1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 31 #define MLOG_MASK_PREFIX ML_FILE_IO 32 #include <cluster/masklog.h> 33 34 #include "ocfs2.h" 35 36 #include "alloc.h" 37 #include "aops.h" 38 #include "dlmglue.h" 39 #include "extent_map.h" 40 #include "file.h" 41 #include "inode.h" 42 #include "journal.h" 43 #include "suballoc.h" 44 #include "super.h" 45 #include "symlink.h" 46 47 #include "buffer_head_io.h" 48 49 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 50 struct buffer_head *bh_result, int create) 51 { 52 int err = -EIO; 53 int status; 54 struct ocfs2_dinode *fe = NULL; 55 struct buffer_head *bh = NULL; 56 struct buffer_head *buffer_cache_bh = NULL; 57 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 58 void *kaddr; 59 60 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, 61 (unsigned long long)iblock, bh_result, create); 62 63 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 64 65 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 66 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 67 (unsigned long long)iblock); 68 goto bail; 69 } 70 71 status = ocfs2_read_block(inode, OCFS2_I(inode)->ip_blkno, &bh); 72 if (status < 0) { 73 mlog_errno(status); 74 goto bail; 75 } 76 fe = (struct ocfs2_dinode *) bh->b_data; 77 78 if (!OCFS2_IS_VALID_DINODE(fe)) { 79 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n", 80 (unsigned long long)le64_to_cpu(fe->i_blkno), 7, 81 fe->i_signature); 82 goto bail; 83 } 84 85 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 86 le32_to_cpu(fe->i_clusters))) { 87 mlog(ML_ERROR, "block offset is outside the allocated size: " 88 "%llu\n", (unsigned long long)iblock); 89 goto bail; 90 } 91 92 /* We don't use the page cache to create symlink data, so if 93 * need be, copy it over from the buffer cache. */ 94 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 95 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 96 iblock; 97 buffer_cache_bh = sb_getblk(osb->sb, blkno); 98 if (!buffer_cache_bh) { 99 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 100 goto bail; 101 } 102 103 /* we haven't locked out transactions, so a commit 104 * could've happened. Since we've got a reference on 105 * the bh, even if it commits while we're doing the 106 * copy, the data is still good. */ 107 if (buffer_jbd(buffer_cache_bh) 108 && ocfs2_inode_is_new(inode)) { 109 kaddr = kmap_atomic(bh_result->b_page, KM_USER0); 110 if (!kaddr) { 111 mlog(ML_ERROR, "couldn't kmap!\n"); 112 goto bail; 113 } 114 memcpy(kaddr + (bh_result->b_size * iblock), 115 buffer_cache_bh->b_data, 116 bh_result->b_size); 117 kunmap_atomic(kaddr, KM_USER0); 118 set_buffer_uptodate(bh_result); 119 } 120 brelse(buffer_cache_bh); 121 } 122 123 map_bh(bh_result, inode->i_sb, 124 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 125 126 err = 0; 127 128 bail: 129 brelse(bh); 130 131 mlog_exit(err); 132 return err; 133 } 134 135 static int ocfs2_get_block(struct inode *inode, sector_t iblock, 136 struct buffer_head *bh_result, int create) 137 { 138 int err = 0; 139 unsigned int ext_flags; 140 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 141 u64 p_blkno, count, past_eof; 142 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 143 144 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, 145 (unsigned long long)iblock, bh_result, create); 146 147 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 148 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 149 inode, inode->i_ino); 150 151 if (S_ISLNK(inode->i_mode)) { 152 /* this always does I/O for some reason. */ 153 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 154 goto bail; 155 } 156 157 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 158 &ext_flags); 159 if (err) { 160 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 161 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 162 (unsigned long long)p_blkno); 163 goto bail; 164 } 165 166 if (max_blocks < count) 167 count = max_blocks; 168 169 /* 170 * ocfs2 never allocates in this function - the only time we 171 * need to use BH_New is when we're extending i_size on a file 172 * system which doesn't support holes, in which case BH_New 173 * allows block_prepare_write() to zero. 174 * 175 * If we see this on a sparse file system, then a truncate has 176 * raced us and removed the cluster. In this case, we clear 177 * the buffers dirty and uptodate bits and let the buffer code 178 * ignore it as a hole. 179 */ 180 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 181 clear_buffer_dirty(bh_result); 182 clear_buffer_uptodate(bh_result); 183 goto bail; 184 } 185 186 /* Treat the unwritten extent as a hole for zeroing purposes. */ 187 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 188 map_bh(bh_result, inode->i_sb, p_blkno); 189 190 bh_result->b_size = count << inode->i_blkbits; 191 192 if (!ocfs2_sparse_alloc(osb)) { 193 if (p_blkno == 0) { 194 err = -EIO; 195 mlog(ML_ERROR, 196 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 197 (unsigned long long)iblock, 198 (unsigned long long)p_blkno, 199 (unsigned long long)OCFS2_I(inode)->ip_blkno); 200 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 201 dump_stack(); 202 } 203 204 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 205 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino, 206 (unsigned long long)past_eof); 207 208 if (create && (iblock >= past_eof)) 209 set_buffer_new(bh_result); 210 } 211 212 bail: 213 if (err < 0) 214 err = -EIO; 215 216 mlog_exit(err); 217 return err; 218 } 219 220 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 221 struct buffer_head *di_bh) 222 { 223 void *kaddr; 224 loff_t size; 225 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 226 227 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 228 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag", 229 (unsigned long long)OCFS2_I(inode)->ip_blkno); 230 return -EROFS; 231 } 232 233 size = i_size_read(inode); 234 235 if (size > PAGE_CACHE_SIZE || 236 size > ocfs2_max_inline_data(inode->i_sb)) { 237 ocfs2_error(inode->i_sb, 238 "Inode %llu has with inline data has bad size: %Lu", 239 (unsigned long long)OCFS2_I(inode)->ip_blkno, 240 (unsigned long long)size); 241 return -EROFS; 242 } 243 244 kaddr = kmap_atomic(page, KM_USER0); 245 if (size) 246 memcpy(kaddr, di->id2.i_data.id_data, size); 247 /* Clear the remaining part of the page */ 248 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); 249 flush_dcache_page(page); 250 kunmap_atomic(kaddr, KM_USER0); 251 252 SetPageUptodate(page); 253 254 return 0; 255 } 256 257 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 258 { 259 int ret; 260 struct buffer_head *di_bh = NULL; 261 262 BUG_ON(!PageLocked(page)); 263 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 264 265 ret = ocfs2_read_block(inode, OCFS2_I(inode)->ip_blkno, &di_bh); 266 if (ret) { 267 mlog_errno(ret); 268 goto out; 269 } 270 271 ret = ocfs2_read_inline_data(inode, page, di_bh); 272 out: 273 unlock_page(page); 274 275 brelse(di_bh); 276 return ret; 277 } 278 279 static int ocfs2_readpage(struct file *file, struct page *page) 280 { 281 struct inode *inode = page->mapping->host; 282 struct ocfs2_inode_info *oi = OCFS2_I(inode); 283 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; 284 int ret, unlock = 1; 285 286 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0)); 287 288 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 289 if (ret != 0) { 290 if (ret == AOP_TRUNCATED_PAGE) 291 unlock = 0; 292 mlog_errno(ret); 293 goto out; 294 } 295 296 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 297 ret = AOP_TRUNCATED_PAGE; 298 goto out_inode_unlock; 299 } 300 301 /* 302 * i_size might have just been updated as we grabed the meta lock. We 303 * might now be discovering a truncate that hit on another node. 304 * block_read_full_page->get_block freaks out if it is asked to read 305 * beyond the end of a file, so we check here. Callers 306 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 307 * and notice that the page they just read isn't needed. 308 * 309 * XXX sys_readahead() seems to get that wrong? 310 */ 311 if (start >= i_size_read(inode)) { 312 zero_user(page, 0, PAGE_SIZE); 313 SetPageUptodate(page); 314 ret = 0; 315 goto out_alloc; 316 } 317 318 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 319 ret = ocfs2_readpage_inline(inode, page); 320 else 321 ret = block_read_full_page(page, ocfs2_get_block); 322 unlock = 0; 323 324 out_alloc: 325 up_read(&OCFS2_I(inode)->ip_alloc_sem); 326 out_inode_unlock: 327 ocfs2_inode_unlock(inode, 0); 328 out: 329 if (unlock) 330 unlock_page(page); 331 mlog_exit(ret); 332 return ret; 333 } 334 335 /* 336 * This is used only for read-ahead. Failures or difficult to handle 337 * situations are safe to ignore. 338 * 339 * Right now, we don't bother with BH_Boundary - in-inode extent lists 340 * are quite large (243 extents on 4k blocks), so most inodes don't 341 * grow out to a tree. If need be, detecting boundary extents could 342 * trivially be added in a future version of ocfs2_get_block(). 343 */ 344 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 345 struct list_head *pages, unsigned nr_pages) 346 { 347 int ret, err = -EIO; 348 struct inode *inode = mapping->host; 349 struct ocfs2_inode_info *oi = OCFS2_I(inode); 350 loff_t start; 351 struct page *last; 352 353 /* 354 * Use the nonblocking flag for the dlm code to avoid page 355 * lock inversion, but don't bother with retrying. 356 */ 357 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 358 if (ret) 359 return err; 360 361 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 362 ocfs2_inode_unlock(inode, 0); 363 return err; 364 } 365 366 /* 367 * Don't bother with inline-data. There isn't anything 368 * to read-ahead in that case anyway... 369 */ 370 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 371 goto out_unlock; 372 373 /* 374 * Check whether a remote node truncated this file - we just 375 * drop out in that case as it's not worth handling here. 376 */ 377 last = list_entry(pages->prev, struct page, lru); 378 start = (loff_t)last->index << PAGE_CACHE_SHIFT; 379 if (start >= i_size_read(inode)) 380 goto out_unlock; 381 382 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 383 384 out_unlock: 385 up_read(&oi->ip_alloc_sem); 386 ocfs2_inode_unlock(inode, 0); 387 388 return err; 389 } 390 391 /* Note: Because we don't support holes, our allocation has 392 * already happened (allocation writes zeros to the file data) 393 * so we don't have to worry about ordered writes in 394 * ocfs2_writepage. 395 * 396 * ->writepage is called during the process of invalidating the page cache 397 * during blocked lock processing. It can't block on any cluster locks 398 * to during block mapping. It's relying on the fact that the block 399 * mapping can't have disappeared under the dirty pages that it is 400 * being asked to write back. 401 */ 402 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 403 { 404 int ret; 405 406 mlog_entry("(0x%p)\n", page); 407 408 ret = block_write_full_page(page, ocfs2_get_block, wbc); 409 410 mlog_exit(ret); 411 412 return ret; 413 } 414 415 /* 416 * This is called from ocfs2_write_zero_page() which has handled it's 417 * own cluster locking and has ensured allocation exists for those 418 * blocks to be written. 419 */ 420 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page, 421 unsigned from, unsigned to) 422 { 423 int ret; 424 425 ret = block_prepare_write(page, from, to, ocfs2_get_block); 426 427 return ret; 428 } 429 430 /* Taken from ext3. We don't necessarily need the full blown 431 * functionality yet, but IMHO it's better to cut and paste the whole 432 * thing so we can avoid introducing our own bugs (and easily pick up 433 * their fixes when they happen) --Mark */ 434 int walk_page_buffers( handle_t *handle, 435 struct buffer_head *head, 436 unsigned from, 437 unsigned to, 438 int *partial, 439 int (*fn)( handle_t *handle, 440 struct buffer_head *bh)) 441 { 442 struct buffer_head *bh; 443 unsigned block_start, block_end; 444 unsigned blocksize = head->b_size; 445 int err, ret = 0; 446 struct buffer_head *next; 447 448 for ( bh = head, block_start = 0; 449 ret == 0 && (bh != head || !block_start); 450 block_start = block_end, bh = next) 451 { 452 next = bh->b_this_page; 453 block_end = block_start + blocksize; 454 if (block_end <= from || block_start >= to) { 455 if (partial && !buffer_uptodate(bh)) 456 *partial = 1; 457 continue; 458 } 459 err = (*fn)(handle, bh); 460 if (!ret) 461 ret = err; 462 } 463 return ret; 464 } 465 466 handle_t *ocfs2_start_walk_page_trans(struct inode *inode, 467 struct page *page, 468 unsigned from, 469 unsigned to) 470 { 471 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 472 handle_t *handle; 473 int ret = 0; 474 475 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 476 if (IS_ERR(handle)) { 477 ret = -ENOMEM; 478 mlog_errno(ret); 479 goto out; 480 } 481 482 if (ocfs2_should_order_data(inode)) { 483 ret = ocfs2_jbd2_file_inode(handle, inode); 484 #ifdef CONFIG_OCFS2_COMPAT_JBD 485 ret = walk_page_buffers(handle, 486 page_buffers(page), 487 from, to, NULL, 488 ocfs2_journal_dirty_data); 489 #endif 490 if (ret < 0) 491 mlog_errno(ret); 492 } 493 out: 494 if (ret) { 495 if (!IS_ERR(handle)) 496 ocfs2_commit_trans(osb, handle); 497 handle = ERR_PTR(ret); 498 } 499 return handle; 500 } 501 502 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 503 { 504 sector_t status; 505 u64 p_blkno = 0; 506 int err = 0; 507 struct inode *inode = mapping->host; 508 509 mlog_entry("(block = %llu)\n", (unsigned long long)block); 510 511 /* We don't need to lock journal system files, since they aren't 512 * accessed concurrently from multiple nodes. 513 */ 514 if (!INODE_JOURNAL(inode)) { 515 err = ocfs2_inode_lock(inode, NULL, 0); 516 if (err) { 517 if (err != -ENOENT) 518 mlog_errno(err); 519 goto bail; 520 } 521 down_read(&OCFS2_I(inode)->ip_alloc_sem); 522 } 523 524 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 525 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 526 NULL); 527 528 if (!INODE_JOURNAL(inode)) { 529 up_read(&OCFS2_I(inode)->ip_alloc_sem); 530 ocfs2_inode_unlock(inode, 0); 531 } 532 533 if (err) { 534 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 535 (unsigned long long)block); 536 mlog_errno(err); 537 goto bail; 538 } 539 540 bail: 541 status = err ? 0 : p_blkno; 542 543 mlog_exit((int)status); 544 545 return status; 546 } 547 548 /* 549 * TODO: Make this into a generic get_blocks function. 550 * 551 * From do_direct_io in direct-io.c: 552 * "So what we do is to permit the ->get_blocks function to populate 553 * bh.b_size with the size of IO which is permitted at this offset and 554 * this i_blkbits." 555 * 556 * This function is called directly from get_more_blocks in direct-io.c. 557 * 558 * called like this: dio->get_blocks(dio->inode, fs_startblk, 559 * fs_count, map_bh, dio->rw == WRITE); 560 */ 561 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, 562 struct buffer_head *bh_result, int create) 563 { 564 int ret; 565 u64 p_blkno, inode_blocks, contig_blocks; 566 unsigned int ext_flags; 567 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 568 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; 569 570 /* This function won't even be called if the request isn't all 571 * nicely aligned and of the right size, so there's no need 572 * for us to check any of that. */ 573 574 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 575 576 /* 577 * Any write past EOF is not allowed because we'd be extending. 578 */ 579 if (create && (iblock + max_blocks) > inode_blocks) { 580 ret = -EIO; 581 goto bail; 582 } 583 584 /* This figures out the size of the next contiguous block, and 585 * our logical offset */ 586 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 587 &contig_blocks, &ext_flags); 588 if (ret) { 589 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 590 (unsigned long long)iblock); 591 ret = -EIO; 592 goto bail; 593 } 594 595 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) { 596 ocfs2_error(inode->i_sb, 597 "Inode %llu has a hole at block %llu\n", 598 (unsigned long long)OCFS2_I(inode)->ip_blkno, 599 (unsigned long long)iblock); 600 ret = -EROFS; 601 goto bail; 602 } 603 604 /* 605 * get_more_blocks() expects us to describe a hole by clearing 606 * the mapped bit on bh_result(). 607 * 608 * Consider an unwritten extent as a hole. 609 */ 610 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 611 map_bh(bh_result, inode->i_sb, p_blkno); 612 else { 613 /* 614 * ocfs2_prepare_inode_for_write() should have caught 615 * the case where we'd be filling a hole and triggered 616 * a buffered write instead. 617 */ 618 if (create) { 619 ret = -EIO; 620 mlog_errno(ret); 621 goto bail; 622 } 623 624 clear_buffer_mapped(bh_result); 625 } 626 627 /* make sure we don't map more than max_blocks blocks here as 628 that's all the kernel will handle at this point. */ 629 if (max_blocks < contig_blocks) 630 contig_blocks = max_blocks; 631 bh_result->b_size = contig_blocks << blocksize_bits; 632 bail: 633 return ret; 634 } 635 636 /* 637 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 638 * particularly interested in the aio/dio case. Like the core uses 639 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from 640 * truncation on another. 641 */ 642 static void ocfs2_dio_end_io(struct kiocb *iocb, 643 loff_t offset, 644 ssize_t bytes, 645 void *private) 646 { 647 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 648 int level; 649 650 /* this io's submitter should not have unlocked this before we could */ 651 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 652 653 ocfs2_iocb_clear_rw_locked(iocb); 654 655 level = ocfs2_iocb_rw_locked_level(iocb); 656 if (!level) 657 up_read(&inode->i_alloc_sem); 658 ocfs2_rw_unlock(inode, level); 659 } 660 661 /* 662 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen 663 * from ext3. PageChecked() bits have been removed as OCFS2 does not 664 * do journalled data. 665 */ 666 static void ocfs2_invalidatepage(struct page *page, unsigned long offset) 667 { 668 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 669 670 jbd2_journal_invalidatepage(journal, page, offset); 671 } 672 673 static int ocfs2_releasepage(struct page *page, gfp_t wait) 674 { 675 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 676 677 if (!page_has_buffers(page)) 678 return 0; 679 return jbd2_journal_try_to_free_buffers(journal, page, wait); 680 } 681 682 static ssize_t ocfs2_direct_IO(int rw, 683 struct kiocb *iocb, 684 const struct iovec *iov, 685 loff_t offset, 686 unsigned long nr_segs) 687 { 688 struct file *file = iocb->ki_filp; 689 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host; 690 int ret; 691 692 mlog_entry_void(); 693 694 /* 695 * Fallback to buffered I/O if we see an inode without 696 * extents. 697 */ 698 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 699 return 0; 700 701 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, 702 inode->i_sb->s_bdev, iov, offset, 703 nr_segs, 704 ocfs2_direct_IO_get_blocks, 705 ocfs2_dio_end_io); 706 707 mlog_exit(ret); 708 return ret; 709 } 710 711 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 712 u32 cpos, 713 unsigned int *start, 714 unsigned int *end) 715 { 716 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; 717 718 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { 719 unsigned int cpp; 720 721 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); 722 723 cluster_start = cpos % cpp; 724 cluster_start = cluster_start << osb->s_clustersize_bits; 725 726 cluster_end = cluster_start + osb->s_clustersize; 727 } 728 729 BUG_ON(cluster_start > PAGE_SIZE); 730 BUG_ON(cluster_end > PAGE_SIZE); 731 732 if (start) 733 *start = cluster_start; 734 if (end) 735 *end = cluster_end; 736 } 737 738 /* 739 * 'from' and 'to' are the region in the page to avoid zeroing. 740 * 741 * If pagesize > clustersize, this function will avoid zeroing outside 742 * of the cluster boundary. 743 * 744 * from == to == 0 is code for "zero the entire cluster region" 745 */ 746 static void ocfs2_clear_page_regions(struct page *page, 747 struct ocfs2_super *osb, u32 cpos, 748 unsigned from, unsigned to) 749 { 750 void *kaddr; 751 unsigned int cluster_start, cluster_end; 752 753 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 754 755 kaddr = kmap_atomic(page, KM_USER0); 756 757 if (from || to) { 758 if (from > cluster_start) 759 memset(kaddr + cluster_start, 0, from - cluster_start); 760 if (to < cluster_end) 761 memset(kaddr + to, 0, cluster_end - to); 762 } else { 763 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 764 } 765 766 kunmap_atomic(kaddr, KM_USER0); 767 } 768 769 /* 770 * Nonsparse file systems fully allocate before we get to the write 771 * code. This prevents ocfs2_write() from tagging the write as an 772 * allocating one, which means ocfs2_map_page_blocks() might try to 773 * read-in the blocks at the tail of our file. Avoid reading them by 774 * testing i_size against each block offset. 775 */ 776 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 777 unsigned int block_start) 778 { 779 u64 offset = page_offset(page) + block_start; 780 781 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 782 return 1; 783 784 if (i_size_read(inode) > offset) 785 return 1; 786 787 return 0; 788 } 789 790 /* 791 * Some of this taken from block_prepare_write(). We already have our 792 * mapping by now though, and the entire write will be allocating or 793 * it won't, so not much need to use BH_New. 794 * 795 * This will also skip zeroing, which is handled externally. 796 */ 797 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 798 struct inode *inode, unsigned int from, 799 unsigned int to, int new) 800 { 801 int ret = 0; 802 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 803 unsigned int block_end, block_start; 804 unsigned int bsize = 1 << inode->i_blkbits; 805 806 if (!page_has_buffers(page)) 807 create_empty_buffers(page, bsize, 0); 808 809 head = page_buffers(page); 810 for (bh = head, block_start = 0; bh != head || !block_start; 811 bh = bh->b_this_page, block_start += bsize) { 812 block_end = block_start + bsize; 813 814 clear_buffer_new(bh); 815 816 /* 817 * Ignore blocks outside of our i/o range - 818 * they may belong to unallocated clusters. 819 */ 820 if (block_start >= to || block_end <= from) { 821 if (PageUptodate(page)) 822 set_buffer_uptodate(bh); 823 continue; 824 } 825 826 /* 827 * For an allocating write with cluster size >= page 828 * size, we always write the entire page. 829 */ 830 if (new) 831 set_buffer_new(bh); 832 833 if (!buffer_mapped(bh)) { 834 map_bh(bh, inode->i_sb, *p_blkno); 835 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 836 } 837 838 if (PageUptodate(page)) { 839 if (!buffer_uptodate(bh)) 840 set_buffer_uptodate(bh); 841 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 842 !buffer_new(bh) && 843 ocfs2_should_read_blk(inode, page, block_start) && 844 (block_start < from || block_end > to)) { 845 ll_rw_block(READ, 1, &bh); 846 *wait_bh++=bh; 847 } 848 849 *p_blkno = *p_blkno + 1; 850 } 851 852 /* 853 * If we issued read requests - let them complete. 854 */ 855 while(wait_bh > wait) { 856 wait_on_buffer(*--wait_bh); 857 if (!buffer_uptodate(*wait_bh)) 858 ret = -EIO; 859 } 860 861 if (ret == 0 || !new) 862 return ret; 863 864 /* 865 * If we get -EIO above, zero out any newly allocated blocks 866 * to avoid exposing stale data. 867 */ 868 bh = head; 869 block_start = 0; 870 do { 871 block_end = block_start + bsize; 872 if (block_end <= from) 873 goto next_bh; 874 if (block_start >= to) 875 break; 876 877 zero_user(page, block_start, bh->b_size); 878 set_buffer_uptodate(bh); 879 mark_buffer_dirty(bh); 880 881 next_bh: 882 block_start = block_end; 883 bh = bh->b_this_page; 884 } while (bh != head); 885 886 return ret; 887 } 888 889 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 890 #define OCFS2_MAX_CTXT_PAGES 1 891 #else 892 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) 893 #endif 894 895 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) 896 897 /* 898 * Describe the state of a single cluster to be written to. 899 */ 900 struct ocfs2_write_cluster_desc { 901 u32 c_cpos; 902 u32 c_phys; 903 /* 904 * Give this a unique field because c_phys eventually gets 905 * filled. 906 */ 907 unsigned c_new; 908 unsigned c_unwritten; 909 }; 910 911 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d) 912 { 913 return d->c_new || d->c_unwritten; 914 } 915 916 struct ocfs2_write_ctxt { 917 /* Logical cluster position / len of write */ 918 u32 w_cpos; 919 u32 w_clen; 920 921 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 922 923 /* 924 * This is true if page_size > cluster_size. 925 * 926 * It triggers a set of special cases during write which might 927 * have to deal with allocating writes to partial pages. 928 */ 929 unsigned int w_large_pages; 930 931 /* 932 * Pages involved in this write. 933 * 934 * w_target_page is the page being written to by the user. 935 * 936 * w_pages is an array of pages which always contains 937 * w_target_page, and in the case of an allocating write with 938 * page_size < cluster size, it will contain zero'd and mapped 939 * pages adjacent to w_target_page which need to be written 940 * out in so that future reads from that region will get 941 * zero's. 942 */ 943 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 944 unsigned int w_num_pages; 945 struct page *w_target_page; 946 947 /* 948 * ocfs2_write_end() uses this to know what the real range to 949 * write in the target should be. 950 */ 951 unsigned int w_target_from; 952 unsigned int w_target_to; 953 954 /* 955 * We could use journal_current_handle() but this is cleaner, 956 * IMHO -Mark 957 */ 958 handle_t *w_handle; 959 960 struct buffer_head *w_di_bh; 961 962 struct ocfs2_cached_dealloc_ctxt w_dealloc; 963 }; 964 965 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 966 { 967 int i; 968 969 for(i = 0; i < num_pages; i++) { 970 if (pages[i]) { 971 unlock_page(pages[i]); 972 mark_page_accessed(pages[i]); 973 page_cache_release(pages[i]); 974 } 975 } 976 } 977 978 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) 979 { 980 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 981 982 brelse(wc->w_di_bh); 983 kfree(wc); 984 } 985 986 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 987 struct ocfs2_super *osb, loff_t pos, 988 unsigned len, struct buffer_head *di_bh) 989 { 990 u32 cend; 991 struct ocfs2_write_ctxt *wc; 992 993 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 994 if (!wc) 995 return -ENOMEM; 996 997 wc->w_cpos = pos >> osb->s_clustersize_bits; 998 cend = (pos + len - 1) >> osb->s_clustersize_bits; 999 wc->w_clen = cend - wc->w_cpos + 1; 1000 get_bh(di_bh); 1001 wc->w_di_bh = di_bh; 1002 1003 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) 1004 wc->w_large_pages = 1; 1005 else 1006 wc->w_large_pages = 0; 1007 1008 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 1009 1010 *wcp = wc; 1011 1012 return 0; 1013 } 1014 1015 /* 1016 * If a page has any new buffers, zero them out here, and mark them uptodate 1017 * and dirty so they'll be written out (in order to prevent uninitialised 1018 * block data from leaking). And clear the new bit. 1019 */ 1020 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1021 { 1022 unsigned int block_start, block_end; 1023 struct buffer_head *head, *bh; 1024 1025 BUG_ON(!PageLocked(page)); 1026 if (!page_has_buffers(page)) 1027 return; 1028 1029 bh = head = page_buffers(page); 1030 block_start = 0; 1031 do { 1032 block_end = block_start + bh->b_size; 1033 1034 if (buffer_new(bh)) { 1035 if (block_end > from && block_start < to) { 1036 if (!PageUptodate(page)) { 1037 unsigned start, end; 1038 1039 start = max(from, block_start); 1040 end = min(to, block_end); 1041 1042 zero_user_segment(page, start, end); 1043 set_buffer_uptodate(bh); 1044 } 1045 1046 clear_buffer_new(bh); 1047 mark_buffer_dirty(bh); 1048 } 1049 } 1050 1051 block_start = block_end; 1052 bh = bh->b_this_page; 1053 } while (bh != head); 1054 } 1055 1056 /* 1057 * Only called when we have a failure during allocating write to write 1058 * zero's to the newly allocated region. 1059 */ 1060 static void ocfs2_write_failure(struct inode *inode, 1061 struct ocfs2_write_ctxt *wc, 1062 loff_t user_pos, unsigned user_len) 1063 { 1064 int i; 1065 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), 1066 to = user_pos + user_len; 1067 struct page *tmppage; 1068 1069 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 1070 1071 for(i = 0; i < wc->w_num_pages; i++) { 1072 tmppage = wc->w_pages[i]; 1073 1074 if (page_has_buffers(tmppage)) { 1075 if (ocfs2_should_order_data(inode)) { 1076 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1077 #ifdef CONFIG_OCFS2_COMPAT_JBD 1078 walk_page_buffers(wc->w_handle, 1079 page_buffers(tmppage), 1080 from, to, NULL, 1081 ocfs2_journal_dirty_data); 1082 #endif 1083 } 1084 1085 block_commit_write(tmppage, from, to); 1086 } 1087 } 1088 } 1089 1090 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 1091 struct ocfs2_write_ctxt *wc, 1092 struct page *page, u32 cpos, 1093 loff_t user_pos, unsigned user_len, 1094 int new) 1095 { 1096 int ret; 1097 unsigned int map_from = 0, map_to = 0; 1098 unsigned int cluster_start, cluster_end; 1099 unsigned int user_data_from = 0, user_data_to = 0; 1100 1101 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 1102 &cluster_start, &cluster_end); 1103 1104 if (page == wc->w_target_page) { 1105 map_from = user_pos & (PAGE_CACHE_SIZE - 1); 1106 map_to = map_from + user_len; 1107 1108 if (new) 1109 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1110 cluster_start, cluster_end, 1111 new); 1112 else 1113 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1114 map_from, map_to, new); 1115 if (ret) { 1116 mlog_errno(ret); 1117 goto out; 1118 } 1119 1120 user_data_from = map_from; 1121 user_data_to = map_to; 1122 if (new) { 1123 map_from = cluster_start; 1124 map_to = cluster_end; 1125 } 1126 } else { 1127 /* 1128 * If we haven't allocated the new page yet, we 1129 * shouldn't be writing it out without copying user 1130 * data. This is likely a math error from the caller. 1131 */ 1132 BUG_ON(!new); 1133 1134 map_from = cluster_start; 1135 map_to = cluster_end; 1136 1137 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1138 cluster_start, cluster_end, new); 1139 if (ret) { 1140 mlog_errno(ret); 1141 goto out; 1142 } 1143 } 1144 1145 /* 1146 * Parts of newly allocated pages need to be zero'd. 1147 * 1148 * Above, we have also rewritten 'to' and 'from' - as far as 1149 * the rest of the function is concerned, the entire cluster 1150 * range inside of a page needs to be written. 1151 * 1152 * We can skip this if the page is up to date - it's already 1153 * been zero'd from being read in as a hole. 1154 */ 1155 if (new && !PageUptodate(page)) 1156 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1157 cpos, user_data_from, user_data_to); 1158 1159 flush_dcache_page(page); 1160 1161 out: 1162 return ret; 1163 } 1164 1165 /* 1166 * This function will only grab one clusters worth of pages. 1167 */ 1168 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1169 struct ocfs2_write_ctxt *wc, 1170 u32 cpos, loff_t user_pos, int new, 1171 struct page *mmap_page) 1172 { 1173 int ret = 0, i; 1174 unsigned long start, target_index, index; 1175 struct inode *inode = mapping->host; 1176 1177 target_index = user_pos >> PAGE_CACHE_SHIFT; 1178 1179 /* 1180 * Figure out how many pages we'll be manipulating here. For 1181 * non allocating write, we just change the one 1182 * page. Otherwise, we'll need a whole clusters worth. 1183 */ 1184 if (new) { 1185 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1186 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1187 } else { 1188 wc->w_num_pages = 1; 1189 start = target_index; 1190 } 1191 1192 for(i = 0; i < wc->w_num_pages; i++) { 1193 index = start + i; 1194 1195 if (index == target_index && mmap_page) { 1196 /* 1197 * ocfs2_pagemkwrite() is a little different 1198 * and wants us to directly use the page 1199 * passed in. 1200 */ 1201 lock_page(mmap_page); 1202 1203 if (mmap_page->mapping != mapping) { 1204 unlock_page(mmap_page); 1205 /* 1206 * Sanity check - the locking in 1207 * ocfs2_pagemkwrite() should ensure 1208 * that this code doesn't trigger. 1209 */ 1210 ret = -EINVAL; 1211 mlog_errno(ret); 1212 goto out; 1213 } 1214 1215 page_cache_get(mmap_page); 1216 wc->w_pages[i] = mmap_page; 1217 } else { 1218 wc->w_pages[i] = find_or_create_page(mapping, index, 1219 GFP_NOFS); 1220 if (!wc->w_pages[i]) { 1221 ret = -ENOMEM; 1222 mlog_errno(ret); 1223 goto out; 1224 } 1225 } 1226 1227 if (index == target_index) 1228 wc->w_target_page = wc->w_pages[i]; 1229 } 1230 out: 1231 return ret; 1232 } 1233 1234 /* 1235 * Prepare a single cluster for write one cluster into the file. 1236 */ 1237 static int ocfs2_write_cluster(struct address_space *mapping, 1238 u32 phys, unsigned int unwritten, 1239 struct ocfs2_alloc_context *data_ac, 1240 struct ocfs2_alloc_context *meta_ac, 1241 struct ocfs2_write_ctxt *wc, u32 cpos, 1242 loff_t user_pos, unsigned user_len) 1243 { 1244 int ret, i, new, should_zero = 0; 1245 u64 v_blkno, p_blkno; 1246 struct inode *inode = mapping->host; 1247 struct ocfs2_extent_tree et; 1248 1249 new = phys == 0 ? 1 : 0; 1250 if (new || unwritten) 1251 should_zero = 1; 1252 1253 if (new) { 1254 u32 tmp_pos; 1255 1256 /* 1257 * This is safe to call with the page locks - it won't take 1258 * any additional semaphores or cluster locks. 1259 */ 1260 tmp_pos = cpos; 1261 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1262 &tmp_pos, 1, 0, wc->w_di_bh, 1263 wc->w_handle, data_ac, 1264 meta_ac, NULL); 1265 /* 1266 * This shouldn't happen because we must have already 1267 * calculated the correct meta data allocation required. The 1268 * internal tree allocation code should know how to increase 1269 * transaction credits itself. 1270 * 1271 * If need be, we could handle -EAGAIN for a 1272 * RESTART_TRANS here. 1273 */ 1274 mlog_bug_on_msg(ret == -EAGAIN, 1275 "Inode %llu: EAGAIN return during allocation.\n", 1276 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1277 if (ret < 0) { 1278 mlog_errno(ret); 1279 goto out; 1280 } 1281 } else if (unwritten) { 1282 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh); 1283 ret = ocfs2_mark_extent_written(inode, &et, 1284 wc->w_handle, cpos, 1, phys, 1285 meta_ac, &wc->w_dealloc); 1286 if (ret < 0) { 1287 mlog_errno(ret); 1288 goto out; 1289 } 1290 } 1291 1292 if (should_zero) 1293 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); 1294 else 1295 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; 1296 1297 /* 1298 * The only reason this should fail is due to an inability to 1299 * find the extent added. 1300 */ 1301 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, 1302 NULL); 1303 if (ret < 0) { 1304 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, " 1305 "at logical block %llu", 1306 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1307 (unsigned long long)v_blkno); 1308 goto out; 1309 } 1310 1311 BUG_ON(p_blkno == 0); 1312 1313 for(i = 0; i < wc->w_num_pages; i++) { 1314 int tmpret; 1315 1316 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1317 wc->w_pages[i], cpos, 1318 user_pos, user_len, 1319 should_zero); 1320 if (tmpret) { 1321 mlog_errno(tmpret); 1322 if (ret == 0) 1323 tmpret = ret; 1324 } 1325 } 1326 1327 /* 1328 * We only have cleanup to do in case of allocating write. 1329 */ 1330 if (ret && new) 1331 ocfs2_write_failure(inode, wc, user_pos, user_len); 1332 1333 out: 1334 1335 return ret; 1336 } 1337 1338 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1339 struct ocfs2_alloc_context *data_ac, 1340 struct ocfs2_alloc_context *meta_ac, 1341 struct ocfs2_write_ctxt *wc, 1342 loff_t pos, unsigned len) 1343 { 1344 int ret, i; 1345 loff_t cluster_off; 1346 unsigned int local_len = len; 1347 struct ocfs2_write_cluster_desc *desc; 1348 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1349 1350 for (i = 0; i < wc->w_clen; i++) { 1351 desc = &wc->w_desc[i]; 1352 1353 /* 1354 * We have to make sure that the total write passed in 1355 * doesn't extend past a single cluster. 1356 */ 1357 local_len = len; 1358 cluster_off = pos & (osb->s_clustersize - 1); 1359 if ((cluster_off + local_len) > osb->s_clustersize) 1360 local_len = osb->s_clustersize - cluster_off; 1361 1362 ret = ocfs2_write_cluster(mapping, desc->c_phys, 1363 desc->c_unwritten, data_ac, meta_ac, 1364 wc, desc->c_cpos, pos, local_len); 1365 if (ret) { 1366 mlog_errno(ret); 1367 goto out; 1368 } 1369 1370 len -= local_len; 1371 pos += local_len; 1372 } 1373 1374 ret = 0; 1375 out: 1376 return ret; 1377 } 1378 1379 /* 1380 * ocfs2_write_end() wants to know which parts of the target page it 1381 * should complete the write on. It's easiest to compute them ahead of 1382 * time when a more complete view of the write is available. 1383 */ 1384 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1385 struct ocfs2_write_ctxt *wc, 1386 loff_t pos, unsigned len, int alloc) 1387 { 1388 struct ocfs2_write_cluster_desc *desc; 1389 1390 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); 1391 wc->w_target_to = wc->w_target_from + len; 1392 1393 if (alloc == 0) 1394 return; 1395 1396 /* 1397 * Allocating write - we may have different boundaries based 1398 * on page size and cluster size. 1399 * 1400 * NOTE: We can no longer compute one value from the other as 1401 * the actual write length and user provided length may be 1402 * different. 1403 */ 1404 1405 if (wc->w_large_pages) { 1406 /* 1407 * We only care about the 1st and last cluster within 1408 * our range and whether they should be zero'd or not. Either 1409 * value may be extended out to the start/end of a 1410 * newly allocated cluster. 1411 */ 1412 desc = &wc->w_desc[0]; 1413 if (ocfs2_should_zero_cluster(desc)) 1414 ocfs2_figure_cluster_boundaries(osb, 1415 desc->c_cpos, 1416 &wc->w_target_from, 1417 NULL); 1418 1419 desc = &wc->w_desc[wc->w_clen - 1]; 1420 if (ocfs2_should_zero_cluster(desc)) 1421 ocfs2_figure_cluster_boundaries(osb, 1422 desc->c_cpos, 1423 NULL, 1424 &wc->w_target_to); 1425 } else { 1426 wc->w_target_from = 0; 1427 wc->w_target_to = PAGE_CACHE_SIZE; 1428 } 1429 } 1430 1431 /* 1432 * Populate each single-cluster write descriptor in the write context 1433 * with information about the i/o to be done. 1434 * 1435 * Returns the number of clusters that will have to be allocated, as 1436 * well as a worst case estimate of the number of extent records that 1437 * would have to be created during a write to an unwritten region. 1438 */ 1439 static int ocfs2_populate_write_desc(struct inode *inode, 1440 struct ocfs2_write_ctxt *wc, 1441 unsigned int *clusters_to_alloc, 1442 unsigned int *extents_to_split) 1443 { 1444 int ret; 1445 struct ocfs2_write_cluster_desc *desc; 1446 unsigned int num_clusters = 0; 1447 unsigned int ext_flags = 0; 1448 u32 phys = 0; 1449 int i; 1450 1451 *clusters_to_alloc = 0; 1452 *extents_to_split = 0; 1453 1454 for (i = 0; i < wc->w_clen; i++) { 1455 desc = &wc->w_desc[i]; 1456 desc->c_cpos = wc->w_cpos + i; 1457 1458 if (num_clusters == 0) { 1459 /* 1460 * Need to look up the next extent record. 1461 */ 1462 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1463 &num_clusters, &ext_flags); 1464 if (ret) { 1465 mlog_errno(ret); 1466 goto out; 1467 } 1468 1469 /* 1470 * Assume worst case - that we're writing in 1471 * the middle of the extent. 1472 * 1473 * We can assume that the write proceeds from 1474 * left to right, in which case the extent 1475 * insert code is smart enough to coalesce the 1476 * next splits into the previous records created. 1477 */ 1478 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1479 *extents_to_split = *extents_to_split + 2; 1480 } else if (phys) { 1481 /* 1482 * Only increment phys if it doesn't describe 1483 * a hole. 1484 */ 1485 phys++; 1486 } 1487 1488 desc->c_phys = phys; 1489 if (phys == 0) { 1490 desc->c_new = 1; 1491 *clusters_to_alloc = *clusters_to_alloc + 1; 1492 } 1493 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1494 desc->c_unwritten = 1; 1495 1496 num_clusters--; 1497 } 1498 1499 ret = 0; 1500 out: 1501 return ret; 1502 } 1503 1504 static int ocfs2_write_begin_inline(struct address_space *mapping, 1505 struct inode *inode, 1506 struct ocfs2_write_ctxt *wc) 1507 { 1508 int ret; 1509 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1510 struct page *page; 1511 handle_t *handle; 1512 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1513 1514 page = find_or_create_page(mapping, 0, GFP_NOFS); 1515 if (!page) { 1516 ret = -ENOMEM; 1517 mlog_errno(ret); 1518 goto out; 1519 } 1520 /* 1521 * If we don't set w_num_pages then this page won't get unlocked 1522 * and freed on cleanup of the write context. 1523 */ 1524 wc->w_pages[0] = wc->w_target_page = page; 1525 wc->w_num_pages = 1; 1526 1527 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1528 if (IS_ERR(handle)) { 1529 ret = PTR_ERR(handle); 1530 mlog_errno(ret); 1531 goto out; 1532 } 1533 1534 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh, 1535 OCFS2_JOURNAL_ACCESS_WRITE); 1536 if (ret) { 1537 ocfs2_commit_trans(osb, handle); 1538 1539 mlog_errno(ret); 1540 goto out; 1541 } 1542 1543 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1544 ocfs2_set_inode_data_inline(inode, di); 1545 1546 if (!PageUptodate(page)) { 1547 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1548 if (ret) { 1549 ocfs2_commit_trans(osb, handle); 1550 1551 goto out; 1552 } 1553 } 1554 1555 wc->w_handle = handle; 1556 out: 1557 return ret; 1558 } 1559 1560 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1561 { 1562 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1563 1564 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1565 return 1; 1566 return 0; 1567 } 1568 1569 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1570 struct inode *inode, loff_t pos, 1571 unsigned len, struct page *mmap_page, 1572 struct ocfs2_write_ctxt *wc) 1573 { 1574 int ret, written = 0; 1575 loff_t end = pos + len; 1576 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1577 1578 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n", 1579 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos, 1580 oi->ip_dyn_features); 1581 1582 /* 1583 * Handle inodes which already have inline data 1st. 1584 */ 1585 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1586 if (mmap_page == NULL && 1587 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1588 goto do_inline_write; 1589 1590 /* 1591 * The write won't fit - we have to give this inode an 1592 * inline extent list now. 1593 */ 1594 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1595 if (ret) 1596 mlog_errno(ret); 1597 goto out; 1598 } 1599 1600 /* 1601 * Check whether the inode can accept inline data. 1602 */ 1603 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1604 return 0; 1605 1606 /* 1607 * Check whether the write can fit. 1608 */ 1609 if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb)) 1610 return 0; 1611 1612 do_inline_write: 1613 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1614 if (ret) { 1615 mlog_errno(ret); 1616 goto out; 1617 } 1618 1619 /* 1620 * This signals to the caller that the data can be written 1621 * inline. 1622 */ 1623 written = 1; 1624 out: 1625 return written ? written : ret; 1626 } 1627 1628 /* 1629 * This function only does anything for file systems which can't 1630 * handle sparse files. 1631 * 1632 * What we want to do here is fill in any hole between the current end 1633 * of allocation and the end of our write. That way the rest of the 1634 * write path can treat it as an non-allocating write, which has no 1635 * special case code for sparse/nonsparse files. 1636 */ 1637 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos, 1638 unsigned len, 1639 struct ocfs2_write_ctxt *wc) 1640 { 1641 int ret; 1642 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1643 loff_t newsize = pos + len; 1644 1645 if (ocfs2_sparse_alloc(osb)) 1646 return 0; 1647 1648 if (newsize <= i_size_read(inode)) 1649 return 0; 1650 1651 ret = ocfs2_extend_no_holes(inode, newsize, newsize - len); 1652 if (ret) 1653 mlog_errno(ret); 1654 1655 return ret; 1656 } 1657 1658 int ocfs2_write_begin_nolock(struct address_space *mapping, 1659 loff_t pos, unsigned len, unsigned flags, 1660 struct page **pagep, void **fsdata, 1661 struct buffer_head *di_bh, struct page *mmap_page) 1662 { 1663 int ret, credits = OCFS2_INODE_UPDATE_CREDITS; 1664 unsigned int clusters_to_alloc, extents_to_split; 1665 struct ocfs2_write_ctxt *wc; 1666 struct inode *inode = mapping->host; 1667 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1668 struct ocfs2_dinode *di; 1669 struct ocfs2_alloc_context *data_ac = NULL; 1670 struct ocfs2_alloc_context *meta_ac = NULL; 1671 handle_t *handle; 1672 struct ocfs2_extent_tree et; 1673 1674 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); 1675 if (ret) { 1676 mlog_errno(ret); 1677 return ret; 1678 } 1679 1680 if (ocfs2_supports_inline_data(osb)) { 1681 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1682 mmap_page, wc); 1683 if (ret == 1) { 1684 ret = 0; 1685 goto success; 1686 } 1687 if (ret < 0) { 1688 mlog_errno(ret); 1689 goto out; 1690 } 1691 } 1692 1693 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc); 1694 if (ret) { 1695 mlog_errno(ret); 1696 goto out; 1697 } 1698 1699 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1700 &extents_to_split); 1701 if (ret) { 1702 mlog_errno(ret); 1703 goto out; 1704 } 1705 1706 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1707 1708 /* 1709 * We set w_target_from, w_target_to here so that 1710 * ocfs2_write_end() knows which range in the target page to 1711 * write out. An allocation requires that we write the entire 1712 * cluster range. 1713 */ 1714 if (clusters_to_alloc || extents_to_split) { 1715 /* 1716 * XXX: We are stretching the limits of 1717 * ocfs2_lock_allocators(). It greatly over-estimates 1718 * the work to be done. 1719 */ 1720 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u," 1721 " clusters_to_add = %u, extents_to_split = %u\n", 1722 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1723 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters), 1724 clusters_to_alloc, extents_to_split); 1725 1726 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh); 1727 ret = ocfs2_lock_allocators(inode, &et, 1728 clusters_to_alloc, extents_to_split, 1729 &data_ac, &meta_ac); 1730 if (ret) { 1731 mlog_errno(ret); 1732 goto out; 1733 } 1734 1735 credits = ocfs2_calc_extend_credits(inode->i_sb, 1736 &di->id2.i_list, 1737 clusters_to_alloc); 1738 1739 } 1740 1741 ocfs2_set_target_boundaries(osb, wc, pos, len, 1742 clusters_to_alloc + extents_to_split); 1743 1744 handle = ocfs2_start_trans(osb, credits); 1745 if (IS_ERR(handle)) { 1746 ret = PTR_ERR(handle); 1747 mlog_errno(ret); 1748 goto out; 1749 } 1750 1751 wc->w_handle = handle; 1752 1753 /* 1754 * We don't want this to fail in ocfs2_write_end(), so do it 1755 * here. 1756 */ 1757 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh, 1758 OCFS2_JOURNAL_ACCESS_WRITE); 1759 if (ret) { 1760 mlog_errno(ret); 1761 goto out_commit; 1762 } 1763 1764 /* 1765 * Fill our page array first. That way we've grabbed enough so 1766 * that we can zero and flush if we error after adding the 1767 * extent. 1768 */ 1769 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, 1770 clusters_to_alloc + extents_to_split, 1771 mmap_page); 1772 if (ret) { 1773 mlog_errno(ret); 1774 goto out_commit; 1775 } 1776 1777 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1778 len); 1779 if (ret) { 1780 mlog_errno(ret); 1781 goto out_commit; 1782 } 1783 1784 if (data_ac) 1785 ocfs2_free_alloc_context(data_ac); 1786 if (meta_ac) 1787 ocfs2_free_alloc_context(meta_ac); 1788 1789 success: 1790 *pagep = wc->w_target_page; 1791 *fsdata = wc; 1792 return 0; 1793 out_commit: 1794 ocfs2_commit_trans(osb, handle); 1795 1796 out: 1797 ocfs2_free_write_ctxt(wc); 1798 1799 if (data_ac) 1800 ocfs2_free_alloc_context(data_ac); 1801 if (meta_ac) 1802 ocfs2_free_alloc_context(meta_ac); 1803 return ret; 1804 } 1805 1806 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1807 loff_t pos, unsigned len, unsigned flags, 1808 struct page **pagep, void **fsdata) 1809 { 1810 int ret; 1811 struct buffer_head *di_bh = NULL; 1812 struct inode *inode = mapping->host; 1813 1814 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1815 if (ret) { 1816 mlog_errno(ret); 1817 return ret; 1818 } 1819 1820 /* 1821 * Take alloc sem here to prevent concurrent lookups. That way 1822 * the mapping, zeroing and tree manipulation within 1823 * ocfs2_write() will be safe against ->readpage(). This 1824 * should also serve to lock out allocation from a shared 1825 * writeable region. 1826 */ 1827 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1828 1829 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep, 1830 fsdata, di_bh, NULL); 1831 if (ret) { 1832 mlog_errno(ret); 1833 goto out_fail; 1834 } 1835 1836 brelse(di_bh); 1837 1838 return 0; 1839 1840 out_fail: 1841 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1842 1843 brelse(di_bh); 1844 ocfs2_inode_unlock(inode, 1); 1845 1846 return ret; 1847 } 1848 1849 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1850 unsigned len, unsigned *copied, 1851 struct ocfs2_dinode *di, 1852 struct ocfs2_write_ctxt *wc) 1853 { 1854 void *kaddr; 1855 1856 if (unlikely(*copied < len)) { 1857 if (!PageUptodate(wc->w_target_page)) { 1858 *copied = 0; 1859 return; 1860 } 1861 } 1862 1863 kaddr = kmap_atomic(wc->w_target_page, KM_USER0); 1864 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1865 kunmap_atomic(kaddr, KM_USER0); 1866 1867 mlog(0, "Data written to inode at offset %llu. " 1868 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n", 1869 (unsigned long long)pos, *copied, 1870 le16_to_cpu(di->id2.i_data.id_count), 1871 le16_to_cpu(di->i_dyn_features)); 1872 } 1873 1874 int ocfs2_write_end_nolock(struct address_space *mapping, 1875 loff_t pos, unsigned len, unsigned copied, 1876 struct page *page, void *fsdata) 1877 { 1878 int i; 1879 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); 1880 struct inode *inode = mapping->host; 1881 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1882 struct ocfs2_write_ctxt *wc = fsdata; 1883 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1884 handle_t *handle = wc->w_handle; 1885 struct page *tmppage; 1886 1887 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1888 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1889 goto out_write_size; 1890 } 1891 1892 if (unlikely(copied < len)) { 1893 if (!PageUptodate(wc->w_target_page)) 1894 copied = 0; 1895 1896 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1897 start+len); 1898 } 1899 flush_dcache_page(wc->w_target_page); 1900 1901 for(i = 0; i < wc->w_num_pages; i++) { 1902 tmppage = wc->w_pages[i]; 1903 1904 if (tmppage == wc->w_target_page) { 1905 from = wc->w_target_from; 1906 to = wc->w_target_to; 1907 1908 BUG_ON(from > PAGE_CACHE_SIZE || 1909 to > PAGE_CACHE_SIZE || 1910 to < from); 1911 } else { 1912 /* 1913 * Pages adjacent to the target (if any) imply 1914 * a hole-filling write in which case we want 1915 * to flush their entire range. 1916 */ 1917 from = 0; 1918 to = PAGE_CACHE_SIZE; 1919 } 1920 1921 if (page_has_buffers(tmppage)) { 1922 if (ocfs2_should_order_data(inode)) { 1923 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1924 #ifdef CONFIG_OCFS2_COMPAT_JBD 1925 walk_page_buffers(wc->w_handle, 1926 page_buffers(tmppage), 1927 from, to, NULL, 1928 ocfs2_journal_dirty_data); 1929 #endif 1930 } 1931 block_commit_write(tmppage, from, to); 1932 } 1933 } 1934 1935 out_write_size: 1936 pos += copied; 1937 if (pos > inode->i_size) { 1938 i_size_write(inode, pos); 1939 mark_inode_dirty(inode); 1940 } 1941 inode->i_blocks = ocfs2_inode_sector_count(inode); 1942 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 1943 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1944 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 1945 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 1946 ocfs2_journal_dirty(handle, wc->w_di_bh); 1947 1948 ocfs2_commit_trans(osb, handle); 1949 1950 ocfs2_run_deallocs(osb, &wc->w_dealloc); 1951 1952 ocfs2_free_write_ctxt(wc); 1953 1954 return copied; 1955 } 1956 1957 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 1958 loff_t pos, unsigned len, unsigned copied, 1959 struct page *page, void *fsdata) 1960 { 1961 int ret; 1962 struct inode *inode = mapping->host; 1963 1964 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 1965 1966 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1967 ocfs2_inode_unlock(inode, 1); 1968 1969 return ret; 1970 } 1971 1972 const struct address_space_operations ocfs2_aops = { 1973 .readpage = ocfs2_readpage, 1974 .readpages = ocfs2_readpages, 1975 .writepage = ocfs2_writepage, 1976 .write_begin = ocfs2_write_begin, 1977 .write_end = ocfs2_write_end, 1978 .bmap = ocfs2_bmap, 1979 .sync_page = block_sync_page, 1980 .direct_IO = ocfs2_direct_IO, 1981 .invalidatepage = ocfs2_invalidatepage, 1982 .releasepage = ocfs2_releasepage, 1983 .migratepage = buffer_migrate_page, 1984 }; 1985