xref: /openbmc/linux/fs/ocfs2/aops.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 
31 #define MLOG_MASK_PREFIX ML_FILE_IO
32 #include <cluster/masklog.h>
33 
34 #include "ocfs2.h"
35 
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 
47 #include "buffer_head_io.h"
48 
49 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
50 				   struct buffer_head *bh_result, int create)
51 {
52 	int err = -EIO;
53 	int status;
54 	struct ocfs2_dinode *fe = NULL;
55 	struct buffer_head *bh = NULL;
56 	struct buffer_head *buffer_cache_bh = NULL;
57 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58 	void *kaddr;
59 
60 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
61 		   (unsigned long long)iblock, bh_result, create);
62 
63 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64 
65 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
66 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
67 		     (unsigned long long)iblock);
68 		goto bail;
69 	}
70 
71 	status = ocfs2_read_block(inode, OCFS2_I(inode)->ip_blkno, &bh);
72 	if (status < 0) {
73 		mlog_errno(status);
74 		goto bail;
75 	}
76 	fe = (struct ocfs2_dinode *) bh->b_data;
77 
78 	if (!OCFS2_IS_VALID_DINODE(fe)) {
79 		mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
80 		     (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
81 		     fe->i_signature);
82 		goto bail;
83 	}
84 
85 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
86 						    le32_to_cpu(fe->i_clusters))) {
87 		mlog(ML_ERROR, "block offset is outside the allocated size: "
88 		     "%llu\n", (unsigned long long)iblock);
89 		goto bail;
90 	}
91 
92 	/* We don't use the page cache to create symlink data, so if
93 	 * need be, copy it over from the buffer cache. */
94 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
95 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
96 			    iblock;
97 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
98 		if (!buffer_cache_bh) {
99 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
100 			goto bail;
101 		}
102 
103 		/* we haven't locked out transactions, so a commit
104 		 * could've happened. Since we've got a reference on
105 		 * the bh, even if it commits while we're doing the
106 		 * copy, the data is still good. */
107 		if (buffer_jbd(buffer_cache_bh)
108 		    && ocfs2_inode_is_new(inode)) {
109 			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
110 			if (!kaddr) {
111 				mlog(ML_ERROR, "couldn't kmap!\n");
112 				goto bail;
113 			}
114 			memcpy(kaddr + (bh_result->b_size * iblock),
115 			       buffer_cache_bh->b_data,
116 			       bh_result->b_size);
117 			kunmap_atomic(kaddr, KM_USER0);
118 			set_buffer_uptodate(bh_result);
119 		}
120 		brelse(buffer_cache_bh);
121 	}
122 
123 	map_bh(bh_result, inode->i_sb,
124 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
125 
126 	err = 0;
127 
128 bail:
129 	brelse(bh);
130 
131 	mlog_exit(err);
132 	return err;
133 }
134 
135 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
136 			   struct buffer_head *bh_result, int create)
137 {
138 	int err = 0;
139 	unsigned int ext_flags;
140 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
141 	u64 p_blkno, count, past_eof;
142 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
143 
144 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
145 		   (unsigned long long)iblock, bh_result, create);
146 
147 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
148 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
149 		     inode, inode->i_ino);
150 
151 	if (S_ISLNK(inode->i_mode)) {
152 		/* this always does I/O for some reason. */
153 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
154 		goto bail;
155 	}
156 
157 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
158 					  &ext_flags);
159 	if (err) {
160 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
161 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
162 		     (unsigned long long)p_blkno);
163 		goto bail;
164 	}
165 
166 	if (max_blocks < count)
167 		count = max_blocks;
168 
169 	/*
170 	 * ocfs2 never allocates in this function - the only time we
171 	 * need to use BH_New is when we're extending i_size on a file
172 	 * system which doesn't support holes, in which case BH_New
173 	 * allows block_prepare_write() to zero.
174 	 *
175 	 * If we see this on a sparse file system, then a truncate has
176 	 * raced us and removed the cluster. In this case, we clear
177 	 * the buffers dirty and uptodate bits and let the buffer code
178 	 * ignore it as a hole.
179 	 */
180 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
181 		clear_buffer_dirty(bh_result);
182 		clear_buffer_uptodate(bh_result);
183 		goto bail;
184 	}
185 
186 	/* Treat the unwritten extent as a hole for zeroing purposes. */
187 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
188 		map_bh(bh_result, inode->i_sb, p_blkno);
189 
190 	bh_result->b_size = count << inode->i_blkbits;
191 
192 	if (!ocfs2_sparse_alloc(osb)) {
193 		if (p_blkno == 0) {
194 			err = -EIO;
195 			mlog(ML_ERROR,
196 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
197 			     (unsigned long long)iblock,
198 			     (unsigned long long)p_blkno,
199 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
200 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
201 			dump_stack();
202 		}
203 
204 		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
205 		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
206 		     (unsigned long long)past_eof);
207 
208 		if (create && (iblock >= past_eof))
209 			set_buffer_new(bh_result);
210 	}
211 
212 bail:
213 	if (err < 0)
214 		err = -EIO;
215 
216 	mlog_exit(err);
217 	return err;
218 }
219 
220 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
221 			   struct buffer_head *di_bh)
222 {
223 	void *kaddr;
224 	loff_t size;
225 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
226 
227 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
228 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
229 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
230 		return -EROFS;
231 	}
232 
233 	size = i_size_read(inode);
234 
235 	if (size > PAGE_CACHE_SIZE ||
236 	    size > ocfs2_max_inline_data(inode->i_sb)) {
237 		ocfs2_error(inode->i_sb,
238 			    "Inode %llu has with inline data has bad size: %Lu",
239 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
240 			    (unsigned long long)size);
241 		return -EROFS;
242 	}
243 
244 	kaddr = kmap_atomic(page, KM_USER0);
245 	if (size)
246 		memcpy(kaddr, di->id2.i_data.id_data, size);
247 	/* Clear the remaining part of the page */
248 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
249 	flush_dcache_page(page);
250 	kunmap_atomic(kaddr, KM_USER0);
251 
252 	SetPageUptodate(page);
253 
254 	return 0;
255 }
256 
257 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
258 {
259 	int ret;
260 	struct buffer_head *di_bh = NULL;
261 
262 	BUG_ON(!PageLocked(page));
263 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
264 
265 	ret = ocfs2_read_block(inode, OCFS2_I(inode)->ip_blkno, &di_bh);
266 	if (ret) {
267 		mlog_errno(ret);
268 		goto out;
269 	}
270 
271 	ret = ocfs2_read_inline_data(inode, page, di_bh);
272 out:
273 	unlock_page(page);
274 
275 	brelse(di_bh);
276 	return ret;
277 }
278 
279 static int ocfs2_readpage(struct file *file, struct page *page)
280 {
281 	struct inode *inode = page->mapping->host;
282 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
283 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
284 	int ret, unlock = 1;
285 
286 	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
287 
288 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
289 	if (ret != 0) {
290 		if (ret == AOP_TRUNCATED_PAGE)
291 			unlock = 0;
292 		mlog_errno(ret);
293 		goto out;
294 	}
295 
296 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
297 		ret = AOP_TRUNCATED_PAGE;
298 		goto out_inode_unlock;
299 	}
300 
301 	/*
302 	 * i_size might have just been updated as we grabed the meta lock.  We
303 	 * might now be discovering a truncate that hit on another node.
304 	 * block_read_full_page->get_block freaks out if it is asked to read
305 	 * beyond the end of a file, so we check here.  Callers
306 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
307 	 * and notice that the page they just read isn't needed.
308 	 *
309 	 * XXX sys_readahead() seems to get that wrong?
310 	 */
311 	if (start >= i_size_read(inode)) {
312 		zero_user(page, 0, PAGE_SIZE);
313 		SetPageUptodate(page);
314 		ret = 0;
315 		goto out_alloc;
316 	}
317 
318 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
319 		ret = ocfs2_readpage_inline(inode, page);
320 	else
321 		ret = block_read_full_page(page, ocfs2_get_block);
322 	unlock = 0;
323 
324 out_alloc:
325 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
326 out_inode_unlock:
327 	ocfs2_inode_unlock(inode, 0);
328 out:
329 	if (unlock)
330 		unlock_page(page);
331 	mlog_exit(ret);
332 	return ret;
333 }
334 
335 /*
336  * This is used only for read-ahead. Failures or difficult to handle
337  * situations are safe to ignore.
338  *
339  * Right now, we don't bother with BH_Boundary - in-inode extent lists
340  * are quite large (243 extents on 4k blocks), so most inodes don't
341  * grow out to a tree. If need be, detecting boundary extents could
342  * trivially be added in a future version of ocfs2_get_block().
343  */
344 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
345 			   struct list_head *pages, unsigned nr_pages)
346 {
347 	int ret, err = -EIO;
348 	struct inode *inode = mapping->host;
349 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
350 	loff_t start;
351 	struct page *last;
352 
353 	/*
354 	 * Use the nonblocking flag for the dlm code to avoid page
355 	 * lock inversion, but don't bother with retrying.
356 	 */
357 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
358 	if (ret)
359 		return err;
360 
361 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
362 		ocfs2_inode_unlock(inode, 0);
363 		return err;
364 	}
365 
366 	/*
367 	 * Don't bother with inline-data. There isn't anything
368 	 * to read-ahead in that case anyway...
369 	 */
370 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
371 		goto out_unlock;
372 
373 	/*
374 	 * Check whether a remote node truncated this file - we just
375 	 * drop out in that case as it's not worth handling here.
376 	 */
377 	last = list_entry(pages->prev, struct page, lru);
378 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
379 	if (start >= i_size_read(inode))
380 		goto out_unlock;
381 
382 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
383 
384 out_unlock:
385 	up_read(&oi->ip_alloc_sem);
386 	ocfs2_inode_unlock(inode, 0);
387 
388 	return err;
389 }
390 
391 /* Note: Because we don't support holes, our allocation has
392  * already happened (allocation writes zeros to the file data)
393  * so we don't have to worry about ordered writes in
394  * ocfs2_writepage.
395  *
396  * ->writepage is called during the process of invalidating the page cache
397  * during blocked lock processing.  It can't block on any cluster locks
398  * to during block mapping.  It's relying on the fact that the block
399  * mapping can't have disappeared under the dirty pages that it is
400  * being asked to write back.
401  */
402 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
403 {
404 	int ret;
405 
406 	mlog_entry("(0x%p)\n", page);
407 
408 	ret = block_write_full_page(page, ocfs2_get_block, wbc);
409 
410 	mlog_exit(ret);
411 
412 	return ret;
413 }
414 
415 /*
416  * This is called from ocfs2_write_zero_page() which has handled it's
417  * own cluster locking and has ensured allocation exists for those
418  * blocks to be written.
419  */
420 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
421 			       unsigned from, unsigned to)
422 {
423 	int ret;
424 
425 	ret = block_prepare_write(page, from, to, ocfs2_get_block);
426 
427 	return ret;
428 }
429 
430 /* Taken from ext3. We don't necessarily need the full blown
431  * functionality yet, but IMHO it's better to cut and paste the whole
432  * thing so we can avoid introducing our own bugs (and easily pick up
433  * their fixes when they happen) --Mark */
434 int walk_page_buffers(	handle_t *handle,
435 			struct buffer_head *head,
436 			unsigned from,
437 			unsigned to,
438 			int *partial,
439 			int (*fn)(	handle_t *handle,
440 					struct buffer_head *bh))
441 {
442 	struct buffer_head *bh;
443 	unsigned block_start, block_end;
444 	unsigned blocksize = head->b_size;
445 	int err, ret = 0;
446 	struct buffer_head *next;
447 
448 	for (	bh = head, block_start = 0;
449 		ret == 0 && (bh != head || !block_start);
450 	    	block_start = block_end, bh = next)
451 	{
452 		next = bh->b_this_page;
453 		block_end = block_start + blocksize;
454 		if (block_end <= from || block_start >= to) {
455 			if (partial && !buffer_uptodate(bh))
456 				*partial = 1;
457 			continue;
458 		}
459 		err = (*fn)(handle, bh);
460 		if (!ret)
461 			ret = err;
462 	}
463 	return ret;
464 }
465 
466 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
467 							 struct page *page,
468 							 unsigned from,
469 							 unsigned to)
470 {
471 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
472 	handle_t *handle;
473 	int ret = 0;
474 
475 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
476 	if (IS_ERR(handle)) {
477 		ret = -ENOMEM;
478 		mlog_errno(ret);
479 		goto out;
480 	}
481 
482 	if (ocfs2_should_order_data(inode)) {
483 		ret = ocfs2_jbd2_file_inode(handle, inode);
484 #ifdef CONFIG_OCFS2_COMPAT_JBD
485 		ret = walk_page_buffers(handle,
486 					page_buffers(page),
487 					from, to, NULL,
488 					ocfs2_journal_dirty_data);
489 #endif
490 		if (ret < 0)
491 			mlog_errno(ret);
492 	}
493 out:
494 	if (ret) {
495 		if (!IS_ERR(handle))
496 			ocfs2_commit_trans(osb, handle);
497 		handle = ERR_PTR(ret);
498 	}
499 	return handle;
500 }
501 
502 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
503 {
504 	sector_t status;
505 	u64 p_blkno = 0;
506 	int err = 0;
507 	struct inode *inode = mapping->host;
508 
509 	mlog_entry("(block = %llu)\n", (unsigned long long)block);
510 
511 	/* We don't need to lock journal system files, since they aren't
512 	 * accessed concurrently from multiple nodes.
513 	 */
514 	if (!INODE_JOURNAL(inode)) {
515 		err = ocfs2_inode_lock(inode, NULL, 0);
516 		if (err) {
517 			if (err != -ENOENT)
518 				mlog_errno(err);
519 			goto bail;
520 		}
521 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
522 	}
523 
524 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
525 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
526 						  NULL);
527 
528 	if (!INODE_JOURNAL(inode)) {
529 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
530 		ocfs2_inode_unlock(inode, 0);
531 	}
532 
533 	if (err) {
534 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
535 		     (unsigned long long)block);
536 		mlog_errno(err);
537 		goto bail;
538 	}
539 
540 bail:
541 	status = err ? 0 : p_blkno;
542 
543 	mlog_exit((int)status);
544 
545 	return status;
546 }
547 
548 /*
549  * TODO: Make this into a generic get_blocks function.
550  *
551  * From do_direct_io in direct-io.c:
552  *  "So what we do is to permit the ->get_blocks function to populate
553  *   bh.b_size with the size of IO which is permitted at this offset and
554  *   this i_blkbits."
555  *
556  * This function is called directly from get_more_blocks in direct-io.c.
557  *
558  * called like this: dio->get_blocks(dio->inode, fs_startblk,
559  * 					fs_count, map_bh, dio->rw == WRITE);
560  */
561 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
562 				     struct buffer_head *bh_result, int create)
563 {
564 	int ret;
565 	u64 p_blkno, inode_blocks, contig_blocks;
566 	unsigned int ext_flags;
567 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
568 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
569 
570 	/* This function won't even be called if the request isn't all
571 	 * nicely aligned and of the right size, so there's no need
572 	 * for us to check any of that. */
573 
574 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
575 
576 	/*
577 	 * Any write past EOF is not allowed because we'd be extending.
578 	 */
579 	if (create && (iblock + max_blocks) > inode_blocks) {
580 		ret = -EIO;
581 		goto bail;
582 	}
583 
584 	/* This figures out the size of the next contiguous block, and
585 	 * our logical offset */
586 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
587 					  &contig_blocks, &ext_flags);
588 	if (ret) {
589 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
590 		     (unsigned long long)iblock);
591 		ret = -EIO;
592 		goto bail;
593 	}
594 
595 	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
596 		ocfs2_error(inode->i_sb,
597 			    "Inode %llu has a hole at block %llu\n",
598 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
599 			    (unsigned long long)iblock);
600 		ret = -EROFS;
601 		goto bail;
602 	}
603 
604 	/*
605 	 * get_more_blocks() expects us to describe a hole by clearing
606 	 * the mapped bit on bh_result().
607 	 *
608 	 * Consider an unwritten extent as a hole.
609 	 */
610 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
611 		map_bh(bh_result, inode->i_sb, p_blkno);
612 	else {
613 		/*
614 		 * ocfs2_prepare_inode_for_write() should have caught
615 		 * the case where we'd be filling a hole and triggered
616 		 * a buffered write instead.
617 		 */
618 		if (create) {
619 			ret = -EIO;
620 			mlog_errno(ret);
621 			goto bail;
622 		}
623 
624 		clear_buffer_mapped(bh_result);
625 	}
626 
627 	/* make sure we don't map more than max_blocks blocks here as
628 	   that's all the kernel will handle at this point. */
629 	if (max_blocks < contig_blocks)
630 		contig_blocks = max_blocks;
631 	bh_result->b_size = contig_blocks << blocksize_bits;
632 bail:
633 	return ret;
634 }
635 
636 /*
637  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
638  * particularly interested in the aio/dio case.  Like the core uses
639  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
640  * truncation on another.
641  */
642 static void ocfs2_dio_end_io(struct kiocb *iocb,
643 			     loff_t offset,
644 			     ssize_t bytes,
645 			     void *private)
646 {
647 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
648 	int level;
649 
650 	/* this io's submitter should not have unlocked this before we could */
651 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
652 
653 	ocfs2_iocb_clear_rw_locked(iocb);
654 
655 	level = ocfs2_iocb_rw_locked_level(iocb);
656 	if (!level)
657 		up_read(&inode->i_alloc_sem);
658 	ocfs2_rw_unlock(inode, level);
659 }
660 
661 /*
662  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
663  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
664  * do journalled data.
665  */
666 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
667 {
668 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
669 
670 	jbd2_journal_invalidatepage(journal, page, offset);
671 }
672 
673 static int ocfs2_releasepage(struct page *page, gfp_t wait)
674 {
675 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
676 
677 	if (!page_has_buffers(page))
678 		return 0;
679 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
680 }
681 
682 static ssize_t ocfs2_direct_IO(int rw,
683 			       struct kiocb *iocb,
684 			       const struct iovec *iov,
685 			       loff_t offset,
686 			       unsigned long nr_segs)
687 {
688 	struct file *file = iocb->ki_filp;
689 	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
690 	int ret;
691 
692 	mlog_entry_void();
693 
694 	/*
695 	 * Fallback to buffered I/O if we see an inode without
696 	 * extents.
697 	 */
698 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
699 		return 0;
700 
701 	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
702 					    inode->i_sb->s_bdev, iov, offset,
703 					    nr_segs,
704 					    ocfs2_direct_IO_get_blocks,
705 					    ocfs2_dio_end_io);
706 
707 	mlog_exit(ret);
708 	return ret;
709 }
710 
711 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
712 					    u32 cpos,
713 					    unsigned int *start,
714 					    unsigned int *end)
715 {
716 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
717 
718 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
719 		unsigned int cpp;
720 
721 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
722 
723 		cluster_start = cpos % cpp;
724 		cluster_start = cluster_start << osb->s_clustersize_bits;
725 
726 		cluster_end = cluster_start + osb->s_clustersize;
727 	}
728 
729 	BUG_ON(cluster_start > PAGE_SIZE);
730 	BUG_ON(cluster_end > PAGE_SIZE);
731 
732 	if (start)
733 		*start = cluster_start;
734 	if (end)
735 		*end = cluster_end;
736 }
737 
738 /*
739  * 'from' and 'to' are the region in the page to avoid zeroing.
740  *
741  * If pagesize > clustersize, this function will avoid zeroing outside
742  * of the cluster boundary.
743  *
744  * from == to == 0 is code for "zero the entire cluster region"
745  */
746 static void ocfs2_clear_page_regions(struct page *page,
747 				     struct ocfs2_super *osb, u32 cpos,
748 				     unsigned from, unsigned to)
749 {
750 	void *kaddr;
751 	unsigned int cluster_start, cluster_end;
752 
753 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
754 
755 	kaddr = kmap_atomic(page, KM_USER0);
756 
757 	if (from || to) {
758 		if (from > cluster_start)
759 			memset(kaddr + cluster_start, 0, from - cluster_start);
760 		if (to < cluster_end)
761 			memset(kaddr + to, 0, cluster_end - to);
762 	} else {
763 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
764 	}
765 
766 	kunmap_atomic(kaddr, KM_USER0);
767 }
768 
769 /*
770  * Nonsparse file systems fully allocate before we get to the write
771  * code. This prevents ocfs2_write() from tagging the write as an
772  * allocating one, which means ocfs2_map_page_blocks() might try to
773  * read-in the blocks at the tail of our file. Avoid reading them by
774  * testing i_size against each block offset.
775  */
776 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
777 				 unsigned int block_start)
778 {
779 	u64 offset = page_offset(page) + block_start;
780 
781 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
782 		return 1;
783 
784 	if (i_size_read(inode) > offset)
785 		return 1;
786 
787 	return 0;
788 }
789 
790 /*
791  * Some of this taken from block_prepare_write(). We already have our
792  * mapping by now though, and the entire write will be allocating or
793  * it won't, so not much need to use BH_New.
794  *
795  * This will also skip zeroing, which is handled externally.
796  */
797 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
798 			  struct inode *inode, unsigned int from,
799 			  unsigned int to, int new)
800 {
801 	int ret = 0;
802 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
803 	unsigned int block_end, block_start;
804 	unsigned int bsize = 1 << inode->i_blkbits;
805 
806 	if (!page_has_buffers(page))
807 		create_empty_buffers(page, bsize, 0);
808 
809 	head = page_buffers(page);
810 	for (bh = head, block_start = 0; bh != head || !block_start;
811 	     bh = bh->b_this_page, block_start += bsize) {
812 		block_end = block_start + bsize;
813 
814 		clear_buffer_new(bh);
815 
816 		/*
817 		 * Ignore blocks outside of our i/o range -
818 		 * they may belong to unallocated clusters.
819 		 */
820 		if (block_start >= to || block_end <= from) {
821 			if (PageUptodate(page))
822 				set_buffer_uptodate(bh);
823 			continue;
824 		}
825 
826 		/*
827 		 * For an allocating write with cluster size >= page
828 		 * size, we always write the entire page.
829 		 */
830 		if (new)
831 			set_buffer_new(bh);
832 
833 		if (!buffer_mapped(bh)) {
834 			map_bh(bh, inode->i_sb, *p_blkno);
835 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
836 		}
837 
838 		if (PageUptodate(page)) {
839 			if (!buffer_uptodate(bh))
840 				set_buffer_uptodate(bh);
841 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
842 			   !buffer_new(bh) &&
843 			   ocfs2_should_read_blk(inode, page, block_start) &&
844 			   (block_start < from || block_end > to)) {
845 			ll_rw_block(READ, 1, &bh);
846 			*wait_bh++=bh;
847 		}
848 
849 		*p_blkno = *p_blkno + 1;
850 	}
851 
852 	/*
853 	 * If we issued read requests - let them complete.
854 	 */
855 	while(wait_bh > wait) {
856 		wait_on_buffer(*--wait_bh);
857 		if (!buffer_uptodate(*wait_bh))
858 			ret = -EIO;
859 	}
860 
861 	if (ret == 0 || !new)
862 		return ret;
863 
864 	/*
865 	 * If we get -EIO above, zero out any newly allocated blocks
866 	 * to avoid exposing stale data.
867 	 */
868 	bh = head;
869 	block_start = 0;
870 	do {
871 		block_end = block_start + bsize;
872 		if (block_end <= from)
873 			goto next_bh;
874 		if (block_start >= to)
875 			break;
876 
877 		zero_user(page, block_start, bh->b_size);
878 		set_buffer_uptodate(bh);
879 		mark_buffer_dirty(bh);
880 
881 next_bh:
882 		block_start = block_end;
883 		bh = bh->b_this_page;
884 	} while (bh != head);
885 
886 	return ret;
887 }
888 
889 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
890 #define OCFS2_MAX_CTXT_PAGES	1
891 #else
892 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
893 #endif
894 
895 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
896 
897 /*
898  * Describe the state of a single cluster to be written to.
899  */
900 struct ocfs2_write_cluster_desc {
901 	u32		c_cpos;
902 	u32		c_phys;
903 	/*
904 	 * Give this a unique field because c_phys eventually gets
905 	 * filled.
906 	 */
907 	unsigned	c_new;
908 	unsigned	c_unwritten;
909 };
910 
911 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
912 {
913 	return d->c_new || d->c_unwritten;
914 }
915 
916 struct ocfs2_write_ctxt {
917 	/* Logical cluster position / len of write */
918 	u32				w_cpos;
919 	u32				w_clen;
920 
921 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
922 
923 	/*
924 	 * This is true if page_size > cluster_size.
925 	 *
926 	 * It triggers a set of special cases during write which might
927 	 * have to deal with allocating writes to partial pages.
928 	 */
929 	unsigned int			w_large_pages;
930 
931 	/*
932 	 * Pages involved in this write.
933 	 *
934 	 * w_target_page is the page being written to by the user.
935 	 *
936 	 * w_pages is an array of pages which always contains
937 	 * w_target_page, and in the case of an allocating write with
938 	 * page_size < cluster size, it will contain zero'd and mapped
939 	 * pages adjacent to w_target_page which need to be written
940 	 * out in so that future reads from that region will get
941 	 * zero's.
942 	 */
943 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
944 	unsigned int			w_num_pages;
945 	struct page			*w_target_page;
946 
947 	/*
948 	 * ocfs2_write_end() uses this to know what the real range to
949 	 * write in the target should be.
950 	 */
951 	unsigned int			w_target_from;
952 	unsigned int			w_target_to;
953 
954 	/*
955 	 * We could use journal_current_handle() but this is cleaner,
956 	 * IMHO -Mark
957 	 */
958 	handle_t			*w_handle;
959 
960 	struct buffer_head		*w_di_bh;
961 
962 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
963 };
964 
965 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
966 {
967 	int i;
968 
969 	for(i = 0; i < num_pages; i++) {
970 		if (pages[i]) {
971 			unlock_page(pages[i]);
972 			mark_page_accessed(pages[i]);
973 			page_cache_release(pages[i]);
974 		}
975 	}
976 }
977 
978 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
979 {
980 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
981 
982 	brelse(wc->w_di_bh);
983 	kfree(wc);
984 }
985 
986 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
987 				  struct ocfs2_super *osb, loff_t pos,
988 				  unsigned len, struct buffer_head *di_bh)
989 {
990 	u32 cend;
991 	struct ocfs2_write_ctxt *wc;
992 
993 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
994 	if (!wc)
995 		return -ENOMEM;
996 
997 	wc->w_cpos = pos >> osb->s_clustersize_bits;
998 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
999 	wc->w_clen = cend - wc->w_cpos + 1;
1000 	get_bh(di_bh);
1001 	wc->w_di_bh = di_bh;
1002 
1003 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1004 		wc->w_large_pages = 1;
1005 	else
1006 		wc->w_large_pages = 0;
1007 
1008 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1009 
1010 	*wcp = wc;
1011 
1012 	return 0;
1013 }
1014 
1015 /*
1016  * If a page has any new buffers, zero them out here, and mark them uptodate
1017  * and dirty so they'll be written out (in order to prevent uninitialised
1018  * block data from leaking). And clear the new bit.
1019  */
1020 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1021 {
1022 	unsigned int block_start, block_end;
1023 	struct buffer_head *head, *bh;
1024 
1025 	BUG_ON(!PageLocked(page));
1026 	if (!page_has_buffers(page))
1027 		return;
1028 
1029 	bh = head = page_buffers(page);
1030 	block_start = 0;
1031 	do {
1032 		block_end = block_start + bh->b_size;
1033 
1034 		if (buffer_new(bh)) {
1035 			if (block_end > from && block_start < to) {
1036 				if (!PageUptodate(page)) {
1037 					unsigned start, end;
1038 
1039 					start = max(from, block_start);
1040 					end = min(to, block_end);
1041 
1042 					zero_user_segment(page, start, end);
1043 					set_buffer_uptodate(bh);
1044 				}
1045 
1046 				clear_buffer_new(bh);
1047 				mark_buffer_dirty(bh);
1048 			}
1049 		}
1050 
1051 		block_start = block_end;
1052 		bh = bh->b_this_page;
1053 	} while (bh != head);
1054 }
1055 
1056 /*
1057  * Only called when we have a failure during allocating write to write
1058  * zero's to the newly allocated region.
1059  */
1060 static void ocfs2_write_failure(struct inode *inode,
1061 				struct ocfs2_write_ctxt *wc,
1062 				loff_t user_pos, unsigned user_len)
1063 {
1064 	int i;
1065 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1066 		to = user_pos + user_len;
1067 	struct page *tmppage;
1068 
1069 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1070 
1071 	for(i = 0; i < wc->w_num_pages; i++) {
1072 		tmppage = wc->w_pages[i];
1073 
1074 		if (page_has_buffers(tmppage)) {
1075 			if (ocfs2_should_order_data(inode)) {
1076 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1077 #ifdef CONFIG_OCFS2_COMPAT_JBD
1078 				walk_page_buffers(wc->w_handle,
1079 						  page_buffers(tmppage),
1080 						  from, to, NULL,
1081 						  ocfs2_journal_dirty_data);
1082 #endif
1083 			}
1084 
1085 			block_commit_write(tmppage, from, to);
1086 		}
1087 	}
1088 }
1089 
1090 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1091 					struct ocfs2_write_ctxt *wc,
1092 					struct page *page, u32 cpos,
1093 					loff_t user_pos, unsigned user_len,
1094 					int new)
1095 {
1096 	int ret;
1097 	unsigned int map_from = 0, map_to = 0;
1098 	unsigned int cluster_start, cluster_end;
1099 	unsigned int user_data_from = 0, user_data_to = 0;
1100 
1101 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1102 					&cluster_start, &cluster_end);
1103 
1104 	if (page == wc->w_target_page) {
1105 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1106 		map_to = map_from + user_len;
1107 
1108 		if (new)
1109 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1110 						    cluster_start, cluster_end,
1111 						    new);
1112 		else
1113 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1114 						    map_from, map_to, new);
1115 		if (ret) {
1116 			mlog_errno(ret);
1117 			goto out;
1118 		}
1119 
1120 		user_data_from = map_from;
1121 		user_data_to = map_to;
1122 		if (new) {
1123 			map_from = cluster_start;
1124 			map_to = cluster_end;
1125 		}
1126 	} else {
1127 		/*
1128 		 * If we haven't allocated the new page yet, we
1129 		 * shouldn't be writing it out without copying user
1130 		 * data. This is likely a math error from the caller.
1131 		 */
1132 		BUG_ON(!new);
1133 
1134 		map_from = cluster_start;
1135 		map_to = cluster_end;
1136 
1137 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1138 					    cluster_start, cluster_end, new);
1139 		if (ret) {
1140 			mlog_errno(ret);
1141 			goto out;
1142 		}
1143 	}
1144 
1145 	/*
1146 	 * Parts of newly allocated pages need to be zero'd.
1147 	 *
1148 	 * Above, we have also rewritten 'to' and 'from' - as far as
1149 	 * the rest of the function is concerned, the entire cluster
1150 	 * range inside of a page needs to be written.
1151 	 *
1152 	 * We can skip this if the page is up to date - it's already
1153 	 * been zero'd from being read in as a hole.
1154 	 */
1155 	if (new && !PageUptodate(page))
1156 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1157 					 cpos, user_data_from, user_data_to);
1158 
1159 	flush_dcache_page(page);
1160 
1161 out:
1162 	return ret;
1163 }
1164 
1165 /*
1166  * This function will only grab one clusters worth of pages.
1167  */
1168 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1169 				      struct ocfs2_write_ctxt *wc,
1170 				      u32 cpos, loff_t user_pos, int new,
1171 				      struct page *mmap_page)
1172 {
1173 	int ret = 0, i;
1174 	unsigned long start, target_index, index;
1175 	struct inode *inode = mapping->host;
1176 
1177 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1178 
1179 	/*
1180 	 * Figure out how many pages we'll be manipulating here. For
1181 	 * non allocating write, we just change the one
1182 	 * page. Otherwise, we'll need a whole clusters worth.
1183 	 */
1184 	if (new) {
1185 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1186 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1187 	} else {
1188 		wc->w_num_pages = 1;
1189 		start = target_index;
1190 	}
1191 
1192 	for(i = 0; i < wc->w_num_pages; i++) {
1193 		index = start + i;
1194 
1195 		if (index == target_index && mmap_page) {
1196 			/*
1197 			 * ocfs2_pagemkwrite() is a little different
1198 			 * and wants us to directly use the page
1199 			 * passed in.
1200 			 */
1201 			lock_page(mmap_page);
1202 
1203 			if (mmap_page->mapping != mapping) {
1204 				unlock_page(mmap_page);
1205 				/*
1206 				 * Sanity check - the locking in
1207 				 * ocfs2_pagemkwrite() should ensure
1208 				 * that this code doesn't trigger.
1209 				 */
1210 				ret = -EINVAL;
1211 				mlog_errno(ret);
1212 				goto out;
1213 			}
1214 
1215 			page_cache_get(mmap_page);
1216 			wc->w_pages[i] = mmap_page;
1217 		} else {
1218 			wc->w_pages[i] = find_or_create_page(mapping, index,
1219 							     GFP_NOFS);
1220 			if (!wc->w_pages[i]) {
1221 				ret = -ENOMEM;
1222 				mlog_errno(ret);
1223 				goto out;
1224 			}
1225 		}
1226 
1227 		if (index == target_index)
1228 			wc->w_target_page = wc->w_pages[i];
1229 	}
1230 out:
1231 	return ret;
1232 }
1233 
1234 /*
1235  * Prepare a single cluster for write one cluster into the file.
1236  */
1237 static int ocfs2_write_cluster(struct address_space *mapping,
1238 			       u32 phys, unsigned int unwritten,
1239 			       struct ocfs2_alloc_context *data_ac,
1240 			       struct ocfs2_alloc_context *meta_ac,
1241 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1242 			       loff_t user_pos, unsigned user_len)
1243 {
1244 	int ret, i, new, should_zero = 0;
1245 	u64 v_blkno, p_blkno;
1246 	struct inode *inode = mapping->host;
1247 	struct ocfs2_extent_tree et;
1248 
1249 	new = phys == 0 ? 1 : 0;
1250 	if (new || unwritten)
1251 		should_zero = 1;
1252 
1253 	if (new) {
1254 		u32 tmp_pos;
1255 
1256 		/*
1257 		 * This is safe to call with the page locks - it won't take
1258 		 * any additional semaphores or cluster locks.
1259 		 */
1260 		tmp_pos = cpos;
1261 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1262 					   &tmp_pos, 1, 0, wc->w_di_bh,
1263 					   wc->w_handle, data_ac,
1264 					   meta_ac, NULL);
1265 		/*
1266 		 * This shouldn't happen because we must have already
1267 		 * calculated the correct meta data allocation required. The
1268 		 * internal tree allocation code should know how to increase
1269 		 * transaction credits itself.
1270 		 *
1271 		 * If need be, we could handle -EAGAIN for a
1272 		 * RESTART_TRANS here.
1273 		 */
1274 		mlog_bug_on_msg(ret == -EAGAIN,
1275 				"Inode %llu: EAGAIN return during allocation.\n",
1276 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1277 		if (ret < 0) {
1278 			mlog_errno(ret);
1279 			goto out;
1280 		}
1281 	} else if (unwritten) {
1282 		ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1283 		ret = ocfs2_mark_extent_written(inode, &et,
1284 						wc->w_handle, cpos, 1, phys,
1285 						meta_ac, &wc->w_dealloc);
1286 		if (ret < 0) {
1287 			mlog_errno(ret);
1288 			goto out;
1289 		}
1290 	}
1291 
1292 	if (should_zero)
1293 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1294 	else
1295 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1296 
1297 	/*
1298 	 * The only reason this should fail is due to an inability to
1299 	 * find the extent added.
1300 	 */
1301 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1302 					  NULL);
1303 	if (ret < 0) {
1304 		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1305 			    "at logical block %llu",
1306 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1307 			    (unsigned long long)v_blkno);
1308 		goto out;
1309 	}
1310 
1311 	BUG_ON(p_blkno == 0);
1312 
1313 	for(i = 0; i < wc->w_num_pages; i++) {
1314 		int tmpret;
1315 
1316 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1317 						      wc->w_pages[i], cpos,
1318 						      user_pos, user_len,
1319 						      should_zero);
1320 		if (tmpret) {
1321 			mlog_errno(tmpret);
1322 			if (ret == 0)
1323 				tmpret = ret;
1324 		}
1325 	}
1326 
1327 	/*
1328 	 * We only have cleanup to do in case of allocating write.
1329 	 */
1330 	if (ret && new)
1331 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1332 
1333 out:
1334 
1335 	return ret;
1336 }
1337 
1338 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1339 				       struct ocfs2_alloc_context *data_ac,
1340 				       struct ocfs2_alloc_context *meta_ac,
1341 				       struct ocfs2_write_ctxt *wc,
1342 				       loff_t pos, unsigned len)
1343 {
1344 	int ret, i;
1345 	loff_t cluster_off;
1346 	unsigned int local_len = len;
1347 	struct ocfs2_write_cluster_desc *desc;
1348 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1349 
1350 	for (i = 0; i < wc->w_clen; i++) {
1351 		desc = &wc->w_desc[i];
1352 
1353 		/*
1354 		 * We have to make sure that the total write passed in
1355 		 * doesn't extend past a single cluster.
1356 		 */
1357 		local_len = len;
1358 		cluster_off = pos & (osb->s_clustersize - 1);
1359 		if ((cluster_off + local_len) > osb->s_clustersize)
1360 			local_len = osb->s_clustersize - cluster_off;
1361 
1362 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1363 					  desc->c_unwritten, data_ac, meta_ac,
1364 					  wc, desc->c_cpos, pos, local_len);
1365 		if (ret) {
1366 			mlog_errno(ret);
1367 			goto out;
1368 		}
1369 
1370 		len -= local_len;
1371 		pos += local_len;
1372 	}
1373 
1374 	ret = 0;
1375 out:
1376 	return ret;
1377 }
1378 
1379 /*
1380  * ocfs2_write_end() wants to know which parts of the target page it
1381  * should complete the write on. It's easiest to compute them ahead of
1382  * time when a more complete view of the write is available.
1383  */
1384 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1385 					struct ocfs2_write_ctxt *wc,
1386 					loff_t pos, unsigned len, int alloc)
1387 {
1388 	struct ocfs2_write_cluster_desc *desc;
1389 
1390 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1391 	wc->w_target_to = wc->w_target_from + len;
1392 
1393 	if (alloc == 0)
1394 		return;
1395 
1396 	/*
1397 	 * Allocating write - we may have different boundaries based
1398 	 * on page size and cluster size.
1399 	 *
1400 	 * NOTE: We can no longer compute one value from the other as
1401 	 * the actual write length and user provided length may be
1402 	 * different.
1403 	 */
1404 
1405 	if (wc->w_large_pages) {
1406 		/*
1407 		 * We only care about the 1st and last cluster within
1408 		 * our range and whether they should be zero'd or not. Either
1409 		 * value may be extended out to the start/end of a
1410 		 * newly allocated cluster.
1411 		 */
1412 		desc = &wc->w_desc[0];
1413 		if (ocfs2_should_zero_cluster(desc))
1414 			ocfs2_figure_cluster_boundaries(osb,
1415 							desc->c_cpos,
1416 							&wc->w_target_from,
1417 							NULL);
1418 
1419 		desc = &wc->w_desc[wc->w_clen - 1];
1420 		if (ocfs2_should_zero_cluster(desc))
1421 			ocfs2_figure_cluster_boundaries(osb,
1422 							desc->c_cpos,
1423 							NULL,
1424 							&wc->w_target_to);
1425 	} else {
1426 		wc->w_target_from = 0;
1427 		wc->w_target_to = PAGE_CACHE_SIZE;
1428 	}
1429 }
1430 
1431 /*
1432  * Populate each single-cluster write descriptor in the write context
1433  * with information about the i/o to be done.
1434  *
1435  * Returns the number of clusters that will have to be allocated, as
1436  * well as a worst case estimate of the number of extent records that
1437  * would have to be created during a write to an unwritten region.
1438  */
1439 static int ocfs2_populate_write_desc(struct inode *inode,
1440 				     struct ocfs2_write_ctxt *wc,
1441 				     unsigned int *clusters_to_alloc,
1442 				     unsigned int *extents_to_split)
1443 {
1444 	int ret;
1445 	struct ocfs2_write_cluster_desc *desc;
1446 	unsigned int num_clusters = 0;
1447 	unsigned int ext_flags = 0;
1448 	u32 phys = 0;
1449 	int i;
1450 
1451 	*clusters_to_alloc = 0;
1452 	*extents_to_split = 0;
1453 
1454 	for (i = 0; i < wc->w_clen; i++) {
1455 		desc = &wc->w_desc[i];
1456 		desc->c_cpos = wc->w_cpos + i;
1457 
1458 		if (num_clusters == 0) {
1459 			/*
1460 			 * Need to look up the next extent record.
1461 			 */
1462 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1463 						 &num_clusters, &ext_flags);
1464 			if (ret) {
1465 				mlog_errno(ret);
1466 				goto out;
1467 			}
1468 
1469 			/*
1470 			 * Assume worst case - that we're writing in
1471 			 * the middle of the extent.
1472 			 *
1473 			 * We can assume that the write proceeds from
1474 			 * left to right, in which case the extent
1475 			 * insert code is smart enough to coalesce the
1476 			 * next splits into the previous records created.
1477 			 */
1478 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1479 				*extents_to_split = *extents_to_split + 2;
1480 		} else if (phys) {
1481 			/*
1482 			 * Only increment phys if it doesn't describe
1483 			 * a hole.
1484 			 */
1485 			phys++;
1486 		}
1487 
1488 		desc->c_phys = phys;
1489 		if (phys == 0) {
1490 			desc->c_new = 1;
1491 			*clusters_to_alloc = *clusters_to_alloc + 1;
1492 		}
1493 		if (ext_flags & OCFS2_EXT_UNWRITTEN)
1494 			desc->c_unwritten = 1;
1495 
1496 		num_clusters--;
1497 	}
1498 
1499 	ret = 0;
1500 out:
1501 	return ret;
1502 }
1503 
1504 static int ocfs2_write_begin_inline(struct address_space *mapping,
1505 				    struct inode *inode,
1506 				    struct ocfs2_write_ctxt *wc)
1507 {
1508 	int ret;
1509 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1510 	struct page *page;
1511 	handle_t *handle;
1512 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1513 
1514 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1515 	if (!page) {
1516 		ret = -ENOMEM;
1517 		mlog_errno(ret);
1518 		goto out;
1519 	}
1520 	/*
1521 	 * If we don't set w_num_pages then this page won't get unlocked
1522 	 * and freed on cleanup of the write context.
1523 	 */
1524 	wc->w_pages[0] = wc->w_target_page = page;
1525 	wc->w_num_pages = 1;
1526 
1527 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1528 	if (IS_ERR(handle)) {
1529 		ret = PTR_ERR(handle);
1530 		mlog_errno(ret);
1531 		goto out;
1532 	}
1533 
1534 	ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1535 				   OCFS2_JOURNAL_ACCESS_WRITE);
1536 	if (ret) {
1537 		ocfs2_commit_trans(osb, handle);
1538 
1539 		mlog_errno(ret);
1540 		goto out;
1541 	}
1542 
1543 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1544 		ocfs2_set_inode_data_inline(inode, di);
1545 
1546 	if (!PageUptodate(page)) {
1547 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1548 		if (ret) {
1549 			ocfs2_commit_trans(osb, handle);
1550 
1551 			goto out;
1552 		}
1553 	}
1554 
1555 	wc->w_handle = handle;
1556 out:
1557 	return ret;
1558 }
1559 
1560 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1561 {
1562 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1563 
1564 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1565 		return 1;
1566 	return 0;
1567 }
1568 
1569 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1570 					  struct inode *inode, loff_t pos,
1571 					  unsigned len, struct page *mmap_page,
1572 					  struct ocfs2_write_ctxt *wc)
1573 {
1574 	int ret, written = 0;
1575 	loff_t end = pos + len;
1576 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1577 
1578 	mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1579 	     (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1580 	     oi->ip_dyn_features);
1581 
1582 	/*
1583 	 * Handle inodes which already have inline data 1st.
1584 	 */
1585 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1586 		if (mmap_page == NULL &&
1587 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1588 			goto do_inline_write;
1589 
1590 		/*
1591 		 * The write won't fit - we have to give this inode an
1592 		 * inline extent list now.
1593 		 */
1594 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1595 		if (ret)
1596 			mlog_errno(ret);
1597 		goto out;
1598 	}
1599 
1600 	/*
1601 	 * Check whether the inode can accept inline data.
1602 	 */
1603 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1604 		return 0;
1605 
1606 	/*
1607 	 * Check whether the write can fit.
1608 	 */
1609 	if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1610 		return 0;
1611 
1612 do_inline_write:
1613 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1614 	if (ret) {
1615 		mlog_errno(ret);
1616 		goto out;
1617 	}
1618 
1619 	/*
1620 	 * This signals to the caller that the data can be written
1621 	 * inline.
1622 	 */
1623 	written = 1;
1624 out:
1625 	return written ? written : ret;
1626 }
1627 
1628 /*
1629  * This function only does anything for file systems which can't
1630  * handle sparse files.
1631  *
1632  * What we want to do here is fill in any hole between the current end
1633  * of allocation and the end of our write. That way the rest of the
1634  * write path can treat it as an non-allocating write, which has no
1635  * special case code for sparse/nonsparse files.
1636  */
1637 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1638 					unsigned len,
1639 					struct ocfs2_write_ctxt *wc)
1640 {
1641 	int ret;
1642 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1643 	loff_t newsize = pos + len;
1644 
1645 	if (ocfs2_sparse_alloc(osb))
1646 		return 0;
1647 
1648 	if (newsize <= i_size_read(inode))
1649 		return 0;
1650 
1651 	ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1652 	if (ret)
1653 		mlog_errno(ret);
1654 
1655 	return ret;
1656 }
1657 
1658 int ocfs2_write_begin_nolock(struct address_space *mapping,
1659 			     loff_t pos, unsigned len, unsigned flags,
1660 			     struct page **pagep, void **fsdata,
1661 			     struct buffer_head *di_bh, struct page *mmap_page)
1662 {
1663 	int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1664 	unsigned int clusters_to_alloc, extents_to_split;
1665 	struct ocfs2_write_ctxt *wc;
1666 	struct inode *inode = mapping->host;
1667 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1668 	struct ocfs2_dinode *di;
1669 	struct ocfs2_alloc_context *data_ac = NULL;
1670 	struct ocfs2_alloc_context *meta_ac = NULL;
1671 	handle_t *handle;
1672 	struct ocfs2_extent_tree et;
1673 
1674 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1675 	if (ret) {
1676 		mlog_errno(ret);
1677 		return ret;
1678 	}
1679 
1680 	if (ocfs2_supports_inline_data(osb)) {
1681 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1682 						     mmap_page, wc);
1683 		if (ret == 1) {
1684 			ret = 0;
1685 			goto success;
1686 		}
1687 		if (ret < 0) {
1688 			mlog_errno(ret);
1689 			goto out;
1690 		}
1691 	}
1692 
1693 	ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1694 	if (ret) {
1695 		mlog_errno(ret);
1696 		goto out;
1697 	}
1698 
1699 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1700 					&extents_to_split);
1701 	if (ret) {
1702 		mlog_errno(ret);
1703 		goto out;
1704 	}
1705 
1706 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1707 
1708 	/*
1709 	 * We set w_target_from, w_target_to here so that
1710 	 * ocfs2_write_end() knows which range in the target page to
1711 	 * write out. An allocation requires that we write the entire
1712 	 * cluster range.
1713 	 */
1714 	if (clusters_to_alloc || extents_to_split) {
1715 		/*
1716 		 * XXX: We are stretching the limits of
1717 		 * ocfs2_lock_allocators(). It greatly over-estimates
1718 		 * the work to be done.
1719 		 */
1720 		mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1721 		     " clusters_to_add = %u, extents_to_split = %u\n",
1722 		     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1723 		     (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1724 		     clusters_to_alloc, extents_to_split);
1725 
1726 		ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1727 		ret = ocfs2_lock_allocators(inode, &et,
1728 					    clusters_to_alloc, extents_to_split,
1729 					    &data_ac, &meta_ac);
1730 		if (ret) {
1731 			mlog_errno(ret);
1732 			goto out;
1733 		}
1734 
1735 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1736 						    &di->id2.i_list,
1737 						    clusters_to_alloc);
1738 
1739 	}
1740 
1741 	ocfs2_set_target_boundaries(osb, wc, pos, len,
1742 				    clusters_to_alloc + extents_to_split);
1743 
1744 	handle = ocfs2_start_trans(osb, credits);
1745 	if (IS_ERR(handle)) {
1746 		ret = PTR_ERR(handle);
1747 		mlog_errno(ret);
1748 		goto out;
1749 	}
1750 
1751 	wc->w_handle = handle;
1752 
1753 	/*
1754 	 * We don't want this to fail in ocfs2_write_end(), so do it
1755 	 * here.
1756 	 */
1757 	ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1758 				   OCFS2_JOURNAL_ACCESS_WRITE);
1759 	if (ret) {
1760 		mlog_errno(ret);
1761 		goto out_commit;
1762 	}
1763 
1764 	/*
1765 	 * Fill our page array first. That way we've grabbed enough so
1766 	 * that we can zero and flush if we error after adding the
1767 	 * extent.
1768 	 */
1769 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1770 					 clusters_to_alloc + extents_to_split,
1771 					 mmap_page);
1772 	if (ret) {
1773 		mlog_errno(ret);
1774 		goto out_commit;
1775 	}
1776 
1777 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1778 					  len);
1779 	if (ret) {
1780 		mlog_errno(ret);
1781 		goto out_commit;
1782 	}
1783 
1784 	if (data_ac)
1785 		ocfs2_free_alloc_context(data_ac);
1786 	if (meta_ac)
1787 		ocfs2_free_alloc_context(meta_ac);
1788 
1789 success:
1790 	*pagep = wc->w_target_page;
1791 	*fsdata = wc;
1792 	return 0;
1793 out_commit:
1794 	ocfs2_commit_trans(osb, handle);
1795 
1796 out:
1797 	ocfs2_free_write_ctxt(wc);
1798 
1799 	if (data_ac)
1800 		ocfs2_free_alloc_context(data_ac);
1801 	if (meta_ac)
1802 		ocfs2_free_alloc_context(meta_ac);
1803 	return ret;
1804 }
1805 
1806 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1807 			     loff_t pos, unsigned len, unsigned flags,
1808 			     struct page **pagep, void **fsdata)
1809 {
1810 	int ret;
1811 	struct buffer_head *di_bh = NULL;
1812 	struct inode *inode = mapping->host;
1813 
1814 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1815 	if (ret) {
1816 		mlog_errno(ret);
1817 		return ret;
1818 	}
1819 
1820 	/*
1821 	 * Take alloc sem here to prevent concurrent lookups. That way
1822 	 * the mapping, zeroing and tree manipulation within
1823 	 * ocfs2_write() will be safe against ->readpage(). This
1824 	 * should also serve to lock out allocation from a shared
1825 	 * writeable region.
1826 	 */
1827 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1828 
1829 	ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1830 				       fsdata, di_bh, NULL);
1831 	if (ret) {
1832 		mlog_errno(ret);
1833 		goto out_fail;
1834 	}
1835 
1836 	brelse(di_bh);
1837 
1838 	return 0;
1839 
1840 out_fail:
1841 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1842 
1843 	brelse(di_bh);
1844 	ocfs2_inode_unlock(inode, 1);
1845 
1846 	return ret;
1847 }
1848 
1849 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1850 				   unsigned len, unsigned *copied,
1851 				   struct ocfs2_dinode *di,
1852 				   struct ocfs2_write_ctxt *wc)
1853 {
1854 	void *kaddr;
1855 
1856 	if (unlikely(*copied < len)) {
1857 		if (!PageUptodate(wc->w_target_page)) {
1858 			*copied = 0;
1859 			return;
1860 		}
1861 	}
1862 
1863 	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1864 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1865 	kunmap_atomic(kaddr, KM_USER0);
1866 
1867 	mlog(0, "Data written to inode at offset %llu. "
1868 	     "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1869 	     (unsigned long long)pos, *copied,
1870 	     le16_to_cpu(di->id2.i_data.id_count),
1871 	     le16_to_cpu(di->i_dyn_features));
1872 }
1873 
1874 int ocfs2_write_end_nolock(struct address_space *mapping,
1875 			   loff_t pos, unsigned len, unsigned copied,
1876 			   struct page *page, void *fsdata)
1877 {
1878 	int i;
1879 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1880 	struct inode *inode = mapping->host;
1881 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1882 	struct ocfs2_write_ctxt *wc = fsdata;
1883 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1884 	handle_t *handle = wc->w_handle;
1885 	struct page *tmppage;
1886 
1887 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1888 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1889 		goto out_write_size;
1890 	}
1891 
1892 	if (unlikely(copied < len)) {
1893 		if (!PageUptodate(wc->w_target_page))
1894 			copied = 0;
1895 
1896 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1897 				       start+len);
1898 	}
1899 	flush_dcache_page(wc->w_target_page);
1900 
1901 	for(i = 0; i < wc->w_num_pages; i++) {
1902 		tmppage = wc->w_pages[i];
1903 
1904 		if (tmppage == wc->w_target_page) {
1905 			from = wc->w_target_from;
1906 			to = wc->w_target_to;
1907 
1908 			BUG_ON(from > PAGE_CACHE_SIZE ||
1909 			       to > PAGE_CACHE_SIZE ||
1910 			       to < from);
1911 		} else {
1912 			/*
1913 			 * Pages adjacent to the target (if any) imply
1914 			 * a hole-filling write in which case we want
1915 			 * to flush their entire range.
1916 			 */
1917 			from = 0;
1918 			to = PAGE_CACHE_SIZE;
1919 		}
1920 
1921 		if (page_has_buffers(tmppage)) {
1922 			if (ocfs2_should_order_data(inode)) {
1923 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1924 #ifdef CONFIG_OCFS2_COMPAT_JBD
1925 				walk_page_buffers(wc->w_handle,
1926 						  page_buffers(tmppage),
1927 						  from, to, NULL,
1928 						  ocfs2_journal_dirty_data);
1929 #endif
1930 			}
1931 			block_commit_write(tmppage, from, to);
1932 		}
1933 	}
1934 
1935 out_write_size:
1936 	pos += copied;
1937 	if (pos > inode->i_size) {
1938 		i_size_write(inode, pos);
1939 		mark_inode_dirty(inode);
1940 	}
1941 	inode->i_blocks = ocfs2_inode_sector_count(inode);
1942 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1943 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1944 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1945 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1946 	ocfs2_journal_dirty(handle, wc->w_di_bh);
1947 
1948 	ocfs2_commit_trans(osb, handle);
1949 
1950 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
1951 
1952 	ocfs2_free_write_ctxt(wc);
1953 
1954 	return copied;
1955 }
1956 
1957 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1958 			   loff_t pos, unsigned len, unsigned copied,
1959 			   struct page *page, void *fsdata)
1960 {
1961 	int ret;
1962 	struct inode *inode = mapping->host;
1963 
1964 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1965 
1966 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1967 	ocfs2_inode_unlock(inode, 1);
1968 
1969 	return ret;
1970 }
1971 
1972 const struct address_space_operations ocfs2_aops = {
1973 	.readpage	= ocfs2_readpage,
1974 	.readpages	= ocfs2_readpages,
1975 	.writepage	= ocfs2_writepage,
1976 	.write_begin	= ocfs2_write_begin,
1977 	.write_end	= ocfs2_write_end,
1978 	.bmap		= ocfs2_bmap,
1979 	.sync_page	= block_sync_page,
1980 	.direct_IO	= ocfs2_direct_IO,
1981 	.invalidatepage	= ocfs2_invalidatepage,
1982 	.releasepage	= ocfs2_releasepage,
1983 	.migratepage	= buffer_migrate_page,
1984 };
1985