1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 #include <linux/quotaops.h> 31 #include <linux/blkdev.h> 32 #include <linux/uio.h> 33 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "dlmglue.h" 41 #include "extent_map.h" 42 #include "file.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "suballoc.h" 46 #include "super.h" 47 #include "symlink.h" 48 #include "refcounttree.h" 49 #include "ocfs2_trace.h" 50 51 #include "buffer_head_io.h" 52 #include "dir.h" 53 #include "namei.h" 54 #include "sysfile.h" 55 56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 57 struct buffer_head *bh_result, int create) 58 { 59 int err = -EIO; 60 int status; 61 struct ocfs2_dinode *fe = NULL; 62 struct buffer_head *bh = NULL; 63 struct buffer_head *buffer_cache_bh = NULL; 64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 65 void *kaddr; 66 67 trace_ocfs2_symlink_get_block( 68 (unsigned long long)OCFS2_I(inode)->ip_blkno, 69 (unsigned long long)iblock, bh_result, create); 70 71 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 72 73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 75 (unsigned long long)iblock); 76 goto bail; 77 } 78 79 status = ocfs2_read_inode_block(inode, &bh); 80 if (status < 0) { 81 mlog_errno(status); 82 goto bail; 83 } 84 fe = (struct ocfs2_dinode *) bh->b_data; 85 86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 87 le32_to_cpu(fe->i_clusters))) { 88 err = -ENOMEM; 89 mlog(ML_ERROR, "block offset is outside the allocated size: " 90 "%llu\n", (unsigned long long)iblock); 91 goto bail; 92 } 93 94 /* We don't use the page cache to create symlink data, so if 95 * need be, copy it over from the buffer cache. */ 96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 98 iblock; 99 buffer_cache_bh = sb_getblk(osb->sb, blkno); 100 if (!buffer_cache_bh) { 101 err = -ENOMEM; 102 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 103 goto bail; 104 } 105 106 /* we haven't locked out transactions, so a commit 107 * could've happened. Since we've got a reference on 108 * the bh, even if it commits while we're doing the 109 * copy, the data is still good. */ 110 if (buffer_jbd(buffer_cache_bh) 111 && ocfs2_inode_is_new(inode)) { 112 kaddr = kmap_atomic(bh_result->b_page); 113 if (!kaddr) { 114 mlog(ML_ERROR, "couldn't kmap!\n"); 115 goto bail; 116 } 117 memcpy(kaddr + (bh_result->b_size * iblock), 118 buffer_cache_bh->b_data, 119 bh_result->b_size); 120 kunmap_atomic(kaddr); 121 set_buffer_uptodate(bh_result); 122 } 123 brelse(buffer_cache_bh); 124 } 125 126 map_bh(bh_result, inode->i_sb, 127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 128 129 err = 0; 130 131 bail: 132 brelse(bh); 133 134 return err; 135 } 136 137 int ocfs2_get_block(struct inode *inode, sector_t iblock, 138 struct buffer_head *bh_result, int create) 139 { 140 int err = 0; 141 unsigned int ext_flags; 142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 143 u64 p_blkno, count, past_eof; 144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 145 146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 147 (unsigned long long)iblock, bh_result, create); 148 149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 151 inode, inode->i_ino); 152 153 if (S_ISLNK(inode->i_mode)) { 154 /* this always does I/O for some reason. */ 155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 156 goto bail; 157 } 158 159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 160 &ext_flags); 161 if (err) { 162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 164 (unsigned long long)p_blkno); 165 goto bail; 166 } 167 168 if (max_blocks < count) 169 count = max_blocks; 170 171 /* 172 * ocfs2 never allocates in this function - the only time we 173 * need to use BH_New is when we're extending i_size on a file 174 * system which doesn't support holes, in which case BH_New 175 * allows __block_write_begin() to zero. 176 * 177 * If we see this on a sparse file system, then a truncate has 178 * raced us and removed the cluster. In this case, we clear 179 * the buffers dirty and uptodate bits and let the buffer code 180 * ignore it as a hole. 181 */ 182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 183 clear_buffer_dirty(bh_result); 184 clear_buffer_uptodate(bh_result); 185 goto bail; 186 } 187 188 /* Treat the unwritten extent as a hole for zeroing purposes. */ 189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 190 map_bh(bh_result, inode->i_sb, p_blkno); 191 192 bh_result->b_size = count << inode->i_blkbits; 193 194 if (!ocfs2_sparse_alloc(osb)) { 195 if (p_blkno == 0) { 196 err = -EIO; 197 mlog(ML_ERROR, 198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 199 (unsigned long long)iblock, 200 (unsigned long long)p_blkno, 201 (unsigned long long)OCFS2_I(inode)->ip_blkno); 202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 203 dump_stack(); 204 goto bail; 205 } 206 } 207 208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 209 210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 211 (unsigned long long)past_eof); 212 if (create && (iblock >= past_eof)) 213 set_buffer_new(bh_result); 214 215 bail: 216 if (err < 0) 217 err = -EIO; 218 219 return err; 220 } 221 222 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 223 struct buffer_head *di_bh) 224 { 225 void *kaddr; 226 loff_t size; 227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 228 229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag", 231 (unsigned long long)OCFS2_I(inode)->ip_blkno); 232 return -EROFS; 233 } 234 235 size = i_size_read(inode); 236 237 if (size > PAGE_CACHE_SIZE || 238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 239 ocfs2_error(inode->i_sb, 240 "Inode %llu has with inline data has bad size: %Lu", 241 (unsigned long long)OCFS2_I(inode)->ip_blkno, 242 (unsigned long long)size); 243 return -EROFS; 244 } 245 246 kaddr = kmap_atomic(page); 247 if (size) 248 memcpy(kaddr, di->id2.i_data.id_data, size); 249 /* Clear the remaining part of the page */ 250 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); 251 flush_dcache_page(page); 252 kunmap_atomic(kaddr); 253 254 SetPageUptodate(page); 255 256 return 0; 257 } 258 259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 260 { 261 int ret; 262 struct buffer_head *di_bh = NULL; 263 264 BUG_ON(!PageLocked(page)); 265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 266 267 ret = ocfs2_read_inode_block(inode, &di_bh); 268 if (ret) { 269 mlog_errno(ret); 270 goto out; 271 } 272 273 ret = ocfs2_read_inline_data(inode, page, di_bh); 274 out: 275 unlock_page(page); 276 277 brelse(di_bh); 278 return ret; 279 } 280 281 static int ocfs2_readpage(struct file *file, struct page *page) 282 { 283 struct inode *inode = page->mapping->host; 284 struct ocfs2_inode_info *oi = OCFS2_I(inode); 285 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; 286 int ret, unlock = 1; 287 288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 289 (page ? page->index : 0)); 290 291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 292 if (ret != 0) { 293 if (ret == AOP_TRUNCATED_PAGE) 294 unlock = 0; 295 mlog_errno(ret); 296 goto out; 297 } 298 299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 300 /* 301 * Unlock the page and cycle ip_alloc_sem so that we don't 302 * busyloop waiting for ip_alloc_sem to unlock 303 */ 304 ret = AOP_TRUNCATED_PAGE; 305 unlock_page(page); 306 unlock = 0; 307 down_read(&oi->ip_alloc_sem); 308 up_read(&oi->ip_alloc_sem); 309 goto out_inode_unlock; 310 } 311 312 /* 313 * i_size might have just been updated as we grabed the meta lock. We 314 * might now be discovering a truncate that hit on another node. 315 * block_read_full_page->get_block freaks out if it is asked to read 316 * beyond the end of a file, so we check here. Callers 317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 318 * and notice that the page they just read isn't needed. 319 * 320 * XXX sys_readahead() seems to get that wrong? 321 */ 322 if (start >= i_size_read(inode)) { 323 zero_user(page, 0, PAGE_SIZE); 324 SetPageUptodate(page); 325 ret = 0; 326 goto out_alloc; 327 } 328 329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 330 ret = ocfs2_readpage_inline(inode, page); 331 else 332 ret = block_read_full_page(page, ocfs2_get_block); 333 unlock = 0; 334 335 out_alloc: 336 up_read(&OCFS2_I(inode)->ip_alloc_sem); 337 out_inode_unlock: 338 ocfs2_inode_unlock(inode, 0); 339 out: 340 if (unlock) 341 unlock_page(page); 342 return ret; 343 } 344 345 /* 346 * This is used only for read-ahead. Failures or difficult to handle 347 * situations are safe to ignore. 348 * 349 * Right now, we don't bother with BH_Boundary - in-inode extent lists 350 * are quite large (243 extents on 4k blocks), so most inodes don't 351 * grow out to a tree. If need be, detecting boundary extents could 352 * trivially be added in a future version of ocfs2_get_block(). 353 */ 354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 355 struct list_head *pages, unsigned nr_pages) 356 { 357 int ret, err = -EIO; 358 struct inode *inode = mapping->host; 359 struct ocfs2_inode_info *oi = OCFS2_I(inode); 360 loff_t start; 361 struct page *last; 362 363 /* 364 * Use the nonblocking flag for the dlm code to avoid page 365 * lock inversion, but don't bother with retrying. 366 */ 367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 368 if (ret) 369 return err; 370 371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 372 ocfs2_inode_unlock(inode, 0); 373 return err; 374 } 375 376 /* 377 * Don't bother with inline-data. There isn't anything 378 * to read-ahead in that case anyway... 379 */ 380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 381 goto out_unlock; 382 383 /* 384 * Check whether a remote node truncated this file - we just 385 * drop out in that case as it's not worth handling here. 386 */ 387 last = list_entry(pages->prev, struct page, lru); 388 start = (loff_t)last->index << PAGE_CACHE_SHIFT; 389 if (start >= i_size_read(inode)) 390 goto out_unlock; 391 392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 393 394 out_unlock: 395 up_read(&oi->ip_alloc_sem); 396 ocfs2_inode_unlock(inode, 0); 397 398 return err; 399 } 400 401 /* Note: Because we don't support holes, our allocation has 402 * already happened (allocation writes zeros to the file data) 403 * so we don't have to worry about ordered writes in 404 * ocfs2_writepage. 405 * 406 * ->writepage is called during the process of invalidating the page cache 407 * during blocked lock processing. It can't block on any cluster locks 408 * to during block mapping. It's relying on the fact that the block 409 * mapping can't have disappeared under the dirty pages that it is 410 * being asked to write back. 411 */ 412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 413 { 414 trace_ocfs2_writepage( 415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 416 page->index); 417 418 return block_write_full_page(page, ocfs2_get_block, wbc); 419 } 420 421 /* Taken from ext3. We don't necessarily need the full blown 422 * functionality yet, but IMHO it's better to cut and paste the whole 423 * thing so we can avoid introducing our own bugs (and easily pick up 424 * their fixes when they happen) --Mark */ 425 int walk_page_buffers( handle_t *handle, 426 struct buffer_head *head, 427 unsigned from, 428 unsigned to, 429 int *partial, 430 int (*fn)( handle_t *handle, 431 struct buffer_head *bh)) 432 { 433 struct buffer_head *bh; 434 unsigned block_start, block_end; 435 unsigned blocksize = head->b_size; 436 int err, ret = 0; 437 struct buffer_head *next; 438 439 for ( bh = head, block_start = 0; 440 ret == 0 && (bh != head || !block_start); 441 block_start = block_end, bh = next) 442 { 443 next = bh->b_this_page; 444 block_end = block_start + blocksize; 445 if (block_end <= from || block_start >= to) { 446 if (partial && !buffer_uptodate(bh)) 447 *partial = 1; 448 continue; 449 } 450 err = (*fn)(handle, bh); 451 if (!ret) 452 ret = err; 453 } 454 return ret; 455 } 456 457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 458 { 459 sector_t status; 460 u64 p_blkno = 0; 461 int err = 0; 462 struct inode *inode = mapping->host; 463 464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 465 (unsigned long long)block); 466 467 /* We don't need to lock journal system files, since they aren't 468 * accessed concurrently from multiple nodes. 469 */ 470 if (!INODE_JOURNAL(inode)) { 471 err = ocfs2_inode_lock(inode, NULL, 0); 472 if (err) { 473 if (err != -ENOENT) 474 mlog_errno(err); 475 goto bail; 476 } 477 down_read(&OCFS2_I(inode)->ip_alloc_sem); 478 } 479 480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 482 NULL); 483 484 if (!INODE_JOURNAL(inode)) { 485 up_read(&OCFS2_I(inode)->ip_alloc_sem); 486 ocfs2_inode_unlock(inode, 0); 487 } 488 489 if (err) { 490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 491 (unsigned long long)block); 492 mlog_errno(err); 493 goto bail; 494 } 495 496 bail: 497 status = err ? 0 : p_blkno; 498 499 return status; 500 } 501 502 /* 503 * TODO: Make this into a generic get_blocks function. 504 * 505 * From do_direct_io in direct-io.c: 506 * "So what we do is to permit the ->get_blocks function to populate 507 * bh.b_size with the size of IO which is permitted at this offset and 508 * this i_blkbits." 509 * 510 * This function is called directly from get_more_blocks in direct-io.c. 511 * 512 * called like this: dio->get_blocks(dio->inode, fs_startblk, 513 * fs_count, map_bh, dio->rw == WRITE); 514 */ 515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, 516 struct buffer_head *bh_result, int create) 517 { 518 int ret; 519 u32 cpos = 0; 520 int alloc_locked = 0; 521 u64 p_blkno, inode_blocks, contig_blocks; 522 unsigned int ext_flags; 523 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 524 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; 525 unsigned long len = bh_result->b_size; 526 unsigned int clusters_to_alloc = 0; 527 528 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock); 529 530 /* This function won't even be called if the request isn't all 531 * nicely aligned and of the right size, so there's no need 532 * for us to check any of that. */ 533 534 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 535 536 /* This figures out the size of the next contiguous block, and 537 * our logical offset */ 538 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 539 &contig_blocks, &ext_flags); 540 if (ret) { 541 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 542 (unsigned long long)iblock); 543 ret = -EIO; 544 goto bail; 545 } 546 547 /* We should already CoW the refcounted extent in case of create. */ 548 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED)); 549 550 /* allocate blocks if no p_blkno is found, and create == 1 */ 551 if (!p_blkno && create) { 552 ret = ocfs2_inode_lock(inode, NULL, 1); 553 if (ret < 0) { 554 mlog_errno(ret); 555 goto bail; 556 } 557 558 alloc_locked = 1; 559 560 /* fill hole, allocate blocks can't be larger than the size 561 * of the hole */ 562 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len); 563 if (clusters_to_alloc > contig_blocks) 564 clusters_to_alloc = contig_blocks; 565 566 /* allocate extent and insert them into the extent tree */ 567 ret = ocfs2_extend_allocation(inode, cpos, 568 clusters_to_alloc, 0); 569 if (ret < 0) { 570 mlog_errno(ret); 571 goto bail; 572 } 573 574 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 575 &contig_blocks, &ext_flags); 576 if (ret < 0) { 577 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 578 (unsigned long long)iblock); 579 ret = -EIO; 580 goto bail; 581 } 582 } 583 584 /* 585 * get_more_blocks() expects us to describe a hole by clearing 586 * the mapped bit on bh_result(). 587 * 588 * Consider an unwritten extent as a hole. 589 */ 590 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 591 map_bh(bh_result, inode->i_sb, p_blkno); 592 else 593 clear_buffer_mapped(bh_result); 594 595 /* make sure we don't map more than max_blocks blocks here as 596 that's all the kernel will handle at this point. */ 597 if (max_blocks < contig_blocks) 598 contig_blocks = max_blocks; 599 bh_result->b_size = contig_blocks << blocksize_bits; 600 bail: 601 if (alloc_locked) 602 ocfs2_inode_unlock(inode, 1); 603 return ret; 604 } 605 606 /* 607 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 608 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 609 * to protect io on one node from truncation on another. 610 */ 611 static void ocfs2_dio_end_io(struct kiocb *iocb, 612 loff_t offset, 613 ssize_t bytes, 614 void *private) 615 { 616 struct inode *inode = file_inode(iocb->ki_filp); 617 int level; 618 619 /* this io's submitter should not have unlocked this before we could */ 620 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 621 622 if (ocfs2_iocb_is_sem_locked(iocb)) 623 ocfs2_iocb_clear_sem_locked(iocb); 624 625 if (ocfs2_iocb_is_unaligned_aio(iocb)) { 626 ocfs2_iocb_clear_unaligned_aio(iocb); 627 628 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio); 629 } 630 631 ocfs2_iocb_clear_rw_locked(iocb); 632 633 level = ocfs2_iocb_rw_locked_level(iocb); 634 ocfs2_rw_unlock(inode, level); 635 } 636 637 static int ocfs2_releasepage(struct page *page, gfp_t wait) 638 { 639 if (!page_has_buffers(page)) 640 return 0; 641 return try_to_free_buffers(page); 642 } 643 644 static int ocfs2_is_overwrite(struct ocfs2_super *osb, 645 struct inode *inode, loff_t offset) 646 { 647 int ret = 0; 648 u32 v_cpos = 0; 649 u32 p_cpos = 0; 650 unsigned int num_clusters = 0; 651 unsigned int ext_flags = 0; 652 653 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset); 654 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, 655 &num_clusters, &ext_flags); 656 if (ret < 0) { 657 mlog_errno(ret); 658 return ret; 659 } 660 661 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 662 return 1; 663 664 return 0; 665 } 666 667 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb, 668 struct inode *inode, loff_t offset, 669 u64 zero_len, int cluster_align) 670 { 671 u32 p_cpos = 0; 672 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode)); 673 unsigned int num_clusters = 0; 674 unsigned int ext_flags = 0; 675 int ret = 0; 676 677 if (offset <= i_size_read(inode) || cluster_align) 678 return 0; 679 680 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters, 681 &ext_flags); 682 if (ret < 0) { 683 mlog_errno(ret); 684 return ret; 685 } 686 687 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 688 u64 s = i_size_read(inode); 689 sector_t sector = (p_cpos << (osb->s_clustersize_bits - 9)) + 690 (do_div(s, osb->s_clustersize) >> 9); 691 692 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector, 693 zero_len >> 9, GFP_NOFS, false); 694 if (ret < 0) 695 mlog_errno(ret); 696 } 697 698 return ret; 699 } 700 701 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb, 702 struct inode *inode, loff_t offset) 703 { 704 u64 zero_start, zero_len, total_zero_len; 705 u32 p_cpos = 0, clusters_to_add; 706 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode)); 707 unsigned int num_clusters = 0; 708 unsigned int ext_flags = 0; 709 u32 size_div, offset_div; 710 int ret = 0; 711 712 { 713 u64 o = offset; 714 u64 s = i_size_read(inode); 715 716 offset_div = do_div(o, osb->s_clustersize); 717 size_div = do_div(s, osb->s_clustersize); 718 } 719 720 if (offset <= i_size_read(inode)) 721 return 0; 722 723 clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) - 724 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode)); 725 total_zero_len = offset - i_size_read(inode); 726 if (clusters_to_add) 727 total_zero_len -= offset_div; 728 729 /* Allocate clusters to fill out holes, and this is only needed 730 * when we add more than one clusters. Otherwise the cluster will 731 * be allocated during direct IO */ 732 if (clusters_to_add > 1) { 733 ret = ocfs2_extend_allocation(inode, 734 OCFS2_I(inode)->ip_clusters, 735 clusters_to_add - 1, 0); 736 if (ret) { 737 mlog_errno(ret); 738 goto out; 739 } 740 } 741 742 while (total_zero_len) { 743 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters, 744 &ext_flags); 745 if (ret < 0) { 746 mlog_errno(ret); 747 goto out; 748 } 749 750 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) + 751 size_div; 752 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) - 753 size_div; 754 zero_len = min(total_zero_len, zero_len); 755 756 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 757 ret = blkdev_issue_zeroout(osb->sb->s_bdev, 758 zero_start >> 9, zero_len >> 9, 759 GFP_NOFS, false); 760 if (ret < 0) { 761 mlog_errno(ret); 762 goto out; 763 } 764 } 765 766 total_zero_len -= zero_len; 767 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div); 768 769 /* Only at first iteration can be cluster not aligned. 770 * So set size_div to 0 for the rest */ 771 size_div = 0; 772 } 773 774 out: 775 return ret; 776 } 777 778 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb, 779 struct iov_iter *iter, 780 loff_t offset) 781 { 782 ssize_t ret = 0; 783 ssize_t written = 0; 784 bool orphaned = false; 785 int is_overwrite = 0; 786 struct file *file = iocb->ki_filp; 787 struct inode *inode = file_inode(file)->i_mapping->host; 788 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 789 struct buffer_head *di_bh = NULL; 790 size_t count = iter->count; 791 journal_t *journal = osb->journal->j_journal; 792 u64 zero_len_head, zero_len_tail; 793 int cluster_align_head, cluster_align_tail; 794 loff_t final_size = offset + count; 795 int append_write = offset >= i_size_read(inode) ? 1 : 0; 796 unsigned int num_clusters = 0; 797 unsigned int ext_flags = 0; 798 799 { 800 u64 o = offset; 801 u64 s = i_size_read(inode); 802 803 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits); 804 cluster_align_head = !zero_len_head; 805 806 zero_len_tail = osb->s_clustersize - 807 do_div(s, osb->s_clustersize); 808 if ((offset - i_size_read(inode)) < zero_len_tail) 809 zero_len_tail = offset - i_size_read(inode); 810 cluster_align_tail = !zero_len_tail; 811 } 812 813 /* 814 * when final_size > inode->i_size, inode->i_size will be 815 * updated after direct write, so add the inode to orphan 816 * dir first. 817 */ 818 if (final_size > i_size_read(inode)) { 819 ret = ocfs2_add_inode_to_orphan(osb, inode); 820 if (ret < 0) { 821 mlog_errno(ret); 822 goto out; 823 } 824 orphaned = true; 825 } 826 827 if (append_write) { 828 ret = ocfs2_inode_lock(inode, NULL, 1); 829 if (ret < 0) { 830 mlog_errno(ret); 831 goto clean_orphan; 832 } 833 834 /* zeroing out the previously allocated cluster tail 835 * that but not zeroed */ 836 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 837 ret = ocfs2_direct_IO_zero_extend(osb, inode, offset, 838 zero_len_tail, cluster_align_tail); 839 else 840 ret = ocfs2_direct_IO_extend_no_holes(osb, inode, 841 offset); 842 if (ret < 0) { 843 mlog_errno(ret); 844 ocfs2_inode_unlock(inode, 1); 845 goto clean_orphan; 846 } 847 848 is_overwrite = ocfs2_is_overwrite(osb, inode, offset); 849 if (is_overwrite < 0) { 850 mlog_errno(is_overwrite); 851 ocfs2_inode_unlock(inode, 1); 852 goto clean_orphan; 853 } 854 855 ocfs2_inode_unlock(inode, 1); 856 } 857 858 written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 859 offset, ocfs2_direct_IO_get_blocks, 860 ocfs2_dio_end_io, NULL, 0); 861 if (unlikely(written < 0)) { 862 loff_t i_size = i_size_read(inode); 863 864 if (offset + count > i_size) { 865 ret = ocfs2_inode_lock(inode, &di_bh, 1); 866 if (ret < 0) { 867 mlog_errno(ret); 868 goto clean_orphan; 869 } 870 871 if (i_size == i_size_read(inode)) { 872 ret = ocfs2_truncate_file(inode, di_bh, 873 i_size); 874 if (ret < 0) { 875 if (ret != -ENOSPC) 876 mlog_errno(ret); 877 878 ocfs2_inode_unlock(inode, 1); 879 brelse(di_bh); 880 goto clean_orphan; 881 } 882 } 883 884 ocfs2_inode_unlock(inode, 1); 885 brelse(di_bh); 886 887 ret = jbd2_journal_force_commit(journal); 888 if (ret < 0) 889 mlog_errno(ret); 890 } 891 } else if (written > 0 && append_write && !is_overwrite && 892 !cluster_align_head) { 893 /* zeroing out the allocated cluster head */ 894 u32 p_cpos = 0; 895 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset); 896 897 ret = ocfs2_inode_lock(inode, NULL, 0); 898 if (ret < 0) { 899 mlog_errno(ret); 900 goto clean_orphan; 901 } 902 903 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, 904 &num_clusters, &ext_flags); 905 if (ret < 0) { 906 mlog_errno(ret); 907 ocfs2_inode_unlock(inode, 0); 908 goto clean_orphan; 909 } 910 911 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)); 912 913 ret = blkdev_issue_zeroout(osb->sb->s_bdev, 914 p_cpos << (osb->s_clustersize_bits - 9), 915 zero_len_head >> 9, GFP_NOFS, false); 916 if (ret < 0) 917 mlog_errno(ret); 918 919 ocfs2_inode_unlock(inode, 0); 920 } 921 922 clean_orphan: 923 if (orphaned) { 924 int tmp_ret; 925 int update_isize = written > 0 ? 1 : 0; 926 loff_t end = update_isize ? offset + written : 0; 927 928 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, 929 update_isize, end); 930 if (tmp_ret < 0) { 931 ret = tmp_ret; 932 goto out; 933 } 934 935 tmp_ret = jbd2_journal_force_commit(journal); 936 if (tmp_ret < 0) { 937 ret = tmp_ret; 938 mlog_errno(tmp_ret); 939 } 940 } 941 942 out: 943 if (ret >= 0) 944 ret = written; 945 return ret; 946 } 947 948 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 949 loff_t offset) 950 { 951 struct file *file = iocb->ki_filp; 952 struct inode *inode = file_inode(file)->i_mapping->host; 953 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 954 int full_coherency = !(osb->s_mount_opt & 955 OCFS2_MOUNT_COHERENCY_BUFFERED); 956 957 /* 958 * Fallback to buffered I/O if we see an inode without 959 * extents. 960 */ 961 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 962 return 0; 963 964 /* Fallback to buffered I/O if we are appending and 965 * concurrent O_DIRECT writes are allowed. 966 */ 967 if (i_size_read(inode) <= offset && !full_coherency) 968 return 0; 969 970 if (iov_iter_rw(iter) == READ) 971 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 972 iter, offset, 973 ocfs2_direct_IO_get_blocks, 974 ocfs2_dio_end_io, NULL, 0); 975 else 976 return ocfs2_direct_IO_write(iocb, iter, offset); 977 } 978 979 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 980 u32 cpos, 981 unsigned int *start, 982 unsigned int *end) 983 { 984 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; 985 986 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { 987 unsigned int cpp; 988 989 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); 990 991 cluster_start = cpos % cpp; 992 cluster_start = cluster_start << osb->s_clustersize_bits; 993 994 cluster_end = cluster_start + osb->s_clustersize; 995 } 996 997 BUG_ON(cluster_start > PAGE_SIZE); 998 BUG_ON(cluster_end > PAGE_SIZE); 999 1000 if (start) 1001 *start = cluster_start; 1002 if (end) 1003 *end = cluster_end; 1004 } 1005 1006 /* 1007 * 'from' and 'to' are the region in the page to avoid zeroing. 1008 * 1009 * If pagesize > clustersize, this function will avoid zeroing outside 1010 * of the cluster boundary. 1011 * 1012 * from == to == 0 is code for "zero the entire cluster region" 1013 */ 1014 static void ocfs2_clear_page_regions(struct page *page, 1015 struct ocfs2_super *osb, u32 cpos, 1016 unsigned from, unsigned to) 1017 { 1018 void *kaddr; 1019 unsigned int cluster_start, cluster_end; 1020 1021 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 1022 1023 kaddr = kmap_atomic(page); 1024 1025 if (from || to) { 1026 if (from > cluster_start) 1027 memset(kaddr + cluster_start, 0, from - cluster_start); 1028 if (to < cluster_end) 1029 memset(kaddr + to, 0, cluster_end - to); 1030 } else { 1031 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 1032 } 1033 1034 kunmap_atomic(kaddr); 1035 } 1036 1037 /* 1038 * Nonsparse file systems fully allocate before we get to the write 1039 * code. This prevents ocfs2_write() from tagging the write as an 1040 * allocating one, which means ocfs2_map_page_blocks() might try to 1041 * read-in the blocks at the tail of our file. Avoid reading them by 1042 * testing i_size against each block offset. 1043 */ 1044 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 1045 unsigned int block_start) 1046 { 1047 u64 offset = page_offset(page) + block_start; 1048 1049 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1050 return 1; 1051 1052 if (i_size_read(inode) > offset) 1053 return 1; 1054 1055 return 0; 1056 } 1057 1058 /* 1059 * Some of this taken from __block_write_begin(). We already have our 1060 * mapping by now though, and the entire write will be allocating or 1061 * it won't, so not much need to use BH_New. 1062 * 1063 * This will also skip zeroing, which is handled externally. 1064 */ 1065 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 1066 struct inode *inode, unsigned int from, 1067 unsigned int to, int new) 1068 { 1069 int ret = 0; 1070 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 1071 unsigned int block_end, block_start; 1072 unsigned int bsize = 1 << inode->i_blkbits; 1073 1074 if (!page_has_buffers(page)) 1075 create_empty_buffers(page, bsize, 0); 1076 1077 head = page_buffers(page); 1078 for (bh = head, block_start = 0; bh != head || !block_start; 1079 bh = bh->b_this_page, block_start += bsize) { 1080 block_end = block_start + bsize; 1081 1082 clear_buffer_new(bh); 1083 1084 /* 1085 * Ignore blocks outside of our i/o range - 1086 * they may belong to unallocated clusters. 1087 */ 1088 if (block_start >= to || block_end <= from) { 1089 if (PageUptodate(page)) 1090 set_buffer_uptodate(bh); 1091 continue; 1092 } 1093 1094 /* 1095 * For an allocating write with cluster size >= page 1096 * size, we always write the entire page. 1097 */ 1098 if (new) 1099 set_buffer_new(bh); 1100 1101 if (!buffer_mapped(bh)) { 1102 map_bh(bh, inode->i_sb, *p_blkno); 1103 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 1104 } 1105 1106 if (PageUptodate(page)) { 1107 if (!buffer_uptodate(bh)) 1108 set_buffer_uptodate(bh); 1109 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1110 !buffer_new(bh) && 1111 ocfs2_should_read_blk(inode, page, block_start) && 1112 (block_start < from || block_end > to)) { 1113 ll_rw_block(READ, 1, &bh); 1114 *wait_bh++=bh; 1115 } 1116 1117 *p_blkno = *p_blkno + 1; 1118 } 1119 1120 /* 1121 * If we issued read requests - let them complete. 1122 */ 1123 while(wait_bh > wait) { 1124 wait_on_buffer(*--wait_bh); 1125 if (!buffer_uptodate(*wait_bh)) 1126 ret = -EIO; 1127 } 1128 1129 if (ret == 0 || !new) 1130 return ret; 1131 1132 /* 1133 * If we get -EIO above, zero out any newly allocated blocks 1134 * to avoid exposing stale data. 1135 */ 1136 bh = head; 1137 block_start = 0; 1138 do { 1139 block_end = block_start + bsize; 1140 if (block_end <= from) 1141 goto next_bh; 1142 if (block_start >= to) 1143 break; 1144 1145 zero_user(page, block_start, bh->b_size); 1146 set_buffer_uptodate(bh); 1147 mark_buffer_dirty(bh); 1148 1149 next_bh: 1150 block_start = block_end; 1151 bh = bh->b_this_page; 1152 } while (bh != head); 1153 1154 return ret; 1155 } 1156 1157 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 1158 #define OCFS2_MAX_CTXT_PAGES 1 1159 #else 1160 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) 1161 #endif 1162 1163 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) 1164 1165 /* 1166 * Describe the state of a single cluster to be written to. 1167 */ 1168 struct ocfs2_write_cluster_desc { 1169 u32 c_cpos; 1170 u32 c_phys; 1171 /* 1172 * Give this a unique field because c_phys eventually gets 1173 * filled. 1174 */ 1175 unsigned c_new; 1176 unsigned c_unwritten; 1177 unsigned c_needs_zero; 1178 }; 1179 1180 struct ocfs2_write_ctxt { 1181 /* Logical cluster position / len of write */ 1182 u32 w_cpos; 1183 u32 w_clen; 1184 1185 /* First cluster allocated in a nonsparse extend */ 1186 u32 w_first_new_cpos; 1187 1188 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 1189 1190 /* 1191 * This is true if page_size > cluster_size. 1192 * 1193 * It triggers a set of special cases during write which might 1194 * have to deal with allocating writes to partial pages. 1195 */ 1196 unsigned int w_large_pages; 1197 1198 /* 1199 * Pages involved in this write. 1200 * 1201 * w_target_page is the page being written to by the user. 1202 * 1203 * w_pages is an array of pages which always contains 1204 * w_target_page, and in the case of an allocating write with 1205 * page_size < cluster size, it will contain zero'd and mapped 1206 * pages adjacent to w_target_page which need to be written 1207 * out in so that future reads from that region will get 1208 * zero's. 1209 */ 1210 unsigned int w_num_pages; 1211 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 1212 struct page *w_target_page; 1213 1214 /* 1215 * w_target_locked is used for page_mkwrite path indicating no unlocking 1216 * against w_target_page in ocfs2_write_end_nolock. 1217 */ 1218 unsigned int w_target_locked:1; 1219 1220 /* 1221 * ocfs2_write_end() uses this to know what the real range to 1222 * write in the target should be. 1223 */ 1224 unsigned int w_target_from; 1225 unsigned int w_target_to; 1226 1227 /* 1228 * We could use journal_current_handle() but this is cleaner, 1229 * IMHO -Mark 1230 */ 1231 handle_t *w_handle; 1232 1233 struct buffer_head *w_di_bh; 1234 1235 struct ocfs2_cached_dealloc_ctxt w_dealloc; 1236 }; 1237 1238 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 1239 { 1240 int i; 1241 1242 for(i = 0; i < num_pages; i++) { 1243 if (pages[i]) { 1244 unlock_page(pages[i]); 1245 mark_page_accessed(pages[i]); 1246 page_cache_release(pages[i]); 1247 } 1248 } 1249 } 1250 1251 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 1252 { 1253 int i; 1254 1255 /* 1256 * w_target_locked is only set to true in the page_mkwrite() case. 1257 * The intent is to allow us to lock the target page from write_begin() 1258 * to write_end(). The caller must hold a ref on w_target_page. 1259 */ 1260 if (wc->w_target_locked) { 1261 BUG_ON(!wc->w_target_page); 1262 for (i = 0; i < wc->w_num_pages; i++) { 1263 if (wc->w_target_page == wc->w_pages[i]) { 1264 wc->w_pages[i] = NULL; 1265 break; 1266 } 1267 } 1268 mark_page_accessed(wc->w_target_page); 1269 page_cache_release(wc->w_target_page); 1270 } 1271 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 1272 } 1273 1274 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) 1275 { 1276 ocfs2_unlock_pages(wc); 1277 brelse(wc->w_di_bh); 1278 kfree(wc); 1279 } 1280 1281 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 1282 struct ocfs2_super *osb, loff_t pos, 1283 unsigned len, struct buffer_head *di_bh) 1284 { 1285 u32 cend; 1286 struct ocfs2_write_ctxt *wc; 1287 1288 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 1289 if (!wc) 1290 return -ENOMEM; 1291 1292 wc->w_cpos = pos >> osb->s_clustersize_bits; 1293 wc->w_first_new_cpos = UINT_MAX; 1294 cend = (pos + len - 1) >> osb->s_clustersize_bits; 1295 wc->w_clen = cend - wc->w_cpos + 1; 1296 get_bh(di_bh); 1297 wc->w_di_bh = di_bh; 1298 1299 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) 1300 wc->w_large_pages = 1; 1301 else 1302 wc->w_large_pages = 0; 1303 1304 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 1305 1306 *wcp = wc; 1307 1308 return 0; 1309 } 1310 1311 /* 1312 * If a page has any new buffers, zero them out here, and mark them uptodate 1313 * and dirty so they'll be written out (in order to prevent uninitialised 1314 * block data from leaking). And clear the new bit. 1315 */ 1316 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1317 { 1318 unsigned int block_start, block_end; 1319 struct buffer_head *head, *bh; 1320 1321 BUG_ON(!PageLocked(page)); 1322 if (!page_has_buffers(page)) 1323 return; 1324 1325 bh = head = page_buffers(page); 1326 block_start = 0; 1327 do { 1328 block_end = block_start + bh->b_size; 1329 1330 if (buffer_new(bh)) { 1331 if (block_end > from && block_start < to) { 1332 if (!PageUptodate(page)) { 1333 unsigned start, end; 1334 1335 start = max(from, block_start); 1336 end = min(to, block_end); 1337 1338 zero_user_segment(page, start, end); 1339 set_buffer_uptodate(bh); 1340 } 1341 1342 clear_buffer_new(bh); 1343 mark_buffer_dirty(bh); 1344 } 1345 } 1346 1347 block_start = block_end; 1348 bh = bh->b_this_page; 1349 } while (bh != head); 1350 } 1351 1352 /* 1353 * Only called when we have a failure during allocating write to write 1354 * zero's to the newly allocated region. 1355 */ 1356 static void ocfs2_write_failure(struct inode *inode, 1357 struct ocfs2_write_ctxt *wc, 1358 loff_t user_pos, unsigned user_len) 1359 { 1360 int i; 1361 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), 1362 to = user_pos + user_len; 1363 struct page *tmppage; 1364 1365 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 1366 1367 for(i = 0; i < wc->w_num_pages; i++) { 1368 tmppage = wc->w_pages[i]; 1369 1370 if (page_has_buffers(tmppage)) { 1371 if (ocfs2_should_order_data(inode)) 1372 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1373 1374 block_commit_write(tmppage, from, to); 1375 } 1376 } 1377 } 1378 1379 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 1380 struct ocfs2_write_ctxt *wc, 1381 struct page *page, u32 cpos, 1382 loff_t user_pos, unsigned user_len, 1383 int new) 1384 { 1385 int ret; 1386 unsigned int map_from = 0, map_to = 0; 1387 unsigned int cluster_start, cluster_end; 1388 unsigned int user_data_from = 0, user_data_to = 0; 1389 1390 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 1391 &cluster_start, &cluster_end); 1392 1393 /* treat the write as new if the a hole/lseek spanned across 1394 * the page boundary. 1395 */ 1396 new = new | ((i_size_read(inode) <= page_offset(page)) && 1397 (page_offset(page) <= user_pos)); 1398 1399 if (page == wc->w_target_page) { 1400 map_from = user_pos & (PAGE_CACHE_SIZE - 1); 1401 map_to = map_from + user_len; 1402 1403 if (new) 1404 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1405 cluster_start, cluster_end, 1406 new); 1407 else 1408 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1409 map_from, map_to, new); 1410 if (ret) { 1411 mlog_errno(ret); 1412 goto out; 1413 } 1414 1415 user_data_from = map_from; 1416 user_data_to = map_to; 1417 if (new) { 1418 map_from = cluster_start; 1419 map_to = cluster_end; 1420 } 1421 } else { 1422 /* 1423 * If we haven't allocated the new page yet, we 1424 * shouldn't be writing it out without copying user 1425 * data. This is likely a math error from the caller. 1426 */ 1427 BUG_ON(!new); 1428 1429 map_from = cluster_start; 1430 map_to = cluster_end; 1431 1432 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1433 cluster_start, cluster_end, new); 1434 if (ret) { 1435 mlog_errno(ret); 1436 goto out; 1437 } 1438 } 1439 1440 /* 1441 * Parts of newly allocated pages need to be zero'd. 1442 * 1443 * Above, we have also rewritten 'to' and 'from' - as far as 1444 * the rest of the function is concerned, the entire cluster 1445 * range inside of a page needs to be written. 1446 * 1447 * We can skip this if the page is up to date - it's already 1448 * been zero'd from being read in as a hole. 1449 */ 1450 if (new && !PageUptodate(page)) 1451 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1452 cpos, user_data_from, user_data_to); 1453 1454 flush_dcache_page(page); 1455 1456 out: 1457 return ret; 1458 } 1459 1460 /* 1461 * This function will only grab one clusters worth of pages. 1462 */ 1463 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1464 struct ocfs2_write_ctxt *wc, 1465 u32 cpos, loff_t user_pos, 1466 unsigned user_len, int new, 1467 struct page *mmap_page) 1468 { 1469 int ret = 0, i; 1470 unsigned long start, target_index, end_index, index; 1471 struct inode *inode = mapping->host; 1472 loff_t last_byte; 1473 1474 target_index = user_pos >> PAGE_CACHE_SHIFT; 1475 1476 /* 1477 * Figure out how many pages we'll be manipulating here. For 1478 * non allocating write, we just change the one 1479 * page. Otherwise, we'll need a whole clusters worth. If we're 1480 * writing past i_size, we only need enough pages to cover the 1481 * last page of the write. 1482 */ 1483 if (new) { 1484 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1485 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1486 /* 1487 * We need the index *past* the last page we could possibly 1488 * touch. This is the page past the end of the write or 1489 * i_size, whichever is greater. 1490 */ 1491 last_byte = max(user_pos + user_len, i_size_read(inode)); 1492 BUG_ON(last_byte < 1); 1493 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1; 1494 if ((start + wc->w_num_pages) > end_index) 1495 wc->w_num_pages = end_index - start; 1496 } else { 1497 wc->w_num_pages = 1; 1498 start = target_index; 1499 } 1500 1501 for(i = 0; i < wc->w_num_pages; i++) { 1502 index = start + i; 1503 1504 if (index == target_index && mmap_page) { 1505 /* 1506 * ocfs2_pagemkwrite() is a little different 1507 * and wants us to directly use the page 1508 * passed in. 1509 */ 1510 lock_page(mmap_page); 1511 1512 /* Exit and let the caller retry */ 1513 if (mmap_page->mapping != mapping) { 1514 WARN_ON(mmap_page->mapping); 1515 unlock_page(mmap_page); 1516 ret = -EAGAIN; 1517 goto out; 1518 } 1519 1520 page_cache_get(mmap_page); 1521 wc->w_pages[i] = mmap_page; 1522 wc->w_target_locked = true; 1523 } else { 1524 wc->w_pages[i] = find_or_create_page(mapping, index, 1525 GFP_NOFS); 1526 if (!wc->w_pages[i]) { 1527 ret = -ENOMEM; 1528 mlog_errno(ret); 1529 goto out; 1530 } 1531 } 1532 wait_for_stable_page(wc->w_pages[i]); 1533 1534 if (index == target_index) 1535 wc->w_target_page = wc->w_pages[i]; 1536 } 1537 out: 1538 if (ret) 1539 wc->w_target_locked = false; 1540 return ret; 1541 } 1542 1543 /* 1544 * Prepare a single cluster for write one cluster into the file. 1545 */ 1546 static int ocfs2_write_cluster(struct address_space *mapping, 1547 u32 phys, unsigned int unwritten, 1548 unsigned int should_zero, 1549 struct ocfs2_alloc_context *data_ac, 1550 struct ocfs2_alloc_context *meta_ac, 1551 struct ocfs2_write_ctxt *wc, u32 cpos, 1552 loff_t user_pos, unsigned user_len) 1553 { 1554 int ret, i, new; 1555 u64 v_blkno, p_blkno; 1556 struct inode *inode = mapping->host; 1557 struct ocfs2_extent_tree et; 1558 1559 new = phys == 0 ? 1 : 0; 1560 if (new) { 1561 u32 tmp_pos; 1562 1563 /* 1564 * This is safe to call with the page locks - it won't take 1565 * any additional semaphores or cluster locks. 1566 */ 1567 tmp_pos = cpos; 1568 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1569 &tmp_pos, 1, 0, wc->w_di_bh, 1570 wc->w_handle, data_ac, 1571 meta_ac, NULL); 1572 /* 1573 * This shouldn't happen because we must have already 1574 * calculated the correct meta data allocation required. The 1575 * internal tree allocation code should know how to increase 1576 * transaction credits itself. 1577 * 1578 * If need be, we could handle -EAGAIN for a 1579 * RESTART_TRANS here. 1580 */ 1581 mlog_bug_on_msg(ret == -EAGAIN, 1582 "Inode %llu: EAGAIN return during allocation.\n", 1583 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1584 if (ret < 0) { 1585 mlog_errno(ret); 1586 goto out; 1587 } 1588 } else if (unwritten) { 1589 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1590 wc->w_di_bh); 1591 ret = ocfs2_mark_extent_written(inode, &et, 1592 wc->w_handle, cpos, 1, phys, 1593 meta_ac, &wc->w_dealloc); 1594 if (ret < 0) { 1595 mlog_errno(ret); 1596 goto out; 1597 } 1598 } 1599 1600 if (should_zero) 1601 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); 1602 else 1603 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; 1604 1605 /* 1606 * The only reason this should fail is due to an inability to 1607 * find the extent added. 1608 */ 1609 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, 1610 NULL); 1611 if (ret < 0) { 1612 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1613 "at logical block %llu", 1614 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1615 (unsigned long long)v_blkno); 1616 goto out; 1617 } 1618 1619 BUG_ON(p_blkno == 0); 1620 1621 for(i = 0; i < wc->w_num_pages; i++) { 1622 int tmpret; 1623 1624 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1625 wc->w_pages[i], cpos, 1626 user_pos, user_len, 1627 should_zero); 1628 if (tmpret) { 1629 mlog_errno(tmpret); 1630 if (ret == 0) 1631 ret = tmpret; 1632 } 1633 } 1634 1635 /* 1636 * We only have cleanup to do in case of allocating write. 1637 */ 1638 if (ret && new) 1639 ocfs2_write_failure(inode, wc, user_pos, user_len); 1640 1641 out: 1642 1643 return ret; 1644 } 1645 1646 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1647 struct ocfs2_alloc_context *data_ac, 1648 struct ocfs2_alloc_context *meta_ac, 1649 struct ocfs2_write_ctxt *wc, 1650 loff_t pos, unsigned len) 1651 { 1652 int ret, i; 1653 loff_t cluster_off; 1654 unsigned int local_len = len; 1655 struct ocfs2_write_cluster_desc *desc; 1656 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1657 1658 for (i = 0; i < wc->w_clen; i++) { 1659 desc = &wc->w_desc[i]; 1660 1661 /* 1662 * We have to make sure that the total write passed in 1663 * doesn't extend past a single cluster. 1664 */ 1665 local_len = len; 1666 cluster_off = pos & (osb->s_clustersize - 1); 1667 if ((cluster_off + local_len) > osb->s_clustersize) 1668 local_len = osb->s_clustersize - cluster_off; 1669 1670 ret = ocfs2_write_cluster(mapping, desc->c_phys, 1671 desc->c_unwritten, 1672 desc->c_needs_zero, 1673 data_ac, meta_ac, 1674 wc, desc->c_cpos, pos, local_len); 1675 if (ret) { 1676 mlog_errno(ret); 1677 goto out; 1678 } 1679 1680 len -= local_len; 1681 pos += local_len; 1682 } 1683 1684 ret = 0; 1685 out: 1686 return ret; 1687 } 1688 1689 /* 1690 * ocfs2_write_end() wants to know which parts of the target page it 1691 * should complete the write on. It's easiest to compute them ahead of 1692 * time when a more complete view of the write is available. 1693 */ 1694 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1695 struct ocfs2_write_ctxt *wc, 1696 loff_t pos, unsigned len, int alloc) 1697 { 1698 struct ocfs2_write_cluster_desc *desc; 1699 1700 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); 1701 wc->w_target_to = wc->w_target_from + len; 1702 1703 if (alloc == 0) 1704 return; 1705 1706 /* 1707 * Allocating write - we may have different boundaries based 1708 * on page size and cluster size. 1709 * 1710 * NOTE: We can no longer compute one value from the other as 1711 * the actual write length and user provided length may be 1712 * different. 1713 */ 1714 1715 if (wc->w_large_pages) { 1716 /* 1717 * We only care about the 1st and last cluster within 1718 * our range and whether they should be zero'd or not. Either 1719 * value may be extended out to the start/end of a 1720 * newly allocated cluster. 1721 */ 1722 desc = &wc->w_desc[0]; 1723 if (desc->c_needs_zero) 1724 ocfs2_figure_cluster_boundaries(osb, 1725 desc->c_cpos, 1726 &wc->w_target_from, 1727 NULL); 1728 1729 desc = &wc->w_desc[wc->w_clen - 1]; 1730 if (desc->c_needs_zero) 1731 ocfs2_figure_cluster_boundaries(osb, 1732 desc->c_cpos, 1733 NULL, 1734 &wc->w_target_to); 1735 } else { 1736 wc->w_target_from = 0; 1737 wc->w_target_to = PAGE_CACHE_SIZE; 1738 } 1739 } 1740 1741 /* 1742 * Populate each single-cluster write descriptor in the write context 1743 * with information about the i/o to be done. 1744 * 1745 * Returns the number of clusters that will have to be allocated, as 1746 * well as a worst case estimate of the number of extent records that 1747 * would have to be created during a write to an unwritten region. 1748 */ 1749 static int ocfs2_populate_write_desc(struct inode *inode, 1750 struct ocfs2_write_ctxt *wc, 1751 unsigned int *clusters_to_alloc, 1752 unsigned int *extents_to_split) 1753 { 1754 int ret; 1755 struct ocfs2_write_cluster_desc *desc; 1756 unsigned int num_clusters = 0; 1757 unsigned int ext_flags = 0; 1758 u32 phys = 0; 1759 int i; 1760 1761 *clusters_to_alloc = 0; 1762 *extents_to_split = 0; 1763 1764 for (i = 0; i < wc->w_clen; i++) { 1765 desc = &wc->w_desc[i]; 1766 desc->c_cpos = wc->w_cpos + i; 1767 1768 if (num_clusters == 0) { 1769 /* 1770 * Need to look up the next extent record. 1771 */ 1772 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1773 &num_clusters, &ext_flags); 1774 if (ret) { 1775 mlog_errno(ret); 1776 goto out; 1777 } 1778 1779 /* We should already CoW the refcountd extent. */ 1780 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1781 1782 /* 1783 * Assume worst case - that we're writing in 1784 * the middle of the extent. 1785 * 1786 * We can assume that the write proceeds from 1787 * left to right, in which case the extent 1788 * insert code is smart enough to coalesce the 1789 * next splits into the previous records created. 1790 */ 1791 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1792 *extents_to_split = *extents_to_split + 2; 1793 } else if (phys) { 1794 /* 1795 * Only increment phys if it doesn't describe 1796 * a hole. 1797 */ 1798 phys++; 1799 } 1800 1801 /* 1802 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1803 * file that got extended. w_first_new_cpos tells us 1804 * where the newly allocated clusters are so we can 1805 * zero them. 1806 */ 1807 if (desc->c_cpos >= wc->w_first_new_cpos) { 1808 BUG_ON(phys == 0); 1809 desc->c_needs_zero = 1; 1810 } 1811 1812 desc->c_phys = phys; 1813 if (phys == 0) { 1814 desc->c_new = 1; 1815 desc->c_needs_zero = 1; 1816 *clusters_to_alloc = *clusters_to_alloc + 1; 1817 } 1818 1819 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1820 desc->c_unwritten = 1; 1821 desc->c_needs_zero = 1; 1822 } 1823 1824 num_clusters--; 1825 } 1826 1827 ret = 0; 1828 out: 1829 return ret; 1830 } 1831 1832 static int ocfs2_write_begin_inline(struct address_space *mapping, 1833 struct inode *inode, 1834 struct ocfs2_write_ctxt *wc) 1835 { 1836 int ret; 1837 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1838 struct page *page; 1839 handle_t *handle; 1840 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1841 1842 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1843 if (IS_ERR(handle)) { 1844 ret = PTR_ERR(handle); 1845 mlog_errno(ret); 1846 goto out; 1847 } 1848 1849 page = find_or_create_page(mapping, 0, GFP_NOFS); 1850 if (!page) { 1851 ocfs2_commit_trans(osb, handle); 1852 ret = -ENOMEM; 1853 mlog_errno(ret); 1854 goto out; 1855 } 1856 /* 1857 * If we don't set w_num_pages then this page won't get unlocked 1858 * and freed on cleanup of the write context. 1859 */ 1860 wc->w_pages[0] = wc->w_target_page = page; 1861 wc->w_num_pages = 1; 1862 1863 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1864 OCFS2_JOURNAL_ACCESS_WRITE); 1865 if (ret) { 1866 ocfs2_commit_trans(osb, handle); 1867 1868 mlog_errno(ret); 1869 goto out; 1870 } 1871 1872 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1873 ocfs2_set_inode_data_inline(inode, di); 1874 1875 if (!PageUptodate(page)) { 1876 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1877 if (ret) { 1878 ocfs2_commit_trans(osb, handle); 1879 1880 goto out; 1881 } 1882 } 1883 1884 wc->w_handle = handle; 1885 out: 1886 return ret; 1887 } 1888 1889 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1890 { 1891 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1892 1893 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1894 return 1; 1895 return 0; 1896 } 1897 1898 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1899 struct inode *inode, loff_t pos, 1900 unsigned len, struct page *mmap_page, 1901 struct ocfs2_write_ctxt *wc) 1902 { 1903 int ret, written = 0; 1904 loff_t end = pos + len; 1905 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1906 struct ocfs2_dinode *di = NULL; 1907 1908 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1909 len, (unsigned long long)pos, 1910 oi->ip_dyn_features); 1911 1912 /* 1913 * Handle inodes which already have inline data 1st. 1914 */ 1915 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1916 if (mmap_page == NULL && 1917 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1918 goto do_inline_write; 1919 1920 /* 1921 * The write won't fit - we have to give this inode an 1922 * inline extent list now. 1923 */ 1924 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1925 if (ret) 1926 mlog_errno(ret); 1927 goto out; 1928 } 1929 1930 /* 1931 * Check whether the inode can accept inline data. 1932 */ 1933 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1934 return 0; 1935 1936 /* 1937 * Check whether the write can fit. 1938 */ 1939 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1940 if (mmap_page || 1941 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1942 return 0; 1943 1944 do_inline_write: 1945 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1946 if (ret) { 1947 mlog_errno(ret); 1948 goto out; 1949 } 1950 1951 /* 1952 * This signals to the caller that the data can be written 1953 * inline. 1954 */ 1955 written = 1; 1956 out: 1957 return written ? written : ret; 1958 } 1959 1960 /* 1961 * This function only does anything for file systems which can't 1962 * handle sparse files. 1963 * 1964 * What we want to do here is fill in any hole between the current end 1965 * of allocation and the end of our write. That way the rest of the 1966 * write path can treat it as an non-allocating write, which has no 1967 * special case code for sparse/nonsparse files. 1968 */ 1969 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1970 struct buffer_head *di_bh, 1971 loff_t pos, unsigned len, 1972 struct ocfs2_write_ctxt *wc) 1973 { 1974 int ret; 1975 loff_t newsize = pos + len; 1976 1977 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1978 1979 if (newsize <= i_size_read(inode)) 1980 return 0; 1981 1982 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1983 if (ret) 1984 mlog_errno(ret); 1985 1986 wc->w_first_new_cpos = 1987 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1988 1989 return ret; 1990 } 1991 1992 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1993 loff_t pos) 1994 { 1995 int ret = 0; 1996 1997 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1998 if (pos > i_size_read(inode)) 1999 ret = ocfs2_zero_extend(inode, di_bh, pos); 2000 2001 return ret; 2002 } 2003 2004 /* 2005 * Try to flush truncate logs if we can free enough clusters from it. 2006 * As for return value, "< 0" means error, "0" no space and "1" means 2007 * we have freed enough spaces and let the caller try to allocate again. 2008 */ 2009 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 2010 unsigned int needed) 2011 { 2012 tid_t target; 2013 int ret = 0; 2014 unsigned int truncated_clusters; 2015 2016 mutex_lock(&osb->osb_tl_inode->i_mutex); 2017 truncated_clusters = osb->truncated_clusters; 2018 mutex_unlock(&osb->osb_tl_inode->i_mutex); 2019 2020 /* 2021 * Check whether we can succeed in allocating if we free 2022 * the truncate log. 2023 */ 2024 if (truncated_clusters < needed) 2025 goto out; 2026 2027 ret = ocfs2_flush_truncate_log(osb); 2028 if (ret) { 2029 mlog_errno(ret); 2030 goto out; 2031 } 2032 2033 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 2034 jbd2_log_wait_commit(osb->journal->j_journal, target); 2035 ret = 1; 2036 } 2037 out: 2038 return ret; 2039 } 2040 2041 int ocfs2_write_begin_nolock(struct file *filp, 2042 struct address_space *mapping, 2043 loff_t pos, unsigned len, unsigned flags, 2044 struct page **pagep, void **fsdata, 2045 struct buffer_head *di_bh, struct page *mmap_page) 2046 { 2047 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 2048 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 2049 struct ocfs2_write_ctxt *wc; 2050 struct inode *inode = mapping->host; 2051 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2052 struct ocfs2_dinode *di; 2053 struct ocfs2_alloc_context *data_ac = NULL; 2054 struct ocfs2_alloc_context *meta_ac = NULL; 2055 handle_t *handle; 2056 struct ocfs2_extent_tree et; 2057 int try_free = 1, ret1; 2058 2059 try_again: 2060 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); 2061 if (ret) { 2062 mlog_errno(ret); 2063 return ret; 2064 } 2065 2066 if (ocfs2_supports_inline_data(osb)) { 2067 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 2068 mmap_page, wc); 2069 if (ret == 1) { 2070 ret = 0; 2071 goto success; 2072 } 2073 if (ret < 0) { 2074 mlog_errno(ret); 2075 goto out; 2076 } 2077 } 2078 2079 if (ocfs2_sparse_alloc(osb)) 2080 ret = ocfs2_zero_tail(inode, di_bh, pos); 2081 else 2082 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len, 2083 wc); 2084 if (ret) { 2085 mlog_errno(ret); 2086 goto out; 2087 } 2088 2089 ret = ocfs2_check_range_for_refcount(inode, pos, len); 2090 if (ret < 0) { 2091 mlog_errno(ret); 2092 goto out; 2093 } else if (ret == 1) { 2094 clusters_need = wc->w_clen; 2095 ret = ocfs2_refcount_cow(inode, di_bh, 2096 wc->w_cpos, wc->w_clen, UINT_MAX); 2097 if (ret) { 2098 mlog_errno(ret); 2099 goto out; 2100 } 2101 } 2102 2103 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 2104 &extents_to_split); 2105 if (ret) { 2106 mlog_errno(ret); 2107 goto out; 2108 } 2109 clusters_need += clusters_to_alloc; 2110 2111 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 2112 2113 trace_ocfs2_write_begin_nolock( 2114 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2115 (long long)i_size_read(inode), 2116 le32_to_cpu(di->i_clusters), 2117 pos, len, flags, mmap_page, 2118 clusters_to_alloc, extents_to_split); 2119 2120 /* 2121 * We set w_target_from, w_target_to here so that 2122 * ocfs2_write_end() knows which range in the target page to 2123 * write out. An allocation requires that we write the entire 2124 * cluster range. 2125 */ 2126 if (clusters_to_alloc || extents_to_split) { 2127 /* 2128 * XXX: We are stretching the limits of 2129 * ocfs2_lock_allocators(). It greatly over-estimates 2130 * the work to be done. 2131 */ 2132 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 2133 wc->w_di_bh); 2134 ret = ocfs2_lock_allocators(inode, &et, 2135 clusters_to_alloc, extents_to_split, 2136 &data_ac, &meta_ac); 2137 if (ret) { 2138 mlog_errno(ret); 2139 goto out; 2140 } 2141 2142 if (data_ac) 2143 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 2144 2145 credits = ocfs2_calc_extend_credits(inode->i_sb, 2146 &di->id2.i_list); 2147 2148 } 2149 2150 /* 2151 * We have to zero sparse allocated clusters, unwritten extent clusters, 2152 * and non-sparse clusters we just extended. For non-sparse writes, 2153 * we know zeros will only be needed in the first and/or last cluster. 2154 */ 2155 if (clusters_to_alloc || extents_to_split || 2156 (wc->w_clen && (wc->w_desc[0].c_needs_zero || 2157 wc->w_desc[wc->w_clen - 1].c_needs_zero))) 2158 cluster_of_pages = 1; 2159 else 2160 cluster_of_pages = 0; 2161 2162 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 2163 2164 handle = ocfs2_start_trans(osb, credits); 2165 if (IS_ERR(handle)) { 2166 ret = PTR_ERR(handle); 2167 mlog_errno(ret); 2168 goto out; 2169 } 2170 2171 wc->w_handle = handle; 2172 2173 if (clusters_to_alloc) { 2174 ret = dquot_alloc_space_nodirty(inode, 2175 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 2176 if (ret) 2177 goto out_commit; 2178 } 2179 /* 2180 * We don't want this to fail in ocfs2_write_end(), so do it 2181 * here. 2182 */ 2183 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 2184 OCFS2_JOURNAL_ACCESS_WRITE); 2185 if (ret) { 2186 mlog_errno(ret); 2187 goto out_quota; 2188 } 2189 2190 /* 2191 * Fill our page array first. That way we've grabbed enough so 2192 * that we can zero and flush if we error after adding the 2193 * extent. 2194 */ 2195 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 2196 cluster_of_pages, mmap_page); 2197 if (ret && ret != -EAGAIN) { 2198 mlog_errno(ret); 2199 goto out_quota; 2200 } 2201 2202 /* 2203 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 2204 * the target page. In this case, we exit with no error and no target 2205 * page. This will trigger the caller, page_mkwrite(), to re-try 2206 * the operation. 2207 */ 2208 if (ret == -EAGAIN) { 2209 BUG_ON(wc->w_target_page); 2210 ret = 0; 2211 goto out_quota; 2212 } 2213 2214 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 2215 len); 2216 if (ret) { 2217 mlog_errno(ret); 2218 goto out_quota; 2219 } 2220 2221 if (data_ac) 2222 ocfs2_free_alloc_context(data_ac); 2223 if (meta_ac) 2224 ocfs2_free_alloc_context(meta_ac); 2225 2226 success: 2227 *pagep = wc->w_target_page; 2228 *fsdata = wc; 2229 return 0; 2230 out_quota: 2231 if (clusters_to_alloc) 2232 dquot_free_space(inode, 2233 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 2234 out_commit: 2235 ocfs2_commit_trans(osb, handle); 2236 2237 out: 2238 ocfs2_free_write_ctxt(wc); 2239 2240 if (data_ac) { 2241 ocfs2_free_alloc_context(data_ac); 2242 data_ac = NULL; 2243 } 2244 if (meta_ac) { 2245 ocfs2_free_alloc_context(meta_ac); 2246 meta_ac = NULL; 2247 } 2248 2249 if (ret == -ENOSPC && try_free) { 2250 /* 2251 * Try to free some truncate log so that we can have enough 2252 * clusters to allocate. 2253 */ 2254 try_free = 0; 2255 2256 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 2257 if (ret1 == 1) 2258 goto try_again; 2259 2260 if (ret1 < 0) 2261 mlog_errno(ret1); 2262 } 2263 2264 return ret; 2265 } 2266 2267 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 2268 loff_t pos, unsigned len, unsigned flags, 2269 struct page **pagep, void **fsdata) 2270 { 2271 int ret; 2272 struct buffer_head *di_bh = NULL; 2273 struct inode *inode = mapping->host; 2274 2275 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2276 if (ret) { 2277 mlog_errno(ret); 2278 return ret; 2279 } 2280 2281 /* 2282 * Take alloc sem here to prevent concurrent lookups. That way 2283 * the mapping, zeroing and tree manipulation within 2284 * ocfs2_write() will be safe against ->readpage(). This 2285 * should also serve to lock out allocation from a shared 2286 * writeable region. 2287 */ 2288 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2289 2290 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep, 2291 fsdata, di_bh, NULL); 2292 if (ret) { 2293 mlog_errno(ret); 2294 goto out_fail; 2295 } 2296 2297 brelse(di_bh); 2298 2299 return 0; 2300 2301 out_fail: 2302 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2303 2304 brelse(di_bh); 2305 ocfs2_inode_unlock(inode, 1); 2306 2307 return ret; 2308 } 2309 2310 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 2311 unsigned len, unsigned *copied, 2312 struct ocfs2_dinode *di, 2313 struct ocfs2_write_ctxt *wc) 2314 { 2315 void *kaddr; 2316 2317 if (unlikely(*copied < len)) { 2318 if (!PageUptodate(wc->w_target_page)) { 2319 *copied = 0; 2320 return; 2321 } 2322 } 2323 2324 kaddr = kmap_atomic(wc->w_target_page); 2325 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 2326 kunmap_atomic(kaddr); 2327 2328 trace_ocfs2_write_end_inline( 2329 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2330 (unsigned long long)pos, *copied, 2331 le16_to_cpu(di->id2.i_data.id_count), 2332 le16_to_cpu(di->i_dyn_features)); 2333 } 2334 2335 int ocfs2_write_end_nolock(struct address_space *mapping, 2336 loff_t pos, unsigned len, unsigned copied, 2337 struct page *page, void *fsdata) 2338 { 2339 int i; 2340 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); 2341 struct inode *inode = mapping->host; 2342 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2343 struct ocfs2_write_ctxt *wc = fsdata; 2344 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 2345 handle_t *handle = wc->w_handle; 2346 struct page *tmppage; 2347 2348 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2349 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 2350 goto out_write_size; 2351 } 2352 2353 if (unlikely(copied < len)) { 2354 if (!PageUptodate(wc->w_target_page)) 2355 copied = 0; 2356 2357 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 2358 start+len); 2359 } 2360 flush_dcache_page(wc->w_target_page); 2361 2362 for(i = 0; i < wc->w_num_pages; i++) { 2363 tmppage = wc->w_pages[i]; 2364 2365 if (tmppage == wc->w_target_page) { 2366 from = wc->w_target_from; 2367 to = wc->w_target_to; 2368 2369 BUG_ON(from > PAGE_CACHE_SIZE || 2370 to > PAGE_CACHE_SIZE || 2371 to < from); 2372 } else { 2373 /* 2374 * Pages adjacent to the target (if any) imply 2375 * a hole-filling write in which case we want 2376 * to flush their entire range. 2377 */ 2378 from = 0; 2379 to = PAGE_CACHE_SIZE; 2380 } 2381 2382 if (page_has_buffers(tmppage)) { 2383 if (ocfs2_should_order_data(inode)) 2384 ocfs2_jbd2_file_inode(wc->w_handle, inode); 2385 block_commit_write(tmppage, from, to); 2386 } 2387 } 2388 2389 out_write_size: 2390 pos += copied; 2391 if (pos > i_size_read(inode)) { 2392 i_size_write(inode, pos); 2393 mark_inode_dirty(inode); 2394 } 2395 inode->i_blocks = ocfs2_inode_sector_count(inode); 2396 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2397 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2398 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2399 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2400 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2401 ocfs2_journal_dirty(handle, wc->w_di_bh); 2402 2403 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2404 * lock, or it will cause a deadlock since journal commit threads holds 2405 * this lock and will ask for the page lock when flushing the data. 2406 * put it here to preserve the unlock order. 2407 */ 2408 ocfs2_unlock_pages(wc); 2409 2410 ocfs2_commit_trans(osb, handle); 2411 2412 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2413 2414 brelse(wc->w_di_bh); 2415 kfree(wc); 2416 2417 return copied; 2418 } 2419 2420 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2421 loff_t pos, unsigned len, unsigned copied, 2422 struct page *page, void *fsdata) 2423 { 2424 int ret; 2425 struct inode *inode = mapping->host; 2426 2427 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 2428 2429 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2430 ocfs2_inode_unlock(inode, 1); 2431 2432 return ret; 2433 } 2434 2435 const struct address_space_operations ocfs2_aops = { 2436 .readpage = ocfs2_readpage, 2437 .readpages = ocfs2_readpages, 2438 .writepage = ocfs2_writepage, 2439 .write_begin = ocfs2_write_begin, 2440 .write_end = ocfs2_write_end, 2441 .bmap = ocfs2_bmap, 2442 .direct_IO = ocfs2_direct_IO, 2443 .invalidatepage = block_invalidatepage, 2444 .releasepage = ocfs2_releasepage, 2445 .migratepage = buffer_migrate_page, 2446 .is_partially_uptodate = block_is_partially_uptodate, 2447 .error_remove_page = generic_error_remove_page, 2448 }; 2449