mmap_page->mapping != mapping) {
1089 				WARN_ON(mmap_page->mapping);
1090 				unlock_page(mmap_page);
1091 				ret = -EAGAIN;
1092 				goto out;
1093 			}
1094 
1095 			get_page(mmap_page);
1096 			wc->w_pages[i] = mmap_page;
1097 			wc->w_target_locked = true;
1098 		} else if (index >= target_index && index <= end_index &&
1099 			   wc->w_type == OCFS2_WRITE_DIRECT) {
1100 			/* Direct write has no mapping page. */
1101 			wc->w_pages[i] = NULL;
1102 			continue;
1103 		} else {
1104 			wc->w_pages[i] = find_or_create_page(mapping, index,
1105 							     GFP_NOFS);
1106 			if (!wc->w_pages[i]) {
1107 				ret = -ENOMEM;
1108 				mlog_errno(ret);
1109 				goto out;
1110 			}
1111 		}
1112 		wait_for_stable_page(wc->w_pages[i]);
1113 
1114 		if (index == target_index)
1115 			wc->w_target_page = wc->w_pages[i];
1116 	}
1117 out:
1118 	if (ret)
1119 		wc->w_target_locked = false;
1120 	return ret;
1121 }
1122 
1123 /*
1124  * Prepare a single cluster for write one cluster into the file.
1125  */
1126 static int ocfs2_write_cluster(struct address_space *mapping,
1127 			       u32 *phys, unsigned int new,
1128 			       unsigned int clear_unwritten,
1129 			       unsigned int should_zero,
1130 			       struct ocfs2_alloc_context *data_ac,
1131 			       struct ocfs2_alloc_context *meta_ac,
1132 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1133 			       loff_t user_pos, unsigned user_len)
1134 {
1135 	int ret, i;
1136 	u64 p_blkno;
1137 	struct inode *inode = mapping->host;
1138 	struct ocfs2_extent_tree et;
1139 	int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1140 
1141 	if (new) {
1142 		u32 tmp_pos;
1143 
1144 		/*
1145 		 * This is safe to call with the page locks - it won't take
1146 		 * any additional semaphores or cluster locks.
1147 		 */
1148 		tmp_pos = cpos;
1149 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1150 					   &tmp_pos, 1, !clear_unwritten,
1151 					   wc->w_di_bh, wc->w_handle,
1152 					   data_ac, meta_ac, NULL);
1153 		/*
1154 		 * This shouldn't happen because we must have already
1155 		 * calculated the correct meta data allocation required. The
1156 		 * internal tree allocation code should know how to increase
1157 		 * transaction credits itself.
1158 		 *
1159 		 * If need be, we could handle -EAGAIN for a
1160 		 * RESTART_TRANS here.
1161 		 */
1162 		mlog_bug_on_msg(ret == -EAGAIN,
1163 				"Inode %llu: EAGAIN return during allocation.\n",
1164 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1165 		if (ret < 0) {
1166 			mlog_errno(ret);
1167 			goto out;
1168 		}
1169 	} else if (clear_unwritten) {
1170 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1171 					      wc->w_di_bh);
1172 		ret = ocfs2_mark_extent_written(inode, &et,
1173 						wc->w_handle, cpos, 1, *phys,
1174 						meta_ac, &wc->w_dealloc);
1175 		if (ret < 0) {
1176 			mlog_errno(ret);
1177 			goto out;
1178 		}
1179 	}
1180 
1181 	/*
1182 	 * The only reason this should fail is due to an inability to
1183 	 * find the extent added.
1184 	 */
1185 	ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1186 	if (ret < 0) {
1187 		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1188 			    "at logical cluster %u",
1189 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1190 		goto out;
1191 	}
1192 
1193 	BUG_ON(*phys == 0);
1194 
1195 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1196 	if (!should_zero)
1197 		p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1198 
1199 	for(i = 0; i < wc->w_num_pages; i++) {
1200 		int tmpret;
1201 
1202 		/* This is the direct io target page. */
1203 		if (wc->w_pages[i] == NULL) {
1204 			p_blkno++;
1205 			continue;
1206 		}
1207 
1208 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1209 						      wc->w_pages[i], cpos,
1210 						      user_pos, user_len,
1211 						      should_zero);
1212 		if (tmpret) {
1213 			mlog_errno(tmpret);
1214 			if (ret == 0)
1215 				ret = tmpret;
1216 		}
1217 	}
1218 
1219 	/*
1220 	 * We only have cleanup to do in case of allocating write.
1221 	 */
1222 	if (ret && new)
1223 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1224 
1225 out:
1226 
1227 	return ret;
1228 }
1229 
1230 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1231 				       struct ocfs2_alloc_context *data_ac,
1232 				       struct ocfs2_alloc_context *meta_ac,
1233 				       struct ocfs2_write_ctxt *wc,
1234 				       loff_t pos, unsigned len)
1235 {
1236 	int ret, i;
1237 	loff_t cluster_off;
1238 	unsigned int local_len = len;
1239 	struct ocfs2_write_cluster_desc *desc;
1240 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1241 
1242 	for (i = 0; i < wc->w_clen; i++) {
1243 		desc = &wc->w_desc[i];
1244 
1245 		/*
1246 		 * We have to make sure that the total write passed in
1247 		 * doesn't extend past a single cluster.
1248 		 */
1249 		local_len = len;
1250 		cluster_off = pos & (osb->s_clustersize - 1);
1251 		if ((cluster_off + local_len) > osb->s_clustersize)
1252 			local_len = osb->s_clustersize - cluster_off;
1253 
1254 		ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1255 					  desc->c_new,
1256 					  desc->c_clear_unwritten,
1257 					  desc->c_needs_zero,
1258 					  data_ac, meta_ac,
1259 					  wc, desc->c_cpos, pos, local_len);
1260 		if (ret) {
1261 			mlog_errno(ret);
1262 			goto out;
1263 		}
1264 
1265 		len -= local_len;
1266 		pos += local_len;
1267 	}
1268 
1269 	ret = 0;
1270 out:
1271 	return ret;
1272 }
1273 
1274 /*
1275  * ocfs2_write_end() wants to know which parts of the target page it
1276  * should complete the write on. It's easiest to compute them ahead of
1277  * time when a more complete view of the write is available.
1278  */
1279 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1280 					struct ocfs2_write_ctxt *wc,
1281 					loff_t pos, unsigned len, int alloc)
1282 {
1283 	struct ocfs2_write_cluster_desc *desc;
1284 
1285 	wc->w_target_from = pos & (PAGE_SIZE - 1);
1286 	wc->w_target_to = wc->w_target_from + len;
1287 
1288 	if (alloc == 0)
1289 		return;
1290 
1291 	/*
1292 	 * Allocating write - we may have different boundaries based
1293 	 * on page size and cluster size.
1294 	 *
1295 	 * NOTE: We can no longer compute one value from the other as
1296 	 * the actual write length and user provided length may be
1297 	 * different.
1298 	 */
1299 
1300 	if (wc->w_large_pages) {
1301 		/*
1302 		 * We only care about the 1st and last cluster within
1303 		 * our range and whether they should be zero'd or not. Either
1304 		 * value may be extended out to the start/end of a
1305 		 * newly allocated cluster.
1306 		 */
1307 		desc = &wc->w_desc[0];
1308 		if (desc->c_needs_zero)
1309 			ocfs2_figure_cluster_boundaries(osb,
1310 							desc->c_cpos,
1311 							&wc->w_target_from,
1312 							NULL);
1313 
1314 		desc = &wc->w_desc[wc->w_clen - 1];
1315 		if (desc->c_needs_zero)
1316 			ocfs2_figure_cluster_boundaries(osb,
1317 							desc->c_cpos,
1318 							NULL,
1319 							&wc->w_target_to);
1320 	} else {
1321 		wc->w_target_from = 0;
1322 		wc->w_target_to = PAGE_SIZE;
1323 	}
1324 }
1325 
1326 /*
1327  * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1328  * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1329  * by the direct io procedure.
1330  * If this is a new extent that allocated by direct io, we should mark it in
1331  * the ip_unwritten_list.
1332  */
1333 static int ocfs2_unwritten_check(struct inode *inode,
1334 				 struct ocfs2_write_ctxt *wc,
1335 				 struct ocfs2_write_cluster_desc *desc)
1336 {
1337 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1338 	struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1339 	int ret = 0;
1340 
1341 	if (!desc->c_needs_zero)
1342 		return 0;
1343 
1344 retry:
1345 	spin_lock(&oi->ip_lock);
1346 	/* Needs not to zero no metter buffer or direct. The one who is zero
1347 	 * the cluster is doing zero. And he will clear unwritten after all
1348 	 * cluster io finished. */
1349 	list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1350 		if (desc->c_cpos == ue->ue_cpos) {
1351 			BUG_ON(desc->c_new);
1352 			desc->c_needs_zero = 0;
1353 			desc->c_clear_unwritten = 0;
1354 			goto unlock;
1355 		}
1356 	}
1357 
1358 	if (wc->w_type != OCFS2_WRITE_DIRECT)
1359 		goto unlock;
1360 
1361 	if (new == NULL) {
1362 		spin_unlock(&oi->ip_lock);
1363 		new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1364 			     GFP_NOFS);
1365 		if (new == NULL) {
1366 			ret = -ENOMEM;
1367 			goto out;
1368 		}
1369 		goto retry;
1370 	}
1371 	/* This direct write will doing zero. */
1372 	new->ue_cpos = desc->c_cpos;
1373 	new->ue_phys = desc->c_phys;
1374 	desc->c_clear_unwritten = 0;
1375 	list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1376 	list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1377 	wc->w_unwritten_count++;
1378 	new = NULL;
1379 unlock:
1380 	spin_unlock(&oi->ip_lock);
1381 out:
1382 	kfree(new);
1383 	return ret;
1384 }
1385 
1386 /*
1387  * Populate each single-cluster write descriptor in the write context
1388  * with information about the i/o to be done.
1389  *
1390  * Returns the number of clusters that will have to be allocated, as
1391  * well as a worst case estimate of the number of extent records that
1392  * would have to be created during a write to an unwritten region.
1393  */
1394 static int ocfs2_populate_write_desc(struct inode *inode,
1395 				     struct ocfs2_write_ctxt *wc,
1396 				     unsigned int *clusters_to_alloc,
1397 				     unsigned int *extents_to_split)
1398 {
1399 	int ret;
1400 	struct ocfs2_write_cluster_desc *desc;
1401 	unsigned int num_clusters = 0;
1402 	unsigned int ext_flags = 0;
1403 	u32 phys = 0;
1404 	int i;
1405 
1406 	*clusters_to_alloc = 0;
1407 	*extents_to_split = 0;
1408 
1409 	for (i = 0; i < wc->w_clen; i++) {
1410 		desc = &wc->w_desc[i];
1411 		desc->c_cpos = wc->w_cpos + i;
1412 
1413 		if (num_clusters == 0) {
1414 			/*
1415 			 * Need to look up the next extent record.
1416 			 */
1417 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1418 						 &num_clusters, &ext_flags);
1419 			if (ret) {
1420 				mlog_errno(ret);
1421 				goto out;
1422 			}
1423 
1424 			/* We should already CoW the refcountd extent. */
1425 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1426 
1427 			/*
1428 			 * Assume worst case - that we're writing in
1429 			 * the middle of the extent.
1430 			 *
1431 			 * We can assume that the write proceeds from
1432 			 * left to right, in which case the extent
1433 			 * insert code is smart enough to coalesce the
1434 			 * next splits into the previous records created.
1435 			 */
1436 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1437 				*extents_to_split = *extents_to_split + 2;
1438 		} else if (phys) {
1439 			/*
1440 			 * Only increment phys if it doesn't describe
1441 			 * a hole.
1442 			 */
1443 			phys++;
1444 		}
1445 
1446 		/*
1447 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1448 		 * file that got extended.  w_first_new_cpos tells us
1449 		 * where the newly allocated clusters are so we can
1450 		 * zero them.
1451 		 */
1452 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1453 			BUG_ON(phys == 0);
1454 			desc->c_needs_zero = 1;
1455 		}
1456 
1457 		desc->c_phys = phys;
1458 		if (phys == 0) {
1459 			desc->c_new = 1;
1460 			desc->c_needs_zero = 1;
1461 			desc->c_clear_unwritten = 1;
1462 			*clusters_to_alloc = *clusters_to_alloc + 1;
1463 		}
1464 
1465 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1466 			desc->c_clear_unwritten = 1;
1467 			desc->c_needs_zero = 1;
1468 		}
1469 
1470 		ret = ocfs2_unwritten_check(inode, wc, desc);
1471 		if (ret) {
1472 			mlog_errno(ret);
1473 			goto out;
1474 		}
1475 
1476 		num_clusters--;
1477 	}
1478 
1479 	ret = 0;
1480 out:
1481 	return ret;
1482 }
1483 
1484 static int ocfs2_write_begin_inline(struct address_space *mapping,
1485 				    struct inode *inode,
1486 				    struct ocfs2_write_ctxt *wc)
1487 {
1488 	int ret;
1489 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1490 	struct page *page;
1491 	handle_t *handle;
1492 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1493 
1494 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1495 	if (IS_ERR(handle)) {
1496 		ret = PTR_ERR(handle);
1497 		mlog_errno(ret);
1498 		goto out;
1499 	}
1500 
1501 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1502 	if (!page) {
1503 		ocfs2_commit_trans(osb, handle);
1504 		ret = -ENOMEM;
1505 		mlog_errno(ret);
1506 		goto out;
1507 	}
1508 	/*
1509 	 * If we don't set w_num_pages then this page won't get unlocked
1510 	 * and freed on cleanup of the write context.
1511 	 */
1512 	wc->w_pages[0] = wc->w_target_page = page;
1513 	wc->w_num_pages = 1;
1514 
1515 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1516 				      OCFS2_JOURNAL_ACCESS_WRITE);
1517 	if (ret) {
1518 		ocfs2_commit_trans(osb, handle);
1519 
1520 		mlog_errno(ret);
1521 		goto out;
1522 	}
1523 
1524 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1525 		ocfs2_set_inode_data_inline(inode, di);
1526 
1527 	if (!PageUptodate(page)) {
1528 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1529 		if (ret) {
1530 			ocfs2_commit_trans(osb, handle);
1531 
1532 			goto out;
1533 		}
1534 	}
1535 
1536 	wc->w_handle = handle;
1537 out:
1538 	return ret;
1539 }
1540 
1541 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1542 {
1543 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1544 
1545 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1546 		return 1;
1547 	return 0;
1548 }
1549 
1550 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1551 					  struct inode *inode, loff_t pos,
1552 					  unsigned len, struct page *mmap_page,
1553 					  struct ocfs2_write_ctxt *wc)
1554 {
1555 	int ret, written = 0;
1556 	loff_t end = pos + len;
1557 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1558 	struct ocfs2_dinode *di = NULL;
1559 
1560 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1561 					     len, (unsigned long long)pos,
1562 					     oi->ip_dyn_features);
1563 
1564 	/*
1565 	 * Handle inodes which already have inline data 1st.
1566 	 */
1567 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1568 		if (mmap_page == NULL &&
1569 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1570 			goto do_inline_write;
1571 
1572 		/*
1573 		 * The write won't fit - we have to give this inode an
1574 		 * inline extent list now.
1575 		 */
1576 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1577 		if (ret)
1578 			mlog_errno(ret);
1579 		goto out;
1580 	}
1581 
1582 	/*
1583 	 * Check whether the inode can accept inline data.
1584 	 */
1585 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1586 		return 0;
1587 
1588 	/*
1589 	 * Check whether the write can fit.
1590 	 */
1591 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1592 	if (mmap_page ||
1593 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1594 		return 0;
1595 
1596 do_inline_write:
1597 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1598 	if (ret) {
1599 		mlog_errno(ret);
1600 		goto out;
1601 	}
1602 
1603 	/*
1604 	 * This signals to the caller that the data can be written
1605 	 * inline.
1606 	 */
1607 	written = 1;
1608 out:
1609 	return written ? written : ret;
1610 }
1611 
1612 /*
1613  * This function only does anything for file systems which can't
1614  * handle sparse files.
1615  *
1616  * What we want to do here is fill in any hole between the current end
1617  * of allocation and the end of our write. That way the rest of the
1618  * write path can treat it as an non-allocating write, which has no
1619  * special case code for sparse/nonsparse files.
1620  */
1621 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1622 					struct buffer_head *di_bh,
1623 					loff_t pos, unsigned len,
1624 					struct ocfs2_write_ctxt *wc)
1625 {
1626 	int ret;
1627 	loff_t newsize = pos + len;
1628 
1629 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1630 
1631 	if (newsize <= i_size_read(inode))
1632 		return 0;
1633 
1634 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1635 	if (ret)
1636 		mlog_errno(ret);
1637 
1638 	/* There is no wc if this is call from direct. */
1639 	if (wc)
1640 		wc->w_first_new_cpos =
1641 			ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1642 
1643 	return ret;
1644 }
1645 
1646 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1647 			   loff_t pos)
1648 {
1649 	int ret = 0;
1650 
1651 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1652 	if (pos > i_size_read(inode))
1653 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1654 
1655 	return ret;
1656 }
1657 
1658 int ocfs2_write_begin_nolock(struct address_space *mapping,
1659 			     loff_t pos, unsigned len, ocfs2_write_type_t type,
1660 			     struct page **pagep, void **fsdata,
1661 			     struct buffer_head *di_bh, struct page *mmap_page)
1662 {
1663 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1664 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1665 	struct ocfs2_write_ctxt *wc;
1666 	struct inode *inode = mapping->host;
1667 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1668 	struct ocfs2_dinode *di;
1669 	struct ocfs2_alloc_context *data_ac = NULL;
1670 	struct ocfs2_alloc_context *meta_ac = NULL;
1671 	handle_t *handle;
1672 	struct ocfs2_extent_tree et;
1673 	int try_free = 1, ret1;
1674 
1675 try_again:
1676 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1677 	if (ret) {
1678 		mlog_errno(ret);
1679 		return ret;
1680 	}
1681 
1682 	if (ocfs2_supports_inline_data(osb)) {
1683 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1684 						     mmap_page, wc);
1685 		if (ret == 1) {
1686 			ret = 0;
1687 			goto success;
1688 		}
1689 		if (ret < 0) {
1690 			mlog_errno(ret);
1691 			goto out;
1692 		}
1693 	}
1694 
1695 	/* Direct io change i_size late, should not zero tail here. */
1696 	if (type != OCFS2_WRITE_DIRECT) {
1697 		if (ocfs2_sparse_alloc(osb))
1698 			ret = ocfs2_zero_tail(inode, di_bh, pos);
1699 		else
1700 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1701 							   len, wc);
1702 		if (ret) {
1703 			mlog_errno(ret);
1704 			goto out;
1705 		}
1706 	}
1707 
1708 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1709 	if (ret < 0) {
1710 		mlog_errno(ret);
1711 		goto out;
1712 	} else if (ret == 1) {
1713 		clusters_need = wc->w_clen;
1714 		ret = ocfs2_refcount_cow(inode, di_bh,
1715 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1716 		if (ret) {
1717 			mlog_errno(ret);
1718 			goto out;
1719 		}
1720 	}
1721 
1722 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1723 					&extents_to_split);
1724 	if (ret) {
1725 		mlog_errno(ret);
1726 		goto out;
1727 	}
1728 	clusters_need += clusters_to_alloc;
1729 
1730 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1731 
1732 	trace_ocfs2_write_begin_nolock(
1733 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1734 			(long long)i_size_read(inode),
1735 			le32_to_cpu(di->i_clusters),
1736 			pos, len, type, mmap_page,
1737 			clusters_to_alloc, extents_to_split);
1738 
1739 	/*
1740 	 * We set w_target_from, w_target_to here so that
1741 	 * ocfs2_write_end() knows which range in the target page to
1742 	 * write out. An allocation requires that we write the entire
1743 	 * cluster range.
1744 	 */
1745 	if (clusters_to_alloc || extents_to_split) {
1746 		/*
1747 		 * XXX: We are stretching the limits of
1748 		 * ocfs2_lock_allocators(). It greatly over-estimates
1749 		 * the work to be done.
1750 		 */
1751 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1752 					      wc->w_di_bh);
1753 		ret = ocfs2_lock_allocators(inode, &et,
1754 					    clusters_to_alloc, extents_to_split,
1755 					    &data_ac, &meta_ac);
1756 		if (ret) {
1757 			mlog_errno(ret);
1758 			goto out;
1759 		}
1760 
1761 		if (data_ac)
1762 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1763 
1764 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1765 						    &di->id2.i_list);
1766 	} else if (type == OCFS2_WRITE_DIRECT)
1767 		/* direct write needs not to start trans if no extents alloc. */
1768 		goto success;
1769 
1770 	/*
1771 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1772 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1773 	 * we know zeros will only be needed in the first and/or last cluster.
1774 	 */
1775 	if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1776 			   wc->w_desc[wc->w_clen - 1].c_needs_zero))
1777 		cluster_of_pages = 1;
1778 	else
1779 		cluster_of_pages = 0;
1780 
1781 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1782 
1783 	handle = ocfs2_start_trans(osb, credits);
1784 	if (IS_ERR(handle)) {
1785 		ret = PTR_ERR(handle);
1786 		mlog_errno(ret);
1787 		goto out;
1788 	}
1789 
1790 	wc->w_handle = handle;
1791 
1792 	if (clusters_to_alloc) {
1793 		ret = dquot_alloc_space_nodirty(inode,
1794 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1795 		if (ret)
1796 			goto out_commit;
1797 	}
1798 
1799 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1800 				      OCFS2_JOURNAL_ACCESS_WRITE);
1801 	if (ret) {
1802 		mlog_errno(ret);
1803 		goto out_quota;
1804 	}
1805 
1806 	/*
1807 	 * Fill our page array first. That way we've grabbed enough so
1808 	 * that we can zero and flush if we error after adding the
1809 	 * extent.
1810 	 */
1811 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1812 					 cluster_of_pages, mmap_page);
1813 	if (ret && ret != -EAGAIN) {
1814 		mlog_errno(ret);
1815 		goto out_quota;
1816 	}
1817 
1818 	/*
1819 	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1820 	 * the target page. In this case, we exit with no error and no target
1821 	 * page. This will trigger the caller, page_mkwrite(), to re-try
1822 	 * the operation.
1823 	 */
1824 	if (ret == -EAGAIN) {
1825 		BUG_ON(wc->w_target_page);
1826 		ret = 0;
1827 		goto out_quota;
1828 	}
1829 
1830 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1831 					  len);
1832 	if (ret) {
1833 		mlog_errno(ret);
1834 		goto out_quota;
1835 	}
1836 
1837 	if (data_ac)
1838 		ocfs2_free_alloc_context(data_ac);
1839 	if (meta_ac)
1840 		ocfs2_free_alloc_context(meta_ac);
1841 
1842 success:
1843 	if (pagep)
1844 		*pagep = wc->w_target_page;
1845 	*fsdata = wc;
1846 	return 0;
1847 out_quota:
1848 	if (clusters_to_alloc)
1849 		dquot_free_space(inode,
1850 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1851 out_commit:
1852 	ocfs2_commit_trans(osb, handle);
1853 
1854 out:
1855 	/*
1856 	 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1857 	 * even in case of error here like ENOSPC and ENOMEM. So, we need
1858 	 * to unlock the target page manually to prevent deadlocks when
1859 	 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1860 	 * to VM code.
1861 	 */
1862 	if (wc->w_target_locked)
1863 		unlock_page(mmap_page);
1864 
1865 	ocfs2_free_write_ctxt(inode, wc);
1866 
1867 	if (data_ac) {
1868 		ocfs2_free_alloc_context(data_ac);
1869 		data_ac = NULL;
1870 	}
1871 	if (meta_ac) {
1872 		ocfs2_free_alloc_context(meta_ac);
1873 		meta_ac = NULL;
1874 	}
1875 
1876 	if (ret == -ENOSPC && try_free) {
1877 		/*
1878 		 * Try to free some truncate log so that we can have enough
1879 		 * clusters to allocate.
1880 		 */
1881 		try_free = 0;
1882 
1883 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1884 		if (ret1 == 1)
1885 			goto try_again;
1886 
1887 		if (ret1 < 0)
1888 			mlog_errno(ret1);
1889 	}
1890 
1891 	return ret;
1892 }
1893 
1894 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1895 			     loff_t pos, unsigned len, unsigned flags,
1896 			     struct page **pagep, void **fsdata)
1897 {
1898 	int ret;
1899 	struct buffer_head *di_bh = NULL;
1900 	struct inode *inode = mapping->host;
1901 
1902 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1903 	if (ret) {
1904 		mlog_errno(ret);
1905 		return ret;
1906 	}
1907 
1908 	/*
1909 	 * Take alloc sem here to prevent concurrent lookups. That way
1910 	 * the mapping, zeroing and tree manipulation within
1911 	 * ocfs2_write() will be safe against ->readpage(). This
1912 	 * should also serve to lock out allocation from a shared
1913 	 * writeable region.
1914 	 */
1915 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1916 
1917 	ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1918 				       pagep, fsdata, di_bh, NULL);
1919 	if (ret) {
1920 		mlog_errno(ret);
1921 		goto out_fail;
1922 	}
1923 
1924 	brelse(di_bh);
1925 
1926 	return 0;
1927 
1928 out_fail:
1929 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1930 
1931 	brelse(di_bh);
1932 	ocfs2_inode_unlock(inode, 1);
1933 
1934 	return ret;
1935 }
1936 
1937 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1938 				   unsigned len, unsigned *copied,
1939 				   struct ocfs2_dinode *di,
1940 				   struct ocfs2_write_ctxt *wc)
1941 {
1942 	void *kaddr;
1943 
1944 	if (unlikely(*copied < len)) {
1945 		if (!PageUptodate(wc->w_target_page)) {
1946 			*copied = 0;
1947 			return;
1948 		}
1949 	}
1950 
1951 	kaddr = kmap_atomic(wc->w_target_page);
1952 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1953 	kunmap_atomic(kaddr);
1954 
1955 	trace_ocfs2_write_end_inline(
1956 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1957 	     (unsigned long long)pos, *copied,
1958 	     le16_to_cpu(di->id2.i_data.id_count),
1959 	     le16_to_cpu(di->i_dyn_features));
1960 }
1961 
1962 int ocfs2_write_end_nolock(struct address_space *mapping,
1963 			   loff_t pos, unsigned len, unsigned copied, void *fsdata)
1964 {
1965 	int i, ret;
1966 	unsigned from, to, start = pos & (PAGE_SIZE - 1);
1967 	struct inode *inode = mapping->host;
1968 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1969 	struct ocfs2_write_ctxt *wc = fsdata;
1970 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1971 	handle_t *handle = wc->w_handle;
1972 	struct page *tmppage;
1973 
1974 	BUG_ON(!list_empty(&wc->w_unwritten_list));
1975 
1976 	if (handle) {
1977 		ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1978 				wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1979 		if (ret) {
1980 			copied = ret;
1981 			mlog_errno(ret);
1982 			goto out;
1983 		}
1984 	}
1985 
1986 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1987 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1988 		goto out_write_size;
1989 	}
1990 
1991 	if (unlikely(copied < len) && wc->w_target_page) {
1992 		if (!PageUptodate(wc->w_target_page))
1993 			copied = 0;
1994 
1995 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1996 				       start+len);
1997 	}
1998 	if (wc->w_target_page)
1999 		flush_dcache_page(wc->w_target_page);
2000 
2001 	for(i = 0; i < wc->w_num_pages; i++) {
2002 		tmppage = wc->w_pages[i];
2003 
2004 		/* This is the direct io target page. */
2005 		if (tmppage == NULL)
2006 			continue;
2007 
2008 		if (tmppage == wc->w_target_page) {
2009 			from = wc->w_target_from;
2010 			to = wc->w_target_to;
2011 
2012 			BUG_ON(from > PAGE_SIZE ||
2013 			       to > PAGE_SIZE ||
2014 			       to < from);
2015 		} else {
2016 			/*
2017 			 * Pages adjacent to the target (if any) imply
2018 			 * a hole-filling write in which case we want
2019 			 * to flush their entire range.
2020 			 */
2021 			from = 0;
2022 			to = PAGE_SIZE;
2023 		}
2024 
2025 		if (page_has_buffers(tmppage)) {
2026 			if (handle && ocfs2_should_order_data(inode)) {
2027 				loff_t start_byte =
2028 					((loff_t)tmppage->index << PAGE_SHIFT) +
2029 					from;
2030 				loff_t length = to - from;
2031 				ocfs2_jbd2_inode_add_write(handle, inode,
2032 							   start_byte, length);
2033 			}
2034 			block_commit_write(tmppage, from, to);
2035 		}
2036 	}
2037 
2038 out_write_size:
2039 	/* Direct io do not update i_size here. */
2040 	if (wc->w_type != OCFS2_WRITE_DIRECT) {
2041 		pos += copied;
2042 		if (pos > i_size_read(inode)) {
2043 			i_size_write(inode, pos);
2044 			mark_inode_dirty(inode);
2045 		}
2046 		inode->i_blocks = ocfs2_inode_sector_count(inode);
2047 		di->i_size = cpu_to_le64((u64)i_size_read(inode));
2048 		inode->i_mtime = inode->i_ctime = current_time(inode);
2049 		di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2050 		di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2051 		if (handle)
2052 			ocfs2_update_inode_fsync_trans(handle, inode, 1);
2053 	}
2054 	if (handle)
2055 		ocfs2_journal_dirty(handle, wc->w_di_bh);
2056 
2057 out:
2058 	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2059 	 * lock, or it will cause a deadlock since journal commit threads holds
2060 	 * this lock and will ask for the page lock when flushing the data.
2061 	 * put it here to preserve the unlock order.
2062 	 */
2063 	ocfs2_unlock_pages(wc);
2064 
2065 	if (handle)
2066 		ocfs2_commit_trans(osb, handle);
2067 
2068 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2069 
2070 	brelse(wc->w_di_bh);
2071 	kfree(wc);
2072 
2073 	return copied;
2074 }
2075 
2076 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2077 			   loff_t pos, unsigned len, unsigned copied,
2078 			   struct page *page, void *fsdata)
2079 {
2080 	int ret;
2081 	struct inode *inode = mapping->host;
2082 
2083 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2084 
2085 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2086 	ocfs2_inode_unlock(inode, 1);
2087 
2088 	return ret;
2089 }
2090 
2091 struct ocfs2_dio_write_ctxt {
2092 	struct list_head	dw_zero_list;
2093 	unsigned		dw_zero_count;
2094 	int			dw_orphaned;
2095 	pid_t			dw_writer_pid;
2096 };
2097 
2098 static struct ocfs2_dio_write_ctxt *
2099 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2100 {
2101 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2102 
2103 	if (bh->b_private)
2104 		return bh->b_private;
2105 
2106 	dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2107 	if (dwc == NULL)
2108 		return NULL;
2109 	INIT_LIST_HEAD(&dwc->dw_zero_list);
2110 	dwc->dw_zero_count = 0;
2111 	dwc->dw_orphaned = 0;
2112 	dwc->dw_writer_pid = task_pid_nr(current);
2113 	bh->b_private = dwc;
2114 	*alloc = 1;
2115 
2116 	return dwc;
2117 }
2118 
2119 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2120 				     struct ocfs2_dio_write_ctxt *dwc)
2121 {
2122 	ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2123 	kfree(dwc);
2124 }
2125 
2126 /*
2127  * TODO: Make this into a generic get_blocks function.
2128  *
2129  * From do_direct_io in direct-io.c:
2130  *  "So what we do is to permit the ->get_blocks function to populate
2131  *   bh.b_size with the size of IO which is permitted at this offset and
2132  *   this i_blkbits."
2133  *
2134  * This function is called directly from get_more_blocks in direct-io.c.
2135  *
2136  * called like this: dio->get_blocks(dio->inode, fs_startblk,
2137  * 					fs_count, map_bh, dio->rw == WRITE);
2138  */
2139 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2140 			       struct buffer_head *bh_result, int create)
2141 {
2142 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2143 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2144 	struct ocfs2_write_ctxt *wc;
2145 	struct ocfs2_write_cluster_desc *desc = NULL;
2146 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2147 	struct buffer_head *di_bh = NULL;
2148 	u64 p_blkno;
2149 	unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2150 	loff_t pos = iblock << i_blkbits;
2151 	sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2152 	unsigned len, total_len = bh_result->b_size;
2153 	int ret = 0, first_get_block = 0;
2154 
2155 	len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2156 	len = min(total_len, len);
2157 
2158 	/*
2159 	 * bh_result->b_size is count in get_more_blocks according to write
2160 	 * "pos" and "end", we need map twice to return different buffer state:
2161 	 * 1. area in file size, not set NEW;
2162 	 * 2. area out file size, set  NEW.
2163 	 *
2164 	 *		   iblock    endblk
2165 	 * |--------|---------|---------|---------
2166 	 * |<-------area in file------->|
2167 	 */
2168 
2169 	if ((iblock <= endblk) &&
2170 	    ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2171 		len = (endblk - iblock + 1) << i_blkbits;
2172 
2173 	mlog(0, "get block of %lu at %llu:%u req %u\n",
2174 			inode->i_ino, pos, len, total_len);
2175 
2176 	/*
2177 	 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2178 	 * we may need to add it to orphan dir. So can not fall to fast path
2179 	 * while file size will be changed.
2180 	 */
2181 	if (pos + total_len <= i_size_read(inode)) {
2182 
2183 		/* This is the fast path for re-write. */
2184 		ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2185 		if (buffer_mapped(bh_result) &&
2186 		    !buffer_new(bh_result) &&
2187 		    ret == 0)
2188 			goto out;
2189 
2190 		/* Clear state set by ocfs2_get_block. */
2191 		bh_result->b_state = 0;
2192 	}
2193 
2194 	dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2195 	if (unlikely(dwc == NULL)) {
2196 		ret = -ENOMEM;
2197 		mlog_errno(ret);
2198 		goto out;
2199 	}
2200 
2201 	if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2202 	    ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2203 	    !dwc->dw_orphaned) {
2204 		/*
2205 		 * when we are going to alloc extents beyond file size, add the
2206 		 * inode to orphan dir, so we can recall those spaces when
2207 		 * system crashed during write.
2208 		 */
2209 		ret = ocfs2_add_inode_to_orphan(osb, inode);
2210 		if (ret < 0) {
2211 			mlog_errno(ret);
2212 			goto out;
2213 		}
2214 		dwc->dw_orphaned = 1;
2215 	}
2216 
2217 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2218 	if (ret) {
2219 		mlog_errno(ret);
2220 		goto out;
2221 	}
2222 
2223 	down_write(&oi->ip_alloc_sem);
2224 
2225 	if (first_get_block) {
2226 		if (ocfs2_sparse_alloc(osb))
2227 			ret = ocfs2_zero_tail(inode, di_bh, pos);
2228 		else
2229 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2230 							   total_len, NULL);
2231 		if (ret < 0) {
2232 			mlog_errno(ret);
2233 			goto unlock;
2234 		}
2235 	}
2236 
2237 	ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2238 				       OCFS2_WRITE_DIRECT, NULL,
2239 				       (void **)&wc, di_bh, NULL);
2240 	if (ret) {
2241 		mlog_errno(ret);
2242 		goto unlock;
2243 	}
2244 
2245 	desc = &wc->w_desc[0];
2246 
2247 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2248 	BUG_ON(p_blkno == 0);
2249 	p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2250 
2251 	map_bh(bh_result, inode->i_sb, p_blkno);
2252 	bh_result->b_size = len;
2253 	if (desc->c_needs_zero)
2254 		set_buffer_new(bh_result);
2255 
2256 	if (iblock > endblk)
2257 		set_buffer_new(bh_result);
2258 
2259 	/* May sleep in end_io. It should not happen in a irq context. So defer
2260 	 * it to dio work queue. */
2261 	set_buffer_defer_completion(bh_result);
2262 
2263 	if (!list_empty(&wc->w_unwritten_list)) {
2264 		struct ocfs2_unwritten_extent *ue = NULL;
2265 
2266 		ue = list_first_entry(&wc->w_unwritten_list,
2267 				      struct ocfs2_unwritten_extent,
2268 				      ue_node);
2269 		BUG_ON(ue->ue_cpos != desc->c_cpos);
2270 		/* The physical address may be 0, fill it. */
2271 		ue->ue_phys = desc->c_phys;
2272 
2273 		list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2274 		dwc->dw_zero_count += wc->w_unwritten_count;
2275 	}
2276 
2277 	ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2278 	BUG_ON(ret != len);
2279 	ret = 0;
2280 unlock:
2281 	up_write(&oi->ip_alloc_sem);
2282 	ocfs2_inode_unlock(inode, 1);
2283 	brelse(di_bh);
2284 out:
2285 	if (ret < 0)
2286 		ret = -EIO;
2287 	return ret;
2288 }
2289 
2290 static int ocfs2_dio_end_io_write(struct inode *inode,
2291 				  struct ocfs2_dio_write_ctxt *dwc,
2292 				  loff_t offset,
2293 				  ssize_t bytes)
2294 {
2295 	struct ocfs2_cached_dealloc_ctxt dealloc;
2296 	struct ocfs2_extent_tree et;
2297 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2298 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2299 	struct ocfs2_unwritten_extent *ue = NULL;
2300 	struct buffer_head *di_bh = NULL;
2301 	struct ocfs2_dinode *di;
2302 	struct ocfs2_alloc_context *data_ac = NULL;
2303 	struct ocfs2_alloc_context *meta_ac = NULL;
2304 	handle_t *handle = NULL;
2305 	loff_t end = offset + bytes;
2306 	int ret = 0, credits = 0, locked = 0;
2307 
2308 	ocfs2_init_dealloc_ctxt(&dealloc);
2309 
2310 	/* We do clear unwritten, delete orphan, change i_size here. If neither
2311 	 * of these happen, we can skip all this. */
2312 	if (list_empty(&dwc->dw_zero_list) &&
2313 	    end <= i_size_read(inode) &&
2314 	    !dwc->dw_orphaned)
2315 		goto out;
2316 
2317 	/* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2318 	 * are in that context. */
2319 	if (dwc->dw_writer_pid != task_pid_nr(current)) {
2320 		inode_lock(inode);
2321 		locked = 1;
2322 	}
2323 
2324 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2325 	if (ret < 0) {
2326 		mlog_errno(ret);
2327 		goto out;
2328 	}
2329 
2330 	down_write(&oi->ip_alloc_sem);
2331 
2332 	/* Delete orphan before acquire i_mutex. */
2333 	if (dwc->dw_orphaned) {
2334 		BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2335 
2336 		end = end > i_size_read(inode) ? end : 0;
2337 
2338 		ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2339 				!!end, end);
2340 		if (ret < 0)
2341 			mlog_errno(ret);
2342 	}
2343 
2344 	di = (struct ocfs2_dinode *)di_bh->b_data;
2345 
2346 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2347 
2348 	/* Attach dealloc with extent tree in case that we may reuse extents
2349 	 * which are already unlinked from current extent tree due to extent
2350 	 * rotation and merging.
2351 	 */
2352 	et.et_dealloc = &dealloc;
2353 
2354 	ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2355 				    &data_ac, &meta_ac);
2356 	if (ret) {
2357 		mlog_errno(ret);
2358 		goto unlock;
2359 	}
2360 
2361 	credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2362 
2363 	handle = ocfs2_start_trans(osb, credits);
2364 	if (IS_ERR(handle)) {
2365 		ret = PTR_ERR(handle);
2366 		mlog_errno(ret);
2367 		goto unlock;
2368 	}
2369 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2370 				      OCFS2_JOURNAL_ACCESS_WRITE);
2371 	if (ret) {
2372 		mlog_errno(ret);
2373 		goto commit;
2374 	}
2375 
2376 	list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2377 		ret = ocfs2_mark_extent_written(inode, &et, handle,
2378 						ue->ue_cpos, 1,
2379 						ue->ue_phys,
2380 						meta_ac, &dealloc);
2381 		if (ret < 0) {
2382 			mlog_errno(ret);
2383 			break;
2384 		}
2385 	}
2386 
2387 	if (end > i_size_read(inode)) {
2388 		ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2389 		if (ret < 0)
2390 			mlog_errno(ret);
2391 	}
2392 commit:
2393 	ocfs2_commit_trans(osb, handle);
2394 unlock:
2395 	up_write(&oi->ip_alloc_sem);
2396 	ocfs2_inode_unlock(inode, 1);
2397 	brelse(di_bh);
2398 out:
2399 	if (data_ac)
2400 		ocfs2_free_alloc_context(data_ac);
2401 	if (meta_ac)
2402 		ocfs2_free_alloc_context(meta_ac);
2403 	ocfs2_run_deallocs(osb, &dealloc);
2404 	if (locked)
2405 		inode_unlock(inode);
2406 	ocfs2_dio_free_write_ctx(inode, dwc);
2407 
2408 	return ret;
2409 }
2410 
2411 /*
2412  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2413  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2414  * to protect io on one node from truncation on another.
2415  */
2416 static int ocfs2_dio_end_io(struct kiocb *iocb,
2417 			    loff_t offset,
2418 			    ssize_t bytes,
2419 			    void *private)
2420 {
2421 	struct inode *inode = file_inode(iocb->ki_filp);
2422 	int level;
2423 	int ret = 0;
2424 
2425 	/* this io's submitter should not have unlocked this before we could */
2426 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2427 
2428 	if (bytes <= 0)
2429 		mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2430 				 (long long)bytes);
2431 	if (private) {
2432 		if (bytes > 0)
2433 			ret = ocfs2_dio_end_io_write(inode, private, offset,
2434 						     bytes);
2435 		else
2436 			ocfs2_dio_free_write_ctx(inode, private);
2437 	}
2438 
2439 	ocfs2_iocb_clear_rw_locked(iocb);
2440 
2441 	level = ocfs2_iocb_rw_locked_level(iocb);
2442 	ocfs2_rw_unlock(inode, level);
2443 	return ret;
2444 }
2445 
2446 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2447 {
2448 	struct file *file = iocb->ki_filp;
2449 	struct inode *inode = file->f_mapping->host;
2450 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2451 	get_block_t *get_block;
2452 
2453 	/*
2454 	 * Fallback to buffered I/O if we see an inode without
2455 	 * extents.
2456 	 */
2457 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2458 		return 0;
2459 
2460 	/* Fallback to buffered I/O if we do not support append dio. */
2461 	if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2462 	    !ocfs2_supports_append_dio(osb))
2463 		return 0;
2464 
2465 	if (iov_iter_rw(iter) == READ)
2466 		get_block = ocfs2_lock_get_block;
2467 	else
2468 		get_block = ocfs2_dio_wr_get_block;
2469 
2470 	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2471 				    iter, get_block,
2472 				    ocfs2_dio_end_io, NULL, 0);
2473 }
2474 
2475 const struct address_space_operations ocfs2_aops = {
2476 	.readpage		= ocfs2_readpage,
2477 	.readpages		= ocfs2_readpages,
2478 	.writepage		= ocfs2_writepage,
2479 	.write_begin		= ocfs2_write_begin,
2480 	.write_end		= ocfs2_write_end,
2481 	.bmap			= ocfs2_bmap,
2482 	.direct_IO		= ocfs2_direct_IO,
2483 	.invalidatepage		= block_invalidatepage,
2484 	.releasepage		= ocfs2_releasepage,
2485 	.migratepage		= buffer_migrate_page,
2486 	.is_partially_uptodate	= block_is_partially_uptodate,
2487 	.error_remove_page	= generic_error_remove_page,
2488 };
2489