xref: /openbmc/linux/fs/ocfs2/aops.c (revision 92ed1a76)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
48 
49 #include "buffer_head_io.h"
50 
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 				   struct buffer_head *bh_result, int create)
53 {
54 	int err = -EIO;
55 	int status;
56 	struct ocfs2_dinode *fe = NULL;
57 	struct buffer_head *bh = NULL;
58 	struct buffer_head *buffer_cache_bh = NULL;
59 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 	void *kaddr;
61 
62 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63 		   (unsigned long long)iblock, bh_result, create);
64 
65 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66 
67 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69 		     (unsigned long long)iblock);
70 		goto bail;
71 	}
72 
73 	status = ocfs2_read_inode_block(inode, &bh);
74 	if (status < 0) {
75 		mlog_errno(status);
76 		goto bail;
77 	}
78 	fe = (struct ocfs2_dinode *) bh->b_data;
79 
80 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81 						    le32_to_cpu(fe->i_clusters))) {
82 		mlog(ML_ERROR, "block offset is outside the allocated size: "
83 		     "%llu\n", (unsigned long long)iblock);
84 		goto bail;
85 	}
86 
87 	/* We don't use the page cache to create symlink data, so if
88 	 * need be, copy it over from the buffer cache. */
89 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91 			    iblock;
92 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
93 		if (!buffer_cache_bh) {
94 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95 			goto bail;
96 		}
97 
98 		/* we haven't locked out transactions, so a commit
99 		 * could've happened. Since we've got a reference on
100 		 * the bh, even if it commits while we're doing the
101 		 * copy, the data is still good. */
102 		if (buffer_jbd(buffer_cache_bh)
103 		    && ocfs2_inode_is_new(inode)) {
104 			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105 			if (!kaddr) {
106 				mlog(ML_ERROR, "couldn't kmap!\n");
107 				goto bail;
108 			}
109 			memcpy(kaddr + (bh_result->b_size * iblock),
110 			       buffer_cache_bh->b_data,
111 			       bh_result->b_size);
112 			kunmap_atomic(kaddr, KM_USER0);
113 			set_buffer_uptodate(bh_result);
114 		}
115 		brelse(buffer_cache_bh);
116 	}
117 
118 	map_bh(bh_result, inode->i_sb,
119 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
120 
121 	err = 0;
122 
123 bail:
124 	brelse(bh);
125 
126 	mlog_exit(err);
127 	return err;
128 }
129 
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 		    struct buffer_head *bh_result, int create)
132 {
133 	int err = 0;
134 	unsigned int ext_flags;
135 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 	u64 p_blkno, count, past_eof;
137 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138 
139 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140 		   (unsigned long long)iblock, bh_result, create);
141 
142 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 		     inode, inode->i_ino);
145 
146 	if (S_ISLNK(inode->i_mode)) {
147 		/* this always does I/O for some reason. */
148 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 		goto bail;
150 	}
151 
152 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 					  &ext_flags);
154 	if (err) {
155 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 		     (unsigned long long)p_blkno);
158 		goto bail;
159 	}
160 
161 	if (max_blocks < count)
162 		count = max_blocks;
163 
164 	/*
165 	 * ocfs2 never allocates in this function - the only time we
166 	 * need to use BH_New is when we're extending i_size on a file
167 	 * system which doesn't support holes, in which case BH_New
168 	 * allows __block_write_begin() to zero.
169 	 *
170 	 * If we see this on a sparse file system, then a truncate has
171 	 * raced us and removed the cluster. In this case, we clear
172 	 * the buffers dirty and uptodate bits and let the buffer code
173 	 * ignore it as a hole.
174 	 */
175 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 		clear_buffer_dirty(bh_result);
177 		clear_buffer_uptodate(bh_result);
178 		goto bail;
179 	}
180 
181 	/* Treat the unwritten extent as a hole for zeroing purposes. */
182 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 		map_bh(bh_result, inode->i_sb, p_blkno);
184 
185 	bh_result->b_size = count << inode->i_blkbits;
186 
187 	if (!ocfs2_sparse_alloc(osb)) {
188 		if (p_blkno == 0) {
189 			err = -EIO;
190 			mlog(ML_ERROR,
191 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 			     (unsigned long long)iblock,
193 			     (unsigned long long)p_blkno,
194 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 			dump_stack();
197 			goto bail;
198 		}
199 	}
200 
201 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202 	mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
203 	     (unsigned long long)past_eof);
204 	if (create && (iblock >= past_eof))
205 		set_buffer_new(bh_result);
206 
207 bail:
208 	if (err < 0)
209 		err = -EIO;
210 
211 	mlog_exit(err);
212 	return err;
213 }
214 
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 			   struct buffer_head *di_bh)
217 {
218 	void *kaddr;
219 	loff_t size;
220 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221 
222 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 		return -EROFS;
226 	}
227 
228 	size = i_size_read(inode);
229 
230 	if (size > PAGE_CACHE_SIZE ||
231 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 		ocfs2_error(inode->i_sb,
233 			    "Inode %llu has with inline data has bad size: %Lu",
234 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 			    (unsigned long long)size);
236 		return -EROFS;
237 	}
238 
239 	kaddr = kmap_atomic(page, KM_USER0);
240 	if (size)
241 		memcpy(kaddr, di->id2.i_data.id_data, size);
242 	/* Clear the remaining part of the page */
243 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 	flush_dcache_page(page);
245 	kunmap_atomic(kaddr, KM_USER0);
246 
247 	SetPageUptodate(page);
248 
249 	return 0;
250 }
251 
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253 {
254 	int ret;
255 	struct buffer_head *di_bh = NULL;
256 
257 	BUG_ON(!PageLocked(page));
258 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259 
260 	ret = ocfs2_read_inode_block(inode, &di_bh);
261 	if (ret) {
262 		mlog_errno(ret);
263 		goto out;
264 	}
265 
266 	ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268 	unlock_page(page);
269 
270 	brelse(di_bh);
271 	return ret;
272 }
273 
274 static int ocfs2_readpage(struct file *file, struct page *page)
275 {
276 	struct inode *inode = page->mapping->host;
277 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 	int ret, unlock = 1;
280 
281 	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
282 
283 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
284 	if (ret != 0) {
285 		if (ret == AOP_TRUNCATED_PAGE)
286 			unlock = 0;
287 		mlog_errno(ret);
288 		goto out;
289 	}
290 
291 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
292 		ret = AOP_TRUNCATED_PAGE;
293 		goto out_inode_unlock;
294 	}
295 
296 	/*
297 	 * i_size might have just been updated as we grabed the meta lock.  We
298 	 * might now be discovering a truncate that hit on another node.
299 	 * block_read_full_page->get_block freaks out if it is asked to read
300 	 * beyond the end of a file, so we check here.  Callers
301 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
302 	 * and notice that the page they just read isn't needed.
303 	 *
304 	 * XXX sys_readahead() seems to get that wrong?
305 	 */
306 	if (start >= i_size_read(inode)) {
307 		zero_user(page, 0, PAGE_SIZE);
308 		SetPageUptodate(page);
309 		ret = 0;
310 		goto out_alloc;
311 	}
312 
313 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
314 		ret = ocfs2_readpage_inline(inode, page);
315 	else
316 		ret = block_read_full_page(page, ocfs2_get_block);
317 	unlock = 0;
318 
319 out_alloc:
320 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
321 out_inode_unlock:
322 	ocfs2_inode_unlock(inode, 0);
323 out:
324 	if (unlock)
325 		unlock_page(page);
326 	mlog_exit(ret);
327 	return ret;
328 }
329 
330 /*
331  * This is used only for read-ahead. Failures or difficult to handle
332  * situations are safe to ignore.
333  *
334  * Right now, we don't bother with BH_Boundary - in-inode extent lists
335  * are quite large (243 extents on 4k blocks), so most inodes don't
336  * grow out to a tree. If need be, detecting boundary extents could
337  * trivially be added in a future version of ocfs2_get_block().
338  */
339 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 			   struct list_head *pages, unsigned nr_pages)
341 {
342 	int ret, err = -EIO;
343 	struct inode *inode = mapping->host;
344 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 	loff_t start;
346 	struct page *last;
347 
348 	/*
349 	 * Use the nonblocking flag for the dlm code to avoid page
350 	 * lock inversion, but don't bother with retrying.
351 	 */
352 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 	if (ret)
354 		return err;
355 
356 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 		ocfs2_inode_unlock(inode, 0);
358 		return err;
359 	}
360 
361 	/*
362 	 * Don't bother with inline-data. There isn't anything
363 	 * to read-ahead in that case anyway...
364 	 */
365 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 		goto out_unlock;
367 
368 	/*
369 	 * Check whether a remote node truncated this file - we just
370 	 * drop out in that case as it's not worth handling here.
371 	 */
372 	last = list_entry(pages->prev, struct page, lru);
373 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 	if (start >= i_size_read(inode))
375 		goto out_unlock;
376 
377 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378 
379 out_unlock:
380 	up_read(&oi->ip_alloc_sem);
381 	ocfs2_inode_unlock(inode, 0);
382 
383 	return err;
384 }
385 
386 /* Note: Because we don't support holes, our allocation has
387  * already happened (allocation writes zeros to the file data)
388  * so we don't have to worry about ordered writes in
389  * ocfs2_writepage.
390  *
391  * ->writepage is called during the process of invalidating the page cache
392  * during blocked lock processing.  It can't block on any cluster locks
393  * to during block mapping.  It's relying on the fact that the block
394  * mapping can't have disappeared under the dirty pages that it is
395  * being asked to write back.
396  */
397 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398 {
399 	int ret;
400 
401 	mlog_entry("(0x%p)\n", page);
402 
403 	ret = block_write_full_page(page, ocfs2_get_block, wbc);
404 
405 	mlog_exit(ret);
406 
407 	return ret;
408 }
409 
410 /* Taken from ext3. We don't necessarily need the full blown
411  * functionality yet, but IMHO it's better to cut and paste the whole
412  * thing so we can avoid introducing our own bugs (and easily pick up
413  * their fixes when they happen) --Mark */
414 int walk_page_buffers(	handle_t *handle,
415 			struct buffer_head *head,
416 			unsigned from,
417 			unsigned to,
418 			int *partial,
419 			int (*fn)(	handle_t *handle,
420 					struct buffer_head *bh))
421 {
422 	struct buffer_head *bh;
423 	unsigned block_start, block_end;
424 	unsigned blocksize = head->b_size;
425 	int err, ret = 0;
426 	struct buffer_head *next;
427 
428 	for (	bh = head, block_start = 0;
429 		ret == 0 && (bh != head || !block_start);
430 	    	block_start = block_end, bh = next)
431 	{
432 		next = bh->b_this_page;
433 		block_end = block_start + blocksize;
434 		if (block_end <= from || block_start >= to) {
435 			if (partial && !buffer_uptodate(bh))
436 				*partial = 1;
437 			continue;
438 		}
439 		err = (*fn)(handle, bh);
440 		if (!ret)
441 			ret = err;
442 	}
443 	return ret;
444 }
445 
446 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
447 {
448 	sector_t status;
449 	u64 p_blkno = 0;
450 	int err = 0;
451 	struct inode *inode = mapping->host;
452 
453 	mlog_entry("(block = %llu)\n", (unsigned long long)block);
454 
455 	/* We don't need to lock journal system files, since they aren't
456 	 * accessed concurrently from multiple nodes.
457 	 */
458 	if (!INODE_JOURNAL(inode)) {
459 		err = ocfs2_inode_lock(inode, NULL, 0);
460 		if (err) {
461 			if (err != -ENOENT)
462 				mlog_errno(err);
463 			goto bail;
464 		}
465 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
466 	}
467 
468 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
469 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
470 						  NULL);
471 
472 	if (!INODE_JOURNAL(inode)) {
473 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
474 		ocfs2_inode_unlock(inode, 0);
475 	}
476 
477 	if (err) {
478 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
479 		     (unsigned long long)block);
480 		mlog_errno(err);
481 		goto bail;
482 	}
483 
484 bail:
485 	status = err ? 0 : p_blkno;
486 
487 	mlog_exit((int)status);
488 
489 	return status;
490 }
491 
492 /*
493  * TODO: Make this into a generic get_blocks function.
494  *
495  * From do_direct_io in direct-io.c:
496  *  "So what we do is to permit the ->get_blocks function to populate
497  *   bh.b_size with the size of IO which is permitted at this offset and
498  *   this i_blkbits."
499  *
500  * This function is called directly from get_more_blocks in direct-io.c.
501  *
502  * called like this: dio->get_blocks(dio->inode, fs_startblk,
503  * 					fs_count, map_bh, dio->rw == WRITE);
504  *
505  * Note that we never bother to allocate blocks here, and thus ignore the
506  * create argument.
507  */
508 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
509 				     struct buffer_head *bh_result, int create)
510 {
511 	int ret;
512 	u64 p_blkno, inode_blocks, contig_blocks;
513 	unsigned int ext_flags;
514 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
515 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
516 
517 	/* This function won't even be called if the request isn't all
518 	 * nicely aligned and of the right size, so there's no need
519 	 * for us to check any of that. */
520 
521 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
522 
523 	/* This figures out the size of the next contiguous block, and
524 	 * our logical offset */
525 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
526 					  &contig_blocks, &ext_flags);
527 	if (ret) {
528 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
529 		     (unsigned long long)iblock);
530 		ret = -EIO;
531 		goto bail;
532 	}
533 
534 	/* We should already CoW the refcounted extent in case of create. */
535 	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
536 
537 	/*
538 	 * get_more_blocks() expects us to describe a hole by clearing
539 	 * the mapped bit on bh_result().
540 	 *
541 	 * Consider an unwritten extent as a hole.
542 	 */
543 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
544 		map_bh(bh_result, inode->i_sb, p_blkno);
545 	else
546 		clear_buffer_mapped(bh_result);
547 
548 	/* make sure we don't map more than max_blocks blocks here as
549 	   that's all the kernel will handle at this point. */
550 	if (max_blocks < contig_blocks)
551 		contig_blocks = max_blocks;
552 	bh_result->b_size = contig_blocks << blocksize_bits;
553 bail:
554 	return ret;
555 }
556 
557 /*
558  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
559  * particularly interested in the aio/dio case.  Like the core uses
560  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
561  * truncation on another.
562  */
563 static void ocfs2_dio_end_io(struct kiocb *iocb,
564 			     loff_t offset,
565 			     ssize_t bytes,
566 			     void *private,
567 			     int ret,
568 			     bool is_async)
569 {
570 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
571 	int level;
572 
573 	/* this io's submitter should not have unlocked this before we could */
574 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
575 
576 	if (ocfs2_iocb_is_sem_locked(iocb)) {
577 		up_read(&inode->i_alloc_sem);
578 		ocfs2_iocb_clear_sem_locked(iocb);
579 	}
580 
581 	ocfs2_iocb_clear_rw_locked(iocb);
582 
583 	level = ocfs2_iocb_rw_locked_level(iocb);
584 	ocfs2_rw_unlock(inode, level);
585 
586 	if (is_async)
587 		aio_complete(iocb, ret, 0);
588 }
589 
590 /*
591  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
592  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
593  * do journalled data.
594  */
595 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
596 {
597 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
598 
599 	jbd2_journal_invalidatepage(journal, page, offset);
600 }
601 
602 static int ocfs2_releasepage(struct page *page, gfp_t wait)
603 {
604 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
605 
606 	if (!page_has_buffers(page))
607 		return 0;
608 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
609 }
610 
611 static ssize_t ocfs2_direct_IO(int rw,
612 			       struct kiocb *iocb,
613 			       const struct iovec *iov,
614 			       loff_t offset,
615 			       unsigned long nr_segs)
616 {
617 	struct file *file = iocb->ki_filp;
618 	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
619 	int ret;
620 
621 	mlog_entry_void();
622 
623 	/*
624 	 * Fallback to buffered I/O if we see an inode without
625 	 * extents.
626 	 */
627 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
628 		return 0;
629 
630 	/* Fallback to buffered I/O if we are appending. */
631 	if (i_size_read(inode) <= offset)
632 		return 0;
633 
634 	ret = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
635 				   iov, offset, nr_segs,
636 				   ocfs2_direct_IO_get_blocks,
637 				   ocfs2_dio_end_io, NULL, 0);
638 
639 	mlog_exit(ret);
640 	return ret;
641 }
642 
643 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
644 					    u32 cpos,
645 					    unsigned int *start,
646 					    unsigned int *end)
647 {
648 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
649 
650 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
651 		unsigned int cpp;
652 
653 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
654 
655 		cluster_start = cpos % cpp;
656 		cluster_start = cluster_start << osb->s_clustersize_bits;
657 
658 		cluster_end = cluster_start + osb->s_clustersize;
659 	}
660 
661 	BUG_ON(cluster_start > PAGE_SIZE);
662 	BUG_ON(cluster_end > PAGE_SIZE);
663 
664 	if (start)
665 		*start = cluster_start;
666 	if (end)
667 		*end = cluster_end;
668 }
669 
670 /*
671  * 'from' and 'to' are the region in the page to avoid zeroing.
672  *
673  * If pagesize > clustersize, this function will avoid zeroing outside
674  * of the cluster boundary.
675  *
676  * from == to == 0 is code for "zero the entire cluster region"
677  */
678 static void ocfs2_clear_page_regions(struct page *page,
679 				     struct ocfs2_super *osb, u32 cpos,
680 				     unsigned from, unsigned to)
681 {
682 	void *kaddr;
683 	unsigned int cluster_start, cluster_end;
684 
685 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
686 
687 	kaddr = kmap_atomic(page, KM_USER0);
688 
689 	if (from || to) {
690 		if (from > cluster_start)
691 			memset(kaddr + cluster_start, 0, from - cluster_start);
692 		if (to < cluster_end)
693 			memset(kaddr + to, 0, cluster_end - to);
694 	} else {
695 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
696 	}
697 
698 	kunmap_atomic(kaddr, KM_USER0);
699 }
700 
701 /*
702  * Nonsparse file systems fully allocate before we get to the write
703  * code. This prevents ocfs2_write() from tagging the write as an
704  * allocating one, which means ocfs2_map_page_blocks() might try to
705  * read-in the blocks at the tail of our file. Avoid reading them by
706  * testing i_size against each block offset.
707  */
708 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
709 				 unsigned int block_start)
710 {
711 	u64 offset = page_offset(page) + block_start;
712 
713 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
714 		return 1;
715 
716 	if (i_size_read(inode) > offset)
717 		return 1;
718 
719 	return 0;
720 }
721 
722 /*
723  * Some of this taken from __block_write_begin(). We already have our
724  * mapping by now though, and the entire write will be allocating or
725  * it won't, so not much need to use BH_New.
726  *
727  * This will also skip zeroing, which is handled externally.
728  */
729 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
730 			  struct inode *inode, unsigned int from,
731 			  unsigned int to, int new)
732 {
733 	int ret = 0;
734 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
735 	unsigned int block_end, block_start;
736 	unsigned int bsize = 1 << inode->i_blkbits;
737 
738 	if (!page_has_buffers(page))
739 		create_empty_buffers(page, bsize, 0);
740 
741 	head = page_buffers(page);
742 	for (bh = head, block_start = 0; bh != head || !block_start;
743 	     bh = bh->b_this_page, block_start += bsize) {
744 		block_end = block_start + bsize;
745 
746 		clear_buffer_new(bh);
747 
748 		/*
749 		 * Ignore blocks outside of our i/o range -
750 		 * they may belong to unallocated clusters.
751 		 */
752 		if (block_start >= to || block_end <= from) {
753 			if (PageUptodate(page))
754 				set_buffer_uptodate(bh);
755 			continue;
756 		}
757 
758 		/*
759 		 * For an allocating write with cluster size >= page
760 		 * size, we always write the entire page.
761 		 */
762 		if (new)
763 			set_buffer_new(bh);
764 
765 		if (!buffer_mapped(bh)) {
766 			map_bh(bh, inode->i_sb, *p_blkno);
767 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
768 		}
769 
770 		if (PageUptodate(page)) {
771 			if (!buffer_uptodate(bh))
772 				set_buffer_uptodate(bh);
773 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
774 			   !buffer_new(bh) &&
775 			   ocfs2_should_read_blk(inode, page, block_start) &&
776 			   (block_start < from || block_end > to)) {
777 			ll_rw_block(READ, 1, &bh);
778 			*wait_bh++=bh;
779 		}
780 
781 		*p_blkno = *p_blkno + 1;
782 	}
783 
784 	/*
785 	 * If we issued read requests - let them complete.
786 	 */
787 	while(wait_bh > wait) {
788 		wait_on_buffer(*--wait_bh);
789 		if (!buffer_uptodate(*wait_bh))
790 			ret = -EIO;
791 	}
792 
793 	if (ret == 0 || !new)
794 		return ret;
795 
796 	/*
797 	 * If we get -EIO above, zero out any newly allocated blocks
798 	 * to avoid exposing stale data.
799 	 */
800 	bh = head;
801 	block_start = 0;
802 	do {
803 		block_end = block_start + bsize;
804 		if (block_end <= from)
805 			goto next_bh;
806 		if (block_start >= to)
807 			break;
808 
809 		zero_user(page, block_start, bh->b_size);
810 		set_buffer_uptodate(bh);
811 		mark_buffer_dirty(bh);
812 
813 next_bh:
814 		block_start = block_end;
815 		bh = bh->b_this_page;
816 	} while (bh != head);
817 
818 	return ret;
819 }
820 
821 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
822 #define OCFS2_MAX_CTXT_PAGES	1
823 #else
824 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
825 #endif
826 
827 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
828 
829 /*
830  * Describe the state of a single cluster to be written to.
831  */
832 struct ocfs2_write_cluster_desc {
833 	u32		c_cpos;
834 	u32		c_phys;
835 	/*
836 	 * Give this a unique field because c_phys eventually gets
837 	 * filled.
838 	 */
839 	unsigned	c_new;
840 	unsigned	c_unwritten;
841 	unsigned	c_needs_zero;
842 };
843 
844 struct ocfs2_write_ctxt {
845 	/* Logical cluster position / len of write */
846 	u32				w_cpos;
847 	u32				w_clen;
848 
849 	/* First cluster allocated in a nonsparse extend */
850 	u32				w_first_new_cpos;
851 
852 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
853 
854 	/*
855 	 * This is true if page_size > cluster_size.
856 	 *
857 	 * It triggers a set of special cases during write which might
858 	 * have to deal with allocating writes to partial pages.
859 	 */
860 	unsigned int			w_large_pages;
861 
862 	/*
863 	 * Pages involved in this write.
864 	 *
865 	 * w_target_page is the page being written to by the user.
866 	 *
867 	 * w_pages is an array of pages which always contains
868 	 * w_target_page, and in the case of an allocating write with
869 	 * page_size < cluster size, it will contain zero'd and mapped
870 	 * pages adjacent to w_target_page which need to be written
871 	 * out in so that future reads from that region will get
872 	 * zero's.
873 	 */
874 	unsigned int			w_num_pages;
875 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
876 	struct page			*w_target_page;
877 
878 	/*
879 	 * ocfs2_write_end() uses this to know what the real range to
880 	 * write in the target should be.
881 	 */
882 	unsigned int			w_target_from;
883 	unsigned int			w_target_to;
884 
885 	/*
886 	 * We could use journal_current_handle() but this is cleaner,
887 	 * IMHO -Mark
888 	 */
889 	handle_t			*w_handle;
890 
891 	struct buffer_head		*w_di_bh;
892 
893 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
894 };
895 
896 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
897 {
898 	int i;
899 
900 	for(i = 0; i < num_pages; i++) {
901 		if (pages[i]) {
902 			unlock_page(pages[i]);
903 			mark_page_accessed(pages[i]);
904 			page_cache_release(pages[i]);
905 		}
906 	}
907 }
908 
909 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
910 {
911 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
912 
913 	brelse(wc->w_di_bh);
914 	kfree(wc);
915 }
916 
917 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
918 				  struct ocfs2_super *osb, loff_t pos,
919 				  unsigned len, struct buffer_head *di_bh)
920 {
921 	u32 cend;
922 	struct ocfs2_write_ctxt *wc;
923 
924 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
925 	if (!wc)
926 		return -ENOMEM;
927 
928 	wc->w_cpos = pos >> osb->s_clustersize_bits;
929 	wc->w_first_new_cpos = UINT_MAX;
930 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
931 	wc->w_clen = cend - wc->w_cpos + 1;
932 	get_bh(di_bh);
933 	wc->w_di_bh = di_bh;
934 
935 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
936 		wc->w_large_pages = 1;
937 	else
938 		wc->w_large_pages = 0;
939 
940 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
941 
942 	*wcp = wc;
943 
944 	return 0;
945 }
946 
947 /*
948  * If a page has any new buffers, zero them out here, and mark them uptodate
949  * and dirty so they'll be written out (in order to prevent uninitialised
950  * block data from leaking). And clear the new bit.
951  */
952 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
953 {
954 	unsigned int block_start, block_end;
955 	struct buffer_head *head, *bh;
956 
957 	BUG_ON(!PageLocked(page));
958 	if (!page_has_buffers(page))
959 		return;
960 
961 	bh = head = page_buffers(page);
962 	block_start = 0;
963 	do {
964 		block_end = block_start + bh->b_size;
965 
966 		if (buffer_new(bh)) {
967 			if (block_end > from && block_start < to) {
968 				if (!PageUptodate(page)) {
969 					unsigned start, end;
970 
971 					start = max(from, block_start);
972 					end = min(to, block_end);
973 
974 					zero_user_segment(page, start, end);
975 					set_buffer_uptodate(bh);
976 				}
977 
978 				clear_buffer_new(bh);
979 				mark_buffer_dirty(bh);
980 			}
981 		}
982 
983 		block_start = block_end;
984 		bh = bh->b_this_page;
985 	} while (bh != head);
986 }
987 
988 /*
989  * Only called when we have a failure during allocating write to write
990  * zero's to the newly allocated region.
991  */
992 static void ocfs2_write_failure(struct inode *inode,
993 				struct ocfs2_write_ctxt *wc,
994 				loff_t user_pos, unsigned user_len)
995 {
996 	int i;
997 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
998 		to = user_pos + user_len;
999 	struct page *tmppage;
1000 
1001 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1002 
1003 	for(i = 0; i < wc->w_num_pages; i++) {
1004 		tmppage = wc->w_pages[i];
1005 
1006 		if (page_has_buffers(tmppage)) {
1007 			if (ocfs2_should_order_data(inode))
1008 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1009 
1010 			block_commit_write(tmppage, from, to);
1011 		}
1012 	}
1013 }
1014 
1015 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1016 					struct ocfs2_write_ctxt *wc,
1017 					struct page *page, u32 cpos,
1018 					loff_t user_pos, unsigned user_len,
1019 					int new)
1020 {
1021 	int ret;
1022 	unsigned int map_from = 0, map_to = 0;
1023 	unsigned int cluster_start, cluster_end;
1024 	unsigned int user_data_from = 0, user_data_to = 0;
1025 
1026 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1027 					&cluster_start, &cluster_end);
1028 
1029 	if (page == wc->w_target_page) {
1030 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1031 		map_to = map_from + user_len;
1032 
1033 		if (new)
1034 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1035 						    cluster_start, cluster_end,
1036 						    new);
1037 		else
1038 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1039 						    map_from, map_to, new);
1040 		if (ret) {
1041 			mlog_errno(ret);
1042 			goto out;
1043 		}
1044 
1045 		user_data_from = map_from;
1046 		user_data_to = map_to;
1047 		if (new) {
1048 			map_from = cluster_start;
1049 			map_to = cluster_end;
1050 		}
1051 	} else {
1052 		/*
1053 		 * If we haven't allocated the new page yet, we
1054 		 * shouldn't be writing it out without copying user
1055 		 * data. This is likely a math error from the caller.
1056 		 */
1057 		BUG_ON(!new);
1058 
1059 		map_from = cluster_start;
1060 		map_to = cluster_end;
1061 
1062 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1063 					    cluster_start, cluster_end, new);
1064 		if (ret) {
1065 			mlog_errno(ret);
1066 			goto out;
1067 		}
1068 	}
1069 
1070 	/*
1071 	 * Parts of newly allocated pages need to be zero'd.
1072 	 *
1073 	 * Above, we have also rewritten 'to' and 'from' - as far as
1074 	 * the rest of the function is concerned, the entire cluster
1075 	 * range inside of a page needs to be written.
1076 	 *
1077 	 * We can skip this if the page is up to date - it's already
1078 	 * been zero'd from being read in as a hole.
1079 	 */
1080 	if (new && !PageUptodate(page))
1081 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1082 					 cpos, user_data_from, user_data_to);
1083 
1084 	flush_dcache_page(page);
1085 
1086 out:
1087 	return ret;
1088 }
1089 
1090 /*
1091  * This function will only grab one clusters worth of pages.
1092  */
1093 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1094 				      struct ocfs2_write_ctxt *wc,
1095 				      u32 cpos, loff_t user_pos,
1096 				      unsigned user_len, int new,
1097 				      struct page *mmap_page)
1098 {
1099 	int ret = 0, i;
1100 	unsigned long start, target_index, end_index, index;
1101 	struct inode *inode = mapping->host;
1102 	loff_t last_byte;
1103 
1104 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1105 
1106 	/*
1107 	 * Figure out how many pages we'll be manipulating here. For
1108 	 * non allocating write, we just change the one
1109 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1110 	 * writing past i_size, we only need enough pages to cover the
1111 	 * last page of the write.
1112 	 */
1113 	if (new) {
1114 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1115 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1116 		/*
1117 		 * We need the index *past* the last page we could possibly
1118 		 * touch.  This is the page past the end of the write or
1119 		 * i_size, whichever is greater.
1120 		 */
1121 		last_byte = max(user_pos + user_len, i_size_read(inode));
1122 		BUG_ON(last_byte < 1);
1123 		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1124 		if ((start + wc->w_num_pages) > end_index)
1125 			wc->w_num_pages = end_index - start;
1126 	} else {
1127 		wc->w_num_pages = 1;
1128 		start = target_index;
1129 	}
1130 
1131 	for(i = 0; i < wc->w_num_pages; i++) {
1132 		index = start + i;
1133 
1134 		if (index == target_index && mmap_page) {
1135 			/*
1136 			 * ocfs2_pagemkwrite() is a little different
1137 			 * and wants us to directly use the page
1138 			 * passed in.
1139 			 */
1140 			lock_page(mmap_page);
1141 
1142 			if (mmap_page->mapping != mapping) {
1143 				unlock_page(mmap_page);
1144 				/*
1145 				 * Sanity check - the locking in
1146 				 * ocfs2_pagemkwrite() should ensure
1147 				 * that this code doesn't trigger.
1148 				 */
1149 				ret = -EINVAL;
1150 				mlog_errno(ret);
1151 				goto out;
1152 			}
1153 
1154 			page_cache_get(mmap_page);
1155 			wc->w_pages[i] = mmap_page;
1156 		} else {
1157 			wc->w_pages[i] = find_or_create_page(mapping, index,
1158 							     GFP_NOFS);
1159 			if (!wc->w_pages[i]) {
1160 				ret = -ENOMEM;
1161 				mlog_errno(ret);
1162 				goto out;
1163 			}
1164 		}
1165 
1166 		if (index == target_index)
1167 			wc->w_target_page = wc->w_pages[i];
1168 	}
1169 out:
1170 	return ret;
1171 }
1172 
1173 /*
1174  * Prepare a single cluster for write one cluster into the file.
1175  */
1176 static int ocfs2_write_cluster(struct address_space *mapping,
1177 			       u32 phys, unsigned int unwritten,
1178 			       unsigned int should_zero,
1179 			       struct ocfs2_alloc_context *data_ac,
1180 			       struct ocfs2_alloc_context *meta_ac,
1181 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1182 			       loff_t user_pos, unsigned user_len)
1183 {
1184 	int ret, i, new;
1185 	u64 v_blkno, p_blkno;
1186 	struct inode *inode = mapping->host;
1187 	struct ocfs2_extent_tree et;
1188 
1189 	new = phys == 0 ? 1 : 0;
1190 	if (new) {
1191 		u32 tmp_pos;
1192 
1193 		/*
1194 		 * This is safe to call with the page locks - it won't take
1195 		 * any additional semaphores or cluster locks.
1196 		 */
1197 		tmp_pos = cpos;
1198 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1199 					   &tmp_pos, 1, 0, wc->w_di_bh,
1200 					   wc->w_handle, data_ac,
1201 					   meta_ac, NULL);
1202 		/*
1203 		 * This shouldn't happen because we must have already
1204 		 * calculated the correct meta data allocation required. The
1205 		 * internal tree allocation code should know how to increase
1206 		 * transaction credits itself.
1207 		 *
1208 		 * If need be, we could handle -EAGAIN for a
1209 		 * RESTART_TRANS here.
1210 		 */
1211 		mlog_bug_on_msg(ret == -EAGAIN,
1212 				"Inode %llu: EAGAIN return during allocation.\n",
1213 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1214 		if (ret < 0) {
1215 			mlog_errno(ret);
1216 			goto out;
1217 		}
1218 	} else if (unwritten) {
1219 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1220 					      wc->w_di_bh);
1221 		ret = ocfs2_mark_extent_written(inode, &et,
1222 						wc->w_handle, cpos, 1, phys,
1223 						meta_ac, &wc->w_dealloc);
1224 		if (ret < 0) {
1225 			mlog_errno(ret);
1226 			goto out;
1227 		}
1228 	}
1229 
1230 	if (should_zero)
1231 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1232 	else
1233 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1234 
1235 	/*
1236 	 * The only reason this should fail is due to an inability to
1237 	 * find the extent added.
1238 	 */
1239 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1240 					  NULL);
1241 	if (ret < 0) {
1242 		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1243 			    "at logical block %llu",
1244 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1245 			    (unsigned long long)v_blkno);
1246 		goto out;
1247 	}
1248 
1249 	BUG_ON(p_blkno == 0);
1250 
1251 	for(i = 0; i < wc->w_num_pages; i++) {
1252 		int tmpret;
1253 
1254 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1255 						      wc->w_pages[i], cpos,
1256 						      user_pos, user_len,
1257 						      should_zero);
1258 		if (tmpret) {
1259 			mlog_errno(tmpret);
1260 			if (ret == 0)
1261 				ret = tmpret;
1262 		}
1263 	}
1264 
1265 	/*
1266 	 * We only have cleanup to do in case of allocating write.
1267 	 */
1268 	if (ret && new)
1269 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1270 
1271 out:
1272 
1273 	return ret;
1274 }
1275 
1276 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1277 				       struct ocfs2_alloc_context *data_ac,
1278 				       struct ocfs2_alloc_context *meta_ac,
1279 				       struct ocfs2_write_ctxt *wc,
1280 				       loff_t pos, unsigned len)
1281 {
1282 	int ret, i;
1283 	loff_t cluster_off;
1284 	unsigned int local_len = len;
1285 	struct ocfs2_write_cluster_desc *desc;
1286 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1287 
1288 	for (i = 0; i < wc->w_clen; i++) {
1289 		desc = &wc->w_desc[i];
1290 
1291 		/*
1292 		 * We have to make sure that the total write passed in
1293 		 * doesn't extend past a single cluster.
1294 		 */
1295 		local_len = len;
1296 		cluster_off = pos & (osb->s_clustersize - 1);
1297 		if ((cluster_off + local_len) > osb->s_clustersize)
1298 			local_len = osb->s_clustersize - cluster_off;
1299 
1300 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1301 					  desc->c_unwritten,
1302 					  desc->c_needs_zero,
1303 					  data_ac, meta_ac,
1304 					  wc, desc->c_cpos, pos, local_len);
1305 		if (ret) {
1306 			mlog_errno(ret);
1307 			goto out;
1308 		}
1309 
1310 		len -= local_len;
1311 		pos += local_len;
1312 	}
1313 
1314 	ret = 0;
1315 out:
1316 	return ret;
1317 }
1318 
1319 /*
1320  * ocfs2_write_end() wants to know which parts of the target page it
1321  * should complete the write on. It's easiest to compute them ahead of
1322  * time when a more complete view of the write is available.
1323  */
1324 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1325 					struct ocfs2_write_ctxt *wc,
1326 					loff_t pos, unsigned len, int alloc)
1327 {
1328 	struct ocfs2_write_cluster_desc *desc;
1329 
1330 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1331 	wc->w_target_to = wc->w_target_from + len;
1332 
1333 	if (alloc == 0)
1334 		return;
1335 
1336 	/*
1337 	 * Allocating write - we may have different boundaries based
1338 	 * on page size and cluster size.
1339 	 *
1340 	 * NOTE: We can no longer compute one value from the other as
1341 	 * the actual write length and user provided length may be
1342 	 * different.
1343 	 */
1344 
1345 	if (wc->w_large_pages) {
1346 		/*
1347 		 * We only care about the 1st and last cluster within
1348 		 * our range and whether they should be zero'd or not. Either
1349 		 * value may be extended out to the start/end of a
1350 		 * newly allocated cluster.
1351 		 */
1352 		desc = &wc->w_desc[0];
1353 		if (desc->c_needs_zero)
1354 			ocfs2_figure_cluster_boundaries(osb,
1355 							desc->c_cpos,
1356 							&wc->w_target_from,
1357 							NULL);
1358 
1359 		desc = &wc->w_desc[wc->w_clen - 1];
1360 		if (desc->c_needs_zero)
1361 			ocfs2_figure_cluster_boundaries(osb,
1362 							desc->c_cpos,
1363 							NULL,
1364 							&wc->w_target_to);
1365 	} else {
1366 		wc->w_target_from = 0;
1367 		wc->w_target_to = PAGE_CACHE_SIZE;
1368 	}
1369 }
1370 
1371 /*
1372  * Populate each single-cluster write descriptor in the write context
1373  * with information about the i/o to be done.
1374  *
1375  * Returns the number of clusters that will have to be allocated, as
1376  * well as a worst case estimate of the number of extent records that
1377  * would have to be created during a write to an unwritten region.
1378  */
1379 static int ocfs2_populate_write_desc(struct inode *inode,
1380 				     struct ocfs2_write_ctxt *wc,
1381 				     unsigned int *clusters_to_alloc,
1382 				     unsigned int *extents_to_split)
1383 {
1384 	int ret;
1385 	struct ocfs2_write_cluster_desc *desc;
1386 	unsigned int num_clusters = 0;
1387 	unsigned int ext_flags = 0;
1388 	u32 phys = 0;
1389 	int i;
1390 
1391 	*clusters_to_alloc = 0;
1392 	*extents_to_split = 0;
1393 
1394 	for (i = 0; i < wc->w_clen; i++) {
1395 		desc = &wc->w_desc[i];
1396 		desc->c_cpos = wc->w_cpos + i;
1397 
1398 		if (num_clusters == 0) {
1399 			/*
1400 			 * Need to look up the next extent record.
1401 			 */
1402 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1403 						 &num_clusters, &ext_flags);
1404 			if (ret) {
1405 				mlog_errno(ret);
1406 				goto out;
1407 			}
1408 
1409 			/* We should already CoW the refcountd extent. */
1410 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1411 
1412 			/*
1413 			 * Assume worst case - that we're writing in
1414 			 * the middle of the extent.
1415 			 *
1416 			 * We can assume that the write proceeds from
1417 			 * left to right, in which case the extent
1418 			 * insert code is smart enough to coalesce the
1419 			 * next splits into the previous records created.
1420 			 */
1421 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1422 				*extents_to_split = *extents_to_split + 2;
1423 		} else if (phys) {
1424 			/*
1425 			 * Only increment phys if it doesn't describe
1426 			 * a hole.
1427 			 */
1428 			phys++;
1429 		}
1430 
1431 		/*
1432 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1433 		 * file that got extended.  w_first_new_cpos tells us
1434 		 * where the newly allocated clusters are so we can
1435 		 * zero them.
1436 		 */
1437 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1438 			BUG_ON(phys == 0);
1439 			desc->c_needs_zero = 1;
1440 		}
1441 
1442 		desc->c_phys = phys;
1443 		if (phys == 0) {
1444 			desc->c_new = 1;
1445 			desc->c_needs_zero = 1;
1446 			*clusters_to_alloc = *clusters_to_alloc + 1;
1447 		}
1448 
1449 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1450 			desc->c_unwritten = 1;
1451 			desc->c_needs_zero = 1;
1452 		}
1453 
1454 		num_clusters--;
1455 	}
1456 
1457 	ret = 0;
1458 out:
1459 	return ret;
1460 }
1461 
1462 static int ocfs2_write_begin_inline(struct address_space *mapping,
1463 				    struct inode *inode,
1464 				    struct ocfs2_write_ctxt *wc)
1465 {
1466 	int ret;
1467 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1468 	struct page *page;
1469 	handle_t *handle;
1470 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1471 
1472 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1473 	if (!page) {
1474 		ret = -ENOMEM;
1475 		mlog_errno(ret);
1476 		goto out;
1477 	}
1478 	/*
1479 	 * If we don't set w_num_pages then this page won't get unlocked
1480 	 * and freed on cleanup of the write context.
1481 	 */
1482 	wc->w_pages[0] = wc->w_target_page = page;
1483 	wc->w_num_pages = 1;
1484 
1485 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1486 	if (IS_ERR(handle)) {
1487 		ret = PTR_ERR(handle);
1488 		mlog_errno(ret);
1489 		goto out;
1490 	}
1491 
1492 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1493 				      OCFS2_JOURNAL_ACCESS_WRITE);
1494 	if (ret) {
1495 		ocfs2_commit_trans(osb, handle);
1496 
1497 		mlog_errno(ret);
1498 		goto out;
1499 	}
1500 
1501 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1502 		ocfs2_set_inode_data_inline(inode, di);
1503 
1504 	if (!PageUptodate(page)) {
1505 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1506 		if (ret) {
1507 			ocfs2_commit_trans(osb, handle);
1508 
1509 			goto out;
1510 		}
1511 	}
1512 
1513 	wc->w_handle = handle;
1514 out:
1515 	return ret;
1516 }
1517 
1518 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1519 {
1520 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1521 
1522 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1523 		return 1;
1524 	return 0;
1525 }
1526 
1527 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1528 					  struct inode *inode, loff_t pos,
1529 					  unsigned len, struct page *mmap_page,
1530 					  struct ocfs2_write_ctxt *wc)
1531 {
1532 	int ret, written = 0;
1533 	loff_t end = pos + len;
1534 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1535 	struct ocfs2_dinode *di = NULL;
1536 
1537 	mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1538 	     (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1539 	     oi->ip_dyn_features);
1540 
1541 	/*
1542 	 * Handle inodes which already have inline data 1st.
1543 	 */
1544 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1545 		if (mmap_page == NULL &&
1546 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1547 			goto do_inline_write;
1548 
1549 		/*
1550 		 * The write won't fit - we have to give this inode an
1551 		 * inline extent list now.
1552 		 */
1553 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1554 		if (ret)
1555 			mlog_errno(ret);
1556 		goto out;
1557 	}
1558 
1559 	/*
1560 	 * Check whether the inode can accept inline data.
1561 	 */
1562 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1563 		return 0;
1564 
1565 	/*
1566 	 * Check whether the write can fit.
1567 	 */
1568 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1569 	if (mmap_page ||
1570 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1571 		return 0;
1572 
1573 do_inline_write:
1574 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1575 	if (ret) {
1576 		mlog_errno(ret);
1577 		goto out;
1578 	}
1579 
1580 	/*
1581 	 * This signals to the caller that the data can be written
1582 	 * inline.
1583 	 */
1584 	written = 1;
1585 out:
1586 	return written ? written : ret;
1587 }
1588 
1589 /*
1590  * This function only does anything for file systems which can't
1591  * handle sparse files.
1592  *
1593  * What we want to do here is fill in any hole between the current end
1594  * of allocation and the end of our write. That way the rest of the
1595  * write path can treat it as an non-allocating write, which has no
1596  * special case code for sparse/nonsparse files.
1597  */
1598 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1599 					struct buffer_head *di_bh,
1600 					loff_t pos, unsigned len,
1601 					struct ocfs2_write_ctxt *wc)
1602 {
1603 	int ret;
1604 	loff_t newsize = pos + len;
1605 
1606 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1607 
1608 	if (newsize <= i_size_read(inode))
1609 		return 0;
1610 
1611 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1612 	if (ret)
1613 		mlog_errno(ret);
1614 
1615 	wc->w_first_new_cpos =
1616 		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1617 
1618 	return ret;
1619 }
1620 
1621 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1622 			   loff_t pos)
1623 {
1624 	int ret = 0;
1625 
1626 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1627 	if (pos > i_size_read(inode))
1628 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1629 
1630 	return ret;
1631 }
1632 
1633 int ocfs2_write_begin_nolock(struct file *filp,
1634 			     struct address_space *mapping,
1635 			     loff_t pos, unsigned len, unsigned flags,
1636 			     struct page **pagep, void **fsdata,
1637 			     struct buffer_head *di_bh, struct page *mmap_page)
1638 {
1639 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1640 	unsigned int clusters_to_alloc, extents_to_split;
1641 	struct ocfs2_write_ctxt *wc;
1642 	struct inode *inode = mapping->host;
1643 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1644 	struct ocfs2_dinode *di;
1645 	struct ocfs2_alloc_context *data_ac = NULL;
1646 	struct ocfs2_alloc_context *meta_ac = NULL;
1647 	handle_t *handle;
1648 	struct ocfs2_extent_tree et;
1649 
1650 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1651 	if (ret) {
1652 		mlog_errno(ret);
1653 		return ret;
1654 	}
1655 
1656 	if (ocfs2_supports_inline_data(osb)) {
1657 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1658 						     mmap_page, wc);
1659 		if (ret == 1) {
1660 			ret = 0;
1661 			goto success;
1662 		}
1663 		if (ret < 0) {
1664 			mlog_errno(ret);
1665 			goto out;
1666 		}
1667 	}
1668 
1669 	if (ocfs2_sparse_alloc(osb))
1670 		ret = ocfs2_zero_tail(inode, di_bh, pos);
1671 	else
1672 		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1673 						   wc);
1674 	if (ret) {
1675 		mlog_errno(ret);
1676 		goto out;
1677 	}
1678 
1679 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1680 	if (ret < 0) {
1681 		mlog_errno(ret);
1682 		goto out;
1683 	} else if (ret == 1) {
1684 		ret = ocfs2_refcount_cow(inode, filp, di_bh,
1685 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1686 		if (ret) {
1687 			mlog_errno(ret);
1688 			goto out;
1689 		}
1690 	}
1691 
1692 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1693 					&extents_to_split);
1694 	if (ret) {
1695 		mlog_errno(ret);
1696 		goto out;
1697 	}
1698 
1699 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1700 
1701 	/*
1702 	 * We set w_target_from, w_target_to here so that
1703 	 * ocfs2_write_end() knows which range in the target page to
1704 	 * write out. An allocation requires that we write the entire
1705 	 * cluster range.
1706 	 */
1707 	if (clusters_to_alloc || extents_to_split) {
1708 		/*
1709 		 * XXX: We are stretching the limits of
1710 		 * ocfs2_lock_allocators(). It greatly over-estimates
1711 		 * the work to be done.
1712 		 */
1713 		mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1714 		     " clusters_to_add = %u, extents_to_split = %u\n",
1715 		     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1716 		     (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1717 		     clusters_to_alloc, extents_to_split);
1718 
1719 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1720 					      wc->w_di_bh);
1721 		ret = ocfs2_lock_allocators(inode, &et,
1722 					    clusters_to_alloc, extents_to_split,
1723 					    &data_ac, &meta_ac);
1724 		if (ret) {
1725 			mlog_errno(ret);
1726 			goto out;
1727 		}
1728 
1729 		if (data_ac)
1730 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1731 
1732 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1733 						    &di->id2.i_list,
1734 						    clusters_to_alloc);
1735 
1736 	}
1737 
1738 	/*
1739 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1740 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1741 	 * we know zeros will only be needed in the first and/or last cluster.
1742 	 */
1743 	if (clusters_to_alloc || extents_to_split ||
1744 	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1745 			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1746 		cluster_of_pages = 1;
1747 	else
1748 		cluster_of_pages = 0;
1749 
1750 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1751 
1752 	handle = ocfs2_start_trans(osb, credits);
1753 	if (IS_ERR(handle)) {
1754 		ret = PTR_ERR(handle);
1755 		mlog_errno(ret);
1756 		goto out;
1757 	}
1758 
1759 	wc->w_handle = handle;
1760 
1761 	if (clusters_to_alloc) {
1762 		ret = dquot_alloc_space_nodirty(inode,
1763 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1764 		if (ret)
1765 			goto out_commit;
1766 	}
1767 	/*
1768 	 * We don't want this to fail in ocfs2_write_end(), so do it
1769 	 * here.
1770 	 */
1771 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1772 				      OCFS2_JOURNAL_ACCESS_WRITE);
1773 	if (ret) {
1774 		mlog_errno(ret);
1775 		goto out_quota;
1776 	}
1777 
1778 	/*
1779 	 * Fill our page array first. That way we've grabbed enough so
1780 	 * that we can zero and flush if we error after adding the
1781 	 * extent.
1782 	 */
1783 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1784 					 cluster_of_pages, mmap_page);
1785 	if (ret) {
1786 		mlog_errno(ret);
1787 		goto out_quota;
1788 	}
1789 
1790 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1791 					  len);
1792 	if (ret) {
1793 		mlog_errno(ret);
1794 		goto out_quota;
1795 	}
1796 
1797 	if (data_ac)
1798 		ocfs2_free_alloc_context(data_ac);
1799 	if (meta_ac)
1800 		ocfs2_free_alloc_context(meta_ac);
1801 
1802 success:
1803 	*pagep = wc->w_target_page;
1804 	*fsdata = wc;
1805 	return 0;
1806 out_quota:
1807 	if (clusters_to_alloc)
1808 		dquot_free_space(inode,
1809 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1810 out_commit:
1811 	ocfs2_commit_trans(osb, handle);
1812 
1813 out:
1814 	ocfs2_free_write_ctxt(wc);
1815 
1816 	if (data_ac)
1817 		ocfs2_free_alloc_context(data_ac);
1818 	if (meta_ac)
1819 		ocfs2_free_alloc_context(meta_ac);
1820 	return ret;
1821 }
1822 
1823 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1824 			     loff_t pos, unsigned len, unsigned flags,
1825 			     struct page **pagep, void **fsdata)
1826 {
1827 	int ret;
1828 	struct buffer_head *di_bh = NULL;
1829 	struct inode *inode = mapping->host;
1830 
1831 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1832 	if (ret) {
1833 		mlog_errno(ret);
1834 		return ret;
1835 	}
1836 
1837 	/*
1838 	 * Take alloc sem here to prevent concurrent lookups. That way
1839 	 * the mapping, zeroing and tree manipulation within
1840 	 * ocfs2_write() will be safe against ->readpage(). This
1841 	 * should also serve to lock out allocation from a shared
1842 	 * writeable region.
1843 	 */
1844 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1845 
1846 	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1847 				       fsdata, di_bh, NULL);
1848 	if (ret) {
1849 		mlog_errno(ret);
1850 		goto out_fail;
1851 	}
1852 
1853 	brelse(di_bh);
1854 
1855 	return 0;
1856 
1857 out_fail:
1858 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1859 
1860 	brelse(di_bh);
1861 	ocfs2_inode_unlock(inode, 1);
1862 
1863 	return ret;
1864 }
1865 
1866 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1867 				   unsigned len, unsigned *copied,
1868 				   struct ocfs2_dinode *di,
1869 				   struct ocfs2_write_ctxt *wc)
1870 {
1871 	void *kaddr;
1872 
1873 	if (unlikely(*copied < len)) {
1874 		if (!PageUptodate(wc->w_target_page)) {
1875 			*copied = 0;
1876 			return;
1877 		}
1878 	}
1879 
1880 	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1881 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1882 	kunmap_atomic(kaddr, KM_USER0);
1883 
1884 	mlog(0, "Data written to inode at offset %llu. "
1885 	     "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1886 	     (unsigned long long)pos, *copied,
1887 	     le16_to_cpu(di->id2.i_data.id_count),
1888 	     le16_to_cpu(di->i_dyn_features));
1889 }
1890 
1891 int ocfs2_write_end_nolock(struct address_space *mapping,
1892 			   loff_t pos, unsigned len, unsigned copied,
1893 			   struct page *page, void *fsdata)
1894 {
1895 	int i;
1896 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1897 	struct inode *inode = mapping->host;
1898 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1899 	struct ocfs2_write_ctxt *wc = fsdata;
1900 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1901 	handle_t *handle = wc->w_handle;
1902 	struct page *tmppage;
1903 
1904 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1905 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1906 		goto out_write_size;
1907 	}
1908 
1909 	if (unlikely(copied < len)) {
1910 		if (!PageUptodate(wc->w_target_page))
1911 			copied = 0;
1912 
1913 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1914 				       start+len);
1915 	}
1916 	flush_dcache_page(wc->w_target_page);
1917 
1918 	for(i = 0; i < wc->w_num_pages; i++) {
1919 		tmppage = wc->w_pages[i];
1920 
1921 		if (tmppage == wc->w_target_page) {
1922 			from = wc->w_target_from;
1923 			to = wc->w_target_to;
1924 
1925 			BUG_ON(from > PAGE_CACHE_SIZE ||
1926 			       to > PAGE_CACHE_SIZE ||
1927 			       to < from);
1928 		} else {
1929 			/*
1930 			 * Pages adjacent to the target (if any) imply
1931 			 * a hole-filling write in which case we want
1932 			 * to flush their entire range.
1933 			 */
1934 			from = 0;
1935 			to = PAGE_CACHE_SIZE;
1936 		}
1937 
1938 		if (page_has_buffers(tmppage)) {
1939 			if (ocfs2_should_order_data(inode))
1940 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1941 			block_commit_write(tmppage, from, to);
1942 		}
1943 	}
1944 
1945 out_write_size:
1946 	pos += copied;
1947 	if (pos > inode->i_size) {
1948 		i_size_write(inode, pos);
1949 		mark_inode_dirty(inode);
1950 	}
1951 	inode->i_blocks = ocfs2_inode_sector_count(inode);
1952 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1953 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1954 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1955 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1956 	ocfs2_journal_dirty(handle, wc->w_di_bh);
1957 
1958 	ocfs2_commit_trans(osb, handle);
1959 
1960 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
1961 
1962 	ocfs2_free_write_ctxt(wc);
1963 
1964 	return copied;
1965 }
1966 
1967 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1968 			   loff_t pos, unsigned len, unsigned copied,
1969 			   struct page *page, void *fsdata)
1970 {
1971 	int ret;
1972 	struct inode *inode = mapping->host;
1973 
1974 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1975 
1976 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1977 	ocfs2_inode_unlock(inode, 1);
1978 
1979 	return ret;
1980 }
1981 
1982 const struct address_space_operations ocfs2_aops = {
1983 	.readpage		= ocfs2_readpage,
1984 	.readpages		= ocfs2_readpages,
1985 	.writepage		= ocfs2_writepage,
1986 	.write_begin		= ocfs2_write_begin,
1987 	.write_end		= ocfs2_write_end,
1988 	.bmap			= ocfs2_bmap,
1989 	.sync_page		= block_sync_page,
1990 	.direct_IO		= ocfs2_direct_IO,
1991 	.invalidatepage		= ocfs2_invalidatepage,
1992 	.releasepage		= ocfs2_releasepage,
1993 	.migratepage		= buffer_migrate_page,
1994 	.is_partially_uptodate	= block_is_partially_uptodate,
1995 	.error_remove_page	= generic_error_remove_page,
1996 };
1997