xref: /openbmc/linux/fs/ocfs2/aops.c (revision 8c609698)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33 
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50 
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55 
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 				   struct buffer_head *bh_result, int create)
58 {
59 	int err = -EIO;
60 	int status;
61 	struct ocfs2_dinode *fe = NULL;
62 	struct buffer_head *bh = NULL;
63 	struct buffer_head *buffer_cache_bh = NULL;
64 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 	void *kaddr;
66 
67 	trace_ocfs2_symlink_get_block(
68 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
69 			(unsigned long long)iblock, bh_result, create);
70 
71 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72 
73 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 		     (unsigned long long)iblock);
76 		goto bail;
77 	}
78 
79 	status = ocfs2_read_inode_block(inode, &bh);
80 	if (status < 0) {
81 		mlog_errno(status);
82 		goto bail;
83 	}
84 	fe = (struct ocfs2_dinode *) bh->b_data;
85 
86 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 						    le32_to_cpu(fe->i_clusters))) {
88 		err = -ENOMEM;
89 		mlog(ML_ERROR, "block offset is outside the allocated size: "
90 		     "%llu\n", (unsigned long long)iblock);
91 		goto bail;
92 	}
93 
94 	/* We don't use the page cache to create symlink data, so if
95 	 * need be, copy it over from the buffer cache. */
96 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 			    iblock;
99 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 		if (!buffer_cache_bh) {
101 			err = -ENOMEM;
102 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 			goto bail;
104 		}
105 
106 		/* we haven't locked out transactions, so a commit
107 		 * could've happened. Since we've got a reference on
108 		 * the bh, even if it commits while we're doing the
109 		 * copy, the data is still good. */
110 		if (buffer_jbd(buffer_cache_bh)
111 		    && ocfs2_inode_is_new(inode)) {
112 			kaddr = kmap_atomic(bh_result->b_page);
113 			if (!kaddr) {
114 				mlog(ML_ERROR, "couldn't kmap!\n");
115 				goto bail;
116 			}
117 			memcpy(kaddr + (bh_result->b_size * iblock),
118 			       buffer_cache_bh->b_data,
119 			       bh_result->b_size);
120 			kunmap_atomic(kaddr);
121 			set_buffer_uptodate(bh_result);
122 		}
123 		brelse(buffer_cache_bh);
124 	}
125 
126 	map_bh(bh_result, inode->i_sb,
127 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128 
129 	err = 0;
130 
131 bail:
132 	brelse(bh);
133 
134 	return err;
135 }
136 
137 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
138 		    struct buffer_head *bh_result, int create)
139 {
140 	int ret = 0;
141 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
142 
143 	down_read(&oi->ip_alloc_sem);
144 	ret = ocfs2_get_block(inode, iblock, bh_result, create);
145 	up_read(&oi->ip_alloc_sem);
146 
147 	return ret;
148 }
149 
150 int ocfs2_get_block(struct inode *inode, sector_t iblock,
151 		    struct buffer_head *bh_result, int create)
152 {
153 	int err = 0;
154 	unsigned int ext_flags;
155 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
156 	u64 p_blkno, count, past_eof;
157 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
158 
159 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
160 			      (unsigned long long)iblock, bh_result, create);
161 
162 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
163 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
164 		     inode, inode->i_ino);
165 
166 	if (S_ISLNK(inode->i_mode)) {
167 		/* this always does I/O for some reason. */
168 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
169 		goto bail;
170 	}
171 
172 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
173 					  &ext_flags);
174 	if (err) {
175 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
176 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
177 		     (unsigned long long)p_blkno);
178 		goto bail;
179 	}
180 
181 	if (max_blocks < count)
182 		count = max_blocks;
183 
184 	/*
185 	 * ocfs2 never allocates in this function - the only time we
186 	 * need to use BH_New is when we're extending i_size on a file
187 	 * system which doesn't support holes, in which case BH_New
188 	 * allows __block_write_begin() to zero.
189 	 *
190 	 * If we see this on a sparse file system, then a truncate has
191 	 * raced us and removed the cluster. In this case, we clear
192 	 * the buffers dirty and uptodate bits and let the buffer code
193 	 * ignore it as a hole.
194 	 */
195 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
196 		clear_buffer_dirty(bh_result);
197 		clear_buffer_uptodate(bh_result);
198 		goto bail;
199 	}
200 
201 	/* Treat the unwritten extent as a hole for zeroing purposes. */
202 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
203 		map_bh(bh_result, inode->i_sb, p_blkno);
204 
205 	bh_result->b_size = count << inode->i_blkbits;
206 
207 	if (!ocfs2_sparse_alloc(osb)) {
208 		if (p_blkno == 0) {
209 			err = -EIO;
210 			mlog(ML_ERROR,
211 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
212 			     (unsigned long long)iblock,
213 			     (unsigned long long)p_blkno,
214 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
215 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
216 			dump_stack();
217 			goto bail;
218 		}
219 	}
220 
221 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
222 
223 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
224 				  (unsigned long long)past_eof);
225 	if (create && (iblock >= past_eof))
226 		set_buffer_new(bh_result);
227 
228 bail:
229 	if (err < 0)
230 		err = -EIO;
231 
232 	return err;
233 }
234 
235 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
236 			   struct buffer_head *di_bh)
237 {
238 	void *kaddr;
239 	loff_t size;
240 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
241 
242 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
243 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
244 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
245 		return -EROFS;
246 	}
247 
248 	size = i_size_read(inode);
249 
250 	if (size > PAGE_SIZE ||
251 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
252 		ocfs2_error(inode->i_sb,
253 			    "Inode %llu has with inline data has bad size: %Lu\n",
254 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
255 			    (unsigned long long)size);
256 		return -EROFS;
257 	}
258 
259 	kaddr = kmap_atomic(page);
260 	if (size)
261 		memcpy(kaddr, di->id2.i_data.id_data, size);
262 	/* Clear the remaining part of the page */
263 	memset(kaddr + size, 0, PAGE_SIZE - size);
264 	flush_dcache_page(page);
265 	kunmap_atomic(kaddr);
266 
267 	SetPageUptodate(page);
268 
269 	return 0;
270 }
271 
272 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
273 {
274 	int ret;
275 	struct buffer_head *di_bh = NULL;
276 
277 	BUG_ON(!PageLocked(page));
278 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
279 
280 	ret = ocfs2_read_inode_block(inode, &di_bh);
281 	if (ret) {
282 		mlog_errno(ret);
283 		goto out;
284 	}
285 
286 	ret = ocfs2_read_inline_data(inode, page, di_bh);
287 out:
288 	unlock_page(page);
289 
290 	brelse(di_bh);
291 	return ret;
292 }
293 
294 static int ocfs2_readpage(struct file *file, struct page *page)
295 {
296 	struct inode *inode = page->mapping->host;
297 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
298 	loff_t start = (loff_t)page->index << PAGE_SHIFT;
299 	int ret, unlock = 1;
300 
301 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
302 			     (page ? page->index : 0));
303 
304 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
305 	if (ret != 0) {
306 		if (ret == AOP_TRUNCATED_PAGE)
307 			unlock = 0;
308 		mlog_errno(ret);
309 		goto out;
310 	}
311 
312 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
313 		/*
314 		 * Unlock the page and cycle ip_alloc_sem so that we don't
315 		 * busyloop waiting for ip_alloc_sem to unlock
316 		 */
317 		ret = AOP_TRUNCATED_PAGE;
318 		unlock_page(page);
319 		unlock = 0;
320 		down_read(&oi->ip_alloc_sem);
321 		up_read(&oi->ip_alloc_sem);
322 		goto out_inode_unlock;
323 	}
324 
325 	/*
326 	 * i_size might have just been updated as we grabed the meta lock.  We
327 	 * might now be discovering a truncate that hit on another node.
328 	 * block_read_full_page->get_block freaks out if it is asked to read
329 	 * beyond the end of a file, so we check here.  Callers
330 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
331 	 * and notice that the page they just read isn't needed.
332 	 *
333 	 * XXX sys_readahead() seems to get that wrong?
334 	 */
335 	if (start >= i_size_read(inode)) {
336 		zero_user(page, 0, PAGE_SIZE);
337 		SetPageUptodate(page);
338 		ret = 0;
339 		goto out_alloc;
340 	}
341 
342 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
343 		ret = ocfs2_readpage_inline(inode, page);
344 	else
345 		ret = block_read_full_page(page, ocfs2_get_block);
346 	unlock = 0;
347 
348 out_alloc:
349 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
350 out_inode_unlock:
351 	ocfs2_inode_unlock(inode, 0);
352 out:
353 	if (unlock)
354 		unlock_page(page);
355 	return ret;
356 }
357 
358 /*
359  * This is used only for read-ahead. Failures or difficult to handle
360  * situations are safe to ignore.
361  *
362  * Right now, we don't bother with BH_Boundary - in-inode extent lists
363  * are quite large (243 extents on 4k blocks), so most inodes don't
364  * grow out to a tree. If need be, detecting boundary extents could
365  * trivially be added in a future version of ocfs2_get_block().
366  */
367 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
368 			   struct list_head *pages, unsigned nr_pages)
369 {
370 	int ret, err = -EIO;
371 	struct inode *inode = mapping->host;
372 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
373 	loff_t start;
374 	struct page *last;
375 
376 	/*
377 	 * Use the nonblocking flag for the dlm code to avoid page
378 	 * lock inversion, but don't bother with retrying.
379 	 */
380 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
381 	if (ret)
382 		return err;
383 
384 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
385 		ocfs2_inode_unlock(inode, 0);
386 		return err;
387 	}
388 
389 	/*
390 	 * Don't bother with inline-data. There isn't anything
391 	 * to read-ahead in that case anyway...
392 	 */
393 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
394 		goto out_unlock;
395 
396 	/*
397 	 * Check whether a remote node truncated this file - we just
398 	 * drop out in that case as it's not worth handling here.
399 	 */
400 	last = list_entry(pages->prev, struct page, lru);
401 	start = (loff_t)last->index << PAGE_SHIFT;
402 	if (start >= i_size_read(inode))
403 		goto out_unlock;
404 
405 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
406 
407 out_unlock:
408 	up_read(&oi->ip_alloc_sem);
409 	ocfs2_inode_unlock(inode, 0);
410 
411 	return err;
412 }
413 
414 /* Note: Because we don't support holes, our allocation has
415  * already happened (allocation writes zeros to the file data)
416  * so we don't have to worry about ordered writes in
417  * ocfs2_writepage.
418  *
419  * ->writepage is called during the process of invalidating the page cache
420  * during blocked lock processing.  It can't block on any cluster locks
421  * to during block mapping.  It's relying on the fact that the block
422  * mapping can't have disappeared under the dirty pages that it is
423  * being asked to write back.
424  */
425 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
426 {
427 	trace_ocfs2_writepage(
428 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
429 		page->index);
430 
431 	return block_write_full_page(page, ocfs2_get_block, wbc);
432 }
433 
434 /* Taken from ext3. We don't necessarily need the full blown
435  * functionality yet, but IMHO it's better to cut and paste the whole
436  * thing so we can avoid introducing our own bugs (and easily pick up
437  * their fixes when they happen) --Mark */
438 int walk_page_buffers(	handle_t *handle,
439 			struct buffer_head *head,
440 			unsigned from,
441 			unsigned to,
442 			int *partial,
443 			int (*fn)(	handle_t *handle,
444 					struct buffer_head *bh))
445 {
446 	struct buffer_head *bh;
447 	unsigned block_start, block_end;
448 	unsigned blocksize = head->b_size;
449 	int err, ret = 0;
450 	struct buffer_head *next;
451 
452 	for (	bh = head, block_start = 0;
453 		ret == 0 && (bh != head || !block_start);
454 	    	block_start = block_end, bh = next)
455 	{
456 		next = bh->b_this_page;
457 		block_end = block_start + blocksize;
458 		if (block_end <= from || block_start >= to) {
459 			if (partial && !buffer_uptodate(bh))
460 				*partial = 1;
461 			continue;
462 		}
463 		err = (*fn)(handle, bh);
464 		if (!ret)
465 			ret = err;
466 	}
467 	return ret;
468 }
469 
470 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
471 {
472 	sector_t status;
473 	u64 p_blkno = 0;
474 	int err = 0;
475 	struct inode *inode = mapping->host;
476 
477 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
478 			 (unsigned long long)block);
479 
480 	/*
481 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
482 	 * bypasseѕ the file system for actual I/O.  We really can't allow
483 	 * that on refcounted inodes, so we have to skip out here.  And yes,
484 	 * 0 is the magic code for a bmap error..
485 	 */
486 	if (ocfs2_is_refcount_inode(inode))
487 		return 0;
488 
489 	/* We don't need to lock journal system files, since they aren't
490 	 * accessed concurrently from multiple nodes.
491 	 */
492 	if (!INODE_JOURNAL(inode)) {
493 		err = ocfs2_inode_lock(inode, NULL, 0);
494 		if (err) {
495 			if (err != -ENOENT)
496 				mlog_errno(err);
497 			goto bail;
498 		}
499 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
500 	}
501 
502 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
503 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
504 						  NULL);
505 
506 	if (!INODE_JOURNAL(inode)) {
507 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
508 		ocfs2_inode_unlock(inode, 0);
509 	}
510 
511 	if (err) {
512 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
513 		     (unsigned long long)block);
514 		mlog_errno(err);
515 		goto bail;
516 	}
517 
518 bail:
519 	status = err ? 0 : p_blkno;
520 
521 	return status;
522 }
523 
524 static int ocfs2_releasepage(struct page *page, gfp_t wait)
525 {
526 	if (!page_has_buffers(page))
527 		return 0;
528 	return try_to_free_buffers(page);
529 }
530 
531 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
532 					    u32 cpos,
533 					    unsigned int *start,
534 					    unsigned int *end)
535 {
536 	unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
537 
538 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
539 		unsigned int cpp;
540 
541 		cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
542 
543 		cluster_start = cpos % cpp;
544 		cluster_start = cluster_start << osb->s_clustersize_bits;
545 
546 		cluster_end = cluster_start + osb->s_clustersize;
547 	}
548 
549 	BUG_ON(cluster_start > PAGE_SIZE);
550 	BUG_ON(cluster_end > PAGE_SIZE);
551 
552 	if (start)
553 		*start = cluster_start;
554 	if (end)
555 		*end = cluster_end;
556 }
557 
558 /*
559  * 'from' and 'to' are the region in the page to avoid zeroing.
560  *
561  * If pagesize > clustersize, this function will avoid zeroing outside
562  * of the cluster boundary.
563  *
564  * from == to == 0 is code for "zero the entire cluster region"
565  */
566 static void ocfs2_clear_page_regions(struct page *page,
567 				     struct ocfs2_super *osb, u32 cpos,
568 				     unsigned from, unsigned to)
569 {
570 	void *kaddr;
571 	unsigned int cluster_start, cluster_end;
572 
573 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
574 
575 	kaddr = kmap_atomic(page);
576 
577 	if (from || to) {
578 		if (from > cluster_start)
579 			memset(kaddr + cluster_start, 0, from - cluster_start);
580 		if (to < cluster_end)
581 			memset(kaddr + to, 0, cluster_end - to);
582 	} else {
583 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
584 	}
585 
586 	kunmap_atomic(kaddr);
587 }
588 
589 /*
590  * Nonsparse file systems fully allocate before we get to the write
591  * code. This prevents ocfs2_write() from tagging the write as an
592  * allocating one, which means ocfs2_map_page_blocks() might try to
593  * read-in the blocks at the tail of our file. Avoid reading them by
594  * testing i_size against each block offset.
595  */
596 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
597 				 unsigned int block_start)
598 {
599 	u64 offset = page_offset(page) + block_start;
600 
601 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
602 		return 1;
603 
604 	if (i_size_read(inode) > offset)
605 		return 1;
606 
607 	return 0;
608 }
609 
610 /*
611  * Some of this taken from __block_write_begin(). We already have our
612  * mapping by now though, and the entire write will be allocating or
613  * it won't, so not much need to use BH_New.
614  *
615  * This will also skip zeroing, which is handled externally.
616  */
617 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
618 			  struct inode *inode, unsigned int from,
619 			  unsigned int to, int new)
620 {
621 	int ret = 0;
622 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
623 	unsigned int block_end, block_start;
624 	unsigned int bsize = i_blocksize(inode);
625 
626 	if (!page_has_buffers(page))
627 		create_empty_buffers(page, bsize, 0);
628 
629 	head = page_buffers(page);
630 	for (bh = head, block_start = 0; bh != head || !block_start;
631 	     bh = bh->b_this_page, block_start += bsize) {
632 		block_end = block_start + bsize;
633 
634 		clear_buffer_new(bh);
635 
636 		/*
637 		 * Ignore blocks outside of our i/o range -
638 		 * they may belong to unallocated clusters.
639 		 */
640 		if (block_start >= to || block_end <= from) {
641 			if (PageUptodate(page))
642 				set_buffer_uptodate(bh);
643 			continue;
644 		}
645 
646 		/*
647 		 * For an allocating write with cluster size >= page
648 		 * size, we always write the entire page.
649 		 */
650 		if (new)
651 			set_buffer_new(bh);
652 
653 		if (!buffer_mapped(bh)) {
654 			map_bh(bh, inode->i_sb, *p_blkno);
655 			clean_bdev_bh_alias(bh);
656 		}
657 
658 		if (PageUptodate(page)) {
659 			if (!buffer_uptodate(bh))
660 				set_buffer_uptodate(bh);
661 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
662 			   !buffer_new(bh) &&
663 			   ocfs2_should_read_blk(inode, page, block_start) &&
664 			   (block_start < from || block_end > to)) {
665 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
666 			*wait_bh++=bh;
667 		}
668 
669 		*p_blkno = *p_blkno + 1;
670 	}
671 
672 	/*
673 	 * If we issued read requests - let them complete.
674 	 */
675 	while(wait_bh > wait) {
676 		wait_on_buffer(*--wait_bh);
677 		if (!buffer_uptodate(*wait_bh))
678 			ret = -EIO;
679 	}
680 
681 	if (ret == 0 || !new)
682 		return ret;
683 
684 	/*
685 	 * If we get -EIO above, zero out any newly allocated blocks
686 	 * to avoid exposing stale data.
687 	 */
688 	bh = head;
689 	block_start = 0;
690 	do {
691 		block_end = block_start + bsize;
692 		if (block_end <= from)
693 			goto next_bh;
694 		if (block_start >= to)
695 			break;
696 
697 		zero_user(page, block_start, bh->b_size);
698 		set_buffer_uptodate(bh);
699 		mark_buffer_dirty(bh);
700 
701 next_bh:
702 		block_start = block_end;
703 		bh = bh->b_this_page;
704 	} while (bh != head);
705 
706 	return ret;
707 }
708 
709 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
710 #define OCFS2_MAX_CTXT_PAGES	1
711 #else
712 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
713 #endif
714 
715 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
716 
717 struct ocfs2_unwritten_extent {
718 	struct list_head	ue_node;
719 	struct list_head	ue_ip_node;
720 	u32			ue_cpos;
721 	u32			ue_phys;
722 };
723 
724 /*
725  * Describe the state of a single cluster to be written to.
726  */
727 struct ocfs2_write_cluster_desc {
728 	u32		c_cpos;
729 	u32		c_phys;
730 	/*
731 	 * Give this a unique field because c_phys eventually gets
732 	 * filled.
733 	 */
734 	unsigned	c_new;
735 	unsigned	c_clear_unwritten;
736 	unsigned	c_needs_zero;
737 };
738 
739 struct ocfs2_write_ctxt {
740 	/* Logical cluster position / len of write */
741 	u32				w_cpos;
742 	u32				w_clen;
743 
744 	/* First cluster allocated in a nonsparse extend */
745 	u32				w_first_new_cpos;
746 
747 	/* Type of caller. Must be one of buffer, mmap, direct.  */
748 	ocfs2_write_type_t		w_type;
749 
750 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
751 
752 	/*
753 	 * This is true if page_size > cluster_size.
754 	 *
755 	 * It triggers a set of special cases during write which might
756 	 * have to deal with allocating writes to partial pages.
757 	 */
758 	unsigned int			w_large_pages;
759 
760 	/*
761 	 * Pages involved in this write.
762 	 *
763 	 * w_target_page is the page being written to by the user.
764 	 *
765 	 * w_pages is an array of pages which always contains
766 	 * w_target_page, and in the case of an allocating write with
767 	 * page_size < cluster size, it will contain zero'd and mapped
768 	 * pages adjacent to w_target_page which need to be written
769 	 * out in so that future reads from that region will get
770 	 * zero's.
771 	 */
772 	unsigned int			w_num_pages;
773 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
774 	struct page			*w_target_page;
775 
776 	/*
777 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
778 	 * against w_target_page in ocfs2_write_end_nolock.
779 	 */
780 	unsigned int			w_target_locked:1;
781 
782 	/*
783 	 * ocfs2_write_end() uses this to know what the real range to
784 	 * write in the target should be.
785 	 */
786 	unsigned int			w_target_from;
787 	unsigned int			w_target_to;
788 
789 	/*
790 	 * We could use journal_current_handle() but this is cleaner,
791 	 * IMHO -Mark
792 	 */
793 	handle_t			*w_handle;
794 
795 	struct buffer_head		*w_di_bh;
796 
797 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
798 
799 	struct list_head		w_unwritten_list;
800 };
801 
802 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
803 {
804 	int i;
805 
806 	for(i = 0; i < num_pages; i++) {
807 		if (pages[i]) {
808 			unlock_page(pages[i]);
809 			mark_page_accessed(pages[i]);
810 			put_page(pages[i]);
811 		}
812 	}
813 }
814 
815 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
816 {
817 	int i;
818 
819 	/*
820 	 * w_target_locked is only set to true in the page_mkwrite() case.
821 	 * The intent is to allow us to lock the target page from write_begin()
822 	 * to write_end(). The caller must hold a ref on w_target_page.
823 	 */
824 	if (wc->w_target_locked) {
825 		BUG_ON(!wc->w_target_page);
826 		for (i = 0; i < wc->w_num_pages; i++) {
827 			if (wc->w_target_page == wc->w_pages[i]) {
828 				wc->w_pages[i] = NULL;
829 				break;
830 			}
831 		}
832 		mark_page_accessed(wc->w_target_page);
833 		put_page(wc->w_target_page);
834 	}
835 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
836 }
837 
838 static void ocfs2_free_unwritten_list(struct inode *inode,
839 				 struct list_head *head)
840 {
841 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
842 	struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
843 
844 	list_for_each_entry_safe(ue, tmp, head, ue_node) {
845 		list_del(&ue->ue_node);
846 		spin_lock(&oi->ip_lock);
847 		list_del(&ue->ue_ip_node);
848 		spin_unlock(&oi->ip_lock);
849 		kfree(ue);
850 	}
851 }
852 
853 static void ocfs2_free_write_ctxt(struct inode *inode,
854 				  struct ocfs2_write_ctxt *wc)
855 {
856 	ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
857 	ocfs2_unlock_pages(wc);
858 	brelse(wc->w_di_bh);
859 	kfree(wc);
860 }
861 
862 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
863 				  struct ocfs2_super *osb, loff_t pos,
864 				  unsigned len, ocfs2_write_type_t type,
865 				  struct buffer_head *di_bh)
866 {
867 	u32 cend;
868 	struct ocfs2_write_ctxt *wc;
869 
870 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
871 	if (!wc)
872 		return -ENOMEM;
873 
874 	wc->w_cpos = pos >> osb->s_clustersize_bits;
875 	wc->w_first_new_cpos = UINT_MAX;
876 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
877 	wc->w_clen = cend - wc->w_cpos + 1;
878 	get_bh(di_bh);
879 	wc->w_di_bh = di_bh;
880 	wc->w_type = type;
881 
882 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
883 		wc->w_large_pages = 1;
884 	else
885 		wc->w_large_pages = 0;
886 
887 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
888 	INIT_LIST_HEAD(&wc->w_unwritten_list);
889 
890 	*wcp = wc;
891 
892 	return 0;
893 }
894 
895 /*
896  * If a page has any new buffers, zero them out here, and mark them uptodate
897  * and dirty so they'll be written out (in order to prevent uninitialised
898  * block data from leaking). And clear the new bit.
899  */
900 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
901 {
902 	unsigned int block_start, block_end;
903 	struct buffer_head *head, *bh;
904 
905 	BUG_ON(!PageLocked(page));
906 	if (!page_has_buffers(page))
907 		return;
908 
909 	bh = head = page_buffers(page);
910 	block_start = 0;
911 	do {
912 		block_end = block_start + bh->b_size;
913 
914 		if (buffer_new(bh)) {
915 			if (block_end > from && block_start < to) {
916 				if (!PageUptodate(page)) {
917 					unsigned start, end;
918 
919 					start = max(from, block_start);
920 					end = min(to, block_end);
921 
922 					zero_user_segment(page, start, end);
923 					set_buffer_uptodate(bh);
924 				}
925 
926 				clear_buffer_new(bh);
927 				mark_buffer_dirty(bh);
928 			}
929 		}
930 
931 		block_start = block_end;
932 		bh = bh->b_this_page;
933 	} while (bh != head);
934 }
935 
936 /*
937  * Only called when we have a failure during allocating write to write
938  * zero's to the newly allocated region.
939  */
940 static void ocfs2_write_failure(struct inode *inode,
941 				struct ocfs2_write_ctxt *wc,
942 				loff_t user_pos, unsigned user_len)
943 {
944 	int i;
945 	unsigned from = user_pos & (PAGE_SIZE - 1),
946 		to = user_pos + user_len;
947 	struct page *tmppage;
948 
949 	if (wc->w_target_page)
950 		ocfs2_zero_new_buffers(wc->w_target_page, from, to);
951 
952 	for(i = 0; i < wc->w_num_pages; i++) {
953 		tmppage = wc->w_pages[i];
954 
955 		if (tmppage && page_has_buffers(tmppage)) {
956 			if (ocfs2_should_order_data(inode))
957 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
958 
959 			block_commit_write(tmppage, from, to);
960 		}
961 	}
962 }
963 
964 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
965 					struct ocfs2_write_ctxt *wc,
966 					struct page *page, u32 cpos,
967 					loff_t user_pos, unsigned user_len,
968 					int new)
969 {
970 	int ret;
971 	unsigned int map_from = 0, map_to = 0;
972 	unsigned int cluster_start, cluster_end;
973 	unsigned int user_data_from = 0, user_data_to = 0;
974 
975 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
976 					&cluster_start, &cluster_end);
977 
978 	/* treat the write as new if the a hole/lseek spanned across
979 	 * the page boundary.
980 	 */
981 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
982 			(page_offset(page) <= user_pos));
983 
984 	if (page == wc->w_target_page) {
985 		map_from = user_pos & (PAGE_SIZE - 1);
986 		map_to = map_from + user_len;
987 
988 		if (new)
989 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
990 						    cluster_start, cluster_end,
991 						    new);
992 		else
993 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
994 						    map_from, map_to, new);
995 		if (ret) {
996 			mlog_errno(ret);
997 			goto out;
998 		}
999 
1000 		user_data_from = map_from;
1001 		user_data_to = map_to;
1002 		if (new) {
1003 			map_from = cluster_start;
1004 			map_to = cluster_end;
1005 		}
1006 	} else {
1007 		/*
1008 		 * If we haven't allocated the new page yet, we
1009 		 * shouldn't be writing it out without copying user
1010 		 * data. This is likely a math error from the caller.
1011 		 */
1012 		BUG_ON(!new);
1013 
1014 		map_from = cluster_start;
1015 		map_to = cluster_end;
1016 
1017 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1018 					    cluster_start, cluster_end, new);
1019 		if (ret) {
1020 			mlog_errno(ret);
1021 			goto out;
1022 		}
1023 	}
1024 
1025 	/*
1026 	 * Parts of newly allocated pages need to be zero'd.
1027 	 *
1028 	 * Above, we have also rewritten 'to' and 'from' - as far as
1029 	 * the rest of the function is concerned, the entire cluster
1030 	 * range inside of a page needs to be written.
1031 	 *
1032 	 * We can skip this if the page is up to date - it's already
1033 	 * been zero'd from being read in as a hole.
1034 	 */
1035 	if (new && !PageUptodate(page))
1036 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1037 					 cpos, user_data_from, user_data_to);
1038 
1039 	flush_dcache_page(page);
1040 
1041 out:
1042 	return ret;
1043 }
1044 
1045 /*
1046  * This function will only grab one clusters worth of pages.
1047  */
1048 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1049 				      struct ocfs2_write_ctxt *wc,
1050 				      u32 cpos, loff_t user_pos,
1051 				      unsigned user_len, int new,
1052 				      struct page *mmap_page)
1053 {
1054 	int ret = 0, i;
1055 	unsigned long start, target_index, end_index, index;
1056 	struct inode *inode = mapping->host;
1057 	loff_t last_byte;
1058 
1059 	target_index = user_pos >> PAGE_SHIFT;
1060 
1061 	/*
1062 	 * Figure out how many pages we'll be manipulating here. For
1063 	 * non allocating write, we just change the one
1064 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1065 	 * writing past i_size, we only need enough pages to cover the
1066 	 * last page of the write.
1067 	 */
1068 	if (new) {
1069 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1070 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1071 		/*
1072 		 * We need the index *past* the last page we could possibly
1073 		 * touch.  This is the page past the end of the write or
1074 		 * i_size, whichever is greater.
1075 		 */
1076 		last_byte = max(user_pos + user_len, i_size_read(inode));
1077 		BUG_ON(last_byte < 1);
1078 		end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1079 		if ((start + wc->w_num_pages) > end_index)
1080 			wc->w_num_pages = end_index - start;
1081 	} else {
1082 		wc->w_num_pages = 1;
1083 		start = target_index;
1084 	}
1085 	end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1086 
1087 	for(i = 0; i < wc->w_num_pages; i++) {
1088 		index = start + i;
1089 
1090 		if (index >= target_index && index <= end_index &&
1091 		    wc->w_type == OCFS2_WRITE_MMAP) {
1092 			/*
1093 			 * ocfs2_pagemkwrite() is a little different
1094 			 * and wants us to directly use the page
1095 			 * passed in.
1096 			 */
1097 			lock_page(mmap_page);
1098 
1099 			/* Exit and let the caller retry */
1100 			if (mmap_page->mapping != mapping) {
1101 				WARN_ON(mmap_page->mapping);
1102 				unlock_page(mmap_page);
1103 				ret = -EAGAIN;
1104 				goto out;
1105 			}
1106 
1107 			get_page(mmap_page);
1108 			wc->w_pages[i] = mmap_page;
1109 			wc->w_target_locked = true;
1110 		} else if (index >= target_index && index <= end_index &&
1111 			   wc->w_type == OCFS2_WRITE_DIRECT) {
1112 			/* Direct write has no mapping page. */
1113 			wc->w_pages[i] = NULL;
1114 			continue;
1115 		} else {
1116 			wc->w_pages[i] = find_or_create_page(mapping, index,
1117 							     GFP_NOFS);
1118 			if (!wc->w_pages[i]) {
1119 				ret = -ENOMEM;
1120 				mlog_errno(ret);
1121 				goto out;
1122 			}
1123 		}
1124 		wait_for_stable_page(wc->w_pages[i]);
1125 
1126 		if (index == target_index)
1127 			wc->w_target_page = wc->w_pages[i];
1128 	}
1129 out:
1130 	if (ret)
1131 		wc->w_target_locked = false;
1132 	return ret;
1133 }
1134 
1135 /*
1136  * Prepare a single cluster for write one cluster into the file.
1137  */
1138 static int ocfs2_write_cluster(struct address_space *mapping,
1139 			       u32 *phys, unsigned int new,
1140 			       unsigned int clear_unwritten,
1141 			       unsigned int should_zero,
1142 			       struct ocfs2_alloc_context *data_ac,
1143 			       struct ocfs2_alloc_context *meta_ac,
1144 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1145 			       loff_t user_pos, unsigned user_len)
1146 {
1147 	int ret, i;
1148 	u64 p_blkno;
1149 	struct inode *inode = mapping->host;
1150 	struct ocfs2_extent_tree et;
1151 	int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1152 
1153 	if (new) {
1154 		u32 tmp_pos;
1155 
1156 		/*
1157 		 * This is safe to call with the page locks - it won't take
1158 		 * any additional semaphores or cluster locks.
1159 		 */
1160 		tmp_pos = cpos;
1161 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1162 					   &tmp_pos, 1, !clear_unwritten,
1163 					   wc->w_di_bh, wc->w_handle,
1164 					   data_ac, meta_ac, NULL);
1165 		/*
1166 		 * This shouldn't happen because we must have already
1167 		 * calculated the correct meta data allocation required. The
1168 		 * internal tree allocation code should know how to increase
1169 		 * transaction credits itself.
1170 		 *
1171 		 * If need be, we could handle -EAGAIN for a
1172 		 * RESTART_TRANS here.
1173 		 */
1174 		mlog_bug_on_msg(ret == -EAGAIN,
1175 				"Inode %llu: EAGAIN return during allocation.\n",
1176 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1177 		if (ret < 0) {
1178 			mlog_errno(ret);
1179 			goto out;
1180 		}
1181 	} else if (clear_unwritten) {
1182 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1183 					      wc->w_di_bh);
1184 		ret = ocfs2_mark_extent_written(inode, &et,
1185 						wc->w_handle, cpos, 1, *phys,
1186 						meta_ac, &wc->w_dealloc);
1187 		if (ret < 0) {
1188 			mlog_errno(ret);
1189 			goto out;
1190 		}
1191 	}
1192 
1193 	/*
1194 	 * The only reason this should fail is due to an inability to
1195 	 * find the extent added.
1196 	 */
1197 	ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1198 	if (ret < 0) {
1199 		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1200 			    "at logical cluster %u",
1201 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1202 		goto out;
1203 	}
1204 
1205 	BUG_ON(*phys == 0);
1206 
1207 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1208 	if (!should_zero)
1209 		p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1210 
1211 	for(i = 0; i < wc->w_num_pages; i++) {
1212 		int tmpret;
1213 
1214 		/* This is the direct io target page. */
1215 		if (wc->w_pages[i] == NULL) {
1216 			p_blkno++;
1217 			continue;
1218 		}
1219 
1220 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1221 						      wc->w_pages[i], cpos,
1222 						      user_pos, user_len,
1223 						      should_zero);
1224 		if (tmpret) {
1225 			mlog_errno(tmpret);
1226 			if (ret == 0)
1227 				ret = tmpret;
1228 		}
1229 	}
1230 
1231 	/*
1232 	 * We only have cleanup to do in case of allocating write.
1233 	 */
1234 	if (ret && new)
1235 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1236 
1237 out:
1238 
1239 	return ret;
1240 }
1241 
1242 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1243 				       struct ocfs2_alloc_context *data_ac,
1244 				       struct ocfs2_alloc_context *meta_ac,
1245 				       struct ocfs2_write_ctxt *wc,
1246 				       loff_t pos, unsigned len)
1247 {
1248 	int ret, i;
1249 	loff_t cluster_off;
1250 	unsigned int local_len = len;
1251 	struct ocfs2_write_cluster_desc *desc;
1252 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1253 
1254 	for (i = 0; i < wc->w_clen; i++) {
1255 		desc = &wc->w_desc[i];
1256 
1257 		/*
1258 		 * We have to make sure that the total write passed in
1259 		 * doesn't extend past a single cluster.
1260 		 */
1261 		local_len = len;
1262 		cluster_off = pos & (osb->s_clustersize - 1);
1263 		if ((cluster_off + local_len) > osb->s_clustersize)
1264 			local_len = osb->s_clustersize - cluster_off;
1265 
1266 		ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1267 					  desc->c_new,
1268 					  desc->c_clear_unwritten,
1269 					  desc->c_needs_zero,
1270 					  data_ac, meta_ac,
1271 					  wc, desc->c_cpos, pos, local_len);
1272 		if (ret) {
1273 			mlog_errno(ret);
1274 			goto out;
1275 		}
1276 
1277 		len -= local_len;
1278 		pos += local_len;
1279 	}
1280 
1281 	ret = 0;
1282 out:
1283 	return ret;
1284 }
1285 
1286 /*
1287  * ocfs2_write_end() wants to know which parts of the target page it
1288  * should complete the write on. It's easiest to compute them ahead of
1289  * time when a more complete view of the write is available.
1290  */
1291 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1292 					struct ocfs2_write_ctxt *wc,
1293 					loff_t pos, unsigned len, int alloc)
1294 {
1295 	struct ocfs2_write_cluster_desc *desc;
1296 
1297 	wc->w_target_from = pos & (PAGE_SIZE - 1);
1298 	wc->w_target_to = wc->w_target_from + len;
1299 
1300 	if (alloc == 0)
1301 		return;
1302 
1303 	/*
1304 	 * Allocating write - we may have different boundaries based
1305 	 * on page size and cluster size.
1306 	 *
1307 	 * NOTE: We can no longer compute one value from the other as
1308 	 * the actual write length and user provided length may be
1309 	 * different.
1310 	 */
1311 
1312 	if (wc->w_large_pages) {
1313 		/*
1314 		 * We only care about the 1st and last cluster within
1315 		 * our range and whether they should be zero'd or not. Either
1316 		 * value may be extended out to the start/end of a
1317 		 * newly allocated cluster.
1318 		 */
1319 		desc = &wc->w_desc[0];
1320 		if (desc->c_needs_zero)
1321 			ocfs2_figure_cluster_boundaries(osb,
1322 							desc->c_cpos,
1323 							&wc->w_target_from,
1324 							NULL);
1325 
1326 		desc = &wc->w_desc[wc->w_clen - 1];
1327 		if (desc->c_needs_zero)
1328 			ocfs2_figure_cluster_boundaries(osb,
1329 							desc->c_cpos,
1330 							NULL,
1331 							&wc->w_target_to);
1332 	} else {
1333 		wc->w_target_from = 0;
1334 		wc->w_target_to = PAGE_SIZE;
1335 	}
1336 }
1337 
1338 /*
1339  * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1340  * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1341  * by the direct io procedure.
1342  * If this is a new extent that allocated by direct io, we should mark it in
1343  * the ip_unwritten_list.
1344  */
1345 static int ocfs2_unwritten_check(struct inode *inode,
1346 				 struct ocfs2_write_ctxt *wc,
1347 				 struct ocfs2_write_cluster_desc *desc)
1348 {
1349 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1350 	struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1351 	int ret = 0;
1352 
1353 	if (!desc->c_needs_zero)
1354 		return 0;
1355 
1356 retry:
1357 	spin_lock(&oi->ip_lock);
1358 	/* Needs not to zero no metter buffer or direct. The one who is zero
1359 	 * the cluster is doing zero. And he will clear unwritten after all
1360 	 * cluster io finished. */
1361 	list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1362 		if (desc->c_cpos == ue->ue_cpos) {
1363 			BUG_ON(desc->c_new);
1364 			desc->c_needs_zero = 0;
1365 			desc->c_clear_unwritten = 0;
1366 			goto unlock;
1367 		}
1368 	}
1369 
1370 	if (wc->w_type != OCFS2_WRITE_DIRECT)
1371 		goto unlock;
1372 
1373 	if (new == NULL) {
1374 		spin_unlock(&oi->ip_lock);
1375 		new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1376 			     GFP_NOFS);
1377 		if (new == NULL) {
1378 			ret = -ENOMEM;
1379 			goto out;
1380 		}
1381 		goto retry;
1382 	}
1383 	/* This direct write will doing zero. */
1384 	new->ue_cpos = desc->c_cpos;
1385 	new->ue_phys = desc->c_phys;
1386 	desc->c_clear_unwritten = 0;
1387 	list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1388 	list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1389 	new = NULL;
1390 unlock:
1391 	spin_unlock(&oi->ip_lock);
1392 out:
1393 	if (new)
1394 		kfree(new);
1395 	return ret;
1396 }
1397 
1398 /*
1399  * Populate each single-cluster write descriptor in the write context
1400  * with information about the i/o to be done.
1401  *
1402  * Returns the number of clusters that will have to be allocated, as
1403  * well as a worst case estimate of the number of extent records that
1404  * would have to be created during a write to an unwritten region.
1405  */
1406 static int ocfs2_populate_write_desc(struct inode *inode,
1407 				     struct ocfs2_write_ctxt *wc,
1408 				     unsigned int *clusters_to_alloc,
1409 				     unsigned int *extents_to_split)
1410 {
1411 	int ret;
1412 	struct ocfs2_write_cluster_desc *desc;
1413 	unsigned int num_clusters = 0;
1414 	unsigned int ext_flags = 0;
1415 	u32 phys = 0;
1416 	int i;
1417 
1418 	*clusters_to_alloc = 0;
1419 	*extents_to_split = 0;
1420 
1421 	for (i = 0; i < wc->w_clen; i++) {
1422 		desc = &wc->w_desc[i];
1423 		desc->c_cpos = wc->w_cpos + i;
1424 
1425 		if (num_clusters == 0) {
1426 			/*
1427 			 * Need to look up the next extent record.
1428 			 */
1429 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1430 						 &num_clusters, &ext_flags);
1431 			if (ret) {
1432 				mlog_errno(ret);
1433 				goto out;
1434 			}
1435 
1436 			/* We should already CoW the refcountd extent. */
1437 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1438 
1439 			/*
1440 			 * Assume worst case - that we're writing in
1441 			 * the middle of the extent.
1442 			 *
1443 			 * We can assume that the write proceeds from
1444 			 * left to right, in which case the extent
1445 			 * insert code is smart enough to coalesce the
1446 			 * next splits into the previous records created.
1447 			 */
1448 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1449 				*extents_to_split = *extents_to_split + 2;
1450 		} else if (phys) {
1451 			/*
1452 			 * Only increment phys if it doesn't describe
1453 			 * a hole.
1454 			 */
1455 			phys++;
1456 		}
1457 
1458 		/*
1459 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1460 		 * file that got extended.  w_first_new_cpos tells us
1461 		 * where the newly allocated clusters are so we can
1462 		 * zero them.
1463 		 */
1464 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1465 			BUG_ON(phys == 0);
1466 			desc->c_needs_zero = 1;
1467 		}
1468 
1469 		desc->c_phys = phys;
1470 		if (phys == 0) {
1471 			desc->c_new = 1;
1472 			desc->c_needs_zero = 1;
1473 			desc->c_clear_unwritten = 1;
1474 			*clusters_to_alloc = *clusters_to_alloc + 1;
1475 		}
1476 
1477 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1478 			desc->c_clear_unwritten = 1;
1479 			desc->c_needs_zero = 1;
1480 		}
1481 
1482 		ret = ocfs2_unwritten_check(inode, wc, desc);
1483 		if (ret) {
1484 			mlog_errno(ret);
1485 			goto out;
1486 		}
1487 
1488 		num_clusters--;
1489 	}
1490 
1491 	ret = 0;
1492 out:
1493 	return ret;
1494 }
1495 
1496 static int ocfs2_write_begin_inline(struct address_space *mapping,
1497 				    struct inode *inode,
1498 				    struct ocfs2_write_ctxt *wc)
1499 {
1500 	int ret;
1501 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1502 	struct page *page;
1503 	handle_t *handle;
1504 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1505 
1506 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1507 	if (IS_ERR(handle)) {
1508 		ret = PTR_ERR(handle);
1509 		mlog_errno(ret);
1510 		goto out;
1511 	}
1512 
1513 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1514 	if (!page) {
1515 		ocfs2_commit_trans(osb, handle);
1516 		ret = -ENOMEM;
1517 		mlog_errno(ret);
1518 		goto out;
1519 	}
1520 	/*
1521 	 * If we don't set w_num_pages then this page won't get unlocked
1522 	 * and freed on cleanup of the write context.
1523 	 */
1524 	wc->w_pages[0] = wc->w_target_page = page;
1525 	wc->w_num_pages = 1;
1526 
1527 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1528 				      OCFS2_JOURNAL_ACCESS_WRITE);
1529 	if (ret) {
1530 		ocfs2_commit_trans(osb, handle);
1531 
1532 		mlog_errno(ret);
1533 		goto out;
1534 	}
1535 
1536 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1537 		ocfs2_set_inode_data_inline(inode, di);
1538 
1539 	if (!PageUptodate(page)) {
1540 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1541 		if (ret) {
1542 			ocfs2_commit_trans(osb, handle);
1543 
1544 			goto out;
1545 		}
1546 	}
1547 
1548 	wc->w_handle = handle;
1549 out:
1550 	return ret;
1551 }
1552 
1553 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1554 {
1555 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1556 
1557 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1558 		return 1;
1559 	return 0;
1560 }
1561 
1562 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1563 					  struct inode *inode, loff_t pos,
1564 					  unsigned len, struct page *mmap_page,
1565 					  struct ocfs2_write_ctxt *wc)
1566 {
1567 	int ret, written = 0;
1568 	loff_t end = pos + len;
1569 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1570 	struct ocfs2_dinode *di = NULL;
1571 
1572 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1573 					     len, (unsigned long long)pos,
1574 					     oi->ip_dyn_features);
1575 
1576 	/*
1577 	 * Handle inodes which already have inline data 1st.
1578 	 */
1579 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1580 		if (mmap_page == NULL &&
1581 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1582 			goto do_inline_write;
1583 
1584 		/*
1585 		 * The write won't fit - we have to give this inode an
1586 		 * inline extent list now.
1587 		 */
1588 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1589 		if (ret)
1590 			mlog_errno(ret);
1591 		goto out;
1592 	}
1593 
1594 	/*
1595 	 * Check whether the inode can accept inline data.
1596 	 */
1597 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1598 		return 0;
1599 
1600 	/*
1601 	 * Check whether the write can fit.
1602 	 */
1603 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1604 	if (mmap_page ||
1605 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1606 		return 0;
1607 
1608 do_inline_write:
1609 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1610 	if (ret) {
1611 		mlog_errno(ret);
1612 		goto out;
1613 	}
1614 
1615 	/*
1616 	 * This signals to the caller that the data can be written
1617 	 * inline.
1618 	 */
1619 	written = 1;
1620 out:
1621 	return written ? written : ret;
1622 }
1623 
1624 /*
1625  * This function only does anything for file systems which can't
1626  * handle sparse files.
1627  *
1628  * What we want to do here is fill in any hole between the current end
1629  * of allocation and the end of our write. That way the rest of the
1630  * write path can treat it as an non-allocating write, which has no
1631  * special case code for sparse/nonsparse files.
1632  */
1633 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1634 					struct buffer_head *di_bh,
1635 					loff_t pos, unsigned len,
1636 					struct ocfs2_write_ctxt *wc)
1637 {
1638 	int ret;
1639 	loff_t newsize = pos + len;
1640 
1641 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1642 
1643 	if (newsize <= i_size_read(inode))
1644 		return 0;
1645 
1646 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1647 	if (ret)
1648 		mlog_errno(ret);
1649 
1650 	/* There is no wc if this is call from direct. */
1651 	if (wc)
1652 		wc->w_first_new_cpos =
1653 			ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1654 
1655 	return ret;
1656 }
1657 
1658 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1659 			   loff_t pos)
1660 {
1661 	int ret = 0;
1662 
1663 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1664 	if (pos > i_size_read(inode))
1665 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1666 
1667 	return ret;
1668 }
1669 
1670 int ocfs2_write_begin_nolock(struct address_space *mapping,
1671 			     loff_t pos, unsigned len, ocfs2_write_type_t type,
1672 			     struct page **pagep, void **fsdata,
1673 			     struct buffer_head *di_bh, struct page *mmap_page)
1674 {
1675 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1676 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1677 	struct ocfs2_write_ctxt *wc;
1678 	struct inode *inode = mapping->host;
1679 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1680 	struct ocfs2_dinode *di;
1681 	struct ocfs2_alloc_context *data_ac = NULL;
1682 	struct ocfs2_alloc_context *meta_ac = NULL;
1683 	handle_t *handle;
1684 	struct ocfs2_extent_tree et;
1685 	int try_free = 1, ret1;
1686 
1687 try_again:
1688 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1689 	if (ret) {
1690 		mlog_errno(ret);
1691 		return ret;
1692 	}
1693 
1694 	if (ocfs2_supports_inline_data(osb)) {
1695 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1696 						     mmap_page, wc);
1697 		if (ret == 1) {
1698 			ret = 0;
1699 			goto success;
1700 		}
1701 		if (ret < 0) {
1702 			mlog_errno(ret);
1703 			goto out;
1704 		}
1705 	}
1706 
1707 	/* Direct io change i_size late, should not zero tail here. */
1708 	if (type != OCFS2_WRITE_DIRECT) {
1709 		if (ocfs2_sparse_alloc(osb))
1710 			ret = ocfs2_zero_tail(inode, di_bh, pos);
1711 		else
1712 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1713 							   len, wc);
1714 		if (ret) {
1715 			mlog_errno(ret);
1716 			goto out;
1717 		}
1718 	}
1719 
1720 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1721 	if (ret < 0) {
1722 		mlog_errno(ret);
1723 		goto out;
1724 	} else if (ret == 1) {
1725 		clusters_need = wc->w_clen;
1726 		ret = ocfs2_refcount_cow(inode, di_bh,
1727 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1728 		if (ret) {
1729 			mlog_errno(ret);
1730 			goto out;
1731 		}
1732 	}
1733 
1734 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1735 					&extents_to_split);
1736 	if (ret) {
1737 		mlog_errno(ret);
1738 		goto out;
1739 	}
1740 	clusters_need += clusters_to_alloc;
1741 
1742 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1743 
1744 	trace_ocfs2_write_begin_nolock(
1745 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1746 			(long long)i_size_read(inode),
1747 			le32_to_cpu(di->i_clusters),
1748 			pos, len, type, mmap_page,
1749 			clusters_to_alloc, extents_to_split);
1750 
1751 	/*
1752 	 * We set w_target_from, w_target_to here so that
1753 	 * ocfs2_write_end() knows which range in the target page to
1754 	 * write out. An allocation requires that we write the entire
1755 	 * cluster range.
1756 	 */
1757 	if (clusters_to_alloc || extents_to_split) {
1758 		/*
1759 		 * XXX: We are stretching the limits of
1760 		 * ocfs2_lock_allocators(). It greatly over-estimates
1761 		 * the work to be done.
1762 		 */
1763 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1764 					      wc->w_di_bh);
1765 		ret = ocfs2_lock_allocators(inode, &et,
1766 					    clusters_to_alloc, extents_to_split,
1767 					    &data_ac, &meta_ac);
1768 		if (ret) {
1769 			mlog_errno(ret);
1770 			goto out;
1771 		}
1772 
1773 		if (data_ac)
1774 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1775 
1776 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1777 						    &di->id2.i_list);
1778 	} else if (type == OCFS2_WRITE_DIRECT)
1779 		/* direct write needs not to start trans if no extents alloc. */
1780 		goto success;
1781 
1782 	/*
1783 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1784 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1785 	 * we know zeros will only be needed in the first and/or last cluster.
1786 	 */
1787 	if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1788 			   wc->w_desc[wc->w_clen - 1].c_needs_zero))
1789 		cluster_of_pages = 1;
1790 	else
1791 		cluster_of_pages = 0;
1792 
1793 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1794 
1795 	handle = ocfs2_start_trans(osb, credits);
1796 	if (IS_ERR(handle)) {
1797 		ret = PTR_ERR(handle);
1798 		mlog_errno(ret);
1799 		goto out;
1800 	}
1801 
1802 	wc->w_handle = handle;
1803 
1804 	if (clusters_to_alloc) {
1805 		ret = dquot_alloc_space_nodirty(inode,
1806 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1807 		if (ret)
1808 			goto out_commit;
1809 	}
1810 
1811 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1812 				      OCFS2_JOURNAL_ACCESS_WRITE);
1813 	if (ret) {
1814 		mlog_errno(ret);
1815 		goto out_quota;
1816 	}
1817 
1818 	/*
1819 	 * Fill our page array first. That way we've grabbed enough so
1820 	 * that we can zero and flush if we error after adding the
1821 	 * extent.
1822 	 */
1823 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1824 					 cluster_of_pages, mmap_page);
1825 	if (ret && ret != -EAGAIN) {
1826 		mlog_errno(ret);
1827 		goto out_quota;
1828 	}
1829 
1830 	/*
1831 	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1832 	 * the target page. In this case, we exit with no error and no target
1833 	 * page. This will trigger the caller, page_mkwrite(), to re-try
1834 	 * the operation.
1835 	 */
1836 	if (ret == -EAGAIN) {
1837 		BUG_ON(wc->w_target_page);
1838 		ret = 0;
1839 		goto out_quota;
1840 	}
1841 
1842 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1843 					  len);
1844 	if (ret) {
1845 		mlog_errno(ret);
1846 		goto out_quota;
1847 	}
1848 
1849 	if (data_ac)
1850 		ocfs2_free_alloc_context(data_ac);
1851 	if (meta_ac)
1852 		ocfs2_free_alloc_context(meta_ac);
1853 
1854 success:
1855 	if (pagep)
1856 		*pagep = wc->w_target_page;
1857 	*fsdata = wc;
1858 	return 0;
1859 out_quota:
1860 	if (clusters_to_alloc)
1861 		dquot_free_space(inode,
1862 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1863 out_commit:
1864 	ocfs2_commit_trans(osb, handle);
1865 
1866 out:
1867 	/*
1868 	 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1869 	 * even in case of error here like ENOSPC and ENOMEM. So, we need
1870 	 * to unlock the target page manually to prevent deadlocks when
1871 	 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1872 	 * to VM code.
1873 	 */
1874 	if (wc->w_target_locked)
1875 		unlock_page(mmap_page);
1876 
1877 	ocfs2_free_write_ctxt(inode, wc);
1878 
1879 	if (data_ac) {
1880 		ocfs2_free_alloc_context(data_ac);
1881 		data_ac = NULL;
1882 	}
1883 	if (meta_ac) {
1884 		ocfs2_free_alloc_context(meta_ac);
1885 		meta_ac = NULL;
1886 	}
1887 
1888 	if (ret == -ENOSPC && try_free) {
1889 		/*
1890 		 * Try to free some truncate log so that we can have enough
1891 		 * clusters to allocate.
1892 		 */
1893 		try_free = 0;
1894 
1895 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1896 		if (ret1 == 1)
1897 			goto try_again;
1898 
1899 		if (ret1 < 0)
1900 			mlog_errno(ret1);
1901 	}
1902 
1903 	return ret;
1904 }
1905 
1906 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1907 			     loff_t pos, unsigned len, unsigned flags,
1908 			     struct page **pagep, void **fsdata)
1909 {
1910 	int ret;
1911 	struct buffer_head *di_bh = NULL;
1912 	struct inode *inode = mapping->host;
1913 
1914 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1915 	if (ret) {
1916 		mlog_errno(ret);
1917 		return ret;
1918 	}
1919 
1920 	/*
1921 	 * Take alloc sem here to prevent concurrent lookups. That way
1922 	 * the mapping, zeroing and tree manipulation within
1923 	 * ocfs2_write() will be safe against ->readpage(). This
1924 	 * should also serve to lock out allocation from a shared
1925 	 * writeable region.
1926 	 */
1927 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1928 
1929 	ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1930 				       pagep, fsdata, di_bh, NULL);
1931 	if (ret) {
1932 		mlog_errno(ret);
1933 		goto out_fail;
1934 	}
1935 
1936 	brelse(di_bh);
1937 
1938 	return 0;
1939 
1940 out_fail:
1941 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1942 
1943 	brelse(di_bh);
1944 	ocfs2_inode_unlock(inode, 1);
1945 
1946 	return ret;
1947 }
1948 
1949 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1950 				   unsigned len, unsigned *copied,
1951 				   struct ocfs2_dinode *di,
1952 				   struct ocfs2_write_ctxt *wc)
1953 {
1954 	void *kaddr;
1955 
1956 	if (unlikely(*copied < len)) {
1957 		if (!PageUptodate(wc->w_target_page)) {
1958 			*copied = 0;
1959 			return;
1960 		}
1961 	}
1962 
1963 	kaddr = kmap_atomic(wc->w_target_page);
1964 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1965 	kunmap_atomic(kaddr);
1966 
1967 	trace_ocfs2_write_end_inline(
1968 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1969 	     (unsigned long long)pos, *copied,
1970 	     le16_to_cpu(di->id2.i_data.id_count),
1971 	     le16_to_cpu(di->i_dyn_features));
1972 }
1973 
1974 int ocfs2_write_end_nolock(struct address_space *mapping,
1975 			   loff_t pos, unsigned len, unsigned copied, void *fsdata)
1976 {
1977 	int i, ret;
1978 	unsigned from, to, start = pos & (PAGE_SIZE - 1);
1979 	struct inode *inode = mapping->host;
1980 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1981 	struct ocfs2_write_ctxt *wc = fsdata;
1982 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1983 	handle_t *handle = wc->w_handle;
1984 	struct page *tmppage;
1985 
1986 	BUG_ON(!list_empty(&wc->w_unwritten_list));
1987 
1988 	if (handle) {
1989 		ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1990 				wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1991 		if (ret) {
1992 			copied = ret;
1993 			mlog_errno(ret);
1994 			goto out;
1995 		}
1996 	}
1997 
1998 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1999 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2000 		goto out_write_size;
2001 	}
2002 
2003 	if (unlikely(copied < len) && wc->w_target_page) {
2004 		if (!PageUptodate(wc->w_target_page))
2005 			copied = 0;
2006 
2007 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2008 				       start+len);
2009 	}
2010 	if (wc->w_target_page)
2011 		flush_dcache_page(wc->w_target_page);
2012 
2013 	for(i = 0; i < wc->w_num_pages; i++) {
2014 		tmppage = wc->w_pages[i];
2015 
2016 		/* This is the direct io target page. */
2017 		if (tmppage == NULL)
2018 			continue;
2019 
2020 		if (tmppage == wc->w_target_page) {
2021 			from = wc->w_target_from;
2022 			to = wc->w_target_to;
2023 
2024 			BUG_ON(from > PAGE_SIZE ||
2025 			       to > PAGE_SIZE ||
2026 			       to < from);
2027 		} else {
2028 			/*
2029 			 * Pages adjacent to the target (if any) imply
2030 			 * a hole-filling write in which case we want
2031 			 * to flush their entire range.
2032 			 */
2033 			from = 0;
2034 			to = PAGE_SIZE;
2035 		}
2036 
2037 		if (page_has_buffers(tmppage)) {
2038 			if (handle && ocfs2_should_order_data(inode))
2039 				ocfs2_jbd2_file_inode(handle, inode);
2040 			block_commit_write(tmppage, from, to);
2041 		}
2042 	}
2043 
2044 out_write_size:
2045 	/* Direct io do not update i_size here. */
2046 	if (wc->w_type != OCFS2_WRITE_DIRECT) {
2047 		pos += copied;
2048 		if (pos > i_size_read(inode)) {
2049 			i_size_write(inode, pos);
2050 			mark_inode_dirty(inode);
2051 		}
2052 		inode->i_blocks = ocfs2_inode_sector_count(inode);
2053 		di->i_size = cpu_to_le64((u64)i_size_read(inode));
2054 		inode->i_mtime = inode->i_ctime = current_time(inode);
2055 		di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2056 		di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2057 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
2058 	}
2059 	if (handle)
2060 		ocfs2_journal_dirty(handle, wc->w_di_bh);
2061 
2062 out:
2063 	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2064 	 * lock, or it will cause a deadlock since journal commit threads holds
2065 	 * this lock and will ask for the page lock when flushing the data.
2066 	 * put it here to preserve the unlock order.
2067 	 */
2068 	ocfs2_unlock_pages(wc);
2069 
2070 	if (handle)
2071 		ocfs2_commit_trans(osb, handle);
2072 
2073 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2074 
2075 	brelse(wc->w_di_bh);
2076 	kfree(wc);
2077 
2078 	return copied;
2079 }
2080 
2081 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2082 			   loff_t pos, unsigned len, unsigned copied,
2083 			   struct page *page, void *fsdata)
2084 {
2085 	int ret;
2086 	struct inode *inode = mapping->host;
2087 
2088 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2089 
2090 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2091 	ocfs2_inode_unlock(inode, 1);
2092 
2093 	return ret;
2094 }
2095 
2096 struct ocfs2_dio_write_ctxt {
2097 	struct list_head	dw_zero_list;
2098 	unsigned		dw_zero_count;
2099 	int			dw_orphaned;
2100 	pid_t			dw_writer_pid;
2101 };
2102 
2103 static struct ocfs2_dio_write_ctxt *
2104 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2105 {
2106 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2107 
2108 	if (bh->b_private)
2109 		return bh->b_private;
2110 
2111 	dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2112 	if (dwc == NULL)
2113 		return NULL;
2114 	INIT_LIST_HEAD(&dwc->dw_zero_list);
2115 	dwc->dw_zero_count = 0;
2116 	dwc->dw_orphaned = 0;
2117 	dwc->dw_writer_pid = task_pid_nr(current);
2118 	bh->b_private = dwc;
2119 	*alloc = 1;
2120 
2121 	return dwc;
2122 }
2123 
2124 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2125 				     struct ocfs2_dio_write_ctxt *dwc)
2126 {
2127 	ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2128 	kfree(dwc);
2129 }
2130 
2131 /*
2132  * TODO: Make this into a generic get_blocks function.
2133  *
2134  * From do_direct_io in direct-io.c:
2135  *  "So what we do is to permit the ->get_blocks function to populate
2136  *   bh.b_size with the size of IO which is permitted at this offset and
2137  *   this i_blkbits."
2138  *
2139  * This function is called directly from get_more_blocks in direct-io.c.
2140  *
2141  * called like this: dio->get_blocks(dio->inode, fs_startblk,
2142  * 					fs_count, map_bh, dio->rw == WRITE);
2143  */
2144 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2145 			       struct buffer_head *bh_result, int create)
2146 {
2147 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2148 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2149 	struct ocfs2_write_ctxt *wc;
2150 	struct ocfs2_write_cluster_desc *desc = NULL;
2151 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2152 	struct buffer_head *di_bh = NULL;
2153 	u64 p_blkno;
2154 	loff_t pos = iblock << inode->i_sb->s_blocksize_bits;
2155 	unsigned len, total_len = bh_result->b_size;
2156 	int ret = 0, first_get_block = 0;
2157 
2158 	len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2159 	len = min(total_len, len);
2160 
2161 	mlog(0, "get block of %lu at %llu:%u req %u\n",
2162 			inode->i_ino, pos, len, total_len);
2163 
2164 	/*
2165 	 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2166 	 * we may need to add it to orphan dir. So can not fall to fast path
2167 	 * while file size will be changed.
2168 	 */
2169 	if (pos + total_len <= i_size_read(inode)) {
2170 
2171 		/* This is the fast path for re-write. */
2172 		ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2173 		if (buffer_mapped(bh_result) &&
2174 		    !buffer_new(bh_result) &&
2175 		    ret == 0)
2176 			goto out;
2177 
2178 		/* Clear state set by ocfs2_get_block. */
2179 		bh_result->b_state = 0;
2180 	}
2181 
2182 	dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2183 	if (unlikely(dwc == NULL)) {
2184 		ret = -ENOMEM;
2185 		mlog_errno(ret);
2186 		goto out;
2187 	}
2188 
2189 	if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2190 	    ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2191 	    !dwc->dw_orphaned) {
2192 		/*
2193 		 * when we are going to alloc extents beyond file size, add the
2194 		 * inode to orphan dir, so we can recall those spaces when
2195 		 * system crashed during write.
2196 		 */
2197 		ret = ocfs2_add_inode_to_orphan(osb, inode);
2198 		if (ret < 0) {
2199 			mlog_errno(ret);
2200 			goto out;
2201 		}
2202 		dwc->dw_orphaned = 1;
2203 	}
2204 
2205 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2206 	if (ret) {
2207 		mlog_errno(ret);
2208 		goto out;
2209 	}
2210 
2211 	down_write(&oi->ip_alloc_sem);
2212 
2213 	if (first_get_block) {
2214 		if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
2215 			ret = ocfs2_zero_tail(inode, di_bh, pos);
2216 		else
2217 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2218 							   total_len, NULL);
2219 		if (ret < 0) {
2220 			mlog_errno(ret);
2221 			goto unlock;
2222 		}
2223 	}
2224 
2225 	ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2226 				       OCFS2_WRITE_DIRECT, NULL,
2227 				       (void **)&wc, di_bh, NULL);
2228 	if (ret) {
2229 		mlog_errno(ret);
2230 		goto unlock;
2231 	}
2232 
2233 	desc = &wc->w_desc[0];
2234 
2235 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2236 	BUG_ON(p_blkno == 0);
2237 	p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2238 
2239 	map_bh(bh_result, inode->i_sb, p_blkno);
2240 	bh_result->b_size = len;
2241 	if (desc->c_needs_zero)
2242 		set_buffer_new(bh_result);
2243 
2244 	/* May sleep in end_io. It should not happen in a irq context. So defer
2245 	 * it to dio work queue. */
2246 	set_buffer_defer_completion(bh_result);
2247 
2248 	if (!list_empty(&wc->w_unwritten_list)) {
2249 		struct ocfs2_unwritten_extent *ue = NULL;
2250 
2251 		ue = list_first_entry(&wc->w_unwritten_list,
2252 				      struct ocfs2_unwritten_extent,
2253 				      ue_node);
2254 		BUG_ON(ue->ue_cpos != desc->c_cpos);
2255 		/* The physical address may be 0, fill it. */
2256 		ue->ue_phys = desc->c_phys;
2257 
2258 		list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2259 		dwc->dw_zero_count++;
2260 	}
2261 
2262 	ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2263 	BUG_ON(ret != len);
2264 	ret = 0;
2265 unlock:
2266 	up_write(&oi->ip_alloc_sem);
2267 	ocfs2_inode_unlock(inode, 1);
2268 	brelse(di_bh);
2269 out:
2270 	if (ret < 0)
2271 		ret = -EIO;
2272 	return ret;
2273 }
2274 
2275 static int ocfs2_dio_end_io_write(struct inode *inode,
2276 				  struct ocfs2_dio_write_ctxt *dwc,
2277 				  loff_t offset,
2278 				  ssize_t bytes)
2279 {
2280 	struct ocfs2_cached_dealloc_ctxt dealloc;
2281 	struct ocfs2_extent_tree et;
2282 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2283 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2284 	struct ocfs2_unwritten_extent *ue = NULL;
2285 	struct buffer_head *di_bh = NULL;
2286 	struct ocfs2_dinode *di;
2287 	struct ocfs2_alloc_context *data_ac = NULL;
2288 	struct ocfs2_alloc_context *meta_ac = NULL;
2289 	handle_t *handle = NULL;
2290 	loff_t end = offset + bytes;
2291 	int ret = 0, credits = 0, locked = 0;
2292 
2293 	ocfs2_init_dealloc_ctxt(&dealloc);
2294 
2295 	/* We do clear unwritten, delete orphan, change i_size here. If neither
2296 	 * of these happen, we can skip all this. */
2297 	if (list_empty(&dwc->dw_zero_list) &&
2298 	    end <= i_size_read(inode) &&
2299 	    !dwc->dw_orphaned)
2300 		goto out;
2301 
2302 	/* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2303 	 * are in that context. */
2304 	if (dwc->dw_writer_pid != task_pid_nr(current)) {
2305 		inode_lock(inode);
2306 		locked = 1;
2307 	}
2308 
2309 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2310 	if (ret < 0) {
2311 		mlog_errno(ret);
2312 		goto out;
2313 	}
2314 
2315 	down_write(&oi->ip_alloc_sem);
2316 
2317 	/* Delete orphan before acquire i_mutex. */
2318 	if (dwc->dw_orphaned) {
2319 		BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2320 
2321 		end = end > i_size_read(inode) ? end : 0;
2322 
2323 		ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2324 				!!end, end);
2325 		if (ret < 0)
2326 			mlog_errno(ret);
2327 	}
2328 
2329 	di = (struct ocfs2_dinode *)di_bh->b_data;
2330 
2331 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2332 
2333 	ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2334 				    &data_ac, &meta_ac);
2335 	if (ret) {
2336 		mlog_errno(ret);
2337 		goto unlock;
2338 	}
2339 
2340 	credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2341 
2342 	handle = ocfs2_start_trans(osb, credits);
2343 	if (IS_ERR(handle)) {
2344 		ret = PTR_ERR(handle);
2345 		mlog_errno(ret);
2346 		goto unlock;
2347 	}
2348 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2349 				      OCFS2_JOURNAL_ACCESS_WRITE);
2350 	if (ret) {
2351 		mlog_errno(ret);
2352 		goto commit;
2353 	}
2354 
2355 	list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2356 		ret = ocfs2_mark_extent_written(inode, &et, handle,
2357 						ue->ue_cpos, 1,
2358 						ue->ue_phys,
2359 						meta_ac, &dealloc);
2360 		if (ret < 0) {
2361 			mlog_errno(ret);
2362 			break;
2363 		}
2364 	}
2365 
2366 	if (end > i_size_read(inode)) {
2367 		ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2368 		if (ret < 0)
2369 			mlog_errno(ret);
2370 	}
2371 commit:
2372 	ocfs2_commit_trans(osb, handle);
2373 unlock:
2374 	up_write(&oi->ip_alloc_sem);
2375 	ocfs2_inode_unlock(inode, 1);
2376 	brelse(di_bh);
2377 out:
2378 	if (data_ac)
2379 		ocfs2_free_alloc_context(data_ac);
2380 	if (meta_ac)
2381 		ocfs2_free_alloc_context(meta_ac);
2382 	ocfs2_run_deallocs(osb, &dealloc);
2383 	if (locked)
2384 		inode_unlock(inode);
2385 	ocfs2_dio_free_write_ctx(inode, dwc);
2386 
2387 	return ret;
2388 }
2389 
2390 /*
2391  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2392  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2393  * to protect io on one node from truncation on another.
2394  */
2395 static int ocfs2_dio_end_io(struct kiocb *iocb,
2396 			    loff_t offset,
2397 			    ssize_t bytes,
2398 			    void *private)
2399 {
2400 	struct inode *inode = file_inode(iocb->ki_filp);
2401 	int level;
2402 	int ret = 0;
2403 
2404 	/* this io's submitter should not have unlocked this before we could */
2405 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2406 
2407 	if (bytes > 0 && private)
2408 		ret = ocfs2_dio_end_io_write(inode, private, offset, bytes);
2409 
2410 	ocfs2_iocb_clear_rw_locked(iocb);
2411 
2412 	level = ocfs2_iocb_rw_locked_level(iocb);
2413 	ocfs2_rw_unlock(inode, level);
2414 	return ret;
2415 }
2416 
2417 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2418 {
2419 	struct file *file = iocb->ki_filp;
2420 	struct inode *inode = file->f_mapping->host;
2421 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2422 	get_block_t *get_block;
2423 
2424 	/*
2425 	 * Fallback to buffered I/O if we see an inode without
2426 	 * extents.
2427 	 */
2428 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2429 		return 0;
2430 
2431 	/* Fallback to buffered I/O if we do not support append dio. */
2432 	if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2433 	    !ocfs2_supports_append_dio(osb))
2434 		return 0;
2435 
2436 	if (iov_iter_rw(iter) == READ)
2437 		get_block = ocfs2_lock_get_block;
2438 	else
2439 		get_block = ocfs2_dio_wr_get_block;
2440 
2441 	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2442 				    iter, get_block,
2443 				    ocfs2_dio_end_io, NULL, 0);
2444 }
2445 
2446 const struct address_space_operations ocfs2_aops = {
2447 	.readpage		= ocfs2_readpage,
2448 	.readpages		= ocfs2_readpages,
2449 	.writepage		= ocfs2_writepage,
2450 	.write_begin		= ocfs2_write_begin,
2451 	.write_end		= ocfs2_write_end,
2452 	.bmap			= ocfs2_bmap,
2453 	.direct_IO		= ocfs2_direct_IO,
2454 	.invalidatepage		= block_invalidatepage,
2455 	.releasepage		= ocfs2_releasepage,
2456 	.migratepage		= buffer_migrate_page,
2457 	.is_partially_uptodate	= block_is_partially_uptodate,
2458 	.error_remove_page	= generic_error_remove_page,
2459 };
2460