1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 #include <linux/quotaops.h> 31 #include <linux/blkdev.h> 32 #include <linux/uio.h> 33 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "dlmglue.h" 41 #include "extent_map.h" 42 #include "file.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "suballoc.h" 46 #include "super.h" 47 #include "symlink.h" 48 #include "refcounttree.h" 49 #include "ocfs2_trace.h" 50 51 #include "buffer_head_io.h" 52 #include "dir.h" 53 #include "namei.h" 54 #include "sysfile.h" 55 56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 57 struct buffer_head *bh_result, int create) 58 { 59 int err = -EIO; 60 int status; 61 struct ocfs2_dinode *fe = NULL; 62 struct buffer_head *bh = NULL; 63 struct buffer_head *buffer_cache_bh = NULL; 64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 65 void *kaddr; 66 67 trace_ocfs2_symlink_get_block( 68 (unsigned long long)OCFS2_I(inode)->ip_blkno, 69 (unsigned long long)iblock, bh_result, create); 70 71 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 72 73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 75 (unsigned long long)iblock); 76 goto bail; 77 } 78 79 status = ocfs2_read_inode_block(inode, &bh); 80 if (status < 0) { 81 mlog_errno(status); 82 goto bail; 83 } 84 fe = (struct ocfs2_dinode *) bh->b_data; 85 86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 87 le32_to_cpu(fe->i_clusters))) { 88 err = -ENOMEM; 89 mlog(ML_ERROR, "block offset is outside the allocated size: " 90 "%llu\n", (unsigned long long)iblock); 91 goto bail; 92 } 93 94 /* We don't use the page cache to create symlink data, so if 95 * need be, copy it over from the buffer cache. */ 96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 98 iblock; 99 buffer_cache_bh = sb_getblk(osb->sb, blkno); 100 if (!buffer_cache_bh) { 101 err = -ENOMEM; 102 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 103 goto bail; 104 } 105 106 /* we haven't locked out transactions, so a commit 107 * could've happened. Since we've got a reference on 108 * the bh, even if it commits while we're doing the 109 * copy, the data is still good. */ 110 if (buffer_jbd(buffer_cache_bh) 111 && ocfs2_inode_is_new(inode)) { 112 kaddr = kmap_atomic(bh_result->b_page); 113 if (!kaddr) { 114 mlog(ML_ERROR, "couldn't kmap!\n"); 115 goto bail; 116 } 117 memcpy(kaddr + (bh_result->b_size * iblock), 118 buffer_cache_bh->b_data, 119 bh_result->b_size); 120 kunmap_atomic(kaddr); 121 set_buffer_uptodate(bh_result); 122 } 123 brelse(buffer_cache_bh); 124 } 125 126 map_bh(bh_result, inode->i_sb, 127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 128 129 err = 0; 130 131 bail: 132 brelse(bh); 133 134 return err; 135 } 136 137 int ocfs2_get_block(struct inode *inode, sector_t iblock, 138 struct buffer_head *bh_result, int create) 139 { 140 int err = 0; 141 unsigned int ext_flags; 142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 143 u64 p_blkno, count, past_eof; 144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 145 146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 147 (unsigned long long)iblock, bh_result, create); 148 149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 151 inode, inode->i_ino); 152 153 if (S_ISLNK(inode->i_mode)) { 154 /* this always does I/O for some reason. */ 155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 156 goto bail; 157 } 158 159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 160 &ext_flags); 161 if (err) { 162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 164 (unsigned long long)p_blkno); 165 goto bail; 166 } 167 168 if (max_blocks < count) 169 count = max_blocks; 170 171 /* 172 * ocfs2 never allocates in this function - the only time we 173 * need to use BH_New is when we're extending i_size on a file 174 * system which doesn't support holes, in which case BH_New 175 * allows __block_write_begin() to zero. 176 * 177 * If we see this on a sparse file system, then a truncate has 178 * raced us and removed the cluster. In this case, we clear 179 * the buffers dirty and uptodate bits and let the buffer code 180 * ignore it as a hole. 181 */ 182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 183 clear_buffer_dirty(bh_result); 184 clear_buffer_uptodate(bh_result); 185 goto bail; 186 } 187 188 /* Treat the unwritten extent as a hole for zeroing purposes. */ 189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 190 map_bh(bh_result, inode->i_sb, p_blkno); 191 192 bh_result->b_size = count << inode->i_blkbits; 193 194 if (!ocfs2_sparse_alloc(osb)) { 195 if (p_blkno == 0) { 196 err = -EIO; 197 mlog(ML_ERROR, 198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 199 (unsigned long long)iblock, 200 (unsigned long long)p_blkno, 201 (unsigned long long)OCFS2_I(inode)->ip_blkno); 202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 203 dump_stack(); 204 goto bail; 205 } 206 } 207 208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 209 210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 211 (unsigned long long)past_eof); 212 if (create && (iblock >= past_eof)) 213 set_buffer_new(bh_result); 214 215 bail: 216 if (err < 0) 217 err = -EIO; 218 219 return err; 220 } 221 222 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 223 struct buffer_head *di_bh) 224 { 225 void *kaddr; 226 loff_t size; 227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 228 229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 231 (unsigned long long)OCFS2_I(inode)->ip_blkno); 232 return -EROFS; 233 } 234 235 size = i_size_read(inode); 236 237 if (size > PAGE_CACHE_SIZE || 238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 239 ocfs2_error(inode->i_sb, 240 "Inode %llu has with inline data has bad size: %Lu\n", 241 (unsigned long long)OCFS2_I(inode)->ip_blkno, 242 (unsigned long long)size); 243 return -EROFS; 244 } 245 246 kaddr = kmap_atomic(page); 247 if (size) 248 memcpy(kaddr, di->id2.i_data.id_data, size); 249 /* Clear the remaining part of the page */ 250 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); 251 flush_dcache_page(page); 252 kunmap_atomic(kaddr); 253 254 SetPageUptodate(page); 255 256 return 0; 257 } 258 259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 260 { 261 int ret; 262 struct buffer_head *di_bh = NULL; 263 264 BUG_ON(!PageLocked(page)); 265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 266 267 ret = ocfs2_read_inode_block(inode, &di_bh); 268 if (ret) { 269 mlog_errno(ret); 270 goto out; 271 } 272 273 ret = ocfs2_read_inline_data(inode, page, di_bh); 274 out: 275 unlock_page(page); 276 277 brelse(di_bh); 278 return ret; 279 } 280 281 static int ocfs2_readpage(struct file *file, struct page *page) 282 { 283 struct inode *inode = page->mapping->host; 284 struct ocfs2_inode_info *oi = OCFS2_I(inode); 285 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; 286 int ret, unlock = 1; 287 288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 289 (page ? page->index : 0)); 290 291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 292 if (ret != 0) { 293 if (ret == AOP_TRUNCATED_PAGE) 294 unlock = 0; 295 mlog_errno(ret); 296 goto out; 297 } 298 299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 300 /* 301 * Unlock the page and cycle ip_alloc_sem so that we don't 302 * busyloop waiting for ip_alloc_sem to unlock 303 */ 304 ret = AOP_TRUNCATED_PAGE; 305 unlock_page(page); 306 unlock = 0; 307 down_read(&oi->ip_alloc_sem); 308 up_read(&oi->ip_alloc_sem); 309 goto out_inode_unlock; 310 } 311 312 /* 313 * i_size might have just been updated as we grabed the meta lock. We 314 * might now be discovering a truncate that hit on another node. 315 * block_read_full_page->get_block freaks out if it is asked to read 316 * beyond the end of a file, so we check here. Callers 317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 318 * and notice that the page they just read isn't needed. 319 * 320 * XXX sys_readahead() seems to get that wrong? 321 */ 322 if (start >= i_size_read(inode)) { 323 zero_user(page, 0, PAGE_SIZE); 324 SetPageUptodate(page); 325 ret = 0; 326 goto out_alloc; 327 } 328 329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 330 ret = ocfs2_readpage_inline(inode, page); 331 else 332 ret = block_read_full_page(page, ocfs2_get_block); 333 unlock = 0; 334 335 out_alloc: 336 up_read(&OCFS2_I(inode)->ip_alloc_sem); 337 out_inode_unlock: 338 ocfs2_inode_unlock(inode, 0); 339 out: 340 if (unlock) 341 unlock_page(page); 342 return ret; 343 } 344 345 /* 346 * This is used only for read-ahead. Failures or difficult to handle 347 * situations are safe to ignore. 348 * 349 * Right now, we don't bother with BH_Boundary - in-inode extent lists 350 * are quite large (243 extents on 4k blocks), so most inodes don't 351 * grow out to a tree. If need be, detecting boundary extents could 352 * trivially be added in a future version of ocfs2_get_block(). 353 */ 354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 355 struct list_head *pages, unsigned nr_pages) 356 { 357 int ret, err = -EIO; 358 struct inode *inode = mapping->host; 359 struct ocfs2_inode_info *oi = OCFS2_I(inode); 360 loff_t start; 361 struct page *last; 362 363 /* 364 * Use the nonblocking flag for the dlm code to avoid page 365 * lock inversion, but don't bother with retrying. 366 */ 367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 368 if (ret) 369 return err; 370 371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 372 ocfs2_inode_unlock(inode, 0); 373 return err; 374 } 375 376 /* 377 * Don't bother with inline-data. There isn't anything 378 * to read-ahead in that case anyway... 379 */ 380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 381 goto out_unlock; 382 383 /* 384 * Check whether a remote node truncated this file - we just 385 * drop out in that case as it's not worth handling here. 386 */ 387 last = list_entry(pages->prev, struct page, lru); 388 start = (loff_t)last->index << PAGE_CACHE_SHIFT; 389 if (start >= i_size_read(inode)) 390 goto out_unlock; 391 392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 393 394 out_unlock: 395 up_read(&oi->ip_alloc_sem); 396 ocfs2_inode_unlock(inode, 0); 397 398 return err; 399 } 400 401 /* Note: Because we don't support holes, our allocation has 402 * already happened (allocation writes zeros to the file data) 403 * so we don't have to worry about ordered writes in 404 * ocfs2_writepage. 405 * 406 * ->writepage is called during the process of invalidating the page cache 407 * during blocked lock processing. It can't block on any cluster locks 408 * to during block mapping. It's relying on the fact that the block 409 * mapping can't have disappeared under the dirty pages that it is 410 * being asked to write back. 411 */ 412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 413 { 414 trace_ocfs2_writepage( 415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 416 page->index); 417 418 return block_write_full_page(page, ocfs2_get_block, wbc); 419 } 420 421 /* Taken from ext3. We don't necessarily need the full blown 422 * functionality yet, but IMHO it's better to cut and paste the whole 423 * thing so we can avoid introducing our own bugs (and easily pick up 424 * their fixes when they happen) --Mark */ 425 int walk_page_buffers( handle_t *handle, 426 struct buffer_head *head, 427 unsigned from, 428 unsigned to, 429 int *partial, 430 int (*fn)( handle_t *handle, 431 struct buffer_head *bh)) 432 { 433 struct buffer_head *bh; 434 unsigned block_start, block_end; 435 unsigned blocksize = head->b_size; 436 int err, ret = 0; 437 struct buffer_head *next; 438 439 for ( bh = head, block_start = 0; 440 ret == 0 && (bh != head || !block_start); 441 block_start = block_end, bh = next) 442 { 443 next = bh->b_this_page; 444 block_end = block_start + blocksize; 445 if (block_end <= from || block_start >= to) { 446 if (partial && !buffer_uptodate(bh)) 447 *partial = 1; 448 continue; 449 } 450 err = (*fn)(handle, bh); 451 if (!ret) 452 ret = err; 453 } 454 return ret; 455 } 456 457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 458 { 459 sector_t status; 460 u64 p_blkno = 0; 461 int err = 0; 462 struct inode *inode = mapping->host; 463 464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 465 (unsigned long long)block); 466 467 /* We don't need to lock journal system files, since they aren't 468 * accessed concurrently from multiple nodes. 469 */ 470 if (!INODE_JOURNAL(inode)) { 471 err = ocfs2_inode_lock(inode, NULL, 0); 472 if (err) { 473 if (err != -ENOENT) 474 mlog_errno(err); 475 goto bail; 476 } 477 down_read(&OCFS2_I(inode)->ip_alloc_sem); 478 } 479 480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 482 NULL); 483 484 if (!INODE_JOURNAL(inode)) { 485 up_read(&OCFS2_I(inode)->ip_alloc_sem); 486 ocfs2_inode_unlock(inode, 0); 487 } 488 489 if (err) { 490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 491 (unsigned long long)block); 492 mlog_errno(err); 493 goto bail; 494 } 495 496 bail: 497 status = err ? 0 : p_blkno; 498 499 return status; 500 } 501 502 /* 503 * TODO: Make this into a generic get_blocks function. 504 * 505 * From do_direct_io in direct-io.c: 506 * "So what we do is to permit the ->get_blocks function to populate 507 * bh.b_size with the size of IO which is permitted at this offset and 508 * this i_blkbits." 509 * 510 * This function is called directly from get_more_blocks in direct-io.c. 511 * 512 * called like this: dio->get_blocks(dio->inode, fs_startblk, 513 * fs_count, map_bh, dio->rw == WRITE); 514 */ 515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, 516 struct buffer_head *bh_result, int create) 517 { 518 int ret; 519 u32 cpos = 0; 520 int alloc_locked = 0; 521 u64 p_blkno, inode_blocks, contig_blocks; 522 unsigned int ext_flags; 523 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 524 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; 525 unsigned long len = bh_result->b_size; 526 unsigned int clusters_to_alloc = 0, contig_clusters = 0; 527 528 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock); 529 530 /* This function won't even be called if the request isn't all 531 * nicely aligned and of the right size, so there's no need 532 * for us to check any of that. */ 533 534 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 535 536 down_read(&OCFS2_I(inode)->ip_alloc_sem); 537 538 /* This figures out the size of the next contiguous block, and 539 * our logical offset */ 540 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 541 &contig_blocks, &ext_flags); 542 up_read(&OCFS2_I(inode)->ip_alloc_sem); 543 544 if (ret) { 545 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 546 (unsigned long long)iblock); 547 ret = -EIO; 548 goto bail; 549 } 550 551 /* We should already CoW the refcounted extent in case of create. */ 552 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED)); 553 554 /* allocate blocks if no p_blkno is found, and create == 1 */ 555 if (!p_blkno && create) { 556 ret = ocfs2_inode_lock(inode, NULL, 1); 557 if (ret < 0) { 558 mlog_errno(ret); 559 goto bail; 560 } 561 562 alloc_locked = 1; 563 564 down_write(&OCFS2_I(inode)->ip_alloc_sem); 565 566 /* fill hole, allocate blocks can't be larger than the size 567 * of the hole */ 568 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len); 569 contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb, 570 contig_blocks); 571 if (clusters_to_alloc > contig_clusters) 572 clusters_to_alloc = contig_clusters; 573 574 /* allocate extent and insert them into the extent tree */ 575 ret = ocfs2_extend_allocation(inode, cpos, 576 clusters_to_alloc, 0); 577 if (ret < 0) { 578 up_write(&OCFS2_I(inode)->ip_alloc_sem); 579 mlog_errno(ret); 580 goto bail; 581 } 582 583 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 584 &contig_blocks, &ext_flags); 585 if (ret < 0) { 586 up_write(&OCFS2_I(inode)->ip_alloc_sem); 587 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 588 (unsigned long long)iblock); 589 ret = -EIO; 590 goto bail; 591 } 592 set_buffer_new(bh_result); 593 up_write(&OCFS2_I(inode)->ip_alloc_sem); 594 } 595 596 /* 597 * get_more_blocks() expects us to describe a hole by clearing 598 * the mapped bit on bh_result(). 599 * 600 * Consider an unwritten extent as a hole. 601 */ 602 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 603 map_bh(bh_result, inode->i_sb, p_blkno); 604 else 605 clear_buffer_mapped(bh_result); 606 607 /* make sure we don't map more than max_blocks blocks here as 608 that's all the kernel will handle at this point. */ 609 if (max_blocks < contig_blocks) 610 contig_blocks = max_blocks; 611 bh_result->b_size = contig_blocks << blocksize_bits; 612 bail: 613 if (alloc_locked) 614 ocfs2_inode_unlock(inode, 1); 615 return ret; 616 } 617 618 /* 619 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 620 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 621 * to protect io on one node from truncation on another. 622 */ 623 static void ocfs2_dio_end_io(struct kiocb *iocb, 624 loff_t offset, 625 ssize_t bytes, 626 void *private) 627 { 628 struct inode *inode = file_inode(iocb->ki_filp); 629 int level; 630 631 /* this io's submitter should not have unlocked this before we could */ 632 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 633 634 if (ocfs2_iocb_is_unaligned_aio(iocb)) { 635 ocfs2_iocb_clear_unaligned_aio(iocb); 636 637 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio); 638 } 639 640 /* Let rw unlock to be done later to protect append direct io write */ 641 if (offset + bytes <= i_size_read(inode)) { 642 ocfs2_iocb_clear_rw_locked(iocb); 643 644 level = ocfs2_iocb_rw_locked_level(iocb); 645 ocfs2_rw_unlock(inode, level); 646 } 647 } 648 649 static int ocfs2_releasepage(struct page *page, gfp_t wait) 650 { 651 if (!page_has_buffers(page)) 652 return 0; 653 return try_to_free_buffers(page); 654 } 655 656 static int ocfs2_is_overwrite(struct ocfs2_super *osb, 657 struct inode *inode, loff_t offset) 658 { 659 int ret = 0; 660 u32 v_cpos = 0; 661 u32 p_cpos = 0; 662 unsigned int num_clusters = 0; 663 unsigned int ext_flags = 0; 664 665 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset); 666 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, 667 &num_clusters, &ext_flags); 668 if (ret < 0) { 669 mlog_errno(ret); 670 return ret; 671 } 672 673 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 674 return 1; 675 676 return 0; 677 } 678 679 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb, 680 struct inode *inode, loff_t offset, 681 u64 zero_len, int cluster_align) 682 { 683 u32 p_cpos = 0; 684 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode)); 685 unsigned int num_clusters = 0; 686 unsigned int ext_flags = 0; 687 int ret = 0; 688 689 if (offset <= i_size_read(inode) || cluster_align) 690 return 0; 691 692 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters, 693 &ext_flags); 694 if (ret < 0) { 695 mlog_errno(ret); 696 return ret; 697 } 698 699 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 700 u64 s = i_size_read(inode); 701 sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) + 702 (do_div(s, osb->s_clustersize) >> 9); 703 704 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector, 705 zero_len >> 9, GFP_NOFS, false); 706 if (ret < 0) 707 mlog_errno(ret); 708 } 709 710 return ret; 711 } 712 713 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb, 714 struct inode *inode, loff_t offset) 715 { 716 u64 zero_start, zero_len, total_zero_len; 717 u32 p_cpos = 0, clusters_to_add; 718 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode)); 719 unsigned int num_clusters = 0; 720 unsigned int ext_flags = 0; 721 u32 size_div, offset_div; 722 int ret = 0; 723 724 { 725 u64 o = offset; 726 u64 s = i_size_read(inode); 727 728 offset_div = do_div(o, osb->s_clustersize); 729 size_div = do_div(s, osb->s_clustersize); 730 } 731 732 if (offset <= i_size_read(inode)) 733 return 0; 734 735 clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) - 736 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode)); 737 total_zero_len = offset - i_size_read(inode); 738 if (clusters_to_add) 739 total_zero_len -= offset_div; 740 741 /* Allocate clusters to fill out holes, and this is only needed 742 * when we add more than one clusters. Otherwise the cluster will 743 * be allocated during direct IO */ 744 if (clusters_to_add > 1) { 745 ret = ocfs2_extend_allocation(inode, 746 OCFS2_I(inode)->ip_clusters, 747 clusters_to_add - 1, 0); 748 if (ret) { 749 mlog_errno(ret); 750 goto out; 751 } 752 } 753 754 while (total_zero_len) { 755 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters, 756 &ext_flags); 757 if (ret < 0) { 758 mlog_errno(ret); 759 goto out; 760 } 761 762 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) + 763 size_div; 764 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) - 765 size_div; 766 zero_len = min(total_zero_len, zero_len); 767 768 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 769 ret = blkdev_issue_zeroout(osb->sb->s_bdev, 770 zero_start >> 9, zero_len >> 9, 771 GFP_NOFS, false); 772 if (ret < 0) { 773 mlog_errno(ret); 774 goto out; 775 } 776 } 777 778 total_zero_len -= zero_len; 779 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div); 780 781 /* Only at first iteration can be cluster not aligned. 782 * So set size_div to 0 for the rest */ 783 size_div = 0; 784 } 785 786 out: 787 return ret; 788 } 789 790 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb, 791 struct iov_iter *iter, 792 loff_t offset) 793 { 794 ssize_t ret = 0; 795 ssize_t written = 0; 796 bool orphaned = false; 797 int is_overwrite = 0; 798 struct file *file = iocb->ki_filp; 799 struct inode *inode = file_inode(file)->i_mapping->host; 800 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 801 struct buffer_head *di_bh = NULL; 802 size_t count = iter->count; 803 journal_t *journal = osb->journal->j_journal; 804 u64 zero_len_head, zero_len_tail; 805 int cluster_align_head, cluster_align_tail; 806 loff_t final_size = offset + count; 807 int append_write = offset >= i_size_read(inode) ? 1 : 0; 808 unsigned int num_clusters = 0; 809 unsigned int ext_flags = 0; 810 811 { 812 u64 o = offset; 813 u64 s = i_size_read(inode); 814 815 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits); 816 cluster_align_head = !zero_len_head; 817 818 zero_len_tail = osb->s_clustersize - 819 do_div(s, osb->s_clustersize); 820 if ((offset - i_size_read(inode)) < zero_len_tail) 821 zero_len_tail = offset - i_size_read(inode); 822 cluster_align_tail = !zero_len_tail; 823 } 824 825 /* 826 * when final_size > inode->i_size, inode->i_size will be 827 * updated after direct write, so add the inode to orphan 828 * dir first. 829 */ 830 if (final_size > i_size_read(inode)) { 831 ret = ocfs2_add_inode_to_orphan(osb, inode); 832 if (ret < 0) { 833 mlog_errno(ret); 834 goto out; 835 } 836 orphaned = true; 837 } 838 839 if (append_write) { 840 ret = ocfs2_inode_lock(inode, NULL, 1); 841 if (ret < 0) { 842 mlog_errno(ret); 843 goto clean_orphan; 844 } 845 846 /* zeroing out the previously allocated cluster tail 847 * that but not zeroed */ 848 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) { 849 down_read(&OCFS2_I(inode)->ip_alloc_sem); 850 ret = ocfs2_direct_IO_zero_extend(osb, inode, offset, 851 zero_len_tail, cluster_align_tail); 852 up_read(&OCFS2_I(inode)->ip_alloc_sem); 853 } else { 854 down_write(&OCFS2_I(inode)->ip_alloc_sem); 855 ret = ocfs2_direct_IO_extend_no_holes(osb, inode, 856 offset); 857 up_write(&OCFS2_I(inode)->ip_alloc_sem); 858 } 859 if (ret < 0) { 860 mlog_errno(ret); 861 ocfs2_inode_unlock(inode, 1); 862 goto clean_orphan; 863 } 864 865 is_overwrite = ocfs2_is_overwrite(osb, inode, offset); 866 if (is_overwrite < 0) { 867 mlog_errno(is_overwrite); 868 ret = is_overwrite; 869 ocfs2_inode_unlock(inode, 1); 870 goto clean_orphan; 871 } 872 873 ocfs2_inode_unlock(inode, 1); 874 } 875 876 written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 877 offset, ocfs2_direct_IO_get_blocks, 878 ocfs2_dio_end_io, NULL, 0); 879 /* overwrite aio may return -EIOCBQUEUED, and it is not an error */ 880 if ((written < 0) && (written != -EIOCBQUEUED)) { 881 loff_t i_size = i_size_read(inode); 882 883 if (offset + count > i_size) { 884 ret = ocfs2_inode_lock(inode, &di_bh, 1); 885 if (ret < 0) { 886 mlog_errno(ret); 887 goto clean_orphan; 888 } 889 890 if (i_size == i_size_read(inode)) { 891 ret = ocfs2_truncate_file(inode, di_bh, 892 i_size); 893 if (ret < 0) { 894 if (ret != -ENOSPC) 895 mlog_errno(ret); 896 897 ocfs2_inode_unlock(inode, 1); 898 brelse(di_bh); 899 di_bh = NULL; 900 goto clean_orphan; 901 } 902 } 903 904 ocfs2_inode_unlock(inode, 1); 905 brelse(di_bh); 906 di_bh = NULL; 907 908 ret = jbd2_journal_force_commit(journal); 909 if (ret < 0) 910 mlog_errno(ret); 911 } 912 } else if (written > 0 && append_write && !is_overwrite && 913 !cluster_align_head) { 914 /* zeroing out the allocated cluster head */ 915 u32 p_cpos = 0; 916 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset); 917 918 ret = ocfs2_inode_lock(inode, NULL, 0); 919 if (ret < 0) { 920 mlog_errno(ret); 921 goto clean_orphan; 922 } 923 924 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, 925 &num_clusters, &ext_flags); 926 if (ret < 0) { 927 mlog_errno(ret); 928 ocfs2_inode_unlock(inode, 0); 929 goto clean_orphan; 930 } 931 932 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)); 933 934 ret = blkdev_issue_zeroout(osb->sb->s_bdev, 935 (u64)p_cpos << (osb->s_clustersize_bits - 9), 936 zero_len_head >> 9, GFP_NOFS, false); 937 if (ret < 0) 938 mlog_errno(ret); 939 940 ocfs2_inode_unlock(inode, 0); 941 } 942 943 clean_orphan: 944 if (orphaned) { 945 int tmp_ret; 946 int update_isize = written > 0 ? 1 : 0; 947 loff_t end = update_isize ? offset + written : 0; 948 949 tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1); 950 if (tmp_ret < 0) { 951 ret = tmp_ret; 952 mlog_errno(ret); 953 goto out; 954 } 955 956 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 957 update_isize, end); 958 if (tmp_ret < 0) { 959 ret = tmp_ret; 960 mlog_errno(ret); 961 brelse(di_bh); 962 goto out; 963 } 964 965 ocfs2_inode_unlock(inode, 1); 966 brelse(di_bh); 967 968 tmp_ret = jbd2_journal_force_commit(journal); 969 if (tmp_ret < 0) { 970 ret = tmp_ret; 971 mlog_errno(tmp_ret); 972 } 973 } 974 975 out: 976 if (ret >= 0) 977 ret = written; 978 return ret; 979 } 980 981 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 982 loff_t offset) 983 { 984 struct file *file = iocb->ki_filp; 985 struct inode *inode = file_inode(file)->i_mapping->host; 986 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 987 int full_coherency = !(osb->s_mount_opt & 988 OCFS2_MOUNT_COHERENCY_BUFFERED); 989 990 /* 991 * Fallback to buffered I/O if we see an inode without 992 * extents. 993 */ 994 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 995 return 0; 996 997 /* Fallback to buffered I/O if we are appending and 998 * concurrent O_DIRECT writes are allowed. 999 */ 1000 if (i_size_read(inode) <= offset && !full_coherency) 1001 return 0; 1002 1003 if (iov_iter_rw(iter) == READ) 1004 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 1005 iter, offset, 1006 ocfs2_direct_IO_get_blocks, 1007 ocfs2_dio_end_io, NULL, 0); 1008 else 1009 return ocfs2_direct_IO_write(iocb, iter, offset); 1010 } 1011 1012 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 1013 u32 cpos, 1014 unsigned int *start, 1015 unsigned int *end) 1016 { 1017 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; 1018 1019 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { 1020 unsigned int cpp; 1021 1022 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); 1023 1024 cluster_start = cpos % cpp; 1025 cluster_start = cluster_start << osb->s_clustersize_bits; 1026 1027 cluster_end = cluster_start + osb->s_clustersize; 1028 } 1029 1030 BUG_ON(cluster_start > PAGE_SIZE); 1031 BUG_ON(cluster_end > PAGE_SIZE); 1032 1033 if (start) 1034 *start = cluster_start; 1035 if (end) 1036 *end = cluster_end; 1037 } 1038 1039 /* 1040 * 'from' and 'to' are the region in the page to avoid zeroing. 1041 * 1042 * If pagesize > clustersize, this function will avoid zeroing outside 1043 * of the cluster boundary. 1044 * 1045 * from == to == 0 is code for "zero the entire cluster region" 1046 */ 1047 static void ocfs2_clear_page_regions(struct page *page, 1048 struct ocfs2_super *osb, u32 cpos, 1049 unsigned from, unsigned to) 1050 { 1051 void *kaddr; 1052 unsigned int cluster_start, cluster_end; 1053 1054 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 1055 1056 kaddr = kmap_atomic(page); 1057 1058 if (from || to) { 1059 if (from > cluster_start) 1060 memset(kaddr + cluster_start, 0, from - cluster_start); 1061 if (to < cluster_end) 1062 memset(kaddr + to, 0, cluster_end - to); 1063 } else { 1064 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 1065 } 1066 1067 kunmap_atomic(kaddr); 1068 } 1069 1070 /* 1071 * Nonsparse file systems fully allocate before we get to the write 1072 * code. This prevents ocfs2_write() from tagging the write as an 1073 * allocating one, which means ocfs2_map_page_blocks() might try to 1074 * read-in the blocks at the tail of our file. Avoid reading them by 1075 * testing i_size against each block offset. 1076 */ 1077 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 1078 unsigned int block_start) 1079 { 1080 u64 offset = page_offset(page) + block_start; 1081 1082 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1083 return 1; 1084 1085 if (i_size_read(inode) > offset) 1086 return 1; 1087 1088 return 0; 1089 } 1090 1091 /* 1092 * Some of this taken from __block_write_begin(). We already have our 1093 * mapping by now though, and the entire write will be allocating or 1094 * it won't, so not much need to use BH_New. 1095 * 1096 * This will also skip zeroing, which is handled externally. 1097 */ 1098 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 1099 struct inode *inode, unsigned int from, 1100 unsigned int to, int new) 1101 { 1102 int ret = 0; 1103 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 1104 unsigned int block_end, block_start; 1105 unsigned int bsize = 1 << inode->i_blkbits; 1106 1107 if (!page_has_buffers(page)) 1108 create_empty_buffers(page, bsize, 0); 1109 1110 head = page_buffers(page); 1111 for (bh = head, block_start = 0; bh != head || !block_start; 1112 bh = bh->b_this_page, block_start += bsize) { 1113 block_end = block_start + bsize; 1114 1115 clear_buffer_new(bh); 1116 1117 /* 1118 * Ignore blocks outside of our i/o range - 1119 * they may belong to unallocated clusters. 1120 */ 1121 if (block_start >= to || block_end <= from) { 1122 if (PageUptodate(page)) 1123 set_buffer_uptodate(bh); 1124 continue; 1125 } 1126 1127 /* 1128 * For an allocating write with cluster size >= page 1129 * size, we always write the entire page. 1130 */ 1131 if (new) 1132 set_buffer_new(bh); 1133 1134 if (!buffer_mapped(bh)) { 1135 map_bh(bh, inode->i_sb, *p_blkno); 1136 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 1137 } 1138 1139 if (PageUptodate(page)) { 1140 if (!buffer_uptodate(bh)) 1141 set_buffer_uptodate(bh); 1142 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1143 !buffer_new(bh) && 1144 ocfs2_should_read_blk(inode, page, block_start) && 1145 (block_start < from || block_end > to)) { 1146 ll_rw_block(READ, 1, &bh); 1147 *wait_bh++=bh; 1148 } 1149 1150 *p_blkno = *p_blkno + 1; 1151 } 1152 1153 /* 1154 * If we issued read requests - let them complete. 1155 */ 1156 while(wait_bh > wait) { 1157 wait_on_buffer(*--wait_bh); 1158 if (!buffer_uptodate(*wait_bh)) 1159 ret = -EIO; 1160 } 1161 1162 if (ret == 0 || !new) 1163 return ret; 1164 1165 /* 1166 * If we get -EIO above, zero out any newly allocated blocks 1167 * to avoid exposing stale data. 1168 */ 1169 bh = head; 1170 block_start = 0; 1171 do { 1172 block_end = block_start + bsize; 1173 if (block_end <= from) 1174 goto next_bh; 1175 if (block_start >= to) 1176 break; 1177 1178 zero_user(page, block_start, bh->b_size); 1179 set_buffer_uptodate(bh); 1180 mark_buffer_dirty(bh); 1181 1182 next_bh: 1183 block_start = block_end; 1184 bh = bh->b_this_page; 1185 } while (bh != head); 1186 1187 return ret; 1188 } 1189 1190 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 1191 #define OCFS2_MAX_CTXT_PAGES 1 1192 #else 1193 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) 1194 #endif 1195 1196 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) 1197 1198 /* 1199 * Describe the state of a single cluster to be written to. 1200 */ 1201 struct ocfs2_write_cluster_desc { 1202 u32 c_cpos; 1203 u32 c_phys; 1204 /* 1205 * Give this a unique field because c_phys eventually gets 1206 * filled. 1207 */ 1208 unsigned c_new; 1209 unsigned c_unwritten; 1210 unsigned c_needs_zero; 1211 }; 1212 1213 struct ocfs2_write_ctxt { 1214 /* Logical cluster position / len of write */ 1215 u32 w_cpos; 1216 u32 w_clen; 1217 1218 /* First cluster allocated in a nonsparse extend */ 1219 u32 w_first_new_cpos; 1220 1221 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 1222 1223 /* 1224 * This is true if page_size > cluster_size. 1225 * 1226 * It triggers a set of special cases during write which might 1227 * have to deal with allocating writes to partial pages. 1228 */ 1229 unsigned int w_large_pages; 1230 1231 /* 1232 * Pages involved in this write. 1233 * 1234 * w_target_page is the page being written to by the user. 1235 * 1236 * w_pages is an array of pages which always contains 1237 * w_target_page, and in the case of an allocating write with 1238 * page_size < cluster size, it will contain zero'd and mapped 1239 * pages adjacent to w_target_page which need to be written 1240 * out in so that future reads from that region will get 1241 * zero's. 1242 */ 1243 unsigned int w_num_pages; 1244 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 1245 struct page *w_target_page; 1246 1247 /* 1248 * w_target_locked is used for page_mkwrite path indicating no unlocking 1249 * against w_target_page in ocfs2_write_end_nolock. 1250 */ 1251 unsigned int w_target_locked:1; 1252 1253 /* 1254 * ocfs2_write_end() uses this to know what the real range to 1255 * write in the target should be. 1256 */ 1257 unsigned int w_target_from; 1258 unsigned int w_target_to; 1259 1260 /* 1261 * We could use journal_current_handle() but this is cleaner, 1262 * IMHO -Mark 1263 */ 1264 handle_t *w_handle; 1265 1266 struct buffer_head *w_di_bh; 1267 1268 struct ocfs2_cached_dealloc_ctxt w_dealloc; 1269 }; 1270 1271 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 1272 { 1273 int i; 1274 1275 for(i = 0; i < num_pages; i++) { 1276 if (pages[i]) { 1277 unlock_page(pages[i]); 1278 mark_page_accessed(pages[i]); 1279 page_cache_release(pages[i]); 1280 } 1281 } 1282 } 1283 1284 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 1285 { 1286 int i; 1287 1288 /* 1289 * w_target_locked is only set to true in the page_mkwrite() case. 1290 * The intent is to allow us to lock the target page from write_begin() 1291 * to write_end(). The caller must hold a ref on w_target_page. 1292 */ 1293 if (wc->w_target_locked) { 1294 BUG_ON(!wc->w_target_page); 1295 for (i = 0; i < wc->w_num_pages; i++) { 1296 if (wc->w_target_page == wc->w_pages[i]) { 1297 wc->w_pages[i] = NULL; 1298 break; 1299 } 1300 } 1301 mark_page_accessed(wc->w_target_page); 1302 page_cache_release(wc->w_target_page); 1303 } 1304 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 1305 } 1306 1307 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) 1308 { 1309 ocfs2_unlock_pages(wc); 1310 brelse(wc->w_di_bh); 1311 kfree(wc); 1312 } 1313 1314 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 1315 struct ocfs2_super *osb, loff_t pos, 1316 unsigned len, struct buffer_head *di_bh) 1317 { 1318 u32 cend; 1319 struct ocfs2_write_ctxt *wc; 1320 1321 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 1322 if (!wc) 1323 return -ENOMEM; 1324 1325 wc->w_cpos = pos >> osb->s_clustersize_bits; 1326 wc->w_first_new_cpos = UINT_MAX; 1327 cend = (pos + len - 1) >> osb->s_clustersize_bits; 1328 wc->w_clen = cend - wc->w_cpos + 1; 1329 get_bh(di_bh); 1330 wc->w_di_bh = di_bh; 1331 1332 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) 1333 wc->w_large_pages = 1; 1334 else 1335 wc->w_large_pages = 0; 1336 1337 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 1338 1339 *wcp = wc; 1340 1341 return 0; 1342 } 1343 1344 /* 1345 * If a page has any new buffers, zero them out here, and mark them uptodate 1346 * and dirty so they'll be written out (in order to prevent uninitialised 1347 * block data from leaking). And clear the new bit. 1348 */ 1349 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1350 { 1351 unsigned int block_start, block_end; 1352 struct buffer_head *head, *bh; 1353 1354 BUG_ON(!PageLocked(page)); 1355 if (!page_has_buffers(page)) 1356 return; 1357 1358 bh = head = page_buffers(page); 1359 block_start = 0; 1360 do { 1361 block_end = block_start + bh->b_size; 1362 1363 if (buffer_new(bh)) { 1364 if (block_end > from && block_start < to) { 1365 if (!PageUptodate(page)) { 1366 unsigned start, end; 1367 1368 start = max(from, block_start); 1369 end = min(to, block_end); 1370 1371 zero_user_segment(page, start, end); 1372 set_buffer_uptodate(bh); 1373 } 1374 1375 clear_buffer_new(bh); 1376 mark_buffer_dirty(bh); 1377 } 1378 } 1379 1380 block_start = block_end; 1381 bh = bh->b_this_page; 1382 } while (bh != head); 1383 } 1384 1385 /* 1386 * Only called when we have a failure during allocating write to write 1387 * zero's to the newly allocated region. 1388 */ 1389 static void ocfs2_write_failure(struct inode *inode, 1390 struct ocfs2_write_ctxt *wc, 1391 loff_t user_pos, unsigned user_len) 1392 { 1393 int i; 1394 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), 1395 to = user_pos + user_len; 1396 struct page *tmppage; 1397 1398 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 1399 1400 for(i = 0; i < wc->w_num_pages; i++) { 1401 tmppage = wc->w_pages[i]; 1402 1403 if (page_has_buffers(tmppage)) { 1404 if (ocfs2_should_order_data(inode)) 1405 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1406 1407 block_commit_write(tmppage, from, to); 1408 } 1409 } 1410 } 1411 1412 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 1413 struct ocfs2_write_ctxt *wc, 1414 struct page *page, u32 cpos, 1415 loff_t user_pos, unsigned user_len, 1416 int new) 1417 { 1418 int ret; 1419 unsigned int map_from = 0, map_to = 0; 1420 unsigned int cluster_start, cluster_end; 1421 unsigned int user_data_from = 0, user_data_to = 0; 1422 1423 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 1424 &cluster_start, &cluster_end); 1425 1426 /* treat the write as new if the a hole/lseek spanned across 1427 * the page boundary. 1428 */ 1429 new = new | ((i_size_read(inode) <= page_offset(page)) && 1430 (page_offset(page) <= user_pos)); 1431 1432 if (page == wc->w_target_page) { 1433 map_from = user_pos & (PAGE_CACHE_SIZE - 1); 1434 map_to = map_from + user_len; 1435 1436 if (new) 1437 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1438 cluster_start, cluster_end, 1439 new); 1440 else 1441 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1442 map_from, map_to, new); 1443 if (ret) { 1444 mlog_errno(ret); 1445 goto out; 1446 } 1447 1448 user_data_from = map_from; 1449 user_data_to = map_to; 1450 if (new) { 1451 map_from = cluster_start; 1452 map_to = cluster_end; 1453 } 1454 } else { 1455 /* 1456 * If we haven't allocated the new page yet, we 1457 * shouldn't be writing it out without copying user 1458 * data. This is likely a math error from the caller. 1459 */ 1460 BUG_ON(!new); 1461 1462 map_from = cluster_start; 1463 map_to = cluster_end; 1464 1465 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1466 cluster_start, cluster_end, new); 1467 if (ret) { 1468 mlog_errno(ret); 1469 goto out; 1470 } 1471 } 1472 1473 /* 1474 * Parts of newly allocated pages need to be zero'd. 1475 * 1476 * Above, we have also rewritten 'to' and 'from' - as far as 1477 * the rest of the function is concerned, the entire cluster 1478 * range inside of a page needs to be written. 1479 * 1480 * We can skip this if the page is up to date - it's already 1481 * been zero'd from being read in as a hole. 1482 */ 1483 if (new && !PageUptodate(page)) 1484 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1485 cpos, user_data_from, user_data_to); 1486 1487 flush_dcache_page(page); 1488 1489 out: 1490 return ret; 1491 } 1492 1493 /* 1494 * This function will only grab one clusters worth of pages. 1495 */ 1496 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1497 struct ocfs2_write_ctxt *wc, 1498 u32 cpos, loff_t user_pos, 1499 unsigned user_len, int new, 1500 struct page *mmap_page) 1501 { 1502 int ret = 0, i; 1503 unsigned long start, target_index, end_index, index; 1504 struct inode *inode = mapping->host; 1505 loff_t last_byte; 1506 1507 target_index = user_pos >> PAGE_CACHE_SHIFT; 1508 1509 /* 1510 * Figure out how many pages we'll be manipulating here. For 1511 * non allocating write, we just change the one 1512 * page. Otherwise, we'll need a whole clusters worth. If we're 1513 * writing past i_size, we only need enough pages to cover the 1514 * last page of the write. 1515 */ 1516 if (new) { 1517 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1518 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1519 /* 1520 * We need the index *past* the last page we could possibly 1521 * touch. This is the page past the end of the write or 1522 * i_size, whichever is greater. 1523 */ 1524 last_byte = max(user_pos + user_len, i_size_read(inode)); 1525 BUG_ON(last_byte < 1); 1526 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1; 1527 if ((start + wc->w_num_pages) > end_index) 1528 wc->w_num_pages = end_index - start; 1529 } else { 1530 wc->w_num_pages = 1; 1531 start = target_index; 1532 } 1533 1534 for(i = 0; i < wc->w_num_pages; i++) { 1535 index = start + i; 1536 1537 if (index == target_index && mmap_page) { 1538 /* 1539 * ocfs2_pagemkwrite() is a little different 1540 * and wants us to directly use the page 1541 * passed in. 1542 */ 1543 lock_page(mmap_page); 1544 1545 /* Exit and let the caller retry */ 1546 if (mmap_page->mapping != mapping) { 1547 WARN_ON(mmap_page->mapping); 1548 unlock_page(mmap_page); 1549 ret = -EAGAIN; 1550 goto out; 1551 } 1552 1553 page_cache_get(mmap_page); 1554 wc->w_pages[i] = mmap_page; 1555 wc->w_target_locked = true; 1556 } else { 1557 wc->w_pages[i] = find_or_create_page(mapping, index, 1558 GFP_NOFS); 1559 if (!wc->w_pages[i]) { 1560 ret = -ENOMEM; 1561 mlog_errno(ret); 1562 goto out; 1563 } 1564 } 1565 wait_for_stable_page(wc->w_pages[i]); 1566 1567 if (index == target_index) 1568 wc->w_target_page = wc->w_pages[i]; 1569 } 1570 out: 1571 if (ret) 1572 wc->w_target_locked = false; 1573 return ret; 1574 } 1575 1576 /* 1577 * Prepare a single cluster for write one cluster into the file. 1578 */ 1579 static int ocfs2_write_cluster(struct address_space *mapping, 1580 u32 phys, unsigned int unwritten, 1581 unsigned int should_zero, 1582 struct ocfs2_alloc_context *data_ac, 1583 struct ocfs2_alloc_context *meta_ac, 1584 struct ocfs2_write_ctxt *wc, u32 cpos, 1585 loff_t user_pos, unsigned user_len) 1586 { 1587 int ret, i, new; 1588 u64 v_blkno, p_blkno; 1589 struct inode *inode = mapping->host; 1590 struct ocfs2_extent_tree et; 1591 1592 new = phys == 0 ? 1 : 0; 1593 if (new) { 1594 u32 tmp_pos; 1595 1596 /* 1597 * This is safe to call with the page locks - it won't take 1598 * any additional semaphores or cluster locks. 1599 */ 1600 tmp_pos = cpos; 1601 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1602 &tmp_pos, 1, 0, wc->w_di_bh, 1603 wc->w_handle, data_ac, 1604 meta_ac, NULL); 1605 /* 1606 * This shouldn't happen because we must have already 1607 * calculated the correct meta data allocation required. The 1608 * internal tree allocation code should know how to increase 1609 * transaction credits itself. 1610 * 1611 * If need be, we could handle -EAGAIN for a 1612 * RESTART_TRANS here. 1613 */ 1614 mlog_bug_on_msg(ret == -EAGAIN, 1615 "Inode %llu: EAGAIN return during allocation.\n", 1616 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1617 if (ret < 0) { 1618 mlog_errno(ret); 1619 goto out; 1620 } 1621 } else if (unwritten) { 1622 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1623 wc->w_di_bh); 1624 ret = ocfs2_mark_extent_written(inode, &et, 1625 wc->w_handle, cpos, 1, phys, 1626 meta_ac, &wc->w_dealloc); 1627 if (ret < 0) { 1628 mlog_errno(ret); 1629 goto out; 1630 } 1631 } 1632 1633 if (should_zero) 1634 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); 1635 else 1636 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; 1637 1638 /* 1639 * The only reason this should fail is due to an inability to 1640 * find the extent added. 1641 */ 1642 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, 1643 NULL); 1644 if (ret < 0) { 1645 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1646 "at logical block %llu", 1647 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1648 (unsigned long long)v_blkno); 1649 goto out; 1650 } 1651 1652 BUG_ON(p_blkno == 0); 1653 1654 for(i = 0; i < wc->w_num_pages; i++) { 1655 int tmpret; 1656 1657 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1658 wc->w_pages[i], cpos, 1659 user_pos, user_len, 1660 should_zero); 1661 if (tmpret) { 1662 mlog_errno(tmpret); 1663 if (ret == 0) 1664 ret = tmpret; 1665 } 1666 } 1667 1668 /* 1669 * We only have cleanup to do in case of allocating write. 1670 */ 1671 if (ret && new) 1672 ocfs2_write_failure(inode, wc, user_pos, user_len); 1673 1674 out: 1675 1676 return ret; 1677 } 1678 1679 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1680 struct ocfs2_alloc_context *data_ac, 1681 struct ocfs2_alloc_context *meta_ac, 1682 struct ocfs2_write_ctxt *wc, 1683 loff_t pos, unsigned len) 1684 { 1685 int ret, i; 1686 loff_t cluster_off; 1687 unsigned int local_len = len; 1688 struct ocfs2_write_cluster_desc *desc; 1689 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1690 1691 for (i = 0; i < wc->w_clen; i++) { 1692 desc = &wc->w_desc[i]; 1693 1694 /* 1695 * We have to make sure that the total write passed in 1696 * doesn't extend past a single cluster. 1697 */ 1698 local_len = len; 1699 cluster_off = pos & (osb->s_clustersize - 1); 1700 if ((cluster_off + local_len) > osb->s_clustersize) 1701 local_len = osb->s_clustersize - cluster_off; 1702 1703 ret = ocfs2_write_cluster(mapping, desc->c_phys, 1704 desc->c_unwritten, 1705 desc->c_needs_zero, 1706 data_ac, meta_ac, 1707 wc, desc->c_cpos, pos, local_len); 1708 if (ret) { 1709 mlog_errno(ret); 1710 goto out; 1711 } 1712 1713 len -= local_len; 1714 pos += local_len; 1715 } 1716 1717 ret = 0; 1718 out: 1719 return ret; 1720 } 1721 1722 /* 1723 * ocfs2_write_end() wants to know which parts of the target page it 1724 * should complete the write on. It's easiest to compute them ahead of 1725 * time when a more complete view of the write is available. 1726 */ 1727 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1728 struct ocfs2_write_ctxt *wc, 1729 loff_t pos, unsigned len, int alloc) 1730 { 1731 struct ocfs2_write_cluster_desc *desc; 1732 1733 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); 1734 wc->w_target_to = wc->w_target_from + len; 1735 1736 if (alloc == 0) 1737 return; 1738 1739 /* 1740 * Allocating write - we may have different boundaries based 1741 * on page size and cluster size. 1742 * 1743 * NOTE: We can no longer compute one value from the other as 1744 * the actual write length and user provided length may be 1745 * different. 1746 */ 1747 1748 if (wc->w_large_pages) { 1749 /* 1750 * We only care about the 1st and last cluster within 1751 * our range and whether they should be zero'd or not. Either 1752 * value may be extended out to the start/end of a 1753 * newly allocated cluster. 1754 */ 1755 desc = &wc->w_desc[0]; 1756 if (desc->c_needs_zero) 1757 ocfs2_figure_cluster_boundaries(osb, 1758 desc->c_cpos, 1759 &wc->w_target_from, 1760 NULL); 1761 1762 desc = &wc->w_desc[wc->w_clen - 1]; 1763 if (desc->c_needs_zero) 1764 ocfs2_figure_cluster_boundaries(osb, 1765 desc->c_cpos, 1766 NULL, 1767 &wc->w_target_to); 1768 } else { 1769 wc->w_target_from = 0; 1770 wc->w_target_to = PAGE_CACHE_SIZE; 1771 } 1772 } 1773 1774 /* 1775 * Populate each single-cluster write descriptor in the write context 1776 * with information about the i/o to be done. 1777 * 1778 * Returns the number of clusters that will have to be allocated, as 1779 * well as a worst case estimate of the number of extent records that 1780 * would have to be created during a write to an unwritten region. 1781 */ 1782 static int ocfs2_populate_write_desc(struct inode *inode, 1783 struct ocfs2_write_ctxt *wc, 1784 unsigned int *clusters_to_alloc, 1785 unsigned int *extents_to_split) 1786 { 1787 int ret; 1788 struct ocfs2_write_cluster_desc *desc; 1789 unsigned int num_clusters = 0; 1790 unsigned int ext_flags = 0; 1791 u32 phys = 0; 1792 int i; 1793 1794 *clusters_to_alloc = 0; 1795 *extents_to_split = 0; 1796 1797 for (i = 0; i < wc->w_clen; i++) { 1798 desc = &wc->w_desc[i]; 1799 desc->c_cpos = wc->w_cpos + i; 1800 1801 if (num_clusters == 0) { 1802 /* 1803 * Need to look up the next extent record. 1804 */ 1805 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1806 &num_clusters, &ext_flags); 1807 if (ret) { 1808 mlog_errno(ret); 1809 goto out; 1810 } 1811 1812 /* We should already CoW the refcountd extent. */ 1813 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1814 1815 /* 1816 * Assume worst case - that we're writing in 1817 * the middle of the extent. 1818 * 1819 * We can assume that the write proceeds from 1820 * left to right, in which case the extent 1821 * insert code is smart enough to coalesce the 1822 * next splits into the previous records created. 1823 */ 1824 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1825 *extents_to_split = *extents_to_split + 2; 1826 } else if (phys) { 1827 /* 1828 * Only increment phys if it doesn't describe 1829 * a hole. 1830 */ 1831 phys++; 1832 } 1833 1834 /* 1835 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1836 * file that got extended. w_first_new_cpos tells us 1837 * where the newly allocated clusters are so we can 1838 * zero them. 1839 */ 1840 if (desc->c_cpos >= wc->w_first_new_cpos) { 1841 BUG_ON(phys == 0); 1842 desc->c_needs_zero = 1; 1843 } 1844 1845 desc->c_phys = phys; 1846 if (phys == 0) { 1847 desc->c_new = 1; 1848 desc->c_needs_zero = 1; 1849 *clusters_to_alloc = *clusters_to_alloc + 1; 1850 } 1851 1852 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1853 desc->c_unwritten = 1; 1854 desc->c_needs_zero = 1; 1855 } 1856 1857 num_clusters--; 1858 } 1859 1860 ret = 0; 1861 out: 1862 return ret; 1863 } 1864 1865 static int ocfs2_write_begin_inline(struct address_space *mapping, 1866 struct inode *inode, 1867 struct ocfs2_write_ctxt *wc) 1868 { 1869 int ret; 1870 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1871 struct page *page; 1872 handle_t *handle; 1873 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1874 1875 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1876 if (IS_ERR(handle)) { 1877 ret = PTR_ERR(handle); 1878 mlog_errno(ret); 1879 goto out; 1880 } 1881 1882 page = find_or_create_page(mapping, 0, GFP_NOFS); 1883 if (!page) { 1884 ocfs2_commit_trans(osb, handle); 1885 ret = -ENOMEM; 1886 mlog_errno(ret); 1887 goto out; 1888 } 1889 /* 1890 * If we don't set w_num_pages then this page won't get unlocked 1891 * and freed on cleanup of the write context. 1892 */ 1893 wc->w_pages[0] = wc->w_target_page = page; 1894 wc->w_num_pages = 1; 1895 1896 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1897 OCFS2_JOURNAL_ACCESS_WRITE); 1898 if (ret) { 1899 ocfs2_commit_trans(osb, handle); 1900 1901 mlog_errno(ret); 1902 goto out; 1903 } 1904 1905 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1906 ocfs2_set_inode_data_inline(inode, di); 1907 1908 if (!PageUptodate(page)) { 1909 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1910 if (ret) { 1911 ocfs2_commit_trans(osb, handle); 1912 1913 goto out; 1914 } 1915 } 1916 1917 wc->w_handle = handle; 1918 out: 1919 return ret; 1920 } 1921 1922 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1923 { 1924 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1925 1926 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1927 return 1; 1928 return 0; 1929 } 1930 1931 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1932 struct inode *inode, loff_t pos, 1933 unsigned len, struct page *mmap_page, 1934 struct ocfs2_write_ctxt *wc) 1935 { 1936 int ret, written = 0; 1937 loff_t end = pos + len; 1938 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1939 struct ocfs2_dinode *di = NULL; 1940 1941 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1942 len, (unsigned long long)pos, 1943 oi->ip_dyn_features); 1944 1945 /* 1946 * Handle inodes which already have inline data 1st. 1947 */ 1948 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1949 if (mmap_page == NULL && 1950 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1951 goto do_inline_write; 1952 1953 /* 1954 * The write won't fit - we have to give this inode an 1955 * inline extent list now. 1956 */ 1957 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1958 if (ret) 1959 mlog_errno(ret); 1960 goto out; 1961 } 1962 1963 /* 1964 * Check whether the inode can accept inline data. 1965 */ 1966 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1967 return 0; 1968 1969 /* 1970 * Check whether the write can fit. 1971 */ 1972 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1973 if (mmap_page || 1974 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1975 return 0; 1976 1977 do_inline_write: 1978 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1979 if (ret) { 1980 mlog_errno(ret); 1981 goto out; 1982 } 1983 1984 /* 1985 * This signals to the caller that the data can be written 1986 * inline. 1987 */ 1988 written = 1; 1989 out: 1990 return written ? written : ret; 1991 } 1992 1993 /* 1994 * This function only does anything for file systems which can't 1995 * handle sparse files. 1996 * 1997 * What we want to do here is fill in any hole between the current end 1998 * of allocation and the end of our write. That way the rest of the 1999 * write path can treat it as an non-allocating write, which has no 2000 * special case code for sparse/nonsparse files. 2001 */ 2002 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 2003 struct buffer_head *di_bh, 2004 loff_t pos, unsigned len, 2005 struct ocfs2_write_ctxt *wc) 2006 { 2007 int ret; 2008 loff_t newsize = pos + len; 2009 2010 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 2011 2012 if (newsize <= i_size_read(inode)) 2013 return 0; 2014 2015 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 2016 if (ret) 2017 mlog_errno(ret); 2018 2019 wc->w_first_new_cpos = 2020 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 2021 2022 return ret; 2023 } 2024 2025 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 2026 loff_t pos) 2027 { 2028 int ret = 0; 2029 2030 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 2031 if (pos > i_size_read(inode)) 2032 ret = ocfs2_zero_extend(inode, di_bh, pos); 2033 2034 return ret; 2035 } 2036 2037 /* 2038 * Try to flush truncate logs if we can free enough clusters from it. 2039 * As for return value, "< 0" means error, "0" no space and "1" means 2040 * we have freed enough spaces and let the caller try to allocate again. 2041 */ 2042 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 2043 unsigned int needed) 2044 { 2045 tid_t target; 2046 int ret = 0; 2047 unsigned int truncated_clusters; 2048 2049 mutex_lock(&osb->osb_tl_inode->i_mutex); 2050 truncated_clusters = osb->truncated_clusters; 2051 mutex_unlock(&osb->osb_tl_inode->i_mutex); 2052 2053 /* 2054 * Check whether we can succeed in allocating if we free 2055 * the truncate log. 2056 */ 2057 if (truncated_clusters < needed) 2058 goto out; 2059 2060 ret = ocfs2_flush_truncate_log(osb); 2061 if (ret) { 2062 mlog_errno(ret); 2063 goto out; 2064 } 2065 2066 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 2067 jbd2_log_wait_commit(osb->journal->j_journal, target); 2068 ret = 1; 2069 } 2070 out: 2071 return ret; 2072 } 2073 2074 int ocfs2_write_begin_nolock(struct file *filp, 2075 struct address_space *mapping, 2076 loff_t pos, unsigned len, unsigned flags, 2077 struct page **pagep, void **fsdata, 2078 struct buffer_head *di_bh, struct page *mmap_page) 2079 { 2080 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 2081 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 2082 struct ocfs2_write_ctxt *wc; 2083 struct inode *inode = mapping->host; 2084 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2085 struct ocfs2_dinode *di; 2086 struct ocfs2_alloc_context *data_ac = NULL; 2087 struct ocfs2_alloc_context *meta_ac = NULL; 2088 handle_t *handle; 2089 struct ocfs2_extent_tree et; 2090 int try_free = 1, ret1; 2091 2092 try_again: 2093 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); 2094 if (ret) { 2095 mlog_errno(ret); 2096 return ret; 2097 } 2098 2099 if (ocfs2_supports_inline_data(osb)) { 2100 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 2101 mmap_page, wc); 2102 if (ret == 1) { 2103 ret = 0; 2104 goto success; 2105 } 2106 if (ret < 0) { 2107 mlog_errno(ret); 2108 goto out; 2109 } 2110 } 2111 2112 if (ocfs2_sparse_alloc(osb)) 2113 ret = ocfs2_zero_tail(inode, di_bh, pos); 2114 else 2115 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len, 2116 wc); 2117 if (ret) { 2118 mlog_errno(ret); 2119 goto out; 2120 } 2121 2122 ret = ocfs2_check_range_for_refcount(inode, pos, len); 2123 if (ret < 0) { 2124 mlog_errno(ret); 2125 goto out; 2126 } else if (ret == 1) { 2127 clusters_need = wc->w_clen; 2128 ret = ocfs2_refcount_cow(inode, di_bh, 2129 wc->w_cpos, wc->w_clen, UINT_MAX); 2130 if (ret) { 2131 mlog_errno(ret); 2132 goto out; 2133 } 2134 } 2135 2136 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 2137 &extents_to_split); 2138 if (ret) { 2139 mlog_errno(ret); 2140 goto out; 2141 } 2142 clusters_need += clusters_to_alloc; 2143 2144 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 2145 2146 trace_ocfs2_write_begin_nolock( 2147 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2148 (long long)i_size_read(inode), 2149 le32_to_cpu(di->i_clusters), 2150 pos, len, flags, mmap_page, 2151 clusters_to_alloc, extents_to_split); 2152 2153 /* 2154 * We set w_target_from, w_target_to here so that 2155 * ocfs2_write_end() knows which range in the target page to 2156 * write out. An allocation requires that we write the entire 2157 * cluster range. 2158 */ 2159 if (clusters_to_alloc || extents_to_split) { 2160 /* 2161 * XXX: We are stretching the limits of 2162 * ocfs2_lock_allocators(). It greatly over-estimates 2163 * the work to be done. 2164 */ 2165 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 2166 wc->w_di_bh); 2167 ret = ocfs2_lock_allocators(inode, &et, 2168 clusters_to_alloc, extents_to_split, 2169 &data_ac, &meta_ac); 2170 if (ret) { 2171 mlog_errno(ret); 2172 goto out; 2173 } 2174 2175 if (data_ac) 2176 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 2177 2178 credits = ocfs2_calc_extend_credits(inode->i_sb, 2179 &di->id2.i_list); 2180 2181 } 2182 2183 /* 2184 * We have to zero sparse allocated clusters, unwritten extent clusters, 2185 * and non-sparse clusters we just extended. For non-sparse writes, 2186 * we know zeros will only be needed in the first and/or last cluster. 2187 */ 2188 if (clusters_to_alloc || extents_to_split || 2189 (wc->w_clen && (wc->w_desc[0].c_needs_zero || 2190 wc->w_desc[wc->w_clen - 1].c_needs_zero))) 2191 cluster_of_pages = 1; 2192 else 2193 cluster_of_pages = 0; 2194 2195 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 2196 2197 handle = ocfs2_start_trans(osb, credits); 2198 if (IS_ERR(handle)) { 2199 ret = PTR_ERR(handle); 2200 mlog_errno(ret); 2201 goto out; 2202 } 2203 2204 wc->w_handle = handle; 2205 2206 if (clusters_to_alloc) { 2207 ret = dquot_alloc_space_nodirty(inode, 2208 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 2209 if (ret) 2210 goto out_commit; 2211 } 2212 2213 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 2214 OCFS2_JOURNAL_ACCESS_WRITE); 2215 if (ret) { 2216 mlog_errno(ret); 2217 goto out_quota; 2218 } 2219 2220 /* 2221 * Fill our page array first. That way we've grabbed enough so 2222 * that we can zero and flush if we error after adding the 2223 * extent. 2224 */ 2225 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 2226 cluster_of_pages, mmap_page); 2227 if (ret && ret != -EAGAIN) { 2228 mlog_errno(ret); 2229 goto out_quota; 2230 } 2231 2232 /* 2233 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 2234 * the target page. In this case, we exit with no error and no target 2235 * page. This will trigger the caller, page_mkwrite(), to re-try 2236 * the operation. 2237 */ 2238 if (ret == -EAGAIN) { 2239 BUG_ON(wc->w_target_page); 2240 ret = 0; 2241 goto out_quota; 2242 } 2243 2244 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 2245 len); 2246 if (ret) { 2247 mlog_errno(ret); 2248 goto out_quota; 2249 } 2250 2251 if (data_ac) 2252 ocfs2_free_alloc_context(data_ac); 2253 if (meta_ac) 2254 ocfs2_free_alloc_context(meta_ac); 2255 2256 success: 2257 *pagep = wc->w_target_page; 2258 *fsdata = wc; 2259 return 0; 2260 out_quota: 2261 if (clusters_to_alloc) 2262 dquot_free_space(inode, 2263 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 2264 out_commit: 2265 ocfs2_commit_trans(osb, handle); 2266 2267 out: 2268 ocfs2_free_write_ctxt(wc); 2269 2270 if (data_ac) { 2271 ocfs2_free_alloc_context(data_ac); 2272 data_ac = NULL; 2273 } 2274 if (meta_ac) { 2275 ocfs2_free_alloc_context(meta_ac); 2276 meta_ac = NULL; 2277 } 2278 2279 if (ret == -ENOSPC && try_free) { 2280 /* 2281 * Try to free some truncate log so that we can have enough 2282 * clusters to allocate. 2283 */ 2284 try_free = 0; 2285 2286 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 2287 if (ret1 == 1) 2288 goto try_again; 2289 2290 if (ret1 < 0) 2291 mlog_errno(ret1); 2292 } 2293 2294 return ret; 2295 } 2296 2297 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 2298 loff_t pos, unsigned len, unsigned flags, 2299 struct page **pagep, void **fsdata) 2300 { 2301 int ret; 2302 struct buffer_head *di_bh = NULL; 2303 struct inode *inode = mapping->host; 2304 2305 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2306 if (ret) { 2307 mlog_errno(ret); 2308 return ret; 2309 } 2310 2311 /* 2312 * Take alloc sem here to prevent concurrent lookups. That way 2313 * the mapping, zeroing and tree manipulation within 2314 * ocfs2_write() will be safe against ->readpage(). This 2315 * should also serve to lock out allocation from a shared 2316 * writeable region. 2317 */ 2318 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2319 2320 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep, 2321 fsdata, di_bh, NULL); 2322 if (ret) { 2323 mlog_errno(ret); 2324 goto out_fail; 2325 } 2326 2327 brelse(di_bh); 2328 2329 return 0; 2330 2331 out_fail: 2332 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2333 2334 brelse(di_bh); 2335 ocfs2_inode_unlock(inode, 1); 2336 2337 return ret; 2338 } 2339 2340 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 2341 unsigned len, unsigned *copied, 2342 struct ocfs2_dinode *di, 2343 struct ocfs2_write_ctxt *wc) 2344 { 2345 void *kaddr; 2346 2347 if (unlikely(*copied < len)) { 2348 if (!PageUptodate(wc->w_target_page)) { 2349 *copied = 0; 2350 return; 2351 } 2352 } 2353 2354 kaddr = kmap_atomic(wc->w_target_page); 2355 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 2356 kunmap_atomic(kaddr); 2357 2358 trace_ocfs2_write_end_inline( 2359 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2360 (unsigned long long)pos, *copied, 2361 le16_to_cpu(di->id2.i_data.id_count), 2362 le16_to_cpu(di->i_dyn_features)); 2363 } 2364 2365 int ocfs2_write_end_nolock(struct address_space *mapping, 2366 loff_t pos, unsigned len, unsigned copied, 2367 struct page *page, void *fsdata) 2368 { 2369 int i, ret; 2370 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); 2371 struct inode *inode = mapping->host; 2372 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2373 struct ocfs2_write_ctxt *wc = fsdata; 2374 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 2375 handle_t *handle = wc->w_handle; 2376 struct page *tmppage; 2377 2378 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 2379 OCFS2_JOURNAL_ACCESS_WRITE); 2380 if (ret) { 2381 copied = ret; 2382 mlog_errno(ret); 2383 goto out; 2384 } 2385 2386 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2387 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 2388 goto out_write_size; 2389 } 2390 2391 if (unlikely(copied < len)) { 2392 if (!PageUptodate(wc->w_target_page)) 2393 copied = 0; 2394 2395 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 2396 start+len); 2397 } 2398 flush_dcache_page(wc->w_target_page); 2399 2400 for(i = 0; i < wc->w_num_pages; i++) { 2401 tmppage = wc->w_pages[i]; 2402 2403 if (tmppage == wc->w_target_page) { 2404 from = wc->w_target_from; 2405 to = wc->w_target_to; 2406 2407 BUG_ON(from > PAGE_CACHE_SIZE || 2408 to > PAGE_CACHE_SIZE || 2409 to < from); 2410 } else { 2411 /* 2412 * Pages adjacent to the target (if any) imply 2413 * a hole-filling write in which case we want 2414 * to flush their entire range. 2415 */ 2416 from = 0; 2417 to = PAGE_CACHE_SIZE; 2418 } 2419 2420 if (page_has_buffers(tmppage)) { 2421 if (ocfs2_should_order_data(inode)) 2422 ocfs2_jbd2_file_inode(wc->w_handle, inode); 2423 block_commit_write(tmppage, from, to); 2424 } 2425 } 2426 2427 out_write_size: 2428 pos += copied; 2429 if (pos > i_size_read(inode)) { 2430 i_size_write(inode, pos); 2431 mark_inode_dirty(inode); 2432 } 2433 inode->i_blocks = ocfs2_inode_sector_count(inode); 2434 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2435 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2436 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2437 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2438 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2439 ocfs2_journal_dirty(handle, wc->w_di_bh); 2440 2441 out: 2442 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2443 * lock, or it will cause a deadlock since journal commit threads holds 2444 * this lock and will ask for the page lock when flushing the data. 2445 * put it here to preserve the unlock order. 2446 */ 2447 ocfs2_unlock_pages(wc); 2448 2449 ocfs2_commit_trans(osb, handle); 2450 2451 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2452 2453 brelse(wc->w_di_bh); 2454 kfree(wc); 2455 2456 return copied; 2457 } 2458 2459 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2460 loff_t pos, unsigned len, unsigned copied, 2461 struct page *page, void *fsdata) 2462 { 2463 int ret; 2464 struct inode *inode = mapping->host; 2465 2466 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 2467 2468 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2469 ocfs2_inode_unlock(inode, 1); 2470 2471 return ret; 2472 } 2473 2474 const struct address_space_operations ocfs2_aops = { 2475 .readpage = ocfs2_readpage, 2476 .readpages = ocfs2_readpages, 2477 .writepage = ocfs2_writepage, 2478 .write_begin = ocfs2_write_begin, 2479 .write_end = ocfs2_write_end, 2480 .bmap = ocfs2_bmap, 2481 .direct_IO = ocfs2_direct_IO, 2482 .invalidatepage = block_invalidatepage, 2483 .releasepage = ocfs2_releasepage, 2484 .migratepage = buffer_migrate_page, 2485 .is_partially_uptodate = block_is_partially_uptodate, 2486 .error_remove_page = generic_error_remove_page, 2487 }; 2488