xref: /openbmc/linux/fs/ocfs2/aops.c (revision 8b4a4080)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 
30 #define MLOG_MASK_PREFIX ML_FILE_IO
31 #include <cluster/masklog.h>
32 
33 #include "ocfs2.h"
34 
35 #include "alloc.h"
36 #include "aops.h"
37 #include "dlmglue.h"
38 #include "extent_map.h"
39 #include "file.h"
40 #include "inode.h"
41 #include "journal.h"
42 #include "suballoc.h"
43 #include "super.h"
44 #include "symlink.h"
45 
46 #include "buffer_head_io.h"
47 
48 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
49 				   struct buffer_head *bh_result, int create)
50 {
51 	int err = -EIO;
52 	int status;
53 	struct ocfs2_dinode *fe = NULL;
54 	struct buffer_head *bh = NULL;
55 	struct buffer_head *buffer_cache_bh = NULL;
56 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
57 	void *kaddr;
58 
59 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
60 		   (unsigned long long)iblock, bh_result, create);
61 
62 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
63 
64 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
65 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
66 		     (unsigned long long)iblock);
67 		goto bail;
68 	}
69 
70 	status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
71 				  OCFS2_I(inode)->ip_blkno,
72 				  &bh, OCFS2_BH_CACHED, inode);
73 	if (status < 0) {
74 		mlog_errno(status);
75 		goto bail;
76 	}
77 	fe = (struct ocfs2_dinode *) bh->b_data;
78 
79 	if (!OCFS2_IS_VALID_DINODE(fe)) {
80 		mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
81 		     (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
82 		     fe->i_signature);
83 		goto bail;
84 	}
85 
86 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 						    le32_to_cpu(fe->i_clusters))) {
88 		mlog(ML_ERROR, "block offset is outside the allocated size: "
89 		     "%llu\n", (unsigned long long)iblock);
90 		goto bail;
91 	}
92 
93 	/* We don't use the page cache to create symlink data, so if
94 	 * need be, copy it over from the buffer cache. */
95 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97 			    iblock;
98 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
99 		if (!buffer_cache_bh) {
100 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
101 			goto bail;
102 		}
103 
104 		/* we haven't locked out transactions, so a commit
105 		 * could've happened. Since we've got a reference on
106 		 * the bh, even if it commits while we're doing the
107 		 * copy, the data is still good. */
108 		if (buffer_jbd(buffer_cache_bh)
109 		    && ocfs2_inode_is_new(inode)) {
110 			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
111 			if (!kaddr) {
112 				mlog(ML_ERROR, "couldn't kmap!\n");
113 				goto bail;
114 			}
115 			memcpy(kaddr + (bh_result->b_size * iblock),
116 			       buffer_cache_bh->b_data,
117 			       bh_result->b_size);
118 			kunmap_atomic(kaddr, KM_USER0);
119 			set_buffer_uptodate(bh_result);
120 		}
121 		brelse(buffer_cache_bh);
122 	}
123 
124 	map_bh(bh_result, inode->i_sb,
125 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
126 
127 	err = 0;
128 
129 bail:
130 	if (bh)
131 		brelse(bh);
132 
133 	mlog_exit(err);
134 	return err;
135 }
136 
137 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 			   struct buffer_head *bh_result, int create)
139 {
140 	int err = 0;
141 	unsigned int ext_flags;
142 	u64 p_blkno, past_eof;
143 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144 
145 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
146 		   (unsigned long long)iblock, bh_result, create);
147 
148 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150 		     inode, inode->i_ino);
151 
152 	if (S_ISLNK(inode->i_mode)) {
153 		/* this always does I/O for some reason. */
154 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155 		goto bail;
156 	}
157 
158 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
159 					  &ext_flags);
160 	if (err) {
161 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163 		     (unsigned long long)p_blkno);
164 		goto bail;
165 	}
166 
167 	/*
168 	 * ocfs2 never allocates in this function - the only time we
169 	 * need to use BH_New is when we're extending i_size on a file
170 	 * system which doesn't support holes, in which case BH_New
171 	 * allows block_prepare_write() to zero.
172 	 */
173 	mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
174 			"ino %lu, iblock %llu\n", inode->i_ino,
175 			(unsigned long long)iblock);
176 
177 	/* Treat the unwritten extent as a hole for zeroing purposes. */
178 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
179 		map_bh(bh_result, inode->i_sb, p_blkno);
180 
181 	if (!ocfs2_sparse_alloc(osb)) {
182 		if (p_blkno == 0) {
183 			err = -EIO;
184 			mlog(ML_ERROR,
185 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
186 			     (unsigned long long)iblock,
187 			     (unsigned long long)p_blkno,
188 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
189 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
190 			dump_stack();
191 		}
192 
193 		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
194 		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
195 		     (unsigned long long)past_eof);
196 
197 		if (create && (iblock >= past_eof))
198 			set_buffer_new(bh_result);
199 	}
200 
201 bail:
202 	if (err < 0)
203 		err = -EIO;
204 
205 	mlog_exit(err);
206 	return err;
207 }
208 
209 static int ocfs2_readpage(struct file *file, struct page *page)
210 {
211 	struct inode *inode = page->mapping->host;
212 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
213 	int ret, unlock = 1;
214 
215 	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
216 
217 	ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
218 	if (ret != 0) {
219 		if (ret == AOP_TRUNCATED_PAGE)
220 			unlock = 0;
221 		mlog_errno(ret);
222 		goto out;
223 	}
224 
225 	if (down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem) == 0) {
226 		ret = AOP_TRUNCATED_PAGE;
227 		goto out_meta_unlock;
228 	}
229 
230 	/*
231 	 * i_size might have just been updated as we grabed the meta lock.  We
232 	 * might now be discovering a truncate that hit on another node.
233 	 * block_read_full_page->get_block freaks out if it is asked to read
234 	 * beyond the end of a file, so we check here.  Callers
235 	 * (generic_file_read, fault->nopage) are clever enough to check i_size
236 	 * and notice that the page they just read isn't needed.
237 	 *
238 	 * XXX sys_readahead() seems to get that wrong?
239 	 */
240 	if (start >= i_size_read(inode)) {
241 		zero_user_page(page, 0, PAGE_SIZE, KM_USER0);
242 		SetPageUptodate(page);
243 		ret = 0;
244 		goto out_alloc;
245 	}
246 
247 	ret = ocfs2_data_lock_with_page(inode, 0, page);
248 	if (ret != 0) {
249 		if (ret == AOP_TRUNCATED_PAGE)
250 			unlock = 0;
251 		mlog_errno(ret);
252 		goto out_alloc;
253 	}
254 
255 	ret = block_read_full_page(page, ocfs2_get_block);
256 	unlock = 0;
257 
258 	ocfs2_data_unlock(inode, 0);
259 out_alloc:
260 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
261 out_meta_unlock:
262 	ocfs2_meta_unlock(inode, 0);
263 out:
264 	if (unlock)
265 		unlock_page(page);
266 	mlog_exit(ret);
267 	return ret;
268 }
269 
270 /* Note: Because we don't support holes, our allocation has
271  * already happened (allocation writes zeros to the file data)
272  * so we don't have to worry about ordered writes in
273  * ocfs2_writepage.
274  *
275  * ->writepage is called during the process of invalidating the page cache
276  * during blocked lock processing.  It can't block on any cluster locks
277  * to during block mapping.  It's relying on the fact that the block
278  * mapping can't have disappeared under the dirty pages that it is
279  * being asked to write back.
280  */
281 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
282 {
283 	int ret;
284 
285 	mlog_entry("(0x%p)\n", page);
286 
287 	ret = block_write_full_page(page, ocfs2_get_block, wbc);
288 
289 	mlog_exit(ret);
290 
291 	return ret;
292 }
293 
294 /*
295  * This is called from ocfs2_write_zero_page() which has handled it's
296  * own cluster locking and has ensured allocation exists for those
297  * blocks to be written.
298  */
299 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
300 			       unsigned from, unsigned to)
301 {
302 	int ret;
303 
304 	down_read(&OCFS2_I(inode)->ip_alloc_sem);
305 
306 	ret = block_prepare_write(page, from, to, ocfs2_get_block);
307 
308 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
309 
310 	return ret;
311 }
312 
313 /* Taken from ext3. We don't necessarily need the full blown
314  * functionality yet, but IMHO it's better to cut and paste the whole
315  * thing so we can avoid introducing our own bugs (and easily pick up
316  * their fixes when they happen) --Mark */
317 int walk_page_buffers(	handle_t *handle,
318 			struct buffer_head *head,
319 			unsigned from,
320 			unsigned to,
321 			int *partial,
322 			int (*fn)(	handle_t *handle,
323 					struct buffer_head *bh))
324 {
325 	struct buffer_head *bh;
326 	unsigned block_start, block_end;
327 	unsigned blocksize = head->b_size;
328 	int err, ret = 0;
329 	struct buffer_head *next;
330 
331 	for (	bh = head, block_start = 0;
332 		ret == 0 && (bh != head || !block_start);
333 	    	block_start = block_end, bh = next)
334 	{
335 		next = bh->b_this_page;
336 		block_end = block_start + blocksize;
337 		if (block_end <= from || block_start >= to) {
338 			if (partial && !buffer_uptodate(bh))
339 				*partial = 1;
340 			continue;
341 		}
342 		err = (*fn)(handle, bh);
343 		if (!ret)
344 			ret = err;
345 	}
346 	return ret;
347 }
348 
349 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
350 							 struct page *page,
351 							 unsigned from,
352 							 unsigned to)
353 {
354 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
355 	handle_t *handle = NULL;
356 	int ret = 0;
357 
358 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
359 	if (!handle) {
360 		ret = -ENOMEM;
361 		mlog_errno(ret);
362 		goto out;
363 	}
364 
365 	if (ocfs2_should_order_data(inode)) {
366 		ret = walk_page_buffers(handle,
367 					page_buffers(page),
368 					from, to, NULL,
369 					ocfs2_journal_dirty_data);
370 		if (ret < 0)
371 			mlog_errno(ret);
372 	}
373 out:
374 	if (ret) {
375 		if (handle)
376 			ocfs2_commit_trans(osb, handle);
377 		handle = ERR_PTR(ret);
378 	}
379 	return handle;
380 }
381 
382 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
383 {
384 	sector_t status;
385 	u64 p_blkno = 0;
386 	int err = 0;
387 	struct inode *inode = mapping->host;
388 
389 	mlog_entry("(block = %llu)\n", (unsigned long long)block);
390 
391 	/* We don't need to lock journal system files, since they aren't
392 	 * accessed concurrently from multiple nodes.
393 	 */
394 	if (!INODE_JOURNAL(inode)) {
395 		err = ocfs2_meta_lock(inode, NULL, 0);
396 		if (err) {
397 			if (err != -ENOENT)
398 				mlog_errno(err);
399 			goto bail;
400 		}
401 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
402 	}
403 
404 	err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, NULL);
405 
406 	if (!INODE_JOURNAL(inode)) {
407 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
408 		ocfs2_meta_unlock(inode, 0);
409 	}
410 
411 	if (err) {
412 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
413 		     (unsigned long long)block);
414 		mlog_errno(err);
415 		goto bail;
416 	}
417 
418 
419 bail:
420 	status = err ? 0 : p_blkno;
421 
422 	mlog_exit((int)status);
423 
424 	return status;
425 }
426 
427 /*
428  * TODO: Make this into a generic get_blocks function.
429  *
430  * From do_direct_io in direct-io.c:
431  *  "So what we do is to permit the ->get_blocks function to populate
432  *   bh.b_size with the size of IO which is permitted at this offset and
433  *   this i_blkbits."
434  *
435  * This function is called directly from get_more_blocks in direct-io.c.
436  *
437  * called like this: dio->get_blocks(dio->inode, fs_startblk,
438  * 					fs_count, map_bh, dio->rw == WRITE);
439  */
440 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
441 				     struct buffer_head *bh_result, int create)
442 {
443 	int ret;
444 	u64 p_blkno, inode_blocks, contig_blocks;
445 	unsigned int ext_flags;
446 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
447 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
448 
449 	/* This function won't even be called if the request isn't all
450 	 * nicely aligned and of the right size, so there's no need
451 	 * for us to check any of that. */
452 
453 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
454 
455 	/*
456 	 * Any write past EOF is not allowed because we'd be extending.
457 	 */
458 	if (create && (iblock + max_blocks) > inode_blocks) {
459 		ret = -EIO;
460 		goto bail;
461 	}
462 
463 	/* This figures out the size of the next contiguous block, and
464 	 * our logical offset */
465 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
466 					  &contig_blocks, &ext_flags);
467 	if (ret) {
468 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
469 		     (unsigned long long)iblock);
470 		ret = -EIO;
471 		goto bail;
472 	}
473 
474 	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
475 		ocfs2_error(inode->i_sb,
476 			    "Inode %llu has a hole at block %llu\n",
477 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
478 			    (unsigned long long)iblock);
479 		ret = -EROFS;
480 		goto bail;
481 	}
482 
483 	/*
484 	 * get_more_blocks() expects us to describe a hole by clearing
485 	 * the mapped bit on bh_result().
486 	 *
487 	 * Consider an unwritten extent as a hole.
488 	 */
489 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
490 		map_bh(bh_result, inode->i_sb, p_blkno);
491 	else {
492 		/*
493 		 * ocfs2_prepare_inode_for_write() should have caught
494 		 * the case where we'd be filling a hole and triggered
495 		 * a buffered write instead.
496 		 */
497 		if (create) {
498 			ret = -EIO;
499 			mlog_errno(ret);
500 			goto bail;
501 		}
502 
503 		clear_buffer_mapped(bh_result);
504 	}
505 
506 	/* make sure we don't map more than max_blocks blocks here as
507 	   that's all the kernel will handle at this point. */
508 	if (max_blocks < contig_blocks)
509 		contig_blocks = max_blocks;
510 	bh_result->b_size = contig_blocks << blocksize_bits;
511 bail:
512 	return ret;
513 }
514 
515 /*
516  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
517  * particularly interested in the aio/dio case.  Like the core uses
518  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
519  * truncation on another.
520  */
521 static void ocfs2_dio_end_io(struct kiocb *iocb,
522 			     loff_t offset,
523 			     ssize_t bytes,
524 			     void *private)
525 {
526 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
527 	int level;
528 
529 	/* this io's submitter should not have unlocked this before we could */
530 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
531 
532 	ocfs2_iocb_clear_rw_locked(iocb);
533 
534 	level = ocfs2_iocb_rw_locked_level(iocb);
535 	if (!level)
536 		up_read(&inode->i_alloc_sem);
537 	ocfs2_rw_unlock(inode, level);
538 }
539 
540 /*
541  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
542  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
543  * do journalled data.
544  */
545 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
546 {
547 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
548 
549 	journal_invalidatepage(journal, page, offset);
550 }
551 
552 static int ocfs2_releasepage(struct page *page, gfp_t wait)
553 {
554 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
555 
556 	if (!page_has_buffers(page))
557 		return 0;
558 	return journal_try_to_free_buffers(journal, page, wait);
559 }
560 
561 static ssize_t ocfs2_direct_IO(int rw,
562 			       struct kiocb *iocb,
563 			       const struct iovec *iov,
564 			       loff_t offset,
565 			       unsigned long nr_segs)
566 {
567 	struct file *file = iocb->ki_filp;
568 	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
569 	int ret;
570 
571 	mlog_entry_void();
572 
573 	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
574 		/*
575 		 * We get PR data locks even for O_DIRECT.  This
576 		 * allows concurrent O_DIRECT I/O but doesn't let
577 		 * O_DIRECT with extending and buffered zeroing writes
578 		 * race.  If they did race then the buffered zeroing
579 		 * could be written back after the O_DIRECT I/O.  It's
580 		 * one thing to tell people not to mix buffered and
581 		 * O_DIRECT writes, but expecting them to understand
582 		 * that file extension is also an implicit buffered
583 		 * write is too much.  By getting the PR we force
584 		 * writeback of the buffered zeroing before
585 		 * proceeding.
586 		 */
587 		ret = ocfs2_data_lock(inode, 0);
588 		if (ret < 0) {
589 			mlog_errno(ret);
590 			goto out;
591 		}
592 		ocfs2_data_unlock(inode, 0);
593 	}
594 
595 	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
596 					    inode->i_sb->s_bdev, iov, offset,
597 					    nr_segs,
598 					    ocfs2_direct_IO_get_blocks,
599 					    ocfs2_dio_end_io);
600 out:
601 	mlog_exit(ret);
602 	return ret;
603 }
604 
605 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
606 					    u32 cpos,
607 					    unsigned int *start,
608 					    unsigned int *end)
609 {
610 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
611 
612 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
613 		unsigned int cpp;
614 
615 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
616 
617 		cluster_start = cpos % cpp;
618 		cluster_start = cluster_start << osb->s_clustersize_bits;
619 
620 		cluster_end = cluster_start + osb->s_clustersize;
621 	}
622 
623 	BUG_ON(cluster_start > PAGE_SIZE);
624 	BUG_ON(cluster_end > PAGE_SIZE);
625 
626 	if (start)
627 		*start = cluster_start;
628 	if (end)
629 		*end = cluster_end;
630 }
631 
632 /*
633  * 'from' and 'to' are the region in the page to avoid zeroing.
634  *
635  * If pagesize > clustersize, this function will avoid zeroing outside
636  * of the cluster boundary.
637  *
638  * from == to == 0 is code for "zero the entire cluster region"
639  */
640 static void ocfs2_clear_page_regions(struct page *page,
641 				     struct ocfs2_super *osb, u32 cpos,
642 				     unsigned from, unsigned to)
643 {
644 	void *kaddr;
645 	unsigned int cluster_start, cluster_end;
646 
647 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
648 
649 	kaddr = kmap_atomic(page, KM_USER0);
650 
651 	if (from || to) {
652 		if (from > cluster_start)
653 			memset(kaddr + cluster_start, 0, from - cluster_start);
654 		if (to < cluster_end)
655 			memset(kaddr + to, 0, cluster_end - to);
656 	} else {
657 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
658 	}
659 
660 	kunmap_atomic(kaddr, KM_USER0);
661 }
662 
663 /*
664  * Some of this taken from block_prepare_write(). We already have our
665  * mapping by now though, and the entire write will be allocating or
666  * it won't, so not much need to use BH_New.
667  *
668  * This will also skip zeroing, which is handled externally.
669  */
670 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
671 			  struct inode *inode, unsigned int from,
672 			  unsigned int to, int new)
673 {
674 	int ret = 0;
675 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
676 	unsigned int block_end, block_start;
677 	unsigned int bsize = 1 << inode->i_blkbits;
678 
679 	if (!page_has_buffers(page))
680 		create_empty_buffers(page, bsize, 0);
681 
682 	head = page_buffers(page);
683 	for (bh = head, block_start = 0; bh != head || !block_start;
684 	     bh = bh->b_this_page, block_start += bsize) {
685 		block_end = block_start + bsize;
686 
687 		clear_buffer_new(bh);
688 
689 		/*
690 		 * Ignore blocks outside of our i/o range -
691 		 * they may belong to unallocated clusters.
692 		 */
693 		if (block_start >= to || block_end <= from) {
694 			if (PageUptodate(page))
695 				set_buffer_uptodate(bh);
696 			continue;
697 		}
698 
699 		/*
700 		 * For an allocating write with cluster size >= page
701 		 * size, we always write the entire page.
702 		 */
703 		if (new)
704 			set_buffer_new(bh);
705 
706 		if (!buffer_mapped(bh)) {
707 			map_bh(bh, inode->i_sb, *p_blkno);
708 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
709 		}
710 
711 		if (PageUptodate(page)) {
712 			if (!buffer_uptodate(bh))
713 				set_buffer_uptodate(bh);
714 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
715 			   !buffer_new(bh) &&
716 			   (block_start < from || block_end > to)) {
717 			ll_rw_block(READ, 1, &bh);
718 			*wait_bh++=bh;
719 		}
720 
721 		*p_blkno = *p_blkno + 1;
722 	}
723 
724 	/*
725 	 * If we issued read requests - let them complete.
726 	 */
727 	while(wait_bh > wait) {
728 		wait_on_buffer(*--wait_bh);
729 		if (!buffer_uptodate(*wait_bh))
730 			ret = -EIO;
731 	}
732 
733 	if (ret == 0 || !new)
734 		return ret;
735 
736 	/*
737 	 * If we get -EIO above, zero out any newly allocated blocks
738 	 * to avoid exposing stale data.
739 	 */
740 	bh = head;
741 	block_start = 0;
742 	do {
743 		block_end = block_start + bsize;
744 		if (block_end <= from)
745 			goto next_bh;
746 		if (block_start >= to)
747 			break;
748 
749 		zero_user_page(page, block_start, bh->b_size, KM_USER0);
750 		set_buffer_uptodate(bh);
751 		mark_buffer_dirty(bh);
752 
753 next_bh:
754 		block_start = block_end;
755 		bh = bh->b_this_page;
756 	} while (bh != head);
757 
758 	return ret;
759 }
760 
761 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
762 #define OCFS2_MAX_CTXT_PAGES	1
763 #else
764 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
765 #endif
766 
767 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
768 
769 /*
770  * Describe the state of a single cluster to be written to.
771  */
772 struct ocfs2_write_cluster_desc {
773 	u32		c_cpos;
774 	u32		c_phys;
775 	/*
776 	 * Give this a unique field because c_phys eventually gets
777 	 * filled.
778 	 */
779 	unsigned	c_new;
780 	unsigned	c_unwritten;
781 };
782 
783 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
784 {
785 	return d->c_new || d->c_unwritten;
786 }
787 
788 struct ocfs2_write_ctxt {
789 	/* Logical cluster position / len of write */
790 	u32				w_cpos;
791 	u32				w_clen;
792 
793 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
794 
795 	/*
796 	 * This is true if page_size > cluster_size.
797 	 *
798 	 * It triggers a set of special cases during write which might
799 	 * have to deal with allocating writes to partial pages.
800 	 */
801 	unsigned int			w_large_pages;
802 
803 	/*
804 	 * Pages involved in this write.
805 	 *
806 	 * w_target_page is the page being written to by the user.
807 	 *
808 	 * w_pages is an array of pages which always contains
809 	 * w_target_page, and in the case of an allocating write with
810 	 * page_size < cluster size, it will contain zero'd and mapped
811 	 * pages adjacent to w_target_page which need to be written
812 	 * out in so that future reads from that region will get
813 	 * zero's.
814 	 */
815 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
816 	unsigned int			w_num_pages;
817 	struct page			*w_target_page;
818 
819 	/*
820 	 * ocfs2_write_end() uses this to know what the real range to
821 	 * write in the target should be.
822 	 */
823 	unsigned int			w_target_from;
824 	unsigned int			w_target_to;
825 
826 	/*
827 	 * We could use journal_current_handle() but this is cleaner,
828 	 * IMHO -Mark
829 	 */
830 	handle_t			*w_handle;
831 
832 	struct buffer_head		*w_di_bh;
833 
834 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
835 };
836 
837 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
838 {
839 	int i;
840 
841 	for(i = 0; i < wc->w_num_pages; i++) {
842 		if (wc->w_pages[i] == NULL)
843 			continue;
844 
845 		unlock_page(wc->w_pages[i]);
846 		mark_page_accessed(wc->w_pages[i]);
847 		page_cache_release(wc->w_pages[i]);
848 	}
849 
850 	brelse(wc->w_di_bh);
851 	kfree(wc);
852 }
853 
854 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
855 				  struct ocfs2_super *osb, loff_t pos,
856 				  unsigned len, struct buffer_head *di_bh)
857 {
858 	struct ocfs2_write_ctxt *wc;
859 
860 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
861 	if (!wc)
862 		return -ENOMEM;
863 
864 	wc->w_cpos = pos >> osb->s_clustersize_bits;
865 	wc->w_clen = ocfs2_clusters_for_bytes(osb->sb, len);
866 	get_bh(di_bh);
867 	wc->w_di_bh = di_bh;
868 
869 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
870 		wc->w_large_pages = 1;
871 	else
872 		wc->w_large_pages = 0;
873 
874 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
875 
876 	*wcp = wc;
877 
878 	return 0;
879 }
880 
881 /*
882  * If a page has any new buffers, zero them out here, and mark them uptodate
883  * and dirty so they'll be written out (in order to prevent uninitialised
884  * block data from leaking). And clear the new bit.
885  */
886 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
887 {
888 	unsigned int block_start, block_end;
889 	struct buffer_head *head, *bh;
890 
891 	BUG_ON(!PageLocked(page));
892 	if (!page_has_buffers(page))
893 		return;
894 
895 	bh = head = page_buffers(page);
896 	block_start = 0;
897 	do {
898 		block_end = block_start + bh->b_size;
899 
900 		if (buffer_new(bh)) {
901 			if (block_end > from && block_start < to) {
902 				if (!PageUptodate(page)) {
903 					unsigned start, end;
904 
905 					start = max(from, block_start);
906 					end = min(to, block_end);
907 
908 					zero_user_page(page, start, end - start, KM_USER0);
909 					set_buffer_uptodate(bh);
910 				}
911 
912 				clear_buffer_new(bh);
913 				mark_buffer_dirty(bh);
914 			}
915 		}
916 
917 		block_start = block_end;
918 		bh = bh->b_this_page;
919 	} while (bh != head);
920 }
921 
922 /*
923  * Only called when we have a failure during allocating write to write
924  * zero's to the newly allocated region.
925  */
926 static void ocfs2_write_failure(struct inode *inode,
927 				struct ocfs2_write_ctxt *wc,
928 				loff_t user_pos, unsigned user_len)
929 {
930 	int i;
931 	unsigned from, to;
932 	struct page *tmppage;
933 
934 	ocfs2_zero_new_buffers(wc->w_target_page, user_pos, user_len);
935 
936 	if (wc->w_large_pages) {
937 		from = wc->w_target_from;
938 		to = wc->w_target_to;
939 	} else {
940 		from = 0;
941 		to = PAGE_CACHE_SIZE;
942 	}
943 
944 	for(i = 0; i < wc->w_num_pages; i++) {
945 		tmppage = wc->w_pages[i];
946 
947 		if (ocfs2_should_order_data(inode))
948 			walk_page_buffers(wc->w_handle, page_buffers(tmppage),
949 					  from, to, NULL,
950 					  ocfs2_journal_dirty_data);
951 
952 		block_commit_write(tmppage, from, to);
953 	}
954 }
955 
956 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
957 					struct ocfs2_write_ctxt *wc,
958 					struct page *page, u32 cpos,
959 					loff_t user_pos, unsigned user_len,
960 					int new)
961 {
962 	int ret;
963 	unsigned int map_from = 0, map_to = 0;
964 	unsigned int cluster_start, cluster_end;
965 	unsigned int user_data_from = 0, user_data_to = 0;
966 
967 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
968 					&cluster_start, &cluster_end);
969 
970 	if (page == wc->w_target_page) {
971 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
972 		map_to = map_from + user_len;
973 
974 		if (new)
975 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
976 						    cluster_start, cluster_end,
977 						    new);
978 		else
979 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
980 						    map_from, map_to, new);
981 		if (ret) {
982 			mlog_errno(ret);
983 			goto out;
984 		}
985 
986 		user_data_from = map_from;
987 		user_data_to = map_to;
988 		if (new) {
989 			map_from = cluster_start;
990 			map_to = cluster_end;
991 		}
992 
993 		wc->w_target_from = map_from;
994 		wc->w_target_to = map_to;
995 	} else {
996 		/*
997 		 * If we haven't allocated the new page yet, we
998 		 * shouldn't be writing it out without copying user
999 		 * data. This is likely a math error from the caller.
1000 		 */
1001 		BUG_ON(!new);
1002 
1003 		map_from = cluster_start;
1004 		map_to = cluster_end;
1005 
1006 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1007 					    cluster_start, cluster_end, new);
1008 		if (ret) {
1009 			mlog_errno(ret);
1010 			goto out;
1011 		}
1012 	}
1013 
1014 	/*
1015 	 * Parts of newly allocated pages need to be zero'd.
1016 	 *
1017 	 * Above, we have also rewritten 'to' and 'from' - as far as
1018 	 * the rest of the function is concerned, the entire cluster
1019 	 * range inside of a page needs to be written.
1020 	 *
1021 	 * We can skip this if the page is up to date - it's already
1022 	 * been zero'd from being read in as a hole.
1023 	 */
1024 	if (new && !PageUptodate(page))
1025 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1026 					 cpos, user_data_from, user_data_to);
1027 
1028 	flush_dcache_page(page);
1029 
1030 out:
1031 	return ret;
1032 }
1033 
1034 /*
1035  * This function will only grab one clusters worth of pages.
1036  */
1037 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1038 				      struct ocfs2_write_ctxt *wc,
1039 				      u32 cpos, loff_t user_pos, int new,
1040 				      struct page *mmap_page)
1041 {
1042 	int ret = 0, i;
1043 	unsigned long start, target_index, index;
1044 	struct inode *inode = mapping->host;
1045 
1046 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1047 
1048 	/*
1049 	 * Figure out how many pages we'll be manipulating here. For
1050 	 * non allocating write, we just change the one
1051 	 * page. Otherwise, we'll need a whole clusters worth.
1052 	 */
1053 	if (new) {
1054 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1055 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1056 	} else {
1057 		wc->w_num_pages = 1;
1058 		start = target_index;
1059 	}
1060 
1061 	for(i = 0; i < wc->w_num_pages; i++) {
1062 		index = start + i;
1063 
1064 		if (index == target_index && mmap_page) {
1065 			/*
1066 			 * ocfs2_pagemkwrite() is a little different
1067 			 * and wants us to directly use the page
1068 			 * passed in.
1069 			 */
1070 			lock_page(mmap_page);
1071 
1072 			if (mmap_page->mapping != mapping) {
1073 				unlock_page(mmap_page);
1074 				/*
1075 				 * Sanity check - the locking in
1076 				 * ocfs2_pagemkwrite() should ensure
1077 				 * that this code doesn't trigger.
1078 				 */
1079 				ret = -EINVAL;
1080 				mlog_errno(ret);
1081 				goto out;
1082 			}
1083 
1084 			page_cache_get(mmap_page);
1085 			wc->w_pages[i] = mmap_page;
1086 		} else {
1087 			wc->w_pages[i] = find_or_create_page(mapping, index,
1088 							     GFP_NOFS);
1089 			if (!wc->w_pages[i]) {
1090 				ret = -ENOMEM;
1091 				mlog_errno(ret);
1092 				goto out;
1093 			}
1094 		}
1095 
1096 		if (index == target_index)
1097 			wc->w_target_page = wc->w_pages[i];
1098 	}
1099 out:
1100 	return ret;
1101 }
1102 
1103 /*
1104  * Prepare a single cluster for write one cluster into the file.
1105  */
1106 static int ocfs2_write_cluster(struct address_space *mapping,
1107 			       u32 phys, unsigned int unwritten,
1108 			       struct ocfs2_alloc_context *data_ac,
1109 			       struct ocfs2_alloc_context *meta_ac,
1110 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1111 			       loff_t user_pos, unsigned user_len)
1112 {
1113 	int ret, i, new, should_zero = 0;
1114 	u64 v_blkno, p_blkno;
1115 	struct inode *inode = mapping->host;
1116 
1117 	new = phys == 0 ? 1 : 0;
1118 	if (new || unwritten)
1119 		should_zero = 1;
1120 
1121 	if (new) {
1122 		u32 tmp_pos;
1123 
1124 		/*
1125 		 * This is safe to call with the page locks - it won't take
1126 		 * any additional semaphores or cluster locks.
1127 		 */
1128 		tmp_pos = cpos;
1129 		ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1130 						 &tmp_pos, 1, 0, wc->w_di_bh,
1131 						 wc->w_handle, data_ac,
1132 						 meta_ac, NULL);
1133 		/*
1134 		 * This shouldn't happen because we must have already
1135 		 * calculated the correct meta data allocation required. The
1136 		 * internal tree allocation code should know how to increase
1137 		 * transaction credits itself.
1138 		 *
1139 		 * If need be, we could handle -EAGAIN for a
1140 		 * RESTART_TRANS here.
1141 		 */
1142 		mlog_bug_on_msg(ret == -EAGAIN,
1143 				"Inode %llu: EAGAIN return during allocation.\n",
1144 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1145 		if (ret < 0) {
1146 			mlog_errno(ret);
1147 			goto out;
1148 		}
1149 	} else if (unwritten) {
1150 		ret = ocfs2_mark_extent_written(inode, wc->w_di_bh,
1151 						wc->w_handle, cpos, 1, phys,
1152 						meta_ac, &wc->w_dealloc);
1153 		if (ret < 0) {
1154 			mlog_errno(ret);
1155 			goto out;
1156 		}
1157 	}
1158 
1159 	if (should_zero)
1160 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1161 	else
1162 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1163 
1164 	/*
1165 	 * The only reason this should fail is due to an inability to
1166 	 * find the extent added.
1167 	 */
1168 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1169 					  NULL);
1170 	if (ret < 0) {
1171 		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1172 			    "at logical block %llu",
1173 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1174 			    (unsigned long long)v_blkno);
1175 		goto out;
1176 	}
1177 
1178 	BUG_ON(p_blkno == 0);
1179 
1180 	for(i = 0; i < wc->w_num_pages; i++) {
1181 		int tmpret;
1182 
1183 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1184 						      wc->w_pages[i], cpos,
1185 						      user_pos, user_len,
1186 						      should_zero);
1187 		if (tmpret) {
1188 			mlog_errno(tmpret);
1189 			if (ret == 0)
1190 				tmpret = ret;
1191 		}
1192 	}
1193 
1194 	/*
1195 	 * We only have cleanup to do in case of allocating write.
1196 	 */
1197 	if (ret && new)
1198 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1199 
1200 out:
1201 
1202 	return ret;
1203 }
1204 
1205 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1206 				       struct ocfs2_alloc_context *data_ac,
1207 				       struct ocfs2_alloc_context *meta_ac,
1208 				       struct ocfs2_write_ctxt *wc,
1209 				       loff_t pos, unsigned len)
1210 {
1211 	int ret, i;
1212 	struct ocfs2_write_cluster_desc *desc;
1213 
1214 	for (i = 0; i < wc->w_clen; i++) {
1215 		desc = &wc->w_desc[i];
1216 
1217 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1218 					  desc->c_unwritten, data_ac, meta_ac,
1219 					  wc, desc->c_cpos, pos, len);
1220 		if (ret) {
1221 			mlog_errno(ret);
1222 			goto out;
1223 		}
1224 	}
1225 
1226 	ret = 0;
1227 out:
1228 	return ret;
1229 }
1230 
1231 /*
1232  * ocfs2_write_end() wants to know which parts of the target page it
1233  * should complete the write on. It's easiest to compute them ahead of
1234  * time when a more complete view of the write is available.
1235  */
1236 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1237 					struct ocfs2_write_ctxt *wc,
1238 					loff_t pos, unsigned len, int alloc)
1239 {
1240 	struct ocfs2_write_cluster_desc *desc;
1241 
1242 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1243 	wc->w_target_to = wc->w_target_from + len;
1244 
1245 	if (alloc == 0)
1246 		return;
1247 
1248 	/*
1249 	 * Allocating write - we may have different boundaries based
1250 	 * on page size and cluster size.
1251 	 *
1252 	 * NOTE: We can no longer compute one value from the other as
1253 	 * the actual write length and user provided length may be
1254 	 * different.
1255 	 */
1256 
1257 	if (wc->w_large_pages) {
1258 		/*
1259 		 * We only care about the 1st and last cluster within
1260 		 * our range and whether they should be zero'd or not. Either
1261 		 * value may be extended out to the start/end of a
1262 		 * newly allocated cluster.
1263 		 */
1264 		desc = &wc->w_desc[0];
1265 		if (ocfs2_should_zero_cluster(desc))
1266 			ocfs2_figure_cluster_boundaries(osb,
1267 							desc->c_cpos,
1268 							&wc->w_target_from,
1269 							NULL);
1270 
1271 		desc = &wc->w_desc[wc->w_clen - 1];
1272 		if (ocfs2_should_zero_cluster(desc))
1273 			ocfs2_figure_cluster_boundaries(osb,
1274 							desc->c_cpos,
1275 							NULL,
1276 							&wc->w_target_to);
1277 	} else {
1278 		wc->w_target_from = 0;
1279 		wc->w_target_to = PAGE_CACHE_SIZE;
1280 	}
1281 }
1282 
1283 /*
1284  * Populate each single-cluster write descriptor in the write context
1285  * with information about the i/o to be done.
1286  *
1287  * Returns the number of clusters that will have to be allocated, as
1288  * well as a worst case estimate of the number of extent records that
1289  * would have to be created during a write to an unwritten region.
1290  */
1291 static int ocfs2_populate_write_desc(struct inode *inode,
1292 				     struct ocfs2_write_ctxt *wc,
1293 				     unsigned int *clusters_to_alloc,
1294 				     unsigned int *extents_to_split)
1295 {
1296 	int ret;
1297 	struct ocfs2_write_cluster_desc *desc;
1298 	unsigned int num_clusters = 0;
1299 	unsigned int ext_flags = 0;
1300 	u32 phys = 0;
1301 	int i;
1302 
1303 	*clusters_to_alloc = 0;
1304 	*extents_to_split = 0;
1305 
1306 	for (i = 0; i < wc->w_clen; i++) {
1307 		desc = &wc->w_desc[i];
1308 		desc->c_cpos = wc->w_cpos + i;
1309 
1310 		if (num_clusters == 0) {
1311 			/*
1312 			 * Need to look up the next extent record.
1313 			 */
1314 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1315 						 &num_clusters, &ext_flags);
1316 			if (ret) {
1317 				mlog_errno(ret);
1318 				goto out;
1319 			}
1320 
1321 			/*
1322 			 * Assume worst case - that we're writing in
1323 			 * the middle of the extent.
1324 			 *
1325 			 * We can assume that the write proceeds from
1326 			 * left to right, in which case the extent
1327 			 * insert code is smart enough to coalesce the
1328 			 * next splits into the previous records created.
1329 			 */
1330 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1331 				*extents_to_split = *extents_to_split + 2;
1332 		} else if (phys) {
1333 			/*
1334 			 * Only increment phys if it doesn't describe
1335 			 * a hole.
1336 			 */
1337 			phys++;
1338 		}
1339 
1340 		desc->c_phys = phys;
1341 		if (phys == 0) {
1342 			desc->c_new = 1;
1343 			*clusters_to_alloc = *clusters_to_alloc + 1;
1344 		}
1345 		if (ext_flags & OCFS2_EXT_UNWRITTEN)
1346 			desc->c_unwritten = 1;
1347 
1348 		num_clusters--;
1349 	}
1350 
1351 	ret = 0;
1352 out:
1353 	return ret;
1354 }
1355 
1356 int ocfs2_write_begin_nolock(struct address_space *mapping,
1357 			     loff_t pos, unsigned len, unsigned flags,
1358 			     struct page **pagep, void **fsdata,
1359 			     struct buffer_head *di_bh, struct page *mmap_page)
1360 {
1361 	int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1362 	unsigned int clusters_to_alloc, extents_to_split;
1363 	struct ocfs2_write_ctxt *wc;
1364 	struct inode *inode = mapping->host;
1365 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1366 	struct ocfs2_dinode *di;
1367 	struct ocfs2_alloc_context *data_ac = NULL;
1368 	struct ocfs2_alloc_context *meta_ac = NULL;
1369 	handle_t *handle;
1370 
1371 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1372 	if (ret) {
1373 		mlog_errno(ret);
1374 		return ret;
1375 	}
1376 
1377 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1378 					&extents_to_split);
1379 	if (ret) {
1380 		mlog_errno(ret);
1381 		goto out;
1382 	}
1383 
1384 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1385 
1386 	/*
1387 	 * We set w_target_from, w_target_to here so that
1388 	 * ocfs2_write_end() knows which range in the target page to
1389 	 * write out. An allocation requires that we write the entire
1390 	 * cluster range.
1391 	 */
1392 	if (clusters_to_alloc || extents_to_split) {
1393 		/*
1394 		 * XXX: We are stretching the limits of
1395 		 * ocfs2_lock_allocators(). It greatly over-estimates
1396 		 * the work to be done.
1397 		 */
1398 		ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
1399 					    extents_to_split, &data_ac, &meta_ac);
1400 		if (ret) {
1401 			mlog_errno(ret);
1402 			goto out;
1403 		}
1404 
1405 		credits = ocfs2_calc_extend_credits(inode->i_sb, di,
1406 						    clusters_to_alloc);
1407 
1408 	}
1409 
1410 	ocfs2_set_target_boundaries(osb, wc, pos, len,
1411 				    clusters_to_alloc + extents_to_split);
1412 
1413 	handle = ocfs2_start_trans(osb, credits);
1414 	if (IS_ERR(handle)) {
1415 		ret = PTR_ERR(handle);
1416 		mlog_errno(ret);
1417 		goto out;
1418 	}
1419 
1420 	wc->w_handle = handle;
1421 
1422 	/*
1423 	 * We don't want this to fail in ocfs2_write_end(), so do it
1424 	 * here.
1425 	 */
1426 	ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1427 				   OCFS2_JOURNAL_ACCESS_WRITE);
1428 	if (ret) {
1429 		mlog_errno(ret);
1430 		goto out_commit;
1431 	}
1432 
1433 	/*
1434 	 * Fill our page array first. That way we've grabbed enough so
1435 	 * that we can zero and flush if we error after adding the
1436 	 * extent.
1437 	 */
1438 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1439 					 clusters_to_alloc + extents_to_split,
1440 					 mmap_page);
1441 	if (ret) {
1442 		mlog_errno(ret);
1443 		goto out_commit;
1444 	}
1445 
1446 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1447 					  len);
1448 	if (ret) {
1449 		mlog_errno(ret);
1450 		goto out_commit;
1451 	}
1452 
1453 	if (data_ac)
1454 		ocfs2_free_alloc_context(data_ac);
1455 	if (meta_ac)
1456 		ocfs2_free_alloc_context(meta_ac);
1457 
1458 	*pagep = wc->w_target_page;
1459 	*fsdata = wc;
1460 	return 0;
1461 out_commit:
1462 	ocfs2_commit_trans(osb, handle);
1463 
1464 out:
1465 	ocfs2_free_write_ctxt(wc);
1466 
1467 	if (data_ac)
1468 		ocfs2_free_alloc_context(data_ac);
1469 	if (meta_ac)
1470 		ocfs2_free_alloc_context(meta_ac);
1471 	return ret;
1472 }
1473 
1474 int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1475 		      loff_t pos, unsigned len, unsigned flags,
1476 		      struct page **pagep, void **fsdata)
1477 {
1478 	int ret;
1479 	struct buffer_head *di_bh = NULL;
1480 	struct inode *inode = mapping->host;
1481 
1482 	ret = ocfs2_meta_lock(inode, &di_bh, 1);
1483 	if (ret) {
1484 		mlog_errno(ret);
1485 		return ret;
1486 	}
1487 
1488 	/*
1489 	 * Take alloc sem here to prevent concurrent lookups. That way
1490 	 * the mapping, zeroing and tree manipulation within
1491 	 * ocfs2_write() will be safe against ->readpage(). This
1492 	 * should also serve to lock out allocation from a shared
1493 	 * writeable region.
1494 	 */
1495 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1496 
1497 	ret = ocfs2_data_lock(inode, 1);
1498 	if (ret) {
1499 		mlog_errno(ret);
1500 		goto out_fail;
1501 	}
1502 
1503 	ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1504 				       fsdata, di_bh, NULL);
1505 	if (ret) {
1506 		mlog_errno(ret);
1507 		goto out_fail_data;
1508 	}
1509 
1510 	brelse(di_bh);
1511 
1512 	return 0;
1513 
1514 out_fail_data:
1515 	ocfs2_data_unlock(inode, 1);
1516 out_fail:
1517 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1518 
1519 	brelse(di_bh);
1520 	ocfs2_meta_unlock(inode, 1);
1521 
1522 	return ret;
1523 }
1524 
1525 int ocfs2_write_end_nolock(struct address_space *mapping,
1526 			   loff_t pos, unsigned len, unsigned copied,
1527 			   struct page *page, void *fsdata)
1528 {
1529 	int i;
1530 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1531 	struct inode *inode = mapping->host;
1532 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1533 	struct ocfs2_write_ctxt *wc = fsdata;
1534 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1535 	handle_t *handle = wc->w_handle;
1536 	struct page *tmppage;
1537 
1538 	if (unlikely(copied < len)) {
1539 		if (!PageUptodate(wc->w_target_page))
1540 			copied = 0;
1541 
1542 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1543 				       start+len);
1544 	}
1545 	flush_dcache_page(wc->w_target_page);
1546 
1547 	for(i = 0; i < wc->w_num_pages; i++) {
1548 		tmppage = wc->w_pages[i];
1549 
1550 		if (tmppage == wc->w_target_page) {
1551 			from = wc->w_target_from;
1552 			to = wc->w_target_to;
1553 
1554 			BUG_ON(from > PAGE_CACHE_SIZE ||
1555 			       to > PAGE_CACHE_SIZE ||
1556 			       to < from);
1557 		} else {
1558 			/*
1559 			 * Pages adjacent to the target (if any) imply
1560 			 * a hole-filling write in which case we want
1561 			 * to flush their entire range.
1562 			 */
1563 			from = 0;
1564 			to = PAGE_CACHE_SIZE;
1565 		}
1566 
1567 		if (ocfs2_should_order_data(inode))
1568 			walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1569 					  from, to, NULL,
1570 					  ocfs2_journal_dirty_data);
1571 
1572 		block_commit_write(tmppage, from, to);
1573 	}
1574 
1575 	pos += copied;
1576 	if (pos > inode->i_size) {
1577 		i_size_write(inode, pos);
1578 		mark_inode_dirty(inode);
1579 	}
1580 	inode->i_blocks = ocfs2_inode_sector_count(inode);
1581 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1582 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1583 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1584 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1585 	ocfs2_journal_dirty(handle, wc->w_di_bh);
1586 
1587 	ocfs2_commit_trans(osb, handle);
1588 
1589 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
1590 
1591 	ocfs2_free_write_ctxt(wc);
1592 
1593 	return copied;
1594 }
1595 
1596 int ocfs2_write_end(struct file *file, struct address_space *mapping,
1597 		    loff_t pos, unsigned len, unsigned copied,
1598 		    struct page *page, void *fsdata)
1599 {
1600 	int ret;
1601 	struct inode *inode = mapping->host;
1602 
1603 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1604 
1605 	ocfs2_data_unlock(inode, 1);
1606 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1607 	ocfs2_meta_unlock(inode, 1);
1608 
1609 	return ret;
1610 }
1611 
1612 const struct address_space_operations ocfs2_aops = {
1613 	.readpage	= ocfs2_readpage,
1614 	.writepage	= ocfs2_writepage,
1615 	.bmap		= ocfs2_bmap,
1616 	.sync_page	= block_sync_page,
1617 	.direct_IO	= ocfs2_direct_IO,
1618 	.invalidatepage	= ocfs2_invalidatepage,
1619 	.releasepage	= ocfs2_releasepage,
1620 	.migratepage	= buffer_migrate_page,
1621 };
1622