xref: /openbmc/linux/fs/ocfs2/aops.c (revision 781095f903f398148cd0b646d3984234a715f29e)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33 
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50 
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55 
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 				   struct buffer_head *bh_result, int create)
58 {
59 	int err = -EIO;
60 	int status;
61 	struct ocfs2_dinode *fe = NULL;
62 	struct buffer_head *bh = NULL;
63 	struct buffer_head *buffer_cache_bh = NULL;
64 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 	void *kaddr;
66 
67 	trace_ocfs2_symlink_get_block(
68 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
69 			(unsigned long long)iblock, bh_result, create);
70 
71 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72 
73 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 		     (unsigned long long)iblock);
76 		goto bail;
77 	}
78 
79 	status = ocfs2_read_inode_block(inode, &bh);
80 	if (status < 0) {
81 		mlog_errno(status);
82 		goto bail;
83 	}
84 	fe = (struct ocfs2_dinode *) bh->b_data;
85 
86 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 						    le32_to_cpu(fe->i_clusters))) {
88 		err = -ENOMEM;
89 		mlog(ML_ERROR, "block offset is outside the allocated size: "
90 		     "%llu\n", (unsigned long long)iblock);
91 		goto bail;
92 	}
93 
94 	/* We don't use the page cache to create symlink data, so if
95 	 * need be, copy it over from the buffer cache. */
96 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 			    iblock;
99 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 		if (!buffer_cache_bh) {
101 			err = -ENOMEM;
102 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 			goto bail;
104 		}
105 
106 		/* we haven't locked out transactions, so a commit
107 		 * could've happened. Since we've got a reference on
108 		 * the bh, even if it commits while we're doing the
109 		 * copy, the data is still good. */
110 		if (buffer_jbd(buffer_cache_bh)
111 		    && ocfs2_inode_is_new(inode)) {
112 			kaddr = kmap_atomic(bh_result->b_page);
113 			if (!kaddr) {
114 				mlog(ML_ERROR, "couldn't kmap!\n");
115 				goto bail;
116 			}
117 			memcpy(kaddr + (bh_result->b_size * iblock),
118 			       buffer_cache_bh->b_data,
119 			       bh_result->b_size);
120 			kunmap_atomic(kaddr);
121 			set_buffer_uptodate(bh_result);
122 		}
123 		brelse(buffer_cache_bh);
124 	}
125 
126 	map_bh(bh_result, inode->i_sb,
127 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128 
129 	err = 0;
130 
131 bail:
132 	brelse(bh);
133 
134 	return err;
135 }
136 
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 		    struct buffer_head *bh_result, int create)
139 {
140 	int err = 0;
141 	unsigned int ext_flags;
142 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 	u64 p_blkno, count, past_eof;
144 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145 
146 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 			      (unsigned long long)iblock, bh_result, create);
148 
149 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 		     inode, inode->i_ino);
152 
153 	if (S_ISLNK(inode->i_mode)) {
154 		/* this always does I/O for some reason. */
155 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 		goto bail;
157 	}
158 
159 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 					  &ext_flags);
161 	if (err) {
162 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 		     (unsigned long long)p_blkno);
165 		goto bail;
166 	}
167 
168 	if (max_blocks < count)
169 		count = max_blocks;
170 
171 	/*
172 	 * ocfs2 never allocates in this function - the only time we
173 	 * need to use BH_New is when we're extending i_size on a file
174 	 * system which doesn't support holes, in which case BH_New
175 	 * allows __block_write_begin() to zero.
176 	 *
177 	 * If we see this on a sparse file system, then a truncate has
178 	 * raced us and removed the cluster. In this case, we clear
179 	 * the buffers dirty and uptodate bits and let the buffer code
180 	 * ignore it as a hole.
181 	 */
182 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 		clear_buffer_dirty(bh_result);
184 		clear_buffer_uptodate(bh_result);
185 		goto bail;
186 	}
187 
188 	/* Treat the unwritten extent as a hole for zeroing purposes. */
189 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190 		map_bh(bh_result, inode->i_sb, p_blkno);
191 
192 	bh_result->b_size = count << inode->i_blkbits;
193 
194 	if (!ocfs2_sparse_alloc(osb)) {
195 		if (p_blkno == 0) {
196 			err = -EIO;
197 			mlog(ML_ERROR,
198 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 			     (unsigned long long)iblock,
200 			     (unsigned long long)p_blkno,
201 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 			dump_stack();
204 			goto bail;
205 		}
206 	}
207 
208 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209 
210 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 				  (unsigned long long)past_eof);
212 	if (create && (iblock >= past_eof))
213 		set_buffer_new(bh_result);
214 
215 bail:
216 	if (err < 0)
217 		err = -EIO;
218 
219 	return err;
220 }
221 
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 			   struct buffer_head *di_bh)
224 {
225 	void *kaddr;
226 	loff_t size;
227 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228 
229 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
231 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 		return -EROFS;
233 	}
234 
235 	size = i_size_read(inode);
236 
237 	if (size > PAGE_CACHE_SIZE ||
238 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239 		ocfs2_error(inode->i_sb,
240 			    "Inode %llu has with inline data has bad size: %Lu\n",
241 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 			    (unsigned long long)size);
243 		return -EROFS;
244 	}
245 
246 	kaddr = kmap_atomic(page);
247 	if (size)
248 		memcpy(kaddr, di->id2.i_data.id_data, size);
249 	/* Clear the remaining part of the page */
250 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251 	flush_dcache_page(page);
252 	kunmap_atomic(kaddr);
253 
254 	SetPageUptodate(page);
255 
256 	return 0;
257 }
258 
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261 	int ret;
262 	struct buffer_head *di_bh = NULL;
263 
264 	BUG_ON(!PageLocked(page));
265 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266 
267 	ret = ocfs2_read_inode_block(inode, &di_bh);
268 	if (ret) {
269 		mlog_errno(ret);
270 		goto out;
271 	}
272 
273 	ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275 	unlock_page(page);
276 
277 	brelse(di_bh);
278 	return ret;
279 }
280 
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283 	struct inode *inode = page->mapping->host;
284 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
285 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 	int ret, unlock = 1;
287 
288 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 			     (page ? page->index : 0));
290 
291 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292 	if (ret != 0) {
293 		if (ret == AOP_TRUNCATED_PAGE)
294 			unlock = 0;
295 		mlog_errno(ret);
296 		goto out;
297 	}
298 
299 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300 		/*
301 		 * Unlock the page and cycle ip_alloc_sem so that we don't
302 		 * busyloop waiting for ip_alloc_sem to unlock
303 		 */
304 		ret = AOP_TRUNCATED_PAGE;
305 		unlock_page(page);
306 		unlock = 0;
307 		down_read(&oi->ip_alloc_sem);
308 		up_read(&oi->ip_alloc_sem);
309 		goto out_inode_unlock;
310 	}
311 
312 	/*
313 	 * i_size might have just been updated as we grabed the meta lock.  We
314 	 * might now be discovering a truncate that hit on another node.
315 	 * block_read_full_page->get_block freaks out if it is asked to read
316 	 * beyond the end of a file, so we check here.  Callers
317 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 	 * and notice that the page they just read isn't needed.
319 	 *
320 	 * XXX sys_readahead() seems to get that wrong?
321 	 */
322 	if (start >= i_size_read(inode)) {
323 		zero_user(page, 0, PAGE_SIZE);
324 		SetPageUptodate(page);
325 		ret = 0;
326 		goto out_alloc;
327 	}
328 
329 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 		ret = ocfs2_readpage_inline(inode, page);
331 	else
332 		ret = block_read_full_page(page, ocfs2_get_block);
333 	unlock = 0;
334 
335 out_alloc:
336 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338 	ocfs2_inode_unlock(inode, 0);
339 out:
340 	if (unlock)
341 		unlock_page(page);
342 	return ret;
343 }
344 
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 			   struct list_head *pages, unsigned nr_pages)
356 {
357 	int ret, err = -EIO;
358 	struct inode *inode = mapping->host;
359 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 	loff_t start;
361 	struct page *last;
362 
363 	/*
364 	 * Use the nonblocking flag for the dlm code to avoid page
365 	 * lock inversion, but don't bother with retrying.
366 	 */
367 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 	if (ret)
369 		return err;
370 
371 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 		ocfs2_inode_unlock(inode, 0);
373 		return err;
374 	}
375 
376 	/*
377 	 * Don't bother with inline-data. There isn't anything
378 	 * to read-ahead in that case anyway...
379 	 */
380 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 		goto out_unlock;
382 
383 	/*
384 	 * Check whether a remote node truncated this file - we just
385 	 * drop out in that case as it's not worth handling here.
386 	 */
387 	last = list_entry(pages->prev, struct page, lru);
388 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389 	if (start >= i_size_read(inode))
390 		goto out_unlock;
391 
392 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393 
394 out_unlock:
395 	up_read(&oi->ip_alloc_sem);
396 	ocfs2_inode_unlock(inode, 0);
397 
398 	return err;
399 }
400 
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414 	trace_ocfs2_writepage(
415 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 		page->index);
417 
418 	return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420 
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(	handle_t *handle,
426 			struct buffer_head *head,
427 			unsigned from,
428 			unsigned to,
429 			int *partial,
430 			int (*fn)(	handle_t *handle,
431 					struct buffer_head *bh))
432 {
433 	struct buffer_head *bh;
434 	unsigned block_start, block_end;
435 	unsigned blocksize = head->b_size;
436 	int err, ret = 0;
437 	struct buffer_head *next;
438 
439 	for (	bh = head, block_start = 0;
440 		ret == 0 && (bh != head || !block_start);
441 	    	block_start = block_end, bh = next)
442 	{
443 		next = bh->b_this_page;
444 		block_end = block_start + blocksize;
445 		if (block_end <= from || block_start >= to) {
446 			if (partial && !buffer_uptodate(bh))
447 				*partial = 1;
448 			continue;
449 		}
450 		err = (*fn)(handle, bh);
451 		if (!ret)
452 			ret = err;
453 	}
454 	return ret;
455 }
456 
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459 	sector_t status;
460 	u64 p_blkno = 0;
461 	int err = 0;
462 	struct inode *inode = mapping->host;
463 
464 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 			 (unsigned long long)block);
466 
467 	/* We don't need to lock journal system files, since they aren't
468 	 * accessed concurrently from multiple nodes.
469 	 */
470 	if (!INODE_JOURNAL(inode)) {
471 		err = ocfs2_inode_lock(inode, NULL, 0);
472 		if (err) {
473 			if (err != -ENOENT)
474 				mlog_errno(err);
475 			goto bail;
476 		}
477 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 	}
479 
480 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 						  NULL);
483 
484 	if (!INODE_JOURNAL(inode)) {
485 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
486 		ocfs2_inode_unlock(inode, 0);
487 	}
488 
489 	if (err) {
490 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 		     (unsigned long long)block);
492 		mlog_errno(err);
493 		goto bail;
494 	}
495 
496 bail:
497 	status = err ? 0 : p_blkno;
498 
499 	return status;
500 }
501 
502 /*
503  * TODO: Make this into a generic get_blocks function.
504  *
505  * From do_direct_io in direct-io.c:
506  *  "So what we do is to permit the ->get_blocks function to populate
507  *   bh.b_size with the size of IO which is permitted at this offset and
508  *   this i_blkbits."
509  *
510  * This function is called directly from get_more_blocks in direct-io.c.
511  *
512  * called like this: dio->get_blocks(dio->inode, fs_startblk,
513  * 					fs_count, map_bh, dio->rw == WRITE);
514  */
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516 				     struct buffer_head *bh_result, int create)
517 {
518 	int ret;
519 	u32 cpos = 0;
520 	int alloc_locked = 0;
521 	u64 p_blkno, inode_blocks, contig_blocks;
522 	unsigned int ext_flags;
523 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525 	unsigned long len = bh_result->b_size;
526 	unsigned int clusters_to_alloc = 0, contig_clusters = 0;
527 
528 	cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529 
530 	/* This function won't even be called if the request isn't all
531 	 * nicely aligned and of the right size, so there's no need
532 	 * for us to check any of that. */
533 
534 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535 
536 	down_read(&OCFS2_I(inode)->ip_alloc_sem);
537 
538 	/* This figures out the size of the next contiguous block, and
539 	 * our logical offset */
540 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
541 					  &contig_blocks, &ext_flags);
542 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
543 
544 	if (ret) {
545 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
546 		     (unsigned long long)iblock);
547 		ret = -EIO;
548 		goto bail;
549 	}
550 
551 	/* We should already CoW the refcounted extent in case of create. */
552 	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
553 
554 	/* allocate blocks if no p_blkno is found, and create == 1 */
555 	if (!p_blkno && create) {
556 		ret = ocfs2_inode_lock(inode, NULL, 1);
557 		if (ret < 0) {
558 			mlog_errno(ret);
559 			goto bail;
560 		}
561 
562 		alloc_locked = 1;
563 
564 		down_write(&OCFS2_I(inode)->ip_alloc_sem);
565 
566 		/* fill hole, allocate blocks can't be larger than the size
567 		 * of the hole */
568 		clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
569 		contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
570 				contig_blocks);
571 		if (clusters_to_alloc > contig_clusters)
572 			clusters_to_alloc = contig_clusters;
573 
574 		/* allocate extent and insert them into the extent tree */
575 		ret = ocfs2_extend_allocation(inode, cpos,
576 				clusters_to_alloc, 0);
577 		if (ret < 0) {
578 			up_write(&OCFS2_I(inode)->ip_alloc_sem);
579 			mlog_errno(ret);
580 			goto bail;
581 		}
582 
583 		ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
584 				&contig_blocks, &ext_flags);
585 		if (ret < 0) {
586 			up_write(&OCFS2_I(inode)->ip_alloc_sem);
587 			mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
588 					(unsigned long long)iblock);
589 			ret = -EIO;
590 			goto bail;
591 		}
592 		set_buffer_new(bh_result);
593 		up_write(&OCFS2_I(inode)->ip_alloc_sem);
594 	}
595 
596 	/*
597 	 * get_more_blocks() expects us to describe a hole by clearing
598 	 * the mapped bit on bh_result().
599 	 *
600 	 * Consider an unwritten extent as a hole.
601 	 */
602 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
603 		map_bh(bh_result, inode->i_sb, p_blkno);
604 	else
605 		clear_buffer_mapped(bh_result);
606 
607 	/* make sure we don't map more than max_blocks blocks here as
608 	   that's all the kernel will handle at this point. */
609 	if (max_blocks < contig_blocks)
610 		contig_blocks = max_blocks;
611 	bh_result->b_size = contig_blocks << blocksize_bits;
612 bail:
613 	if (alloc_locked)
614 		ocfs2_inode_unlock(inode, 1);
615 	return ret;
616 }
617 
618 /*
619  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
620  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
621  * to protect io on one node from truncation on another.
622  */
623 static void ocfs2_dio_end_io(struct kiocb *iocb,
624 			     loff_t offset,
625 			     ssize_t bytes,
626 			     void *private)
627 {
628 	struct inode *inode = file_inode(iocb->ki_filp);
629 	int level;
630 
631 	/* this io's submitter should not have unlocked this before we could */
632 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
633 
634 	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
635 		ocfs2_iocb_clear_unaligned_aio(iocb);
636 
637 		mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
638 	}
639 
640 	/* Let rw unlock to be done later to protect append direct io write */
641 	if (offset + bytes <= i_size_read(inode)) {
642 		ocfs2_iocb_clear_rw_locked(iocb);
643 
644 		level = ocfs2_iocb_rw_locked_level(iocb);
645 		ocfs2_rw_unlock(inode, level);
646 	}
647 }
648 
649 static int ocfs2_releasepage(struct page *page, gfp_t wait)
650 {
651 	if (!page_has_buffers(page))
652 		return 0;
653 	return try_to_free_buffers(page);
654 }
655 
656 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
657 		struct inode *inode, loff_t offset)
658 {
659 	int ret = 0;
660 	u32 v_cpos = 0;
661 	u32 p_cpos = 0;
662 	unsigned int num_clusters = 0;
663 	unsigned int ext_flags = 0;
664 
665 	v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
666 	ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
667 			&num_clusters, &ext_flags);
668 	if (ret < 0) {
669 		mlog_errno(ret);
670 		return ret;
671 	}
672 
673 	if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
674 		return 1;
675 
676 	return 0;
677 }
678 
679 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
680 		struct inode *inode, loff_t offset,
681 		u64 zero_len, int cluster_align)
682 {
683 	u32 p_cpos = 0;
684 	u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
685 	unsigned int num_clusters = 0;
686 	unsigned int ext_flags = 0;
687 	int ret = 0;
688 
689 	if (offset <= i_size_read(inode) || cluster_align)
690 		return 0;
691 
692 	ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
693 			&ext_flags);
694 	if (ret < 0) {
695 		mlog_errno(ret);
696 		return ret;
697 	}
698 
699 	if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
700 		u64 s = i_size_read(inode);
701 		sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
702 			(do_div(s, osb->s_clustersize) >> 9);
703 
704 		ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
705 				zero_len >> 9, GFP_NOFS, false);
706 		if (ret < 0)
707 			mlog_errno(ret);
708 	}
709 
710 	return ret;
711 }
712 
713 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
714 		struct inode *inode, loff_t offset)
715 {
716 	u64 zero_start, zero_len, total_zero_len;
717 	u32 p_cpos = 0, clusters_to_add;
718 	u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
719 	unsigned int num_clusters = 0;
720 	unsigned int ext_flags = 0;
721 	u32 size_div, offset_div;
722 	int ret = 0;
723 
724 	{
725 		u64 o = offset;
726 		u64 s = i_size_read(inode);
727 
728 		offset_div = do_div(o, osb->s_clustersize);
729 		size_div = do_div(s, osb->s_clustersize);
730 	}
731 
732 	if (offset <= i_size_read(inode))
733 		return 0;
734 
735 	clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
736 		ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
737 	total_zero_len = offset - i_size_read(inode);
738 	if (clusters_to_add)
739 		total_zero_len -= offset_div;
740 
741 	/* Allocate clusters to fill out holes, and this is only needed
742 	 * when we add more than one clusters. Otherwise the cluster will
743 	 * be allocated during direct IO */
744 	if (clusters_to_add > 1) {
745 		ret = ocfs2_extend_allocation(inode,
746 				OCFS2_I(inode)->ip_clusters,
747 				clusters_to_add - 1, 0);
748 		if (ret) {
749 			mlog_errno(ret);
750 			goto out;
751 		}
752 	}
753 
754 	while (total_zero_len) {
755 		ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
756 				&ext_flags);
757 		if (ret < 0) {
758 			mlog_errno(ret);
759 			goto out;
760 		}
761 
762 		zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
763 			size_div;
764 		zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
765 			size_div;
766 		zero_len = min(total_zero_len, zero_len);
767 
768 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
769 			ret = blkdev_issue_zeroout(osb->sb->s_bdev,
770 					zero_start >> 9, zero_len >> 9,
771 					GFP_NOFS, false);
772 			if (ret < 0) {
773 				mlog_errno(ret);
774 				goto out;
775 			}
776 		}
777 
778 		total_zero_len -= zero_len;
779 		v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
780 
781 		/* Only at first iteration can be cluster not aligned.
782 		 * So set size_div to 0 for the rest */
783 		size_div = 0;
784 	}
785 
786 out:
787 	return ret;
788 }
789 
790 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
791 		struct iov_iter *iter,
792 		loff_t offset)
793 {
794 	ssize_t ret = 0;
795 	ssize_t written = 0;
796 	bool orphaned = false;
797 	int is_overwrite = 0;
798 	struct file *file = iocb->ki_filp;
799 	struct inode *inode = file_inode(file)->i_mapping->host;
800 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
801 	struct buffer_head *di_bh = NULL;
802 	size_t count = iter->count;
803 	journal_t *journal = osb->journal->j_journal;
804 	u64 zero_len_head, zero_len_tail;
805 	int cluster_align_head, cluster_align_tail;
806 	loff_t final_size = offset + count;
807 	int append_write = offset >= i_size_read(inode) ? 1 : 0;
808 	unsigned int num_clusters = 0;
809 	unsigned int ext_flags = 0;
810 
811 	{
812 		u64 o = offset;
813 		u64 s = i_size_read(inode);
814 
815 		zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
816 		cluster_align_head = !zero_len_head;
817 
818 		zero_len_tail = osb->s_clustersize -
819 			do_div(s, osb->s_clustersize);
820 		if ((offset - i_size_read(inode)) < zero_len_tail)
821 			zero_len_tail = offset - i_size_read(inode);
822 		cluster_align_tail = !zero_len_tail;
823 	}
824 
825 	/*
826 	 * when final_size > inode->i_size, inode->i_size will be
827 	 * updated after direct write, so add the inode to orphan
828 	 * dir first.
829 	 */
830 	if (final_size > i_size_read(inode)) {
831 		ret = ocfs2_add_inode_to_orphan(osb, inode);
832 		if (ret < 0) {
833 			mlog_errno(ret);
834 			goto out;
835 		}
836 		orphaned = true;
837 	}
838 
839 	if (append_write) {
840 		ret = ocfs2_inode_lock(inode, NULL, 1);
841 		if (ret < 0) {
842 			mlog_errno(ret);
843 			goto clean_orphan;
844 		}
845 
846 		/* zeroing out the previously allocated cluster tail
847 		 * that but not zeroed */
848 		if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
849 			down_read(&OCFS2_I(inode)->ip_alloc_sem);
850 			ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
851 					zero_len_tail, cluster_align_tail);
852 			up_read(&OCFS2_I(inode)->ip_alloc_sem);
853 		} else {
854 			down_write(&OCFS2_I(inode)->ip_alloc_sem);
855 			ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
856 					offset);
857 			up_write(&OCFS2_I(inode)->ip_alloc_sem);
858 		}
859 		if (ret < 0) {
860 			mlog_errno(ret);
861 			ocfs2_inode_unlock(inode, 1);
862 			goto clean_orphan;
863 		}
864 
865 		is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
866 		if (is_overwrite < 0) {
867 			mlog_errno(is_overwrite);
868 			ret = is_overwrite;
869 			ocfs2_inode_unlock(inode, 1);
870 			goto clean_orphan;
871 		}
872 
873 		ocfs2_inode_unlock(inode, 1);
874 	}
875 
876 	written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
877 				       offset, ocfs2_direct_IO_get_blocks,
878 				       ocfs2_dio_end_io, NULL, 0);
879 	/* overwrite aio may return -EIOCBQUEUED, and it is not an error */
880 	if ((written < 0) && (written != -EIOCBQUEUED)) {
881 		loff_t i_size = i_size_read(inode);
882 
883 		if (offset + count > i_size) {
884 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
885 			if (ret < 0) {
886 				mlog_errno(ret);
887 				goto clean_orphan;
888 			}
889 
890 			if (i_size == i_size_read(inode)) {
891 				ret = ocfs2_truncate_file(inode, di_bh,
892 						i_size);
893 				if (ret < 0) {
894 					if (ret != -ENOSPC)
895 						mlog_errno(ret);
896 
897 					ocfs2_inode_unlock(inode, 1);
898 					brelse(di_bh);
899 					di_bh = NULL;
900 					goto clean_orphan;
901 				}
902 			}
903 
904 			ocfs2_inode_unlock(inode, 1);
905 			brelse(di_bh);
906 			di_bh = NULL;
907 
908 			ret = jbd2_journal_force_commit(journal);
909 			if (ret < 0)
910 				mlog_errno(ret);
911 		}
912 	} else if (written > 0 && append_write && !is_overwrite &&
913 			!cluster_align_head) {
914 		/* zeroing out the allocated cluster head */
915 		u32 p_cpos = 0;
916 		u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
917 
918 		ret = ocfs2_inode_lock(inode, NULL, 0);
919 		if (ret < 0) {
920 			mlog_errno(ret);
921 			goto clean_orphan;
922 		}
923 
924 		ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
925 				&num_clusters, &ext_flags);
926 		if (ret < 0) {
927 			mlog_errno(ret);
928 			ocfs2_inode_unlock(inode, 0);
929 			goto clean_orphan;
930 		}
931 
932 		BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
933 
934 		ret = blkdev_issue_zeroout(osb->sb->s_bdev,
935 				(u64)p_cpos << (osb->s_clustersize_bits - 9),
936 				zero_len_head >> 9, GFP_NOFS, false);
937 		if (ret < 0)
938 			mlog_errno(ret);
939 
940 		ocfs2_inode_unlock(inode, 0);
941 	}
942 
943 clean_orphan:
944 	if (orphaned) {
945 		int tmp_ret;
946 		int update_isize = written > 0 ? 1 : 0;
947 		loff_t end = update_isize ? offset + written : 0;
948 
949 		tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
950 		if (tmp_ret < 0) {
951 			ret = tmp_ret;
952 			mlog_errno(ret);
953 			goto out;
954 		}
955 
956 		tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
957 				update_isize, end);
958 		if (tmp_ret < 0) {
959 			ret = tmp_ret;
960 			mlog_errno(ret);
961 			brelse(di_bh);
962 			goto out;
963 		}
964 
965 		ocfs2_inode_unlock(inode, 1);
966 		brelse(di_bh);
967 
968 		tmp_ret = jbd2_journal_force_commit(journal);
969 		if (tmp_ret < 0) {
970 			ret = tmp_ret;
971 			mlog_errno(tmp_ret);
972 		}
973 	}
974 
975 out:
976 	if (ret >= 0)
977 		ret = written;
978 	return ret;
979 }
980 
981 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
982 			       loff_t offset)
983 {
984 	struct file *file = iocb->ki_filp;
985 	struct inode *inode = file_inode(file)->i_mapping->host;
986 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
987 	int full_coherency = !(osb->s_mount_opt &
988 			OCFS2_MOUNT_COHERENCY_BUFFERED);
989 
990 	/*
991 	 * Fallback to buffered I/O if we see an inode without
992 	 * extents.
993 	 */
994 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
995 		return 0;
996 
997 	/* Fallback to buffered I/O if we are appending and
998 	 * concurrent O_DIRECT writes are allowed.
999 	 */
1000 	if (i_size_read(inode) <= offset && !full_coherency)
1001 		return 0;
1002 
1003 	if (iov_iter_rw(iter) == READ)
1004 		return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
1005 					    iter, offset,
1006 					    ocfs2_direct_IO_get_blocks,
1007 					    ocfs2_dio_end_io, NULL, 0);
1008 	else
1009 		return ocfs2_direct_IO_write(iocb, iter, offset);
1010 }
1011 
1012 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
1013 					    u32 cpos,
1014 					    unsigned int *start,
1015 					    unsigned int *end)
1016 {
1017 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
1018 
1019 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
1020 		unsigned int cpp;
1021 
1022 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
1023 
1024 		cluster_start = cpos % cpp;
1025 		cluster_start = cluster_start << osb->s_clustersize_bits;
1026 
1027 		cluster_end = cluster_start + osb->s_clustersize;
1028 	}
1029 
1030 	BUG_ON(cluster_start > PAGE_SIZE);
1031 	BUG_ON(cluster_end > PAGE_SIZE);
1032 
1033 	if (start)
1034 		*start = cluster_start;
1035 	if (end)
1036 		*end = cluster_end;
1037 }
1038 
1039 /*
1040  * 'from' and 'to' are the region in the page to avoid zeroing.
1041  *
1042  * If pagesize > clustersize, this function will avoid zeroing outside
1043  * of the cluster boundary.
1044  *
1045  * from == to == 0 is code for "zero the entire cluster region"
1046  */
1047 static void ocfs2_clear_page_regions(struct page *page,
1048 				     struct ocfs2_super *osb, u32 cpos,
1049 				     unsigned from, unsigned to)
1050 {
1051 	void *kaddr;
1052 	unsigned int cluster_start, cluster_end;
1053 
1054 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1055 
1056 	kaddr = kmap_atomic(page);
1057 
1058 	if (from || to) {
1059 		if (from > cluster_start)
1060 			memset(kaddr + cluster_start, 0, from - cluster_start);
1061 		if (to < cluster_end)
1062 			memset(kaddr + to, 0, cluster_end - to);
1063 	} else {
1064 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1065 	}
1066 
1067 	kunmap_atomic(kaddr);
1068 }
1069 
1070 /*
1071  * Nonsparse file systems fully allocate before we get to the write
1072  * code. This prevents ocfs2_write() from tagging the write as an
1073  * allocating one, which means ocfs2_map_page_blocks() might try to
1074  * read-in the blocks at the tail of our file. Avoid reading them by
1075  * testing i_size against each block offset.
1076  */
1077 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1078 				 unsigned int block_start)
1079 {
1080 	u64 offset = page_offset(page) + block_start;
1081 
1082 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1083 		return 1;
1084 
1085 	if (i_size_read(inode) > offset)
1086 		return 1;
1087 
1088 	return 0;
1089 }
1090 
1091 /*
1092  * Some of this taken from __block_write_begin(). We already have our
1093  * mapping by now though, and the entire write will be allocating or
1094  * it won't, so not much need to use BH_New.
1095  *
1096  * This will also skip zeroing, which is handled externally.
1097  */
1098 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1099 			  struct inode *inode, unsigned int from,
1100 			  unsigned int to, int new)
1101 {
1102 	int ret = 0;
1103 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1104 	unsigned int block_end, block_start;
1105 	unsigned int bsize = 1 << inode->i_blkbits;
1106 
1107 	if (!page_has_buffers(page))
1108 		create_empty_buffers(page, bsize, 0);
1109 
1110 	head = page_buffers(page);
1111 	for (bh = head, block_start = 0; bh != head || !block_start;
1112 	     bh = bh->b_this_page, block_start += bsize) {
1113 		block_end = block_start + bsize;
1114 
1115 		clear_buffer_new(bh);
1116 
1117 		/*
1118 		 * Ignore blocks outside of our i/o range -
1119 		 * they may belong to unallocated clusters.
1120 		 */
1121 		if (block_start >= to || block_end <= from) {
1122 			if (PageUptodate(page))
1123 				set_buffer_uptodate(bh);
1124 			continue;
1125 		}
1126 
1127 		/*
1128 		 * For an allocating write with cluster size >= page
1129 		 * size, we always write the entire page.
1130 		 */
1131 		if (new)
1132 			set_buffer_new(bh);
1133 
1134 		if (!buffer_mapped(bh)) {
1135 			map_bh(bh, inode->i_sb, *p_blkno);
1136 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1137 		}
1138 
1139 		if (PageUptodate(page)) {
1140 			if (!buffer_uptodate(bh))
1141 				set_buffer_uptodate(bh);
1142 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1143 			   !buffer_new(bh) &&
1144 			   ocfs2_should_read_blk(inode, page, block_start) &&
1145 			   (block_start < from || block_end > to)) {
1146 			ll_rw_block(READ, 1, &bh);
1147 			*wait_bh++=bh;
1148 		}
1149 
1150 		*p_blkno = *p_blkno + 1;
1151 	}
1152 
1153 	/*
1154 	 * If we issued read requests - let them complete.
1155 	 */
1156 	while(wait_bh > wait) {
1157 		wait_on_buffer(*--wait_bh);
1158 		if (!buffer_uptodate(*wait_bh))
1159 			ret = -EIO;
1160 	}
1161 
1162 	if (ret == 0 || !new)
1163 		return ret;
1164 
1165 	/*
1166 	 * If we get -EIO above, zero out any newly allocated blocks
1167 	 * to avoid exposing stale data.
1168 	 */
1169 	bh = head;
1170 	block_start = 0;
1171 	do {
1172 		block_end = block_start + bsize;
1173 		if (block_end <= from)
1174 			goto next_bh;
1175 		if (block_start >= to)
1176 			break;
1177 
1178 		zero_user(page, block_start, bh->b_size);
1179 		set_buffer_uptodate(bh);
1180 		mark_buffer_dirty(bh);
1181 
1182 next_bh:
1183 		block_start = block_end;
1184 		bh = bh->b_this_page;
1185 	} while (bh != head);
1186 
1187 	return ret;
1188 }
1189 
1190 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1191 #define OCFS2_MAX_CTXT_PAGES	1
1192 #else
1193 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1194 #endif
1195 
1196 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1197 
1198 /*
1199  * Describe the state of a single cluster to be written to.
1200  */
1201 struct ocfs2_write_cluster_desc {
1202 	u32		c_cpos;
1203 	u32		c_phys;
1204 	/*
1205 	 * Give this a unique field because c_phys eventually gets
1206 	 * filled.
1207 	 */
1208 	unsigned	c_new;
1209 	unsigned	c_unwritten;
1210 	unsigned	c_needs_zero;
1211 };
1212 
1213 struct ocfs2_write_ctxt {
1214 	/* Logical cluster position / len of write */
1215 	u32				w_cpos;
1216 	u32				w_clen;
1217 
1218 	/* First cluster allocated in a nonsparse extend */
1219 	u32				w_first_new_cpos;
1220 
1221 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1222 
1223 	/*
1224 	 * This is true if page_size > cluster_size.
1225 	 *
1226 	 * It triggers a set of special cases during write which might
1227 	 * have to deal with allocating writes to partial pages.
1228 	 */
1229 	unsigned int			w_large_pages;
1230 
1231 	/*
1232 	 * Pages involved in this write.
1233 	 *
1234 	 * w_target_page is the page being written to by the user.
1235 	 *
1236 	 * w_pages is an array of pages which always contains
1237 	 * w_target_page, and in the case of an allocating write with
1238 	 * page_size < cluster size, it will contain zero'd and mapped
1239 	 * pages adjacent to w_target_page which need to be written
1240 	 * out in so that future reads from that region will get
1241 	 * zero's.
1242 	 */
1243 	unsigned int			w_num_pages;
1244 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
1245 	struct page			*w_target_page;
1246 
1247 	/*
1248 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
1249 	 * against w_target_page in ocfs2_write_end_nolock.
1250 	 */
1251 	unsigned int			w_target_locked:1;
1252 
1253 	/*
1254 	 * ocfs2_write_end() uses this to know what the real range to
1255 	 * write in the target should be.
1256 	 */
1257 	unsigned int			w_target_from;
1258 	unsigned int			w_target_to;
1259 
1260 	/*
1261 	 * We could use journal_current_handle() but this is cleaner,
1262 	 * IMHO -Mark
1263 	 */
1264 	handle_t			*w_handle;
1265 
1266 	struct buffer_head		*w_di_bh;
1267 
1268 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
1269 };
1270 
1271 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1272 {
1273 	int i;
1274 
1275 	for(i = 0; i < num_pages; i++) {
1276 		if (pages[i]) {
1277 			unlock_page(pages[i]);
1278 			mark_page_accessed(pages[i]);
1279 			page_cache_release(pages[i]);
1280 		}
1281 	}
1282 }
1283 
1284 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1285 {
1286 	int i;
1287 
1288 	/*
1289 	 * w_target_locked is only set to true in the page_mkwrite() case.
1290 	 * The intent is to allow us to lock the target page from write_begin()
1291 	 * to write_end(). The caller must hold a ref on w_target_page.
1292 	 */
1293 	if (wc->w_target_locked) {
1294 		BUG_ON(!wc->w_target_page);
1295 		for (i = 0; i < wc->w_num_pages; i++) {
1296 			if (wc->w_target_page == wc->w_pages[i]) {
1297 				wc->w_pages[i] = NULL;
1298 				break;
1299 			}
1300 		}
1301 		mark_page_accessed(wc->w_target_page);
1302 		page_cache_release(wc->w_target_page);
1303 	}
1304 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1305 }
1306 
1307 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1308 {
1309 	ocfs2_unlock_pages(wc);
1310 	brelse(wc->w_di_bh);
1311 	kfree(wc);
1312 }
1313 
1314 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1315 				  struct ocfs2_super *osb, loff_t pos,
1316 				  unsigned len, struct buffer_head *di_bh)
1317 {
1318 	u32 cend;
1319 	struct ocfs2_write_ctxt *wc;
1320 
1321 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1322 	if (!wc)
1323 		return -ENOMEM;
1324 
1325 	wc->w_cpos = pos >> osb->s_clustersize_bits;
1326 	wc->w_first_new_cpos = UINT_MAX;
1327 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
1328 	wc->w_clen = cend - wc->w_cpos + 1;
1329 	get_bh(di_bh);
1330 	wc->w_di_bh = di_bh;
1331 
1332 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1333 		wc->w_large_pages = 1;
1334 	else
1335 		wc->w_large_pages = 0;
1336 
1337 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1338 
1339 	*wcp = wc;
1340 
1341 	return 0;
1342 }
1343 
1344 /*
1345  * If a page has any new buffers, zero them out here, and mark them uptodate
1346  * and dirty so they'll be written out (in order to prevent uninitialised
1347  * block data from leaking). And clear the new bit.
1348  */
1349 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1350 {
1351 	unsigned int block_start, block_end;
1352 	struct buffer_head *head, *bh;
1353 
1354 	BUG_ON(!PageLocked(page));
1355 	if (!page_has_buffers(page))
1356 		return;
1357 
1358 	bh = head = page_buffers(page);
1359 	block_start = 0;
1360 	do {
1361 		block_end = block_start + bh->b_size;
1362 
1363 		if (buffer_new(bh)) {
1364 			if (block_end > from && block_start < to) {
1365 				if (!PageUptodate(page)) {
1366 					unsigned start, end;
1367 
1368 					start = max(from, block_start);
1369 					end = min(to, block_end);
1370 
1371 					zero_user_segment(page, start, end);
1372 					set_buffer_uptodate(bh);
1373 				}
1374 
1375 				clear_buffer_new(bh);
1376 				mark_buffer_dirty(bh);
1377 			}
1378 		}
1379 
1380 		block_start = block_end;
1381 		bh = bh->b_this_page;
1382 	} while (bh != head);
1383 }
1384 
1385 /*
1386  * Only called when we have a failure during allocating write to write
1387  * zero's to the newly allocated region.
1388  */
1389 static void ocfs2_write_failure(struct inode *inode,
1390 				struct ocfs2_write_ctxt *wc,
1391 				loff_t user_pos, unsigned user_len)
1392 {
1393 	int i;
1394 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1395 		to = user_pos + user_len;
1396 	struct page *tmppage;
1397 
1398 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1399 
1400 	for(i = 0; i < wc->w_num_pages; i++) {
1401 		tmppage = wc->w_pages[i];
1402 
1403 		if (page_has_buffers(tmppage)) {
1404 			if (ocfs2_should_order_data(inode))
1405 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1406 
1407 			block_commit_write(tmppage, from, to);
1408 		}
1409 	}
1410 }
1411 
1412 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1413 					struct ocfs2_write_ctxt *wc,
1414 					struct page *page, u32 cpos,
1415 					loff_t user_pos, unsigned user_len,
1416 					int new)
1417 {
1418 	int ret;
1419 	unsigned int map_from = 0, map_to = 0;
1420 	unsigned int cluster_start, cluster_end;
1421 	unsigned int user_data_from = 0, user_data_to = 0;
1422 
1423 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1424 					&cluster_start, &cluster_end);
1425 
1426 	/* treat the write as new if the a hole/lseek spanned across
1427 	 * the page boundary.
1428 	 */
1429 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1430 			(page_offset(page) <= user_pos));
1431 
1432 	if (page == wc->w_target_page) {
1433 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1434 		map_to = map_from + user_len;
1435 
1436 		if (new)
1437 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1438 						    cluster_start, cluster_end,
1439 						    new);
1440 		else
1441 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1442 						    map_from, map_to, new);
1443 		if (ret) {
1444 			mlog_errno(ret);
1445 			goto out;
1446 		}
1447 
1448 		user_data_from = map_from;
1449 		user_data_to = map_to;
1450 		if (new) {
1451 			map_from = cluster_start;
1452 			map_to = cluster_end;
1453 		}
1454 	} else {
1455 		/*
1456 		 * If we haven't allocated the new page yet, we
1457 		 * shouldn't be writing it out without copying user
1458 		 * data. This is likely a math error from the caller.
1459 		 */
1460 		BUG_ON(!new);
1461 
1462 		map_from = cluster_start;
1463 		map_to = cluster_end;
1464 
1465 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1466 					    cluster_start, cluster_end, new);
1467 		if (ret) {
1468 			mlog_errno(ret);
1469 			goto out;
1470 		}
1471 	}
1472 
1473 	/*
1474 	 * Parts of newly allocated pages need to be zero'd.
1475 	 *
1476 	 * Above, we have also rewritten 'to' and 'from' - as far as
1477 	 * the rest of the function is concerned, the entire cluster
1478 	 * range inside of a page needs to be written.
1479 	 *
1480 	 * We can skip this if the page is up to date - it's already
1481 	 * been zero'd from being read in as a hole.
1482 	 */
1483 	if (new && !PageUptodate(page))
1484 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1485 					 cpos, user_data_from, user_data_to);
1486 
1487 	flush_dcache_page(page);
1488 
1489 out:
1490 	return ret;
1491 }
1492 
1493 /*
1494  * This function will only grab one clusters worth of pages.
1495  */
1496 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1497 				      struct ocfs2_write_ctxt *wc,
1498 				      u32 cpos, loff_t user_pos,
1499 				      unsigned user_len, int new,
1500 				      struct page *mmap_page)
1501 {
1502 	int ret = 0, i;
1503 	unsigned long start, target_index, end_index, index;
1504 	struct inode *inode = mapping->host;
1505 	loff_t last_byte;
1506 
1507 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1508 
1509 	/*
1510 	 * Figure out how many pages we'll be manipulating here. For
1511 	 * non allocating write, we just change the one
1512 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1513 	 * writing past i_size, we only need enough pages to cover the
1514 	 * last page of the write.
1515 	 */
1516 	if (new) {
1517 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1518 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1519 		/*
1520 		 * We need the index *past* the last page we could possibly
1521 		 * touch.  This is the page past the end of the write or
1522 		 * i_size, whichever is greater.
1523 		 */
1524 		last_byte = max(user_pos + user_len, i_size_read(inode));
1525 		BUG_ON(last_byte < 1);
1526 		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1527 		if ((start + wc->w_num_pages) > end_index)
1528 			wc->w_num_pages = end_index - start;
1529 	} else {
1530 		wc->w_num_pages = 1;
1531 		start = target_index;
1532 	}
1533 
1534 	for(i = 0; i < wc->w_num_pages; i++) {
1535 		index = start + i;
1536 
1537 		if (index == target_index && mmap_page) {
1538 			/*
1539 			 * ocfs2_pagemkwrite() is a little different
1540 			 * and wants us to directly use the page
1541 			 * passed in.
1542 			 */
1543 			lock_page(mmap_page);
1544 
1545 			/* Exit and let the caller retry */
1546 			if (mmap_page->mapping != mapping) {
1547 				WARN_ON(mmap_page->mapping);
1548 				unlock_page(mmap_page);
1549 				ret = -EAGAIN;
1550 				goto out;
1551 			}
1552 
1553 			page_cache_get(mmap_page);
1554 			wc->w_pages[i] = mmap_page;
1555 			wc->w_target_locked = true;
1556 		} else {
1557 			wc->w_pages[i] = find_or_create_page(mapping, index,
1558 							     GFP_NOFS);
1559 			if (!wc->w_pages[i]) {
1560 				ret = -ENOMEM;
1561 				mlog_errno(ret);
1562 				goto out;
1563 			}
1564 		}
1565 		wait_for_stable_page(wc->w_pages[i]);
1566 
1567 		if (index == target_index)
1568 			wc->w_target_page = wc->w_pages[i];
1569 	}
1570 out:
1571 	if (ret)
1572 		wc->w_target_locked = false;
1573 	return ret;
1574 }
1575 
1576 /*
1577  * Prepare a single cluster for write one cluster into the file.
1578  */
1579 static int ocfs2_write_cluster(struct address_space *mapping,
1580 			       u32 phys, unsigned int unwritten,
1581 			       unsigned int should_zero,
1582 			       struct ocfs2_alloc_context *data_ac,
1583 			       struct ocfs2_alloc_context *meta_ac,
1584 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1585 			       loff_t user_pos, unsigned user_len)
1586 {
1587 	int ret, i, new;
1588 	u64 v_blkno, p_blkno;
1589 	struct inode *inode = mapping->host;
1590 	struct ocfs2_extent_tree et;
1591 
1592 	new = phys == 0 ? 1 : 0;
1593 	if (new) {
1594 		u32 tmp_pos;
1595 
1596 		/*
1597 		 * This is safe to call with the page locks - it won't take
1598 		 * any additional semaphores or cluster locks.
1599 		 */
1600 		tmp_pos = cpos;
1601 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1602 					   &tmp_pos, 1, 0, wc->w_di_bh,
1603 					   wc->w_handle, data_ac,
1604 					   meta_ac, NULL);
1605 		/*
1606 		 * This shouldn't happen because we must have already
1607 		 * calculated the correct meta data allocation required. The
1608 		 * internal tree allocation code should know how to increase
1609 		 * transaction credits itself.
1610 		 *
1611 		 * If need be, we could handle -EAGAIN for a
1612 		 * RESTART_TRANS here.
1613 		 */
1614 		mlog_bug_on_msg(ret == -EAGAIN,
1615 				"Inode %llu: EAGAIN return during allocation.\n",
1616 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1617 		if (ret < 0) {
1618 			mlog_errno(ret);
1619 			goto out;
1620 		}
1621 	} else if (unwritten) {
1622 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1623 					      wc->w_di_bh);
1624 		ret = ocfs2_mark_extent_written(inode, &et,
1625 						wc->w_handle, cpos, 1, phys,
1626 						meta_ac, &wc->w_dealloc);
1627 		if (ret < 0) {
1628 			mlog_errno(ret);
1629 			goto out;
1630 		}
1631 	}
1632 
1633 	if (should_zero)
1634 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1635 	else
1636 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1637 
1638 	/*
1639 	 * The only reason this should fail is due to an inability to
1640 	 * find the extent added.
1641 	 */
1642 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1643 					  NULL);
1644 	if (ret < 0) {
1645 		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1646 			    "at logical block %llu",
1647 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1648 			    (unsigned long long)v_blkno);
1649 		goto out;
1650 	}
1651 
1652 	BUG_ON(p_blkno == 0);
1653 
1654 	for(i = 0; i < wc->w_num_pages; i++) {
1655 		int tmpret;
1656 
1657 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1658 						      wc->w_pages[i], cpos,
1659 						      user_pos, user_len,
1660 						      should_zero);
1661 		if (tmpret) {
1662 			mlog_errno(tmpret);
1663 			if (ret == 0)
1664 				ret = tmpret;
1665 		}
1666 	}
1667 
1668 	/*
1669 	 * We only have cleanup to do in case of allocating write.
1670 	 */
1671 	if (ret && new)
1672 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1673 
1674 out:
1675 
1676 	return ret;
1677 }
1678 
1679 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1680 				       struct ocfs2_alloc_context *data_ac,
1681 				       struct ocfs2_alloc_context *meta_ac,
1682 				       struct ocfs2_write_ctxt *wc,
1683 				       loff_t pos, unsigned len)
1684 {
1685 	int ret, i;
1686 	loff_t cluster_off;
1687 	unsigned int local_len = len;
1688 	struct ocfs2_write_cluster_desc *desc;
1689 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1690 
1691 	for (i = 0; i < wc->w_clen; i++) {
1692 		desc = &wc->w_desc[i];
1693 
1694 		/*
1695 		 * We have to make sure that the total write passed in
1696 		 * doesn't extend past a single cluster.
1697 		 */
1698 		local_len = len;
1699 		cluster_off = pos & (osb->s_clustersize - 1);
1700 		if ((cluster_off + local_len) > osb->s_clustersize)
1701 			local_len = osb->s_clustersize - cluster_off;
1702 
1703 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1704 					  desc->c_unwritten,
1705 					  desc->c_needs_zero,
1706 					  data_ac, meta_ac,
1707 					  wc, desc->c_cpos, pos, local_len);
1708 		if (ret) {
1709 			mlog_errno(ret);
1710 			goto out;
1711 		}
1712 
1713 		len -= local_len;
1714 		pos += local_len;
1715 	}
1716 
1717 	ret = 0;
1718 out:
1719 	return ret;
1720 }
1721 
1722 /*
1723  * ocfs2_write_end() wants to know which parts of the target page it
1724  * should complete the write on. It's easiest to compute them ahead of
1725  * time when a more complete view of the write is available.
1726  */
1727 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1728 					struct ocfs2_write_ctxt *wc,
1729 					loff_t pos, unsigned len, int alloc)
1730 {
1731 	struct ocfs2_write_cluster_desc *desc;
1732 
1733 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1734 	wc->w_target_to = wc->w_target_from + len;
1735 
1736 	if (alloc == 0)
1737 		return;
1738 
1739 	/*
1740 	 * Allocating write - we may have different boundaries based
1741 	 * on page size and cluster size.
1742 	 *
1743 	 * NOTE: We can no longer compute one value from the other as
1744 	 * the actual write length and user provided length may be
1745 	 * different.
1746 	 */
1747 
1748 	if (wc->w_large_pages) {
1749 		/*
1750 		 * We only care about the 1st and last cluster within
1751 		 * our range and whether they should be zero'd or not. Either
1752 		 * value may be extended out to the start/end of a
1753 		 * newly allocated cluster.
1754 		 */
1755 		desc = &wc->w_desc[0];
1756 		if (desc->c_needs_zero)
1757 			ocfs2_figure_cluster_boundaries(osb,
1758 							desc->c_cpos,
1759 							&wc->w_target_from,
1760 							NULL);
1761 
1762 		desc = &wc->w_desc[wc->w_clen - 1];
1763 		if (desc->c_needs_zero)
1764 			ocfs2_figure_cluster_boundaries(osb,
1765 							desc->c_cpos,
1766 							NULL,
1767 							&wc->w_target_to);
1768 	} else {
1769 		wc->w_target_from = 0;
1770 		wc->w_target_to = PAGE_CACHE_SIZE;
1771 	}
1772 }
1773 
1774 /*
1775  * Populate each single-cluster write descriptor in the write context
1776  * with information about the i/o to be done.
1777  *
1778  * Returns the number of clusters that will have to be allocated, as
1779  * well as a worst case estimate of the number of extent records that
1780  * would have to be created during a write to an unwritten region.
1781  */
1782 static int ocfs2_populate_write_desc(struct inode *inode,
1783 				     struct ocfs2_write_ctxt *wc,
1784 				     unsigned int *clusters_to_alloc,
1785 				     unsigned int *extents_to_split)
1786 {
1787 	int ret;
1788 	struct ocfs2_write_cluster_desc *desc;
1789 	unsigned int num_clusters = 0;
1790 	unsigned int ext_flags = 0;
1791 	u32 phys = 0;
1792 	int i;
1793 
1794 	*clusters_to_alloc = 0;
1795 	*extents_to_split = 0;
1796 
1797 	for (i = 0; i < wc->w_clen; i++) {
1798 		desc = &wc->w_desc[i];
1799 		desc->c_cpos = wc->w_cpos + i;
1800 
1801 		if (num_clusters == 0) {
1802 			/*
1803 			 * Need to look up the next extent record.
1804 			 */
1805 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1806 						 &num_clusters, &ext_flags);
1807 			if (ret) {
1808 				mlog_errno(ret);
1809 				goto out;
1810 			}
1811 
1812 			/* We should already CoW the refcountd extent. */
1813 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1814 
1815 			/*
1816 			 * Assume worst case - that we're writing in
1817 			 * the middle of the extent.
1818 			 *
1819 			 * We can assume that the write proceeds from
1820 			 * left to right, in which case the extent
1821 			 * insert code is smart enough to coalesce the
1822 			 * next splits into the previous records created.
1823 			 */
1824 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1825 				*extents_to_split = *extents_to_split + 2;
1826 		} else if (phys) {
1827 			/*
1828 			 * Only increment phys if it doesn't describe
1829 			 * a hole.
1830 			 */
1831 			phys++;
1832 		}
1833 
1834 		/*
1835 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1836 		 * file that got extended.  w_first_new_cpos tells us
1837 		 * where the newly allocated clusters are so we can
1838 		 * zero them.
1839 		 */
1840 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1841 			BUG_ON(phys == 0);
1842 			desc->c_needs_zero = 1;
1843 		}
1844 
1845 		desc->c_phys = phys;
1846 		if (phys == 0) {
1847 			desc->c_new = 1;
1848 			desc->c_needs_zero = 1;
1849 			*clusters_to_alloc = *clusters_to_alloc + 1;
1850 		}
1851 
1852 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1853 			desc->c_unwritten = 1;
1854 			desc->c_needs_zero = 1;
1855 		}
1856 
1857 		num_clusters--;
1858 	}
1859 
1860 	ret = 0;
1861 out:
1862 	return ret;
1863 }
1864 
1865 static int ocfs2_write_begin_inline(struct address_space *mapping,
1866 				    struct inode *inode,
1867 				    struct ocfs2_write_ctxt *wc)
1868 {
1869 	int ret;
1870 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1871 	struct page *page;
1872 	handle_t *handle;
1873 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1874 
1875 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1876 	if (IS_ERR(handle)) {
1877 		ret = PTR_ERR(handle);
1878 		mlog_errno(ret);
1879 		goto out;
1880 	}
1881 
1882 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1883 	if (!page) {
1884 		ocfs2_commit_trans(osb, handle);
1885 		ret = -ENOMEM;
1886 		mlog_errno(ret);
1887 		goto out;
1888 	}
1889 	/*
1890 	 * If we don't set w_num_pages then this page won't get unlocked
1891 	 * and freed on cleanup of the write context.
1892 	 */
1893 	wc->w_pages[0] = wc->w_target_page = page;
1894 	wc->w_num_pages = 1;
1895 
1896 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1897 				      OCFS2_JOURNAL_ACCESS_WRITE);
1898 	if (ret) {
1899 		ocfs2_commit_trans(osb, handle);
1900 
1901 		mlog_errno(ret);
1902 		goto out;
1903 	}
1904 
1905 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1906 		ocfs2_set_inode_data_inline(inode, di);
1907 
1908 	if (!PageUptodate(page)) {
1909 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1910 		if (ret) {
1911 			ocfs2_commit_trans(osb, handle);
1912 
1913 			goto out;
1914 		}
1915 	}
1916 
1917 	wc->w_handle = handle;
1918 out:
1919 	return ret;
1920 }
1921 
1922 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1923 {
1924 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1925 
1926 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1927 		return 1;
1928 	return 0;
1929 }
1930 
1931 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1932 					  struct inode *inode, loff_t pos,
1933 					  unsigned len, struct page *mmap_page,
1934 					  struct ocfs2_write_ctxt *wc)
1935 {
1936 	int ret, written = 0;
1937 	loff_t end = pos + len;
1938 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1939 	struct ocfs2_dinode *di = NULL;
1940 
1941 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1942 					     len, (unsigned long long)pos,
1943 					     oi->ip_dyn_features);
1944 
1945 	/*
1946 	 * Handle inodes which already have inline data 1st.
1947 	 */
1948 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1949 		if (mmap_page == NULL &&
1950 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1951 			goto do_inline_write;
1952 
1953 		/*
1954 		 * The write won't fit - we have to give this inode an
1955 		 * inline extent list now.
1956 		 */
1957 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1958 		if (ret)
1959 			mlog_errno(ret);
1960 		goto out;
1961 	}
1962 
1963 	/*
1964 	 * Check whether the inode can accept inline data.
1965 	 */
1966 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1967 		return 0;
1968 
1969 	/*
1970 	 * Check whether the write can fit.
1971 	 */
1972 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1973 	if (mmap_page ||
1974 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1975 		return 0;
1976 
1977 do_inline_write:
1978 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1979 	if (ret) {
1980 		mlog_errno(ret);
1981 		goto out;
1982 	}
1983 
1984 	/*
1985 	 * This signals to the caller that the data can be written
1986 	 * inline.
1987 	 */
1988 	written = 1;
1989 out:
1990 	return written ? written : ret;
1991 }
1992 
1993 /*
1994  * This function only does anything for file systems which can't
1995  * handle sparse files.
1996  *
1997  * What we want to do here is fill in any hole between the current end
1998  * of allocation and the end of our write. That way the rest of the
1999  * write path can treat it as an non-allocating write, which has no
2000  * special case code for sparse/nonsparse files.
2001  */
2002 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
2003 					struct buffer_head *di_bh,
2004 					loff_t pos, unsigned len,
2005 					struct ocfs2_write_ctxt *wc)
2006 {
2007 	int ret;
2008 	loff_t newsize = pos + len;
2009 
2010 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2011 
2012 	if (newsize <= i_size_read(inode))
2013 		return 0;
2014 
2015 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
2016 	if (ret)
2017 		mlog_errno(ret);
2018 
2019 	wc->w_first_new_cpos =
2020 		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
2021 
2022 	return ret;
2023 }
2024 
2025 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2026 			   loff_t pos)
2027 {
2028 	int ret = 0;
2029 
2030 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2031 	if (pos > i_size_read(inode))
2032 		ret = ocfs2_zero_extend(inode, di_bh, pos);
2033 
2034 	return ret;
2035 }
2036 
2037 /*
2038  * Try to flush truncate logs if we can free enough clusters from it.
2039  * As for return value, "< 0" means error, "0" no space and "1" means
2040  * we have freed enough spaces and let the caller try to allocate again.
2041  */
2042 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2043 					  unsigned int needed)
2044 {
2045 	tid_t target;
2046 	int ret = 0;
2047 	unsigned int truncated_clusters;
2048 
2049 	inode_lock(osb->osb_tl_inode);
2050 	truncated_clusters = osb->truncated_clusters;
2051 	inode_unlock(osb->osb_tl_inode);
2052 
2053 	/*
2054 	 * Check whether we can succeed in allocating if we free
2055 	 * the truncate log.
2056 	 */
2057 	if (truncated_clusters < needed)
2058 		goto out;
2059 
2060 	ret = ocfs2_flush_truncate_log(osb);
2061 	if (ret) {
2062 		mlog_errno(ret);
2063 		goto out;
2064 	}
2065 
2066 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2067 		jbd2_log_wait_commit(osb->journal->j_journal, target);
2068 		ret = 1;
2069 	}
2070 out:
2071 	return ret;
2072 }
2073 
2074 int ocfs2_write_begin_nolock(struct file *filp,
2075 			     struct address_space *mapping,
2076 			     loff_t pos, unsigned len, unsigned flags,
2077 			     struct page **pagep, void **fsdata,
2078 			     struct buffer_head *di_bh, struct page *mmap_page)
2079 {
2080 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2081 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2082 	struct ocfs2_write_ctxt *wc;
2083 	struct inode *inode = mapping->host;
2084 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2085 	struct ocfs2_dinode *di;
2086 	struct ocfs2_alloc_context *data_ac = NULL;
2087 	struct ocfs2_alloc_context *meta_ac = NULL;
2088 	handle_t *handle;
2089 	struct ocfs2_extent_tree et;
2090 	int try_free = 1, ret1;
2091 
2092 try_again:
2093 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2094 	if (ret) {
2095 		mlog_errno(ret);
2096 		return ret;
2097 	}
2098 
2099 	if (ocfs2_supports_inline_data(osb)) {
2100 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2101 						     mmap_page, wc);
2102 		if (ret == 1) {
2103 			ret = 0;
2104 			goto success;
2105 		}
2106 		if (ret < 0) {
2107 			mlog_errno(ret);
2108 			goto out;
2109 		}
2110 	}
2111 
2112 	if (ocfs2_sparse_alloc(osb))
2113 		ret = ocfs2_zero_tail(inode, di_bh, pos);
2114 	else
2115 		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2116 						   wc);
2117 	if (ret) {
2118 		mlog_errno(ret);
2119 		goto out;
2120 	}
2121 
2122 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
2123 	if (ret < 0) {
2124 		mlog_errno(ret);
2125 		goto out;
2126 	} else if (ret == 1) {
2127 		clusters_need = wc->w_clen;
2128 		ret = ocfs2_refcount_cow(inode, di_bh,
2129 					 wc->w_cpos, wc->w_clen, UINT_MAX);
2130 		if (ret) {
2131 			mlog_errno(ret);
2132 			goto out;
2133 		}
2134 	}
2135 
2136 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2137 					&extents_to_split);
2138 	if (ret) {
2139 		mlog_errno(ret);
2140 		goto out;
2141 	}
2142 	clusters_need += clusters_to_alloc;
2143 
2144 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2145 
2146 	trace_ocfs2_write_begin_nolock(
2147 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2148 			(long long)i_size_read(inode),
2149 			le32_to_cpu(di->i_clusters),
2150 			pos, len, flags, mmap_page,
2151 			clusters_to_alloc, extents_to_split);
2152 
2153 	/*
2154 	 * We set w_target_from, w_target_to here so that
2155 	 * ocfs2_write_end() knows which range in the target page to
2156 	 * write out. An allocation requires that we write the entire
2157 	 * cluster range.
2158 	 */
2159 	if (clusters_to_alloc || extents_to_split) {
2160 		/*
2161 		 * XXX: We are stretching the limits of
2162 		 * ocfs2_lock_allocators(). It greatly over-estimates
2163 		 * the work to be done.
2164 		 */
2165 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2166 					      wc->w_di_bh);
2167 		ret = ocfs2_lock_allocators(inode, &et,
2168 					    clusters_to_alloc, extents_to_split,
2169 					    &data_ac, &meta_ac);
2170 		if (ret) {
2171 			mlog_errno(ret);
2172 			goto out;
2173 		}
2174 
2175 		if (data_ac)
2176 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2177 
2178 		credits = ocfs2_calc_extend_credits(inode->i_sb,
2179 						    &di->id2.i_list);
2180 
2181 	}
2182 
2183 	/*
2184 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
2185 	 * and non-sparse clusters we just extended.  For non-sparse writes,
2186 	 * we know zeros will only be needed in the first and/or last cluster.
2187 	 */
2188 	if (clusters_to_alloc || extents_to_split ||
2189 	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2190 			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2191 		cluster_of_pages = 1;
2192 	else
2193 		cluster_of_pages = 0;
2194 
2195 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2196 
2197 	handle = ocfs2_start_trans(osb, credits);
2198 	if (IS_ERR(handle)) {
2199 		ret = PTR_ERR(handle);
2200 		mlog_errno(ret);
2201 		goto out;
2202 	}
2203 
2204 	wc->w_handle = handle;
2205 
2206 	if (clusters_to_alloc) {
2207 		ret = dquot_alloc_space_nodirty(inode,
2208 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2209 		if (ret)
2210 			goto out_commit;
2211 	}
2212 
2213 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2214 				      OCFS2_JOURNAL_ACCESS_WRITE);
2215 	if (ret) {
2216 		mlog_errno(ret);
2217 		goto out_quota;
2218 	}
2219 
2220 	/*
2221 	 * Fill our page array first. That way we've grabbed enough so
2222 	 * that we can zero and flush if we error after adding the
2223 	 * extent.
2224 	 */
2225 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2226 					 cluster_of_pages, mmap_page);
2227 	if (ret && ret != -EAGAIN) {
2228 		mlog_errno(ret);
2229 		goto out_quota;
2230 	}
2231 
2232 	/*
2233 	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2234 	 * the target page. In this case, we exit with no error and no target
2235 	 * page. This will trigger the caller, page_mkwrite(), to re-try
2236 	 * the operation.
2237 	 */
2238 	if (ret == -EAGAIN) {
2239 		BUG_ON(wc->w_target_page);
2240 		ret = 0;
2241 		goto out_quota;
2242 	}
2243 
2244 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2245 					  len);
2246 	if (ret) {
2247 		mlog_errno(ret);
2248 		goto out_quota;
2249 	}
2250 
2251 	if (data_ac)
2252 		ocfs2_free_alloc_context(data_ac);
2253 	if (meta_ac)
2254 		ocfs2_free_alloc_context(meta_ac);
2255 
2256 success:
2257 	*pagep = wc->w_target_page;
2258 	*fsdata = wc;
2259 	return 0;
2260 out_quota:
2261 	if (clusters_to_alloc)
2262 		dquot_free_space(inode,
2263 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2264 out_commit:
2265 	ocfs2_commit_trans(osb, handle);
2266 
2267 out:
2268 	ocfs2_free_write_ctxt(wc);
2269 
2270 	if (data_ac) {
2271 		ocfs2_free_alloc_context(data_ac);
2272 		data_ac = NULL;
2273 	}
2274 	if (meta_ac) {
2275 		ocfs2_free_alloc_context(meta_ac);
2276 		meta_ac = NULL;
2277 	}
2278 
2279 	if (ret == -ENOSPC && try_free) {
2280 		/*
2281 		 * Try to free some truncate log so that we can have enough
2282 		 * clusters to allocate.
2283 		 */
2284 		try_free = 0;
2285 
2286 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2287 		if (ret1 == 1)
2288 			goto try_again;
2289 
2290 		if (ret1 < 0)
2291 			mlog_errno(ret1);
2292 	}
2293 
2294 	return ret;
2295 }
2296 
2297 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2298 			     loff_t pos, unsigned len, unsigned flags,
2299 			     struct page **pagep, void **fsdata)
2300 {
2301 	int ret;
2302 	struct buffer_head *di_bh = NULL;
2303 	struct inode *inode = mapping->host;
2304 
2305 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2306 	if (ret) {
2307 		mlog_errno(ret);
2308 		return ret;
2309 	}
2310 
2311 	/*
2312 	 * Take alloc sem here to prevent concurrent lookups. That way
2313 	 * the mapping, zeroing and tree manipulation within
2314 	 * ocfs2_write() will be safe against ->readpage(). This
2315 	 * should also serve to lock out allocation from a shared
2316 	 * writeable region.
2317 	 */
2318 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
2319 
2320 	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2321 				       fsdata, di_bh, NULL);
2322 	if (ret) {
2323 		mlog_errno(ret);
2324 		goto out_fail;
2325 	}
2326 
2327 	brelse(di_bh);
2328 
2329 	return 0;
2330 
2331 out_fail:
2332 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2333 
2334 	brelse(di_bh);
2335 	ocfs2_inode_unlock(inode, 1);
2336 
2337 	return ret;
2338 }
2339 
2340 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2341 				   unsigned len, unsigned *copied,
2342 				   struct ocfs2_dinode *di,
2343 				   struct ocfs2_write_ctxt *wc)
2344 {
2345 	void *kaddr;
2346 
2347 	if (unlikely(*copied < len)) {
2348 		if (!PageUptodate(wc->w_target_page)) {
2349 			*copied = 0;
2350 			return;
2351 		}
2352 	}
2353 
2354 	kaddr = kmap_atomic(wc->w_target_page);
2355 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2356 	kunmap_atomic(kaddr);
2357 
2358 	trace_ocfs2_write_end_inline(
2359 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2360 	     (unsigned long long)pos, *copied,
2361 	     le16_to_cpu(di->id2.i_data.id_count),
2362 	     le16_to_cpu(di->i_dyn_features));
2363 }
2364 
2365 int ocfs2_write_end_nolock(struct address_space *mapping,
2366 			   loff_t pos, unsigned len, unsigned copied,
2367 			   struct page *page, void *fsdata)
2368 {
2369 	int i, ret;
2370 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2371 	struct inode *inode = mapping->host;
2372 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2373 	struct ocfs2_write_ctxt *wc = fsdata;
2374 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2375 	handle_t *handle = wc->w_handle;
2376 	struct page *tmppage;
2377 
2378 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2379 			OCFS2_JOURNAL_ACCESS_WRITE);
2380 	if (ret) {
2381 		copied = ret;
2382 		mlog_errno(ret);
2383 		goto out;
2384 	}
2385 
2386 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2387 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2388 		goto out_write_size;
2389 	}
2390 
2391 	if (unlikely(copied < len)) {
2392 		if (!PageUptodate(wc->w_target_page))
2393 			copied = 0;
2394 
2395 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2396 				       start+len);
2397 	}
2398 	flush_dcache_page(wc->w_target_page);
2399 
2400 	for(i = 0; i < wc->w_num_pages; i++) {
2401 		tmppage = wc->w_pages[i];
2402 
2403 		if (tmppage == wc->w_target_page) {
2404 			from = wc->w_target_from;
2405 			to = wc->w_target_to;
2406 
2407 			BUG_ON(from > PAGE_CACHE_SIZE ||
2408 			       to > PAGE_CACHE_SIZE ||
2409 			       to < from);
2410 		} else {
2411 			/*
2412 			 * Pages adjacent to the target (if any) imply
2413 			 * a hole-filling write in which case we want
2414 			 * to flush their entire range.
2415 			 */
2416 			from = 0;
2417 			to = PAGE_CACHE_SIZE;
2418 		}
2419 
2420 		if (page_has_buffers(tmppage)) {
2421 			if (ocfs2_should_order_data(inode))
2422 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
2423 			block_commit_write(tmppage, from, to);
2424 		}
2425 	}
2426 
2427 out_write_size:
2428 	pos += copied;
2429 	if (pos > i_size_read(inode)) {
2430 		i_size_write(inode, pos);
2431 		mark_inode_dirty(inode);
2432 	}
2433 	inode->i_blocks = ocfs2_inode_sector_count(inode);
2434 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2435 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2436 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2437 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2438 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
2439 	ocfs2_journal_dirty(handle, wc->w_di_bh);
2440 
2441 out:
2442 	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2443 	 * lock, or it will cause a deadlock since journal commit threads holds
2444 	 * this lock and will ask for the page lock when flushing the data.
2445 	 * put it here to preserve the unlock order.
2446 	 */
2447 	ocfs2_unlock_pages(wc);
2448 
2449 	ocfs2_commit_trans(osb, handle);
2450 
2451 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2452 
2453 	brelse(wc->w_di_bh);
2454 	kfree(wc);
2455 
2456 	return copied;
2457 }
2458 
2459 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2460 			   loff_t pos, unsigned len, unsigned copied,
2461 			   struct page *page, void *fsdata)
2462 {
2463 	int ret;
2464 	struct inode *inode = mapping->host;
2465 
2466 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2467 
2468 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2469 	ocfs2_inode_unlock(inode, 1);
2470 
2471 	return ret;
2472 }
2473 
2474 const struct address_space_operations ocfs2_aops = {
2475 	.readpage		= ocfs2_readpage,
2476 	.readpages		= ocfs2_readpages,
2477 	.writepage		= ocfs2_writepage,
2478 	.write_begin		= ocfs2_write_begin,
2479 	.write_end		= ocfs2_write_end,
2480 	.bmap			= ocfs2_bmap,
2481 	.direct_IO		= ocfs2_direct_IO,
2482 	.invalidatepage		= block_invalidatepage,
2483 	.releasepage		= ocfs2_releasepage,
2484 	.migratepage		= buffer_migrate_page,
2485 	.is_partially_uptodate	= block_is_partially_uptodate,
2486 	.error_remove_page	= generic_error_remove_page,
2487 };
2488