xref: /openbmc/linux/fs/ocfs2/aops.c (revision 6ecc07b9)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 
32 #include <cluster/masklog.h>
33 
34 #include "ocfs2.h"
35 
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
48 
49 #include "buffer_head_io.h"
50 
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 				   struct buffer_head *bh_result, int create)
53 {
54 	int err = -EIO;
55 	int status;
56 	struct ocfs2_dinode *fe = NULL;
57 	struct buffer_head *bh = NULL;
58 	struct buffer_head *buffer_cache_bh = NULL;
59 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 	void *kaddr;
61 
62 	trace_ocfs2_symlink_get_block(
63 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
64 			(unsigned long long)iblock, bh_result, create);
65 
66 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67 
68 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 		     (unsigned long long)iblock);
71 		goto bail;
72 	}
73 
74 	status = ocfs2_read_inode_block(inode, &bh);
75 	if (status < 0) {
76 		mlog_errno(status);
77 		goto bail;
78 	}
79 	fe = (struct ocfs2_dinode *) bh->b_data;
80 
81 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 						    le32_to_cpu(fe->i_clusters))) {
83 		mlog(ML_ERROR, "block offset is outside the allocated size: "
84 		     "%llu\n", (unsigned long long)iblock);
85 		goto bail;
86 	}
87 
88 	/* We don't use the page cache to create symlink data, so if
89 	 * need be, copy it over from the buffer cache. */
90 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 			    iblock;
93 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 		if (!buffer_cache_bh) {
95 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 			goto bail;
97 		}
98 
99 		/* we haven't locked out transactions, so a commit
100 		 * could've happened. Since we've got a reference on
101 		 * the bh, even if it commits while we're doing the
102 		 * copy, the data is still good. */
103 		if (buffer_jbd(buffer_cache_bh)
104 		    && ocfs2_inode_is_new(inode)) {
105 			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
106 			if (!kaddr) {
107 				mlog(ML_ERROR, "couldn't kmap!\n");
108 				goto bail;
109 			}
110 			memcpy(kaddr + (bh_result->b_size * iblock),
111 			       buffer_cache_bh->b_data,
112 			       bh_result->b_size);
113 			kunmap_atomic(kaddr, KM_USER0);
114 			set_buffer_uptodate(bh_result);
115 		}
116 		brelse(buffer_cache_bh);
117 	}
118 
119 	map_bh(bh_result, inode->i_sb,
120 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121 
122 	err = 0;
123 
124 bail:
125 	brelse(bh);
126 
127 	return err;
128 }
129 
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 		    struct buffer_head *bh_result, int create)
132 {
133 	int err = 0;
134 	unsigned int ext_flags;
135 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 	u64 p_blkno, count, past_eof;
137 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138 
139 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 			      (unsigned long long)iblock, bh_result, create);
141 
142 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 		     inode, inode->i_ino);
145 
146 	if (S_ISLNK(inode->i_mode)) {
147 		/* this always does I/O for some reason. */
148 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 		goto bail;
150 	}
151 
152 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 					  &ext_flags);
154 	if (err) {
155 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 		     (unsigned long long)p_blkno);
158 		goto bail;
159 	}
160 
161 	if (max_blocks < count)
162 		count = max_blocks;
163 
164 	/*
165 	 * ocfs2 never allocates in this function - the only time we
166 	 * need to use BH_New is when we're extending i_size on a file
167 	 * system which doesn't support holes, in which case BH_New
168 	 * allows __block_write_begin() to zero.
169 	 *
170 	 * If we see this on a sparse file system, then a truncate has
171 	 * raced us and removed the cluster. In this case, we clear
172 	 * the buffers dirty and uptodate bits and let the buffer code
173 	 * ignore it as a hole.
174 	 */
175 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 		clear_buffer_dirty(bh_result);
177 		clear_buffer_uptodate(bh_result);
178 		goto bail;
179 	}
180 
181 	/* Treat the unwritten extent as a hole for zeroing purposes. */
182 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 		map_bh(bh_result, inode->i_sb, p_blkno);
184 
185 	bh_result->b_size = count << inode->i_blkbits;
186 
187 	if (!ocfs2_sparse_alloc(osb)) {
188 		if (p_blkno == 0) {
189 			err = -EIO;
190 			mlog(ML_ERROR,
191 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 			     (unsigned long long)iblock,
193 			     (unsigned long long)p_blkno,
194 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 			dump_stack();
197 			goto bail;
198 		}
199 	}
200 
201 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202 
203 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 				  (unsigned long long)past_eof);
205 	if (create && (iblock >= past_eof))
206 		set_buffer_new(bh_result);
207 
208 bail:
209 	if (err < 0)
210 		err = -EIO;
211 
212 	return err;
213 }
214 
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 			   struct buffer_head *di_bh)
217 {
218 	void *kaddr;
219 	loff_t size;
220 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221 
222 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 		return -EROFS;
226 	}
227 
228 	size = i_size_read(inode);
229 
230 	if (size > PAGE_CACHE_SIZE ||
231 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 		ocfs2_error(inode->i_sb,
233 			    "Inode %llu has with inline data has bad size: %Lu",
234 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 			    (unsigned long long)size);
236 		return -EROFS;
237 	}
238 
239 	kaddr = kmap_atomic(page, KM_USER0);
240 	if (size)
241 		memcpy(kaddr, di->id2.i_data.id_data, size);
242 	/* Clear the remaining part of the page */
243 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 	flush_dcache_page(page);
245 	kunmap_atomic(kaddr, KM_USER0);
246 
247 	SetPageUptodate(page);
248 
249 	return 0;
250 }
251 
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253 {
254 	int ret;
255 	struct buffer_head *di_bh = NULL;
256 
257 	BUG_ON(!PageLocked(page));
258 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259 
260 	ret = ocfs2_read_inode_block(inode, &di_bh);
261 	if (ret) {
262 		mlog_errno(ret);
263 		goto out;
264 	}
265 
266 	ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268 	unlock_page(page);
269 
270 	brelse(di_bh);
271 	return ret;
272 }
273 
274 static int ocfs2_readpage(struct file *file, struct page *page)
275 {
276 	struct inode *inode = page->mapping->host;
277 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 	int ret, unlock = 1;
280 
281 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 			     (page ? page->index : 0));
283 
284 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 	if (ret != 0) {
286 		if (ret == AOP_TRUNCATED_PAGE)
287 			unlock = 0;
288 		mlog_errno(ret);
289 		goto out;
290 	}
291 
292 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293 		ret = AOP_TRUNCATED_PAGE;
294 		goto out_inode_unlock;
295 	}
296 
297 	/*
298 	 * i_size might have just been updated as we grabed the meta lock.  We
299 	 * might now be discovering a truncate that hit on another node.
300 	 * block_read_full_page->get_block freaks out if it is asked to read
301 	 * beyond the end of a file, so we check here.  Callers
302 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303 	 * and notice that the page they just read isn't needed.
304 	 *
305 	 * XXX sys_readahead() seems to get that wrong?
306 	 */
307 	if (start >= i_size_read(inode)) {
308 		zero_user(page, 0, PAGE_SIZE);
309 		SetPageUptodate(page);
310 		ret = 0;
311 		goto out_alloc;
312 	}
313 
314 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315 		ret = ocfs2_readpage_inline(inode, page);
316 	else
317 		ret = block_read_full_page(page, ocfs2_get_block);
318 	unlock = 0;
319 
320 out_alloc:
321 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
322 out_inode_unlock:
323 	ocfs2_inode_unlock(inode, 0);
324 out:
325 	if (unlock)
326 		unlock_page(page);
327 	return ret;
328 }
329 
330 /*
331  * This is used only for read-ahead. Failures or difficult to handle
332  * situations are safe to ignore.
333  *
334  * Right now, we don't bother with BH_Boundary - in-inode extent lists
335  * are quite large (243 extents on 4k blocks), so most inodes don't
336  * grow out to a tree. If need be, detecting boundary extents could
337  * trivially be added in a future version of ocfs2_get_block().
338  */
339 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 			   struct list_head *pages, unsigned nr_pages)
341 {
342 	int ret, err = -EIO;
343 	struct inode *inode = mapping->host;
344 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 	loff_t start;
346 	struct page *last;
347 
348 	/*
349 	 * Use the nonblocking flag for the dlm code to avoid page
350 	 * lock inversion, but don't bother with retrying.
351 	 */
352 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 	if (ret)
354 		return err;
355 
356 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 		ocfs2_inode_unlock(inode, 0);
358 		return err;
359 	}
360 
361 	/*
362 	 * Don't bother with inline-data. There isn't anything
363 	 * to read-ahead in that case anyway...
364 	 */
365 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 		goto out_unlock;
367 
368 	/*
369 	 * Check whether a remote node truncated this file - we just
370 	 * drop out in that case as it's not worth handling here.
371 	 */
372 	last = list_entry(pages->prev, struct page, lru);
373 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 	if (start >= i_size_read(inode))
375 		goto out_unlock;
376 
377 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378 
379 out_unlock:
380 	up_read(&oi->ip_alloc_sem);
381 	ocfs2_inode_unlock(inode, 0);
382 
383 	return err;
384 }
385 
386 /* Note: Because we don't support holes, our allocation has
387  * already happened (allocation writes zeros to the file data)
388  * so we don't have to worry about ordered writes in
389  * ocfs2_writepage.
390  *
391  * ->writepage is called during the process of invalidating the page cache
392  * during blocked lock processing.  It can't block on any cluster locks
393  * to during block mapping.  It's relying on the fact that the block
394  * mapping can't have disappeared under the dirty pages that it is
395  * being asked to write back.
396  */
397 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398 {
399 	trace_ocfs2_writepage(
400 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
401 		page->index);
402 
403 	return block_write_full_page(page, ocfs2_get_block, wbc);
404 }
405 
406 /* Taken from ext3. We don't necessarily need the full blown
407  * functionality yet, but IMHO it's better to cut and paste the whole
408  * thing so we can avoid introducing our own bugs (and easily pick up
409  * their fixes when they happen) --Mark */
410 int walk_page_buffers(	handle_t *handle,
411 			struct buffer_head *head,
412 			unsigned from,
413 			unsigned to,
414 			int *partial,
415 			int (*fn)(	handle_t *handle,
416 					struct buffer_head *bh))
417 {
418 	struct buffer_head *bh;
419 	unsigned block_start, block_end;
420 	unsigned blocksize = head->b_size;
421 	int err, ret = 0;
422 	struct buffer_head *next;
423 
424 	for (	bh = head, block_start = 0;
425 		ret == 0 && (bh != head || !block_start);
426 	    	block_start = block_end, bh = next)
427 	{
428 		next = bh->b_this_page;
429 		block_end = block_start + blocksize;
430 		if (block_end <= from || block_start >= to) {
431 			if (partial && !buffer_uptodate(bh))
432 				*partial = 1;
433 			continue;
434 		}
435 		err = (*fn)(handle, bh);
436 		if (!ret)
437 			ret = err;
438 	}
439 	return ret;
440 }
441 
442 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
443 {
444 	sector_t status;
445 	u64 p_blkno = 0;
446 	int err = 0;
447 	struct inode *inode = mapping->host;
448 
449 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
450 			 (unsigned long long)block);
451 
452 	/* We don't need to lock journal system files, since they aren't
453 	 * accessed concurrently from multiple nodes.
454 	 */
455 	if (!INODE_JOURNAL(inode)) {
456 		err = ocfs2_inode_lock(inode, NULL, 0);
457 		if (err) {
458 			if (err != -ENOENT)
459 				mlog_errno(err);
460 			goto bail;
461 		}
462 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
463 	}
464 
465 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
466 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
467 						  NULL);
468 
469 	if (!INODE_JOURNAL(inode)) {
470 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
471 		ocfs2_inode_unlock(inode, 0);
472 	}
473 
474 	if (err) {
475 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
476 		     (unsigned long long)block);
477 		mlog_errno(err);
478 		goto bail;
479 	}
480 
481 bail:
482 	status = err ? 0 : p_blkno;
483 
484 	return status;
485 }
486 
487 /*
488  * TODO: Make this into a generic get_blocks function.
489  *
490  * From do_direct_io in direct-io.c:
491  *  "So what we do is to permit the ->get_blocks function to populate
492  *   bh.b_size with the size of IO which is permitted at this offset and
493  *   this i_blkbits."
494  *
495  * This function is called directly from get_more_blocks in direct-io.c.
496  *
497  * called like this: dio->get_blocks(dio->inode, fs_startblk,
498  * 					fs_count, map_bh, dio->rw == WRITE);
499  *
500  * Note that we never bother to allocate blocks here, and thus ignore the
501  * create argument.
502  */
503 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
504 				     struct buffer_head *bh_result, int create)
505 {
506 	int ret;
507 	u64 p_blkno, inode_blocks, contig_blocks;
508 	unsigned int ext_flags;
509 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
510 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
511 
512 	/* This function won't even be called if the request isn't all
513 	 * nicely aligned and of the right size, so there's no need
514 	 * for us to check any of that. */
515 
516 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
517 
518 	/* This figures out the size of the next contiguous block, and
519 	 * our logical offset */
520 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
521 					  &contig_blocks, &ext_flags);
522 	if (ret) {
523 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
524 		     (unsigned long long)iblock);
525 		ret = -EIO;
526 		goto bail;
527 	}
528 
529 	/* We should already CoW the refcounted extent in case of create. */
530 	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
531 
532 	/*
533 	 * get_more_blocks() expects us to describe a hole by clearing
534 	 * the mapped bit on bh_result().
535 	 *
536 	 * Consider an unwritten extent as a hole.
537 	 */
538 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
539 		map_bh(bh_result, inode->i_sb, p_blkno);
540 	else
541 		clear_buffer_mapped(bh_result);
542 
543 	/* make sure we don't map more than max_blocks blocks here as
544 	   that's all the kernel will handle at this point. */
545 	if (max_blocks < contig_blocks)
546 		contig_blocks = max_blocks;
547 	bh_result->b_size = contig_blocks << blocksize_bits;
548 bail:
549 	return ret;
550 }
551 
552 /*
553  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
554  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
555  * to protect io on one node from truncation on another.
556  */
557 static void ocfs2_dio_end_io(struct kiocb *iocb,
558 			     loff_t offset,
559 			     ssize_t bytes,
560 			     void *private,
561 			     int ret,
562 			     bool is_async)
563 {
564 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
565 	int level;
566 
567 	/* this io's submitter should not have unlocked this before we could */
568 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
569 
570 	if (ocfs2_iocb_is_sem_locked(iocb))
571 		ocfs2_iocb_clear_sem_locked(iocb);
572 
573 	ocfs2_iocb_clear_rw_locked(iocb);
574 
575 	level = ocfs2_iocb_rw_locked_level(iocb);
576 	ocfs2_rw_unlock(inode, level);
577 
578 	if (is_async)
579 		aio_complete(iocb, ret, 0);
580 	inode_dio_done(inode);
581 }
582 
583 /*
584  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
585  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
586  * do journalled data.
587  */
588 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
589 {
590 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
591 
592 	jbd2_journal_invalidatepage(journal, page, offset);
593 }
594 
595 static int ocfs2_releasepage(struct page *page, gfp_t wait)
596 {
597 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
598 
599 	if (!page_has_buffers(page))
600 		return 0;
601 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
602 }
603 
604 static ssize_t ocfs2_direct_IO(int rw,
605 			       struct kiocb *iocb,
606 			       const struct iovec *iov,
607 			       loff_t offset,
608 			       unsigned long nr_segs)
609 {
610 	struct file *file = iocb->ki_filp;
611 	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
612 
613 	/*
614 	 * Fallback to buffered I/O if we see an inode without
615 	 * extents.
616 	 */
617 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
618 		return 0;
619 
620 	/* Fallback to buffered I/O if we are appending. */
621 	if (i_size_read(inode) <= offset)
622 		return 0;
623 
624 	return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
625 				    iov, offset, nr_segs,
626 				    ocfs2_direct_IO_get_blocks,
627 				    ocfs2_dio_end_io, NULL, 0);
628 }
629 
630 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
631 					    u32 cpos,
632 					    unsigned int *start,
633 					    unsigned int *end)
634 {
635 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
636 
637 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
638 		unsigned int cpp;
639 
640 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
641 
642 		cluster_start = cpos % cpp;
643 		cluster_start = cluster_start << osb->s_clustersize_bits;
644 
645 		cluster_end = cluster_start + osb->s_clustersize;
646 	}
647 
648 	BUG_ON(cluster_start > PAGE_SIZE);
649 	BUG_ON(cluster_end > PAGE_SIZE);
650 
651 	if (start)
652 		*start = cluster_start;
653 	if (end)
654 		*end = cluster_end;
655 }
656 
657 /*
658  * 'from' and 'to' are the region in the page to avoid zeroing.
659  *
660  * If pagesize > clustersize, this function will avoid zeroing outside
661  * of the cluster boundary.
662  *
663  * from == to == 0 is code for "zero the entire cluster region"
664  */
665 static void ocfs2_clear_page_regions(struct page *page,
666 				     struct ocfs2_super *osb, u32 cpos,
667 				     unsigned from, unsigned to)
668 {
669 	void *kaddr;
670 	unsigned int cluster_start, cluster_end;
671 
672 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
673 
674 	kaddr = kmap_atomic(page, KM_USER0);
675 
676 	if (from || to) {
677 		if (from > cluster_start)
678 			memset(kaddr + cluster_start, 0, from - cluster_start);
679 		if (to < cluster_end)
680 			memset(kaddr + to, 0, cluster_end - to);
681 	} else {
682 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
683 	}
684 
685 	kunmap_atomic(kaddr, KM_USER0);
686 }
687 
688 /*
689  * Nonsparse file systems fully allocate before we get to the write
690  * code. This prevents ocfs2_write() from tagging the write as an
691  * allocating one, which means ocfs2_map_page_blocks() might try to
692  * read-in the blocks at the tail of our file. Avoid reading them by
693  * testing i_size against each block offset.
694  */
695 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
696 				 unsigned int block_start)
697 {
698 	u64 offset = page_offset(page) + block_start;
699 
700 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
701 		return 1;
702 
703 	if (i_size_read(inode) > offset)
704 		return 1;
705 
706 	return 0;
707 }
708 
709 /*
710  * Some of this taken from __block_write_begin(). We already have our
711  * mapping by now though, and the entire write will be allocating or
712  * it won't, so not much need to use BH_New.
713  *
714  * This will also skip zeroing, which is handled externally.
715  */
716 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
717 			  struct inode *inode, unsigned int from,
718 			  unsigned int to, int new)
719 {
720 	int ret = 0;
721 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
722 	unsigned int block_end, block_start;
723 	unsigned int bsize = 1 << inode->i_blkbits;
724 
725 	if (!page_has_buffers(page))
726 		create_empty_buffers(page, bsize, 0);
727 
728 	head = page_buffers(page);
729 	for (bh = head, block_start = 0; bh != head || !block_start;
730 	     bh = bh->b_this_page, block_start += bsize) {
731 		block_end = block_start + bsize;
732 
733 		clear_buffer_new(bh);
734 
735 		/*
736 		 * Ignore blocks outside of our i/o range -
737 		 * they may belong to unallocated clusters.
738 		 */
739 		if (block_start >= to || block_end <= from) {
740 			if (PageUptodate(page))
741 				set_buffer_uptodate(bh);
742 			continue;
743 		}
744 
745 		/*
746 		 * For an allocating write with cluster size >= page
747 		 * size, we always write the entire page.
748 		 */
749 		if (new)
750 			set_buffer_new(bh);
751 
752 		if (!buffer_mapped(bh)) {
753 			map_bh(bh, inode->i_sb, *p_blkno);
754 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
755 		}
756 
757 		if (PageUptodate(page)) {
758 			if (!buffer_uptodate(bh))
759 				set_buffer_uptodate(bh);
760 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
761 			   !buffer_new(bh) &&
762 			   ocfs2_should_read_blk(inode, page, block_start) &&
763 			   (block_start < from || block_end > to)) {
764 			ll_rw_block(READ, 1, &bh);
765 			*wait_bh++=bh;
766 		}
767 
768 		*p_blkno = *p_blkno + 1;
769 	}
770 
771 	/*
772 	 * If we issued read requests - let them complete.
773 	 */
774 	while(wait_bh > wait) {
775 		wait_on_buffer(*--wait_bh);
776 		if (!buffer_uptodate(*wait_bh))
777 			ret = -EIO;
778 	}
779 
780 	if (ret == 0 || !new)
781 		return ret;
782 
783 	/*
784 	 * If we get -EIO above, zero out any newly allocated blocks
785 	 * to avoid exposing stale data.
786 	 */
787 	bh = head;
788 	block_start = 0;
789 	do {
790 		block_end = block_start + bsize;
791 		if (block_end <= from)
792 			goto next_bh;
793 		if (block_start >= to)
794 			break;
795 
796 		zero_user(page, block_start, bh->b_size);
797 		set_buffer_uptodate(bh);
798 		mark_buffer_dirty(bh);
799 
800 next_bh:
801 		block_start = block_end;
802 		bh = bh->b_this_page;
803 	} while (bh != head);
804 
805 	return ret;
806 }
807 
808 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
809 #define OCFS2_MAX_CTXT_PAGES	1
810 #else
811 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
812 #endif
813 
814 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
815 
816 /*
817  * Describe the state of a single cluster to be written to.
818  */
819 struct ocfs2_write_cluster_desc {
820 	u32		c_cpos;
821 	u32		c_phys;
822 	/*
823 	 * Give this a unique field because c_phys eventually gets
824 	 * filled.
825 	 */
826 	unsigned	c_new;
827 	unsigned	c_unwritten;
828 	unsigned	c_needs_zero;
829 };
830 
831 struct ocfs2_write_ctxt {
832 	/* Logical cluster position / len of write */
833 	u32				w_cpos;
834 	u32				w_clen;
835 
836 	/* First cluster allocated in a nonsparse extend */
837 	u32				w_first_new_cpos;
838 
839 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
840 
841 	/*
842 	 * This is true if page_size > cluster_size.
843 	 *
844 	 * It triggers a set of special cases during write which might
845 	 * have to deal with allocating writes to partial pages.
846 	 */
847 	unsigned int			w_large_pages;
848 
849 	/*
850 	 * Pages involved in this write.
851 	 *
852 	 * w_target_page is the page being written to by the user.
853 	 *
854 	 * w_pages is an array of pages which always contains
855 	 * w_target_page, and in the case of an allocating write with
856 	 * page_size < cluster size, it will contain zero'd and mapped
857 	 * pages adjacent to w_target_page which need to be written
858 	 * out in so that future reads from that region will get
859 	 * zero's.
860 	 */
861 	unsigned int			w_num_pages;
862 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
863 	struct page			*w_target_page;
864 
865 	/*
866 	 * ocfs2_write_end() uses this to know what the real range to
867 	 * write in the target should be.
868 	 */
869 	unsigned int			w_target_from;
870 	unsigned int			w_target_to;
871 
872 	/*
873 	 * We could use journal_current_handle() but this is cleaner,
874 	 * IMHO -Mark
875 	 */
876 	handle_t			*w_handle;
877 
878 	struct buffer_head		*w_di_bh;
879 
880 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
881 };
882 
883 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
884 {
885 	int i;
886 
887 	for(i = 0; i < num_pages; i++) {
888 		if (pages[i]) {
889 			unlock_page(pages[i]);
890 			mark_page_accessed(pages[i]);
891 			page_cache_release(pages[i]);
892 		}
893 	}
894 }
895 
896 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
897 {
898 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
899 
900 	brelse(wc->w_di_bh);
901 	kfree(wc);
902 }
903 
904 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
905 				  struct ocfs2_super *osb, loff_t pos,
906 				  unsigned len, struct buffer_head *di_bh)
907 {
908 	u32 cend;
909 	struct ocfs2_write_ctxt *wc;
910 
911 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
912 	if (!wc)
913 		return -ENOMEM;
914 
915 	wc->w_cpos = pos >> osb->s_clustersize_bits;
916 	wc->w_first_new_cpos = UINT_MAX;
917 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
918 	wc->w_clen = cend - wc->w_cpos + 1;
919 	get_bh(di_bh);
920 	wc->w_di_bh = di_bh;
921 
922 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
923 		wc->w_large_pages = 1;
924 	else
925 		wc->w_large_pages = 0;
926 
927 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
928 
929 	*wcp = wc;
930 
931 	return 0;
932 }
933 
934 /*
935  * If a page has any new buffers, zero them out here, and mark them uptodate
936  * and dirty so they'll be written out (in order to prevent uninitialised
937  * block data from leaking). And clear the new bit.
938  */
939 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
940 {
941 	unsigned int block_start, block_end;
942 	struct buffer_head *head, *bh;
943 
944 	BUG_ON(!PageLocked(page));
945 	if (!page_has_buffers(page))
946 		return;
947 
948 	bh = head = page_buffers(page);
949 	block_start = 0;
950 	do {
951 		block_end = block_start + bh->b_size;
952 
953 		if (buffer_new(bh)) {
954 			if (block_end > from && block_start < to) {
955 				if (!PageUptodate(page)) {
956 					unsigned start, end;
957 
958 					start = max(from, block_start);
959 					end = min(to, block_end);
960 
961 					zero_user_segment(page, start, end);
962 					set_buffer_uptodate(bh);
963 				}
964 
965 				clear_buffer_new(bh);
966 				mark_buffer_dirty(bh);
967 			}
968 		}
969 
970 		block_start = block_end;
971 		bh = bh->b_this_page;
972 	} while (bh != head);
973 }
974 
975 /*
976  * Only called when we have a failure during allocating write to write
977  * zero's to the newly allocated region.
978  */
979 static void ocfs2_write_failure(struct inode *inode,
980 				struct ocfs2_write_ctxt *wc,
981 				loff_t user_pos, unsigned user_len)
982 {
983 	int i;
984 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
985 		to = user_pos + user_len;
986 	struct page *tmppage;
987 
988 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
989 
990 	for(i = 0; i < wc->w_num_pages; i++) {
991 		tmppage = wc->w_pages[i];
992 
993 		if (page_has_buffers(tmppage)) {
994 			if (ocfs2_should_order_data(inode))
995 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
996 
997 			block_commit_write(tmppage, from, to);
998 		}
999 	}
1000 }
1001 
1002 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1003 					struct ocfs2_write_ctxt *wc,
1004 					struct page *page, u32 cpos,
1005 					loff_t user_pos, unsigned user_len,
1006 					int new)
1007 {
1008 	int ret;
1009 	unsigned int map_from = 0, map_to = 0;
1010 	unsigned int cluster_start, cluster_end;
1011 	unsigned int user_data_from = 0, user_data_to = 0;
1012 
1013 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1014 					&cluster_start, &cluster_end);
1015 
1016 	/* treat the write as new if the a hole/lseek spanned across
1017 	 * the page boundary.
1018 	 */
1019 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1020 			(page_offset(page) <= user_pos));
1021 
1022 	if (page == wc->w_target_page) {
1023 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1024 		map_to = map_from + user_len;
1025 
1026 		if (new)
1027 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1028 						    cluster_start, cluster_end,
1029 						    new);
1030 		else
1031 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1032 						    map_from, map_to, new);
1033 		if (ret) {
1034 			mlog_errno(ret);
1035 			goto out;
1036 		}
1037 
1038 		user_data_from = map_from;
1039 		user_data_to = map_to;
1040 		if (new) {
1041 			map_from = cluster_start;
1042 			map_to = cluster_end;
1043 		}
1044 	} else {
1045 		/*
1046 		 * If we haven't allocated the new page yet, we
1047 		 * shouldn't be writing it out without copying user
1048 		 * data. This is likely a math error from the caller.
1049 		 */
1050 		BUG_ON(!new);
1051 
1052 		map_from = cluster_start;
1053 		map_to = cluster_end;
1054 
1055 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1056 					    cluster_start, cluster_end, new);
1057 		if (ret) {
1058 			mlog_errno(ret);
1059 			goto out;
1060 		}
1061 	}
1062 
1063 	/*
1064 	 * Parts of newly allocated pages need to be zero'd.
1065 	 *
1066 	 * Above, we have also rewritten 'to' and 'from' - as far as
1067 	 * the rest of the function is concerned, the entire cluster
1068 	 * range inside of a page needs to be written.
1069 	 *
1070 	 * We can skip this if the page is up to date - it's already
1071 	 * been zero'd from being read in as a hole.
1072 	 */
1073 	if (new && !PageUptodate(page))
1074 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1075 					 cpos, user_data_from, user_data_to);
1076 
1077 	flush_dcache_page(page);
1078 
1079 out:
1080 	return ret;
1081 }
1082 
1083 /*
1084  * This function will only grab one clusters worth of pages.
1085  */
1086 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1087 				      struct ocfs2_write_ctxt *wc,
1088 				      u32 cpos, loff_t user_pos,
1089 				      unsigned user_len, int new,
1090 				      struct page *mmap_page)
1091 {
1092 	int ret = 0, i;
1093 	unsigned long start, target_index, end_index, index;
1094 	struct inode *inode = mapping->host;
1095 	loff_t last_byte;
1096 
1097 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1098 
1099 	/*
1100 	 * Figure out how many pages we'll be manipulating here. For
1101 	 * non allocating write, we just change the one
1102 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1103 	 * writing past i_size, we only need enough pages to cover the
1104 	 * last page of the write.
1105 	 */
1106 	if (new) {
1107 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1108 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1109 		/*
1110 		 * We need the index *past* the last page we could possibly
1111 		 * touch.  This is the page past the end of the write or
1112 		 * i_size, whichever is greater.
1113 		 */
1114 		last_byte = max(user_pos + user_len, i_size_read(inode));
1115 		BUG_ON(last_byte < 1);
1116 		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1117 		if ((start + wc->w_num_pages) > end_index)
1118 			wc->w_num_pages = end_index - start;
1119 	} else {
1120 		wc->w_num_pages = 1;
1121 		start = target_index;
1122 	}
1123 
1124 	for(i = 0; i < wc->w_num_pages; i++) {
1125 		index = start + i;
1126 
1127 		if (index == target_index && mmap_page) {
1128 			/*
1129 			 * ocfs2_pagemkwrite() is a little different
1130 			 * and wants us to directly use the page
1131 			 * passed in.
1132 			 */
1133 			lock_page(mmap_page);
1134 
1135 			if (mmap_page->mapping != mapping) {
1136 				unlock_page(mmap_page);
1137 				/*
1138 				 * Sanity check - the locking in
1139 				 * ocfs2_pagemkwrite() should ensure
1140 				 * that this code doesn't trigger.
1141 				 */
1142 				ret = -EINVAL;
1143 				mlog_errno(ret);
1144 				goto out;
1145 			}
1146 
1147 			page_cache_get(mmap_page);
1148 			wc->w_pages[i] = mmap_page;
1149 		} else {
1150 			wc->w_pages[i] = find_or_create_page(mapping, index,
1151 							     GFP_NOFS);
1152 			if (!wc->w_pages[i]) {
1153 				ret = -ENOMEM;
1154 				mlog_errno(ret);
1155 				goto out;
1156 			}
1157 		}
1158 
1159 		if (index == target_index)
1160 			wc->w_target_page = wc->w_pages[i];
1161 	}
1162 out:
1163 	return ret;
1164 }
1165 
1166 /*
1167  * Prepare a single cluster for write one cluster into the file.
1168  */
1169 static int ocfs2_write_cluster(struct address_space *mapping,
1170 			       u32 phys, unsigned int unwritten,
1171 			       unsigned int should_zero,
1172 			       struct ocfs2_alloc_context *data_ac,
1173 			       struct ocfs2_alloc_context *meta_ac,
1174 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1175 			       loff_t user_pos, unsigned user_len)
1176 {
1177 	int ret, i, new;
1178 	u64 v_blkno, p_blkno;
1179 	struct inode *inode = mapping->host;
1180 	struct ocfs2_extent_tree et;
1181 
1182 	new = phys == 0 ? 1 : 0;
1183 	if (new) {
1184 		u32 tmp_pos;
1185 
1186 		/*
1187 		 * This is safe to call with the page locks - it won't take
1188 		 * any additional semaphores or cluster locks.
1189 		 */
1190 		tmp_pos = cpos;
1191 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1192 					   &tmp_pos, 1, 0, wc->w_di_bh,
1193 					   wc->w_handle, data_ac,
1194 					   meta_ac, NULL);
1195 		/*
1196 		 * This shouldn't happen because we must have already
1197 		 * calculated the correct meta data allocation required. The
1198 		 * internal tree allocation code should know how to increase
1199 		 * transaction credits itself.
1200 		 *
1201 		 * If need be, we could handle -EAGAIN for a
1202 		 * RESTART_TRANS here.
1203 		 */
1204 		mlog_bug_on_msg(ret == -EAGAIN,
1205 				"Inode %llu: EAGAIN return during allocation.\n",
1206 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1207 		if (ret < 0) {
1208 			mlog_errno(ret);
1209 			goto out;
1210 		}
1211 	} else if (unwritten) {
1212 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1213 					      wc->w_di_bh);
1214 		ret = ocfs2_mark_extent_written(inode, &et,
1215 						wc->w_handle, cpos, 1, phys,
1216 						meta_ac, &wc->w_dealloc);
1217 		if (ret < 0) {
1218 			mlog_errno(ret);
1219 			goto out;
1220 		}
1221 	}
1222 
1223 	if (should_zero)
1224 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1225 	else
1226 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1227 
1228 	/*
1229 	 * The only reason this should fail is due to an inability to
1230 	 * find the extent added.
1231 	 */
1232 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1233 					  NULL);
1234 	if (ret < 0) {
1235 		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1236 			    "at logical block %llu",
1237 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1238 			    (unsigned long long)v_blkno);
1239 		goto out;
1240 	}
1241 
1242 	BUG_ON(p_blkno == 0);
1243 
1244 	for(i = 0; i < wc->w_num_pages; i++) {
1245 		int tmpret;
1246 
1247 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1248 						      wc->w_pages[i], cpos,
1249 						      user_pos, user_len,
1250 						      should_zero);
1251 		if (tmpret) {
1252 			mlog_errno(tmpret);
1253 			if (ret == 0)
1254 				ret = tmpret;
1255 		}
1256 	}
1257 
1258 	/*
1259 	 * We only have cleanup to do in case of allocating write.
1260 	 */
1261 	if (ret && new)
1262 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1263 
1264 out:
1265 
1266 	return ret;
1267 }
1268 
1269 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1270 				       struct ocfs2_alloc_context *data_ac,
1271 				       struct ocfs2_alloc_context *meta_ac,
1272 				       struct ocfs2_write_ctxt *wc,
1273 				       loff_t pos, unsigned len)
1274 {
1275 	int ret, i;
1276 	loff_t cluster_off;
1277 	unsigned int local_len = len;
1278 	struct ocfs2_write_cluster_desc *desc;
1279 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1280 
1281 	for (i = 0; i < wc->w_clen; i++) {
1282 		desc = &wc->w_desc[i];
1283 
1284 		/*
1285 		 * We have to make sure that the total write passed in
1286 		 * doesn't extend past a single cluster.
1287 		 */
1288 		local_len = len;
1289 		cluster_off = pos & (osb->s_clustersize - 1);
1290 		if ((cluster_off + local_len) > osb->s_clustersize)
1291 			local_len = osb->s_clustersize - cluster_off;
1292 
1293 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1294 					  desc->c_unwritten,
1295 					  desc->c_needs_zero,
1296 					  data_ac, meta_ac,
1297 					  wc, desc->c_cpos, pos, local_len);
1298 		if (ret) {
1299 			mlog_errno(ret);
1300 			goto out;
1301 		}
1302 
1303 		len -= local_len;
1304 		pos += local_len;
1305 	}
1306 
1307 	ret = 0;
1308 out:
1309 	return ret;
1310 }
1311 
1312 /*
1313  * ocfs2_write_end() wants to know which parts of the target page it
1314  * should complete the write on. It's easiest to compute them ahead of
1315  * time when a more complete view of the write is available.
1316  */
1317 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1318 					struct ocfs2_write_ctxt *wc,
1319 					loff_t pos, unsigned len, int alloc)
1320 {
1321 	struct ocfs2_write_cluster_desc *desc;
1322 
1323 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1324 	wc->w_target_to = wc->w_target_from + len;
1325 
1326 	if (alloc == 0)
1327 		return;
1328 
1329 	/*
1330 	 * Allocating write - we may have different boundaries based
1331 	 * on page size and cluster size.
1332 	 *
1333 	 * NOTE: We can no longer compute one value from the other as
1334 	 * the actual write length and user provided length may be
1335 	 * different.
1336 	 */
1337 
1338 	if (wc->w_large_pages) {
1339 		/*
1340 		 * We only care about the 1st and last cluster within
1341 		 * our range and whether they should be zero'd or not. Either
1342 		 * value may be extended out to the start/end of a
1343 		 * newly allocated cluster.
1344 		 */
1345 		desc = &wc->w_desc[0];
1346 		if (desc->c_needs_zero)
1347 			ocfs2_figure_cluster_boundaries(osb,
1348 							desc->c_cpos,
1349 							&wc->w_target_from,
1350 							NULL);
1351 
1352 		desc = &wc->w_desc[wc->w_clen - 1];
1353 		if (desc->c_needs_zero)
1354 			ocfs2_figure_cluster_boundaries(osb,
1355 							desc->c_cpos,
1356 							NULL,
1357 							&wc->w_target_to);
1358 	} else {
1359 		wc->w_target_from = 0;
1360 		wc->w_target_to = PAGE_CACHE_SIZE;
1361 	}
1362 }
1363 
1364 /*
1365  * Populate each single-cluster write descriptor in the write context
1366  * with information about the i/o to be done.
1367  *
1368  * Returns the number of clusters that will have to be allocated, as
1369  * well as a worst case estimate of the number of extent records that
1370  * would have to be created during a write to an unwritten region.
1371  */
1372 static int ocfs2_populate_write_desc(struct inode *inode,
1373 				     struct ocfs2_write_ctxt *wc,
1374 				     unsigned int *clusters_to_alloc,
1375 				     unsigned int *extents_to_split)
1376 {
1377 	int ret;
1378 	struct ocfs2_write_cluster_desc *desc;
1379 	unsigned int num_clusters = 0;
1380 	unsigned int ext_flags = 0;
1381 	u32 phys = 0;
1382 	int i;
1383 
1384 	*clusters_to_alloc = 0;
1385 	*extents_to_split = 0;
1386 
1387 	for (i = 0; i < wc->w_clen; i++) {
1388 		desc = &wc->w_desc[i];
1389 		desc->c_cpos = wc->w_cpos + i;
1390 
1391 		if (num_clusters == 0) {
1392 			/*
1393 			 * Need to look up the next extent record.
1394 			 */
1395 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1396 						 &num_clusters, &ext_flags);
1397 			if (ret) {
1398 				mlog_errno(ret);
1399 				goto out;
1400 			}
1401 
1402 			/* We should already CoW the refcountd extent. */
1403 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1404 
1405 			/*
1406 			 * Assume worst case - that we're writing in
1407 			 * the middle of the extent.
1408 			 *
1409 			 * We can assume that the write proceeds from
1410 			 * left to right, in which case the extent
1411 			 * insert code is smart enough to coalesce the
1412 			 * next splits into the previous records created.
1413 			 */
1414 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1415 				*extents_to_split = *extents_to_split + 2;
1416 		} else if (phys) {
1417 			/*
1418 			 * Only increment phys if it doesn't describe
1419 			 * a hole.
1420 			 */
1421 			phys++;
1422 		}
1423 
1424 		/*
1425 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1426 		 * file that got extended.  w_first_new_cpos tells us
1427 		 * where the newly allocated clusters are so we can
1428 		 * zero them.
1429 		 */
1430 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1431 			BUG_ON(phys == 0);
1432 			desc->c_needs_zero = 1;
1433 		}
1434 
1435 		desc->c_phys = phys;
1436 		if (phys == 0) {
1437 			desc->c_new = 1;
1438 			desc->c_needs_zero = 1;
1439 			*clusters_to_alloc = *clusters_to_alloc + 1;
1440 		}
1441 
1442 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1443 			desc->c_unwritten = 1;
1444 			desc->c_needs_zero = 1;
1445 		}
1446 
1447 		num_clusters--;
1448 	}
1449 
1450 	ret = 0;
1451 out:
1452 	return ret;
1453 }
1454 
1455 static int ocfs2_write_begin_inline(struct address_space *mapping,
1456 				    struct inode *inode,
1457 				    struct ocfs2_write_ctxt *wc)
1458 {
1459 	int ret;
1460 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1461 	struct page *page;
1462 	handle_t *handle;
1463 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1464 
1465 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1466 	if (!page) {
1467 		ret = -ENOMEM;
1468 		mlog_errno(ret);
1469 		goto out;
1470 	}
1471 	/*
1472 	 * If we don't set w_num_pages then this page won't get unlocked
1473 	 * and freed on cleanup of the write context.
1474 	 */
1475 	wc->w_pages[0] = wc->w_target_page = page;
1476 	wc->w_num_pages = 1;
1477 
1478 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1479 	if (IS_ERR(handle)) {
1480 		ret = PTR_ERR(handle);
1481 		mlog_errno(ret);
1482 		goto out;
1483 	}
1484 
1485 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1486 				      OCFS2_JOURNAL_ACCESS_WRITE);
1487 	if (ret) {
1488 		ocfs2_commit_trans(osb, handle);
1489 
1490 		mlog_errno(ret);
1491 		goto out;
1492 	}
1493 
1494 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1495 		ocfs2_set_inode_data_inline(inode, di);
1496 
1497 	if (!PageUptodate(page)) {
1498 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1499 		if (ret) {
1500 			ocfs2_commit_trans(osb, handle);
1501 
1502 			goto out;
1503 		}
1504 	}
1505 
1506 	wc->w_handle = handle;
1507 out:
1508 	return ret;
1509 }
1510 
1511 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1512 {
1513 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1514 
1515 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1516 		return 1;
1517 	return 0;
1518 }
1519 
1520 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1521 					  struct inode *inode, loff_t pos,
1522 					  unsigned len, struct page *mmap_page,
1523 					  struct ocfs2_write_ctxt *wc)
1524 {
1525 	int ret, written = 0;
1526 	loff_t end = pos + len;
1527 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1528 	struct ocfs2_dinode *di = NULL;
1529 
1530 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1531 					     len, (unsigned long long)pos,
1532 					     oi->ip_dyn_features);
1533 
1534 	/*
1535 	 * Handle inodes which already have inline data 1st.
1536 	 */
1537 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1538 		if (mmap_page == NULL &&
1539 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1540 			goto do_inline_write;
1541 
1542 		/*
1543 		 * The write won't fit - we have to give this inode an
1544 		 * inline extent list now.
1545 		 */
1546 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1547 		if (ret)
1548 			mlog_errno(ret);
1549 		goto out;
1550 	}
1551 
1552 	/*
1553 	 * Check whether the inode can accept inline data.
1554 	 */
1555 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1556 		return 0;
1557 
1558 	/*
1559 	 * Check whether the write can fit.
1560 	 */
1561 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1562 	if (mmap_page ||
1563 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1564 		return 0;
1565 
1566 do_inline_write:
1567 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1568 	if (ret) {
1569 		mlog_errno(ret);
1570 		goto out;
1571 	}
1572 
1573 	/*
1574 	 * This signals to the caller that the data can be written
1575 	 * inline.
1576 	 */
1577 	written = 1;
1578 out:
1579 	return written ? written : ret;
1580 }
1581 
1582 /*
1583  * This function only does anything for file systems which can't
1584  * handle sparse files.
1585  *
1586  * What we want to do here is fill in any hole between the current end
1587  * of allocation and the end of our write. That way the rest of the
1588  * write path can treat it as an non-allocating write, which has no
1589  * special case code for sparse/nonsparse files.
1590  */
1591 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1592 					struct buffer_head *di_bh,
1593 					loff_t pos, unsigned len,
1594 					struct ocfs2_write_ctxt *wc)
1595 {
1596 	int ret;
1597 	loff_t newsize = pos + len;
1598 
1599 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1600 
1601 	if (newsize <= i_size_read(inode))
1602 		return 0;
1603 
1604 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1605 	if (ret)
1606 		mlog_errno(ret);
1607 
1608 	wc->w_first_new_cpos =
1609 		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1610 
1611 	return ret;
1612 }
1613 
1614 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1615 			   loff_t pos)
1616 {
1617 	int ret = 0;
1618 
1619 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1620 	if (pos > i_size_read(inode))
1621 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1622 
1623 	return ret;
1624 }
1625 
1626 /*
1627  * Try to flush truncate logs if we can free enough clusters from it.
1628  * As for return value, "< 0" means error, "0" no space and "1" means
1629  * we have freed enough spaces and let the caller try to allocate again.
1630  */
1631 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1632 					  unsigned int needed)
1633 {
1634 	tid_t target;
1635 	int ret = 0;
1636 	unsigned int truncated_clusters;
1637 
1638 	mutex_lock(&osb->osb_tl_inode->i_mutex);
1639 	truncated_clusters = osb->truncated_clusters;
1640 	mutex_unlock(&osb->osb_tl_inode->i_mutex);
1641 
1642 	/*
1643 	 * Check whether we can succeed in allocating if we free
1644 	 * the truncate log.
1645 	 */
1646 	if (truncated_clusters < needed)
1647 		goto out;
1648 
1649 	ret = ocfs2_flush_truncate_log(osb);
1650 	if (ret) {
1651 		mlog_errno(ret);
1652 		goto out;
1653 	}
1654 
1655 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1656 		jbd2_log_wait_commit(osb->journal->j_journal, target);
1657 		ret = 1;
1658 	}
1659 out:
1660 	return ret;
1661 }
1662 
1663 int ocfs2_write_begin_nolock(struct file *filp,
1664 			     struct address_space *mapping,
1665 			     loff_t pos, unsigned len, unsigned flags,
1666 			     struct page **pagep, void **fsdata,
1667 			     struct buffer_head *di_bh, struct page *mmap_page)
1668 {
1669 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1670 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1671 	struct ocfs2_write_ctxt *wc;
1672 	struct inode *inode = mapping->host;
1673 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1674 	struct ocfs2_dinode *di;
1675 	struct ocfs2_alloc_context *data_ac = NULL;
1676 	struct ocfs2_alloc_context *meta_ac = NULL;
1677 	handle_t *handle;
1678 	struct ocfs2_extent_tree et;
1679 	int try_free = 1, ret1;
1680 
1681 try_again:
1682 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1683 	if (ret) {
1684 		mlog_errno(ret);
1685 		return ret;
1686 	}
1687 
1688 	if (ocfs2_supports_inline_data(osb)) {
1689 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1690 						     mmap_page, wc);
1691 		if (ret == 1) {
1692 			ret = 0;
1693 			goto success;
1694 		}
1695 		if (ret < 0) {
1696 			mlog_errno(ret);
1697 			goto out;
1698 		}
1699 	}
1700 
1701 	if (ocfs2_sparse_alloc(osb))
1702 		ret = ocfs2_zero_tail(inode, di_bh, pos);
1703 	else
1704 		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1705 						   wc);
1706 	if (ret) {
1707 		mlog_errno(ret);
1708 		goto out;
1709 	}
1710 
1711 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1712 	if (ret < 0) {
1713 		mlog_errno(ret);
1714 		goto out;
1715 	} else if (ret == 1) {
1716 		clusters_need = wc->w_clen;
1717 		ret = ocfs2_refcount_cow(inode, filp, di_bh,
1718 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1719 		if (ret) {
1720 			mlog_errno(ret);
1721 			goto out;
1722 		}
1723 	}
1724 
1725 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1726 					&extents_to_split);
1727 	if (ret) {
1728 		mlog_errno(ret);
1729 		goto out;
1730 	}
1731 	clusters_need += clusters_to_alloc;
1732 
1733 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1734 
1735 	trace_ocfs2_write_begin_nolock(
1736 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1737 			(long long)i_size_read(inode),
1738 			le32_to_cpu(di->i_clusters),
1739 			pos, len, flags, mmap_page,
1740 			clusters_to_alloc, extents_to_split);
1741 
1742 	/*
1743 	 * We set w_target_from, w_target_to here so that
1744 	 * ocfs2_write_end() knows which range in the target page to
1745 	 * write out. An allocation requires that we write the entire
1746 	 * cluster range.
1747 	 */
1748 	if (clusters_to_alloc || extents_to_split) {
1749 		/*
1750 		 * XXX: We are stretching the limits of
1751 		 * ocfs2_lock_allocators(). It greatly over-estimates
1752 		 * the work to be done.
1753 		 */
1754 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1755 					      wc->w_di_bh);
1756 		ret = ocfs2_lock_allocators(inode, &et,
1757 					    clusters_to_alloc, extents_to_split,
1758 					    &data_ac, &meta_ac);
1759 		if (ret) {
1760 			mlog_errno(ret);
1761 			goto out;
1762 		}
1763 
1764 		if (data_ac)
1765 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1766 
1767 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1768 						    &di->id2.i_list,
1769 						    clusters_to_alloc);
1770 
1771 	}
1772 
1773 	/*
1774 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1775 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1776 	 * we know zeros will only be needed in the first and/or last cluster.
1777 	 */
1778 	if (clusters_to_alloc || extents_to_split ||
1779 	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1780 			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1781 		cluster_of_pages = 1;
1782 	else
1783 		cluster_of_pages = 0;
1784 
1785 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1786 
1787 	handle = ocfs2_start_trans(osb, credits);
1788 	if (IS_ERR(handle)) {
1789 		ret = PTR_ERR(handle);
1790 		mlog_errno(ret);
1791 		goto out;
1792 	}
1793 
1794 	wc->w_handle = handle;
1795 
1796 	if (clusters_to_alloc) {
1797 		ret = dquot_alloc_space_nodirty(inode,
1798 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1799 		if (ret)
1800 			goto out_commit;
1801 	}
1802 	/*
1803 	 * We don't want this to fail in ocfs2_write_end(), so do it
1804 	 * here.
1805 	 */
1806 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1807 				      OCFS2_JOURNAL_ACCESS_WRITE);
1808 	if (ret) {
1809 		mlog_errno(ret);
1810 		goto out_quota;
1811 	}
1812 
1813 	/*
1814 	 * Fill our page array first. That way we've grabbed enough so
1815 	 * that we can zero and flush if we error after adding the
1816 	 * extent.
1817 	 */
1818 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1819 					 cluster_of_pages, mmap_page);
1820 	if (ret) {
1821 		mlog_errno(ret);
1822 		goto out_quota;
1823 	}
1824 
1825 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1826 					  len);
1827 	if (ret) {
1828 		mlog_errno(ret);
1829 		goto out_quota;
1830 	}
1831 
1832 	if (data_ac)
1833 		ocfs2_free_alloc_context(data_ac);
1834 	if (meta_ac)
1835 		ocfs2_free_alloc_context(meta_ac);
1836 
1837 success:
1838 	*pagep = wc->w_target_page;
1839 	*fsdata = wc;
1840 	return 0;
1841 out_quota:
1842 	if (clusters_to_alloc)
1843 		dquot_free_space(inode,
1844 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1845 out_commit:
1846 	ocfs2_commit_trans(osb, handle);
1847 
1848 out:
1849 	ocfs2_free_write_ctxt(wc);
1850 
1851 	if (data_ac)
1852 		ocfs2_free_alloc_context(data_ac);
1853 	if (meta_ac)
1854 		ocfs2_free_alloc_context(meta_ac);
1855 
1856 	if (ret == -ENOSPC && try_free) {
1857 		/*
1858 		 * Try to free some truncate log so that we can have enough
1859 		 * clusters to allocate.
1860 		 */
1861 		try_free = 0;
1862 
1863 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1864 		if (ret1 == 1)
1865 			goto try_again;
1866 
1867 		if (ret1 < 0)
1868 			mlog_errno(ret1);
1869 	}
1870 
1871 	return ret;
1872 }
1873 
1874 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1875 			     loff_t pos, unsigned len, unsigned flags,
1876 			     struct page **pagep, void **fsdata)
1877 {
1878 	int ret;
1879 	struct buffer_head *di_bh = NULL;
1880 	struct inode *inode = mapping->host;
1881 
1882 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1883 	if (ret) {
1884 		mlog_errno(ret);
1885 		return ret;
1886 	}
1887 
1888 	/*
1889 	 * Take alloc sem here to prevent concurrent lookups. That way
1890 	 * the mapping, zeroing and tree manipulation within
1891 	 * ocfs2_write() will be safe against ->readpage(). This
1892 	 * should also serve to lock out allocation from a shared
1893 	 * writeable region.
1894 	 */
1895 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1896 
1897 	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1898 				       fsdata, di_bh, NULL);
1899 	if (ret) {
1900 		mlog_errno(ret);
1901 		goto out_fail;
1902 	}
1903 
1904 	brelse(di_bh);
1905 
1906 	return 0;
1907 
1908 out_fail:
1909 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1910 
1911 	brelse(di_bh);
1912 	ocfs2_inode_unlock(inode, 1);
1913 
1914 	return ret;
1915 }
1916 
1917 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1918 				   unsigned len, unsigned *copied,
1919 				   struct ocfs2_dinode *di,
1920 				   struct ocfs2_write_ctxt *wc)
1921 {
1922 	void *kaddr;
1923 
1924 	if (unlikely(*copied < len)) {
1925 		if (!PageUptodate(wc->w_target_page)) {
1926 			*copied = 0;
1927 			return;
1928 		}
1929 	}
1930 
1931 	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1932 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1933 	kunmap_atomic(kaddr, KM_USER0);
1934 
1935 	trace_ocfs2_write_end_inline(
1936 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1937 	     (unsigned long long)pos, *copied,
1938 	     le16_to_cpu(di->id2.i_data.id_count),
1939 	     le16_to_cpu(di->i_dyn_features));
1940 }
1941 
1942 int ocfs2_write_end_nolock(struct address_space *mapping,
1943 			   loff_t pos, unsigned len, unsigned copied,
1944 			   struct page *page, void *fsdata)
1945 {
1946 	int i;
1947 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1948 	struct inode *inode = mapping->host;
1949 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1950 	struct ocfs2_write_ctxt *wc = fsdata;
1951 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1952 	handle_t *handle = wc->w_handle;
1953 	struct page *tmppage;
1954 
1955 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1956 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1957 		goto out_write_size;
1958 	}
1959 
1960 	if (unlikely(copied < len)) {
1961 		if (!PageUptodate(wc->w_target_page))
1962 			copied = 0;
1963 
1964 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1965 				       start+len);
1966 	}
1967 	flush_dcache_page(wc->w_target_page);
1968 
1969 	for(i = 0; i < wc->w_num_pages; i++) {
1970 		tmppage = wc->w_pages[i];
1971 
1972 		if (tmppage == wc->w_target_page) {
1973 			from = wc->w_target_from;
1974 			to = wc->w_target_to;
1975 
1976 			BUG_ON(from > PAGE_CACHE_SIZE ||
1977 			       to > PAGE_CACHE_SIZE ||
1978 			       to < from);
1979 		} else {
1980 			/*
1981 			 * Pages adjacent to the target (if any) imply
1982 			 * a hole-filling write in which case we want
1983 			 * to flush their entire range.
1984 			 */
1985 			from = 0;
1986 			to = PAGE_CACHE_SIZE;
1987 		}
1988 
1989 		if (page_has_buffers(tmppage)) {
1990 			if (ocfs2_should_order_data(inode))
1991 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1992 			block_commit_write(tmppage, from, to);
1993 		}
1994 	}
1995 
1996 out_write_size:
1997 	pos += copied;
1998 	if (pos > inode->i_size) {
1999 		i_size_write(inode, pos);
2000 		mark_inode_dirty(inode);
2001 	}
2002 	inode->i_blocks = ocfs2_inode_sector_count(inode);
2003 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2004 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2005 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2006 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2007 	ocfs2_journal_dirty(handle, wc->w_di_bh);
2008 
2009 	ocfs2_commit_trans(osb, handle);
2010 
2011 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2012 
2013 	ocfs2_free_write_ctxt(wc);
2014 
2015 	return copied;
2016 }
2017 
2018 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2019 			   loff_t pos, unsigned len, unsigned copied,
2020 			   struct page *page, void *fsdata)
2021 {
2022 	int ret;
2023 	struct inode *inode = mapping->host;
2024 
2025 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2026 
2027 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2028 	ocfs2_inode_unlock(inode, 1);
2029 
2030 	return ret;
2031 }
2032 
2033 const struct address_space_operations ocfs2_aops = {
2034 	.readpage		= ocfs2_readpage,
2035 	.readpages		= ocfs2_readpages,
2036 	.writepage		= ocfs2_writepage,
2037 	.write_begin		= ocfs2_write_begin,
2038 	.write_end		= ocfs2_write_end,
2039 	.bmap			= ocfs2_bmap,
2040 	.direct_IO		= ocfs2_direct_IO,
2041 	.invalidatepage		= ocfs2_invalidatepage,
2042 	.releasepage		= ocfs2_releasepage,
2043 	.migratepage		= buffer_migrate_page,
2044 	.is_partially_uptodate	= block_is_partially_uptodate,
2045 	.error_remove_page	= generic_error_remove_page,
2046 };
2047