1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 #include <linux/quotaops.h> 31 #include <linux/blkdev.h> 32 #include <linux/uio.h> 33 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "dlmglue.h" 41 #include "extent_map.h" 42 #include "file.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "suballoc.h" 46 #include "super.h" 47 #include "symlink.h" 48 #include "refcounttree.h" 49 #include "ocfs2_trace.h" 50 51 #include "buffer_head_io.h" 52 #include "dir.h" 53 #include "namei.h" 54 #include "sysfile.h" 55 56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 57 struct buffer_head *bh_result, int create) 58 { 59 int err = -EIO; 60 int status; 61 struct ocfs2_dinode *fe = NULL; 62 struct buffer_head *bh = NULL; 63 struct buffer_head *buffer_cache_bh = NULL; 64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 65 void *kaddr; 66 67 trace_ocfs2_symlink_get_block( 68 (unsigned long long)OCFS2_I(inode)->ip_blkno, 69 (unsigned long long)iblock, bh_result, create); 70 71 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 72 73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 75 (unsigned long long)iblock); 76 goto bail; 77 } 78 79 status = ocfs2_read_inode_block(inode, &bh); 80 if (status < 0) { 81 mlog_errno(status); 82 goto bail; 83 } 84 fe = (struct ocfs2_dinode *) bh->b_data; 85 86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 87 le32_to_cpu(fe->i_clusters))) { 88 err = -ENOMEM; 89 mlog(ML_ERROR, "block offset is outside the allocated size: " 90 "%llu\n", (unsigned long long)iblock); 91 goto bail; 92 } 93 94 /* We don't use the page cache to create symlink data, so if 95 * need be, copy it over from the buffer cache. */ 96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 98 iblock; 99 buffer_cache_bh = sb_getblk(osb->sb, blkno); 100 if (!buffer_cache_bh) { 101 err = -ENOMEM; 102 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 103 goto bail; 104 } 105 106 /* we haven't locked out transactions, so a commit 107 * could've happened. Since we've got a reference on 108 * the bh, even if it commits while we're doing the 109 * copy, the data is still good. */ 110 if (buffer_jbd(buffer_cache_bh) 111 && ocfs2_inode_is_new(inode)) { 112 kaddr = kmap_atomic(bh_result->b_page); 113 if (!kaddr) { 114 mlog(ML_ERROR, "couldn't kmap!\n"); 115 goto bail; 116 } 117 memcpy(kaddr + (bh_result->b_size * iblock), 118 buffer_cache_bh->b_data, 119 bh_result->b_size); 120 kunmap_atomic(kaddr); 121 set_buffer_uptodate(bh_result); 122 } 123 brelse(buffer_cache_bh); 124 } 125 126 map_bh(bh_result, inode->i_sb, 127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 128 129 err = 0; 130 131 bail: 132 brelse(bh); 133 134 return err; 135 } 136 137 int ocfs2_get_block(struct inode *inode, sector_t iblock, 138 struct buffer_head *bh_result, int create) 139 { 140 int err = 0; 141 unsigned int ext_flags; 142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 143 u64 p_blkno, count, past_eof; 144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 145 146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 147 (unsigned long long)iblock, bh_result, create); 148 149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 151 inode, inode->i_ino); 152 153 if (S_ISLNK(inode->i_mode)) { 154 /* this always does I/O for some reason. */ 155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 156 goto bail; 157 } 158 159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 160 &ext_flags); 161 if (err) { 162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 164 (unsigned long long)p_blkno); 165 goto bail; 166 } 167 168 if (max_blocks < count) 169 count = max_blocks; 170 171 /* 172 * ocfs2 never allocates in this function - the only time we 173 * need to use BH_New is when we're extending i_size on a file 174 * system which doesn't support holes, in which case BH_New 175 * allows __block_write_begin() to zero. 176 * 177 * If we see this on a sparse file system, then a truncate has 178 * raced us and removed the cluster. In this case, we clear 179 * the buffers dirty and uptodate bits and let the buffer code 180 * ignore it as a hole. 181 */ 182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 183 clear_buffer_dirty(bh_result); 184 clear_buffer_uptodate(bh_result); 185 goto bail; 186 } 187 188 /* Treat the unwritten extent as a hole for zeroing purposes. */ 189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 190 map_bh(bh_result, inode->i_sb, p_blkno); 191 192 bh_result->b_size = count << inode->i_blkbits; 193 194 if (!ocfs2_sparse_alloc(osb)) { 195 if (p_blkno == 0) { 196 err = -EIO; 197 mlog(ML_ERROR, 198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 199 (unsigned long long)iblock, 200 (unsigned long long)p_blkno, 201 (unsigned long long)OCFS2_I(inode)->ip_blkno); 202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 203 dump_stack(); 204 goto bail; 205 } 206 } 207 208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 209 210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 211 (unsigned long long)past_eof); 212 if (create && (iblock >= past_eof)) 213 set_buffer_new(bh_result); 214 215 bail: 216 if (err < 0) 217 err = -EIO; 218 219 return err; 220 } 221 222 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 223 struct buffer_head *di_bh) 224 { 225 void *kaddr; 226 loff_t size; 227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 228 229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 231 (unsigned long long)OCFS2_I(inode)->ip_blkno); 232 return -EROFS; 233 } 234 235 size = i_size_read(inode); 236 237 if (size > PAGE_SIZE || 238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 239 ocfs2_error(inode->i_sb, 240 "Inode %llu has with inline data has bad size: %Lu\n", 241 (unsigned long long)OCFS2_I(inode)->ip_blkno, 242 (unsigned long long)size); 243 return -EROFS; 244 } 245 246 kaddr = kmap_atomic(page); 247 if (size) 248 memcpy(kaddr, di->id2.i_data.id_data, size); 249 /* Clear the remaining part of the page */ 250 memset(kaddr + size, 0, PAGE_SIZE - size); 251 flush_dcache_page(page); 252 kunmap_atomic(kaddr); 253 254 SetPageUptodate(page); 255 256 return 0; 257 } 258 259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 260 { 261 int ret; 262 struct buffer_head *di_bh = NULL; 263 264 BUG_ON(!PageLocked(page)); 265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 266 267 ret = ocfs2_read_inode_block(inode, &di_bh); 268 if (ret) { 269 mlog_errno(ret); 270 goto out; 271 } 272 273 ret = ocfs2_read_inline_data(inode, page, di_bh); 274 out: 275 unlock_page(page); 276 277 brelse(di_bh); 278 return ret; 279 } 280 281 static int ocfs2_readpage(struct file *file, struct page *page) 282 { 283 struct inode *inode = page->mapping->host; 284 struct ocfs2_inode_info *oi = OCFS2_I(inode); 285 loff_t start = (loff_t)page->index << PAGE_SHIFT; 286 int ret, unlock = 1; 287 288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 289 (page ? page->index : 0)); 290 291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 292 if (ret != 0) { 293 if (ret == AOP_TRUNCATED_PAGE) 294 unlock = 0; 295 mlog_errno(ret); 296 goto out; 297 } 298 299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 300 /* 301 * Unlock the page and cycle ip_alloc_sem so that we don't 302 * busyloop waiting for ip_alloc_sem to unlock 303 */ 304 ret = AOP_TRUNCATED_PAGE; 305 unlock_page(page); 306 unlock = 0; 307 down_read(&oi->ip_alloc_sem); 308 up_read(&oi->ip_alloc_sem); 309 goto out_inode_unlock; 310 } 311 312 /* 313 * i_size might have just been updated as we grabed the meta lock. We 314 * might now be discovering a truncate that hit on another node. 315 * block_read_full_page->get_block freaks out if it is asked to read 316 * beyond the end of a file, so we check here. Callers 317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 318 * and notice that the page they just read isn't needed. 319 * 320 * XXX sys_readahead() seems to get that wrong? 321 */ 322 if (start >= i_size_read(inode)) { 323 zero_user(page, 0, PAGE_SIZE); 324 SetPageUptodate(page); 325 ret = 0; 326 goto out_alloc; 327 } 328 329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 330 ret = ocfs2_readpage_inline(inode, page); 331 else 332 ret = block_read_full_page(page, ocfs2_get_block); 333 unlock = 0; 334 335 out_alloc: 336 up_read(&OCFS2_I(inode)->ip_alloc_sem); 337 out_inode_unlock: 338 ocfs2_inode_unlock(inode, 0); 339 out: 340 if (unlock) 341 unlock_page(page); 342 return ret; 343 } 344 345 /* 346 * This is used only for read-ahead. Failures or difficult to handle 347 * situations are safe to ignore. 348 * 349 * Right now, we don't bother with BH_Boundary - in-inode extent lists 350 * are quite large (243 extents on 4k blocks), so most inodes don't 351 * grow out to a tree. If need be, detecting boundary extents could 352 * trivially be added in a future version of ocfs2_get_block(). 353 */ 354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 355 struct list_head *pages, unsigned nr_pages) 356 { 357 int ret, err = -EIO; 358 struct inode *inode = mapping->host; 359 struct ocfs2_inode_info *oi = OCFS2_I(inode); 360 loff_t start; 361 struct page *last; 362 363 /* 364 * Use the nonblocking flag for the dlm code to avoid page 365 * lock inversion, but don't bother with retrying. 366 */ 367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 368 if (ret) 369 return err; 370 371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 372 ocfs2_inode_unlock(inode, 0); 373 return err; 374 } 375 376 /* 377 * Don't bother with inline-data. There isn't anything 378 * to read-ahead in that case anyway... 379 */ 380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 381 goto out_unlock; 382 383 /* 384 * Check whether a remote node truncated this file - we just 385 * drop out in that case as it's not worth handling here. 386 */ 387 last = list_entry(pages->prev, struct page, lru); 388 start = (loff_t)last->index << PAGE_SHIFT; 389 if (start >= i_size_read(inode)) 390 goto out_unlock; 391 392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 393 394 out_unlock: 395 up_read(&oi->ip_alloc_sem); 396 ocfs2_inode_unlock(inode, 0); 397 398 return err; 399 } 400 401 /* Note: Because we don't support holes, our allocation has 402 * already happened (allocation writes zeros to the file data) 403 * so we don't have to worry about ordered writes in 404 * ocfs2_writepage. 405 * 406 * ->writepage is called during the process of invalidating the page cache 407 * during blocked lock processing. It can't block on any cluster locks 408 * to during block mapping. It's relying on the fact that the block 409 * mapping can't have disappeared under the dirty pages that it is 410 * being asked to write back. 411 */ 412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 413 { 414 trace_ocfs2_writepage( 415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 416 page->index); 417 418 return block_write_full_page(page, ocfs2_get_block, wbc); 419 } 420 421 /* Taken from ext3. We don't necessarily need the full blown 422 * functionality yet, but IMHO it's better to cut and paste the whole 423 * thing so we can avoid introducing our own bugs (and easily pick up 424 * their fixes when they happen) --Mark */ 425 int walk_page_buffers( handle_t *handle, 426 struct buffer_head *head, 427 unsigned from, 428 unsigned to, 429 int *partial, 430 int (*fn)( handle_t *handle, 431 struct buffer_head *bh)) 432 { 433 struct buffer_head *bh; 434 unsigned block_start, block_end; 435 unsigned blocksize = head->b_size; 436 int err, ret = 0; 437 struct buffer_head *next; 438 439 for ( bh = head, block_start = 0; 440 ret == 0 && (bh != head || !block_start); 441 block_start = block_end, bh = next) 442 { 443 next = bh->b_this_page; 444 block_end = block_start + blocksize; 445 if (block_end <= from || block_start >= to) { 446 if (partial && !buffer_uptodate(bh)) 447 *partial = 1; 448 continue; 449 } 450 err = (*fn)(handle, bh); 451 if (!ret) 452 ret = err; 453 } 454 return ret; 455 } 456 457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 458 { 459 sector_t status; 460 u64 p_blkno = 0; 461 int err = 0; 462 struct inode *inode = mapping->host; 463 464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 465 (unsigned long long)block); 466 467 /* We don't need to lock journal system files, since they aren't 468 * accessed concurrently from multiple nodes. 469 */ 470 if (!INODE_JOURNAL(inode)) { 471 err = ocfs2_inode_lock(inode, NULL, 0); 472 if (err) { 473 if (err != -ENOENT) 474 mlog_errno(err); 475 goto bail; 476 } 477 down_read(&OCFS2_I(inode)->ip_alloc_sem); 478 } 479 480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 482 NULL); 483 484 if (!INODE_JOURNAL(inode)) { 485 up_read(&OCFS2_I(inode)->ip_alloc_sem); 486 ocfs2_inode_unlock(inode, 0); 487 } 488 489 if (err) { 490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 491 (unsigned long long)block); 492 mlog_errno(err); 493 goto bail; 494 } 495 496 bail: 497 status = err ? 0 : p_blkno; 498 499 return status; 500 } 501 502 static int ocfs2_releasepage(struct page *page, gfp_t wait) 503 { 504 if (!page_has_buffers(page)) 505 return 0; 506 return try_to_free_buffers(page); 507 } 508 509 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 510 u32 cpos, 511 unsigned int *start, 512 unsigned int *end) 513 { 514 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE; 515 516 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) { 517 unsigned int cpp; 518 519 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits); 520 521 cluster_start = cpos % cpp; 522 cluster_start = cluster_start << osb->s_clustersize_bits; 523 524 cluster_end = cluster_start + osb->s_clustersize; 525 } 526 527 BUG_ON(cluster_start > PAGE_SIZE); 528 BUG_ON(cluster_end > PAGE_SIZE); 529 530 if (start) 531 *start = cluster_start; 532 if (end) 533 *end = cluster_end; 534 } 535 536 /* 537 * 'from' and 'to' are the region in the page to avoid zeroing. 538 * 539 * If pagesize > clustersize, this function will avoid zeroing outside 540 * of the cluster boundary. 541 * 542 * from == to == 0 is code for "zero the entire cluster region" 543 */ 544 static void ocfs2_clear_page_regions(struct page *page, 545 struct ocfs2_super *osb, u32 cpos, 546 unsigned from, unsigned to) 547 { 548 void *kaddr; 549 unsigned int cluster_start, cluster_end; 550 551 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 552 553 kaddr = kmap_atomic(page); 554 555 if (from || to) { 556 if (from > cluster_start) 557 memset(kaddr + cluster_start, 0, from - cluster_start); 558 if (to < cluster_end) 559 memset(kaddr + to, 0, cluster_end - to); 560 } else { 561 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 562 } 563 564 kunmap_atomic(kaddr); 565 } 566 567 /* 568 * Nonsparse file systems fully allocate before we get to the write 569 * code. This prevents ocfs2_write() from tagging the write as an 570 * allocating one, which means ocfs2_map_page_blocks() might try to 571 * read-in the blocks at the tail of our file. Avoid reading them by 572 * testing i_size against each block offset. 573 */ 574 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 575 unsigned int block_start) 576 { 577 u64 offset = page_offset(page) + block_start; 578 579 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 580 return 1; 581 582 if (i_size_read(inode) > offset) 583 return 1; 584 585 return 0; 586 } 587 588 /* 589 * Some of this taken from __block_write_begin(). We already have our 590 * mapping by now though, and the entire write will be allocating or 591 * it won't, so not much need to use BH_New. 592 * 593 * This will also skip zeroing, which is handled externally. 594 */ 595 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 596 struct inode *inode, unsigned int from, 597 unsigned int to, int new) 598 { 599 int ret = 0; 600 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 601 unsigned int block_end, block_start; 602 unsigned int bsize = 1 << inode->i_blkbits; 603 604 if (!page_has_buffers(page)) 605 create_empty_buffers(page, bsize, 0); 606 607 head = page_buffers(page); 608 for (bh = head, block_start = 0; bh != head || !block_start; 609 bh = bh->b_this_page, block_start += bsize) { 610 block_end = block_start + bsize; 611 612 clear_buffer_new(bh); 613 614 /* 615 * Ignore blocks outside of our i/o range - 616 * they may belong to unallocated clusters. 617 */ 618 if (block_start >= to || block_end <= from) { 619 if (PageUptodate(page)) 620 set_buffer_uptodate(bh); 621 continue; 622 } 623 624 /* 625 * For an allocating write with cluster size >= page 626 * size, we always write the entire page. 627 */ 628 if (new) 629 set_buffer_new(bh); 630 631 if (!buffer_mapped(bh)) { 632 map_bh(bh, inode->i_sb, *p_blkno); 633 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 634 } 635 636 if (PageUptodate(page)) { 637 if (!buffer_uptodate(bh)) 638 set_buffer_uptodate(bh); 639 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 640 !buffer_new(bh) && 641 ocfs2_should_read_blk(inode, page, block_start) && 642 (block_start < from || block_end > to)) { 643 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 644 *wait_bh++=bh; 645 } 646 647 *p_blkno = *p_blkno + 1; 648 } 649 650 /* 651 * If we issued read requests - let them complete. 652 */ 653 while(wait_bh > wait) { 654 wait_on_buffer(*--wait_bh); 655 if (!buffer_uptodate(*wait_bh)) 656 ret = -EIO; 657 } 658 659 if (ret == 0 || !new) 660 return ret; 661 662 /* 663 * If we get -EIO above, zero out any newly allocated blocks 664 * to avoid exposing stale data. 665 */ 666 bh = head; 667 block_start = 0; 668 do { 669 block_end = block_start + bsize; 670 if (block_end <= from) 671 goto next_bh; 672 if (block_start >= to) 673 break; 674 675 zero_user(page, block_start, bh->b_size); 676 set_buffer_uptodate(bh); 677 mark_buffer_dirty(bh); 678 679 next_bh: 680 block_start = block_end; 681 bh = bh->b_this_page; 682 } while (bh != head); 683 684 return ret; 685 } 686 687 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 688 #define OCFS2_MAX_CTXT_PAGES 1 689 #else 690 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE) 691 #endif 692 693 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE) 694 695 struct ocfs2_unwritten_extent { 696 struct list_head ue_node; 697 struct list_head ue_ip_node; 698 u32 ue_cpos; 699 u32 ue_phys; 700 }; 701 702 /* 703 * Describe the state of a single cluster to be written to. 704 */ 705 struct ocfs2_write_cluster_desc { 706 u32 c_cpos; 707 u32 c_phys; 708 /* 709 * Give this a unique field because c_phys eventually gets 710 * filled. 711 */ 712 unsigned c_new; 713 unsigned c_clear_unwritten; 714 unsigned c_needs_zero; 715 }; 716 717 struct ocfs2_write_ctxt { 718 /* Logical cluster position / len of write */ 719 u32 w_cpos; 720 u32 w_clen; 721 722 /* First cluster allocated in a nonsparse extend */ 723 u32 w_first_new_cpos; 724 725 /* Type of caller. Must be one of buffer, mmap, direct. */ 726 ocfs2_write_type_t w_type; 727 728 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 729 730 /* 731 * This is true if page_size > cluster_size. 732 * 733 * It triggers a set of special cases during write which might 734 * have to deal with allocating writes to partial pages. 735 */ 736 unsigned int w_large_pages; 737 738 /* 739 * Pages involved in this write. 740 * 741 * w_target_page is the page being written to by the user. 742 * 743 * w_pages is an array of pages which always contains 744 * w_target_page, and in the case of an allocating write with 745 * page_size < cluster size, it will contain zero'd and mapped 746 * pages adjacent to w_target_page which need to be written 747 * out in so that future reads from that region will get 748 * zero's. 749 */ 750 unsigned int w_num_pages; 751 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 752 struct page *w_target_page; 753 754 /* 755 * w_target_locked is used for page_mkwrite path indicating no unlocking 756 * against w_target_page in ocfs2_write_end_nolock. 757 */ 758 unsigned int w_target_locked:1; 759 760 /* 761 * ocfs2_write_end() uses this to know what the real range to 762 * write in the target should be. 763 */ 764 unsigned int w_target_from; 765 unsigned int w_target_to; 766 767 /* 768 * We could use journal_current_handle() but this is cleaner, 769 * IMHO -Mark 770 */ 771 handle_t *w_handle; 772 773 struct buffer_head *w_di_bh; 774 775 struct ocfs2_cached_dealloc_ctxt w_dealloc; 776 777 struct list_head w_unwritten_list; 778 }; 779 780 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 781 { 782 int i; 783 784 for(i = 0; i < num_pages; i++) { 785 if (pages[i]) { 786 unlock_page(pages[i]); 787 mark_page_accessed(pages[i]); 788 put_page(pages[i]); 789 } 790 } 791 } 792 793 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 794 { 795 int i; 796 797 /* 798 * w_target_locked is only set to true in the page_mkwrite() case. 799 * The intent is to allow us to lock the target page from write_begin() 800 * to write_end(). The caller must hold a ref on w_target_page. 801 */ 802 if (wc->w_target_locked) { 803 BUG_ON(!wc->w_target_page); 804 for (i = 0; i < wc->w_num_pages; i++) { 805 if (wc->w_target_page == wc->w_pages[i]) { 806 wc->w_pages[i] = NULL; 807 break; 808 } 809 } 810 mark_page_accessed(wc->w_target_page); 811 put_page(wc->w_target_page); 812 } 813 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 814 } 815 816 static void ocfs2_free_unwritten_list(struct inode *inode, 817 struct list_head *head) 818 { 819 struct ocfs2_inode_info *oi = OCFS2_I(inode); 820 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL; 821 822 list_for_each_entry_safe(ue, tmp, head, ue_node) { 823 list_del(&ue->ue_node); 824 spin_lock(&oi->ip_lock); 825 list_del(&ue->ue_ip_node); 826 spin_unlock(&oi->ip_lock); 827 kfree(ue); 828 } 829 } 830 831 static void ocfs2_free_write_ctxt(struct inode *inode, 832 struct ocfs2_write_ctxt *wc) 833 { 834 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list); 835 ocfs2_unlock_pages(wc); 836 brelse(wc->w_di_bh); 837 kfree(wc); 838 } 839 840 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 841 struct ocfs2_super *osb, loff_t pos, 842 unsigned len, ocfs2_write_type_t type, 843 struct buffer_head *di_bh) 844 { 845 u32 cend; 846 struct ocfs2_write_ctxt *wc; 847 848 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 849 if (!wc) 850 return -ENOMEM; 851 852 wc->w_cpos = pos >> osb->s_clustersize_bits; 853 wc->w_first_new_cpos = UINT_MAX; 854 cend = (pos + len - 1) >> osb->s_clustersize_bits; 855 wc->w_clen = cend - wc->w_cpos + 1; 856 get_bh(di_bh); 857 wc->w_di_bh = di_bh; 858 wc->w_type = type; 859 860 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) 861 wc->w_large_pages = 1; 862 else 863 wc->w_large_pages = 0; 864 865 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 866 INIT_LIST_HEAD(&wc->w_unwritten_list); 867 868 *wcp = wc; 869 870 return 0; 871 } 872 873 /* 874 * If a page has any new buffers, zero them out here, and mark them uptodate 875 * and dirty so they'll be written out (in order to prevent uninitialised 876 * block data from leaking). And clear the new bit. 877 */ 878 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 879 { 880 unsigned int block_start, block_end; 881 struct buffer_head *head, *bh; 882 883 BUG_ON(!PageLocked(page)); 884 if (!page_has_buffers(page)) 885 return; 886 887 bh = head = page_buffers(page); 888 block_start = 0; 889 do { 890 block_end = block_start + bh->b_size; 891 892 if (buffer_new(bh)) { 893 if (block_end > from && block_start < to) { 894 if (!PageUptodate(page)) { 895 unsigned start, end; 896 897 start = max(from, block_start); 898 end = min(to, block_end); 899 900 zero_user_segment(page, start, end); 901 set_buffer_uptodate(bh); 902 } 903 904 clear_buffer_new(bh); 905 mark_buffer_dirty(bh); 906 } 907 } 908 909 block_start = block_end; 910 bh = bh->b_this_page; 911 } while (bh != head); 912 } 913 914 /* 915 * Only called when we have a failure during allocating write to write 916 * zero's to the newly allocated region. 917 */ 918 static void ocfs2_write_failure(struct inode *inode, 919 struct ocfs2_write_ctxt *wc, 920 loff_t user_pos, unsigned user_len) 921 { 922 int i; 923 unsigned from = user_pos & (PAGE_SIZE - 1), 924 to = user_pos + user_len; 925 struct page *tmppage; 926 927 if (wc->w_target_page) 928 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 929 930 for(i = 0; i < wc->w_num_pages; i++) { 931 tmppage = wc->w_pages[i]; 932 933 if (tmppage && page_has_buffers(tmppage)) { 934 if (ocfs2_should_order_data(inode)) 935 ocfs2_jbd2_file_inode(wc->w_handle, inode); 936 937 block_commit_write(tmppage, from, to); 938 } 939 } 940 } 941 942 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 943 struct ocfs2_write_ctxt *wc, 944 struct page *page, u32 cpos, 945 loff_t user_pos, unsigned user_len, 946 int new) 947 { 948 int ret; 949 unsigned int map_from = 0, map_to = 0; 950 unsigned int cluster_start, cluster_end; 951 unsigned int user_data_from = 0, user_data_to = 0; 952 953 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 954 &cluster_start, &cluster_end); 955 956 /* treat the write as new if the a hole/lseek spanned across 957 * the page boundary. 958 */ 959 new = new | ((i_size_read(inode) <= page_offset(page)) && 960 (page_offset(page) <= user_pos)); 961 962 if (page == wc->w_target_page) { 963 map_from = user_pos & (PAGE_SIZE - 1); 964 map_to = map_from + user_len; 965 966 if (new) 967 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 968 cluster_start, cluster_end, 969 new); 970 else 971 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 972 map_from, map_to, new); 973 if (ret) { 974 mlog_errno(ret); 975 goto out; 976 } 977 978 user_data_from = map_from; 979 user_data_to = map_to; 980 if (new) { 981 map_from = cluster_start; 982 map_to = cluster_end; 983 } 984 } else { 985 /* 986 * If we haven't allocated the new page yet, we 987 * shouldn't be writing it out without copying user 988 * data. This is likely a math error from the caller. 989 */ 990 BUG_ON(!new); 991 992 map_from = cluster_start; 993 map_to = cluster_end; 994 995 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 996 cluster_start, cluster_end, new); 997 if (ret) { 998 mlog_errno(ret); 999 goto out; 1000 } 1001 } 1002 1003 /* 1004 * Parts of newly allocated pages need to be zero'd. 1005 * 1006 * Above, we have also rewritten 'to' and 'from' - as far as 1007 * the rest of the function is concerned, the entire cluster 1008 * range inside of a page needs to be written. 1009 * 1010 * We can skip this if the page is up to date - it's already 1011 * been zero'd from being read in as a hole. 1012 */ 1013 if (new && !PageUptodate(page)) 1014 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1015 cpos, user_data_from, user_data_to); 1016 1017 flush_dcache_page(page); 1018 1019 out: 1020 return ret; 1021 } 1022 1023 /* 1024 * This function will only grab one clusters worth of pages. 1025 */ 1026 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1027 struct ocfs2_write_ctxt *wc, 1028 u32 cpos, loff_t user_pos, 1029 unsigned user_len, int new, 1030 struct page *mmap_page) 1031 { 1032 int ret = 0, i; 1033 unsigned long start, target_index, end_index, index; 1034 struct inode *inode = mapping->host; 1035 loff_t last_byte; 1036 1037 target_index = user_pos >> PAGE_SHIFT; 1038 1039 /* 1040 * Figure out how many pages we'll be manipulating here. For 1041 * non allocating write, we just change the one 1042 * page. Otherwise, we'll need a whole clusters worth. If we're 1043 * writing past i_size, we only need enough pages to cover the 1044 * last page of the write. 1045 */ 1046 if (new) { 1047 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1048 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1049 /* 1050 * We need the index *past* the last page we could possibly 1051 * touch. This is the page past the end of the write or 1052 * i_size, whichever is greater. 1053 */ 1054 last_byte = max(user_pos + user_len, i_size_read(inode)); 1055 BUG_ON(last_byte < 1); 1056 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1; 1057 if ((start + wc->w_num_pages) > end_index) 1058 wc->w_num_pages = end_index - start; 1059 } else { 1060 wc->w_num_pages = 1; 1061 start = target_index; 1062 } 1063 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT; 1064 1065 for(i = 0; i < wc->w_num_pages; i++) { 1066 index = start + i; 1067 1068 if (index >= target_index && index <= end_index && 1069 wc->w_type == OCFS2_WRITE_MMAP) { 1070 /* 1071 * ocfs2_pagemkwrite() is a little different 1072 * and wants us to directly use the page 1073 * passed in. 1074 */ 1075 lock_page(mmap_page); 1076 1077 /* Exit and let the caller retry */ 1078 if (mmap_page->mapping != mapping) { 1079 WARN_ON(mmap_page->mapping); 1080 unlock_page(mmap_page); 1081 ret = -EAGAIN; 1082 goto out; 1083 } 1084 1085 get_page(mmap_page); 1086 wc->w_pages[i] = mmap_page; 1087 wc->w_target_locked = true; 1088 } else if (index >= target_index && index <= end_index && 1089 wc->w_type == OCFS2_WRITE_DIRECT) { 1090 /* Direct write has no mapping page. */ 1091 wc->w_pages[i] = NULL; 1092 continue; 1093 } else { 1094 wc->w_pages[i] = find_or_create_page(mapping, index, 1095 GFP_NOFS); 1096 if (!wc->w_pages[i]) { 1097 ret = -ENOMEM; 1098 mlog_errno(ret); 1099 goto out; 1100 } 1101 } 1102 wait_for_stable_page(wc->w_pages[i]); 1103 1104 if (index == target_index) 1105 wc->w_target_page = wc->w_pages[i]; 1106 } 1107 out: 1108 if (ret) 1109 wc->w_target_locked = false; 1110 return ret; 1111 } 1112 1113 /* 1114 * Prepare a single cluster for write one cluster into the file. 1115 */ 1116 static int ocfs2_write_cluster(struct address_space *mapping, 1117 u32 *phys, unsigned int new, 1118 unsigned int clear_unwritten, 1119 unsigned int should_zero, 1120 struct ocfs2_alloc_context *data_ac, 1121 struct ocfs2_alloc_context *meta_ac, 1122 struct ocfs2_write_ctxt *wc, u32 cpos, 1123 loff_t user_pos, unsigned user_len) 1124 { 1125 int ret, i; 1126 u64 p_blkno; 1127 struct inode *inode = mapping->host; 1128 struct ocfs2_extent_tree et; 1129 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); 1130 1131 if (new) { 1132 u32 tmp_pos; 1133 1134 /* 1135 * This is safe to call with the page locks - it won't take 1136 * any additional semaphores or cluster locks. 1137 */ 1138 tmp_pos = cpos; 1139 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1140 &tmp_pos, 1, !clear_unwritten, 1141 wc->w_di_bh, wc->w_handle, 1142 data_ac, meta_ac, NULL); 1143 /* 1144 * This shouldn't happen because we must have already 1145 * calculated the correct meta data allocation required. The 1146 * internal tree allocation code should know how to increase 1147 * transaction credits itself. 1148 * 1149 * If need be, we could handle -EAGAIN for a 1150 * RESTART_TRANS here. 1151 */ 1152 mlog_bug_on_msg(ret == -EAGAIN, 1153 "Inode %llu: EAGAIN return during allocation.\n", 1154 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1155 if (ret < 0) { 1156 mlog_errno(ret); 1157 goto out; 1158 } 1159 } else if (clear_unwritten) { 1160 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1161 wc->w_di_bh); 1162 ret = ocfs2_mark_extent_written(inode, &et, 1163 wc->w_handle, cpos, 1, *phys, 1164 meta_ac, &wc->w_dealloc); 1165 if (ret < 0) { 1166 mlog_errno(ret); 1167 goto out; 1168 } 1169 } 1170 1171 /* 1172 * The only reason this should fail is due to an inability to 1173 * find the extent added. 1174 */ 1175 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL); 1176 if (ret < 0) { 1177 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1178 "at logical cluster %u", 1179 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 1180 goto out; 1181 } 1182 1183 BUG_ON(*phys == 0); 1184 1185 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys); 1186 if (!should_zero) 1187 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1); 1188 1189 for(i = 0; i < wc->w_num_pages; i++) { 1190 int tmpret; 1191 1192 /* This is the direct io target page. */ 1193 if (wc->w_pages[i] == NULL) { 1194 p_blkno++; 1195 continue; 1196 } 1197 1198 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1199 wc->w_pages[i], cpos, 1200 user_pos, user_len, 1201 should_zero); 1202 if (tmpret) { 1203 mlog_errno(tmpret); 1204 if (ret == 0) 1205 ret = tmpret; 1206 } 1207 } 1208 1209 /* 1210 * We only have cleanup to do in case of allocating write. 1211 */ 1212 if (ret && new) 1213 ocfs2_write_failure(inode, wc, user_pos, user_len); 1214 1215 out: 1216 1217 return ret; 1218 } 1219 1220 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1221 struct ocfs2_alloc_context *data_ac, 1222 struct ocfs2_alloc_context *meta_ac, 1223 struct ocfs2_write_ctxt *wc, 1224 loff_t pos, unsigned len) 1225 { 1226 int ret, i; 1227 loff_t cluster_off; 1228 unsigned int local_len = len; 1229 struct ocfs2_write_cluster_desc *desc; 1230 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1231 1232 for (i = 0; i < wc->w_clen; i++) { 1233 desc = &wc->w_desc[i]; 1234 1235 /* 1236 * We have to make sure that the total write passed in 1237 * doesn't extend past a single cluster. 1238 */ 1239 local_len = len; 1240 cluster_off = pos & (osb->s_clustersize - 1); 1241 if ((cluster_off + local_len) > osb->s_clustersize) 1242 local_len = osb->s_clustersize - cluster_off; 1243 1244 ret = ocfs2_write_cluster(mapping, &desc->c_phys, 1245 desc->c_new, 1246 desc->c_clear_unwritten, 1247 desc->c_needs_zero, 1248 data_ac, meta_ac, 1249 wc, desc->c_cpos, pos, local_len); 1250 if (ret) { 1251 mlog_errno(ret); 1252 goto out; 1253 } 1254 1255 len -= local_len; 1256 pos += local_len; 1257 } 1258 1259 ret = 0; 1260 out: 1261 return ret; 1262 } 1263 1264 /* 1265 * ocfs2_write_end() wants to know which parts of the target page it 1266 * should complete the write on. It's easiest to compute them ahead of 1267 * time when a more complete view of the write is available. 1268 */ 1269 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1270 struct ocfs2_write_ctxt *wc, 1271 loff_t pos, unsigned len, int alloc) 1272 { 1273 struct ocfs2_write_cluster_desc *desc; 1274 1275 wc->w_target_from = pos & (PAGE_SIZE - 1); 1276 wc->w_target_to = wc->w_target_from + len; 1277 1278 if (alloc == 0) 1279 return; 1280 1281 /* 1282 * Allocating write - we may have different boundaries based 1283 * on page size and cluster size. 1284 * 1285 * NOTE: We can no longer compute one value from the other as 1286 * the actual write length and user provided length may be 1287 * different. 1288 */ 1289 1290 if (wc->w_large_pages) { 1291 /* 1292 * We only care about the 1st and last cluster within 1293 * our range and whether they should be zero'd or not. Either 1294 * value may be extended out to the start/end of a 1295 * newly allocated cluster. 1296 */ 1297 desc = &wc->w_desc[0]; 1298 if (desc->c_needs_zero) 1299 ocfs2_figure_cluster_boundaries(osb, 1300 desc->c_cpos, 1301 &wc->w_target_from, 1302 NULL); 1303 1304 desc = &wc->w_desc[wc->w_clen - 1]; 1305 if (desc->c_needs_zero) 1306 ocfs2_figure_cluster_boundaries(osb, 1307 desc->c_cpos, 1308 NULL, 1309 &wc->w_target_to); 1310 } else { 1311 wc->w_target_from = 0; 1312 wc->w_target_to = PAGE_SIZE; 1313 } 1314 } 1315 1316 /* 1317 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to 1318 * do the zero work. And should not to clear UNWRITTEN since it will be cleared 1319 * by the direct io procedure. 1320 * If this is a new extent that allocated by direct io, we should mark it in 1321 * the ip_unwritten_list. 1322 */ 1323 static int ocfs2_unwritten_check(struct inode *inode, 1324 struct ocfs2_write_ctxt *wc, 1325 struct ocfs2_write_cluster_desc *desc) 1326 { 1327 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1328 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL; 1329 int ret = 0; 1330 1331 if (!desc->c_needs_zero) 1332 return 0; 1333 1334 retry: 1335 spin_lock(&oi->ip_lock); 1336 /* Needs not to zero no metter buffer or direct. The one who is zero 1337 * the cluster is doing zero. And he will clear unwritten after all 1338 * cluster io finished. */ 1339 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) { 1340 if (desc->c_cpos == ue->ue_cpos) { 1341 BUG_ON(desc->c_new); 1342 desc->c_needs_zero = 0; 1343 desc->c_clear_unwritten = 0; 1344 goto unlock; 1345 } 1346 } 1347 1348 if (wc->w_type != OCFS2_WRITE_DIRECT) 1349 goto unlock; 1350 1351 if (new == NULL) { 1352 spin_unlock(&oi->ip_lock); 1353 new = kmalloc(sizeof(struct ocfs2_unwritten_extent), 1354 GFP_NOFS); 1355 if (new == NULL) { 1356 ret = -ENOMEM; 1357 goto out; 1358 } 1359 goto retry; 1360 } 1361 /* This direct write will doing zero. */ 1362 new->ue_cpos = desc->c_cpos; 1363 new->ue_phys = desc->c_phys; 1364 desc->c_clear_unwritten = 0; 1365 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list); 1366 list_add_tail(&new->ue_node, &wc->w_unwritten_list); 1367 new = NULL; 1368 unlock: 1369 spin_unlock(&oi->ip_lock); 1370 out: 1371 if (new) 1372 kfree(new); 1373 return ret; 1374 } 1375 1376 /* 1377 * Populate each single-cluster write descriptor in the write context 1378 * with information about the i/o to be done. 1379 * 1380 * Returns the number of clusters that will have to be allocated, as 1381 * well as a worst case estimate of the number of extent records that 1382 * would have to be created during a write to an unwritten region. 1383 */ 1384 static int ocfs2_populate_write_desc(struct inode *inode, 1385 struct ocfs2_write_ctxt *wc, 1386 unsigned int *clusters_to_alloc, 1387 unsigned int *extents_to_split) 1388 { 1389 int ret; 1390 struct ocfs2_write_cluster_desc *desc; 1391 unsigned int num_clusters = 0; 1392 unsigned int ext_flags = 0; 1393 u32 phys = 0; 1394 int i; 1395 1396 *clusters_to_alloc = 0; 1397 *extents_to_split = 0; 1398 1399 for (i = 0; i < wc->w_clen; i++) { 1400 desc = &wc->w_desc[i]; 1401 desc->c_cpos = wc->w_cpos + i; 1402 1403 if (num_clusters == 0) { 1404 /* 1405 * Need to look up the next extent record. 1406 */ 1407 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1408 &num_clusters, &ext_flags); 1409 if (ret) { 1410 mlog_errno(ret); 1411 goto out; 1412 } 1413 1414 /* We should already CoW the refcountd extent. */ 1415 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1416 1417 /* 1418 * Assume worst case - that we're writing in 1419 * the middle of the extent. 1420 * 1421 * We can assume that the write proceeds from 1422 * left to right, in which case the extent 1423 * insert code is smart enough to coalesce the 1424 * next splits into the previous records created. 1425 */ 1426 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1427 *extents_to_split = *extents_to_split + 2; 1428 } else if (phys) { 1429 /* 1430 * Only increment phys if it doesn't describe 1431 * a hole. 1432 */ 1433 phys++; 1434 } 1435 1436 /* 1437 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1438 * file that got extended. w_first_new_cpos tells us 1439 * where the newly allocated clusters are so we can 1440 * zero them. 1441 */ 1442 if (desc->c_cpos >= wc->w_first_new_cpos) { 1443 BUG_ON(phys == 0); 1444 desc->c_needs_zero = 1; 1445 } 1446 1447 desc->c_phys = phys; 1448 if (phys == 0) { 1449 desc->c_new = 1; 1450 desc->c_needs_zero = 1; 1451 desc->c_clear_unwritten = 1; 1452 *clusters_to_alloc = *clusters_to_alloc + 1; 1453 } 1454 1455 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1456 desc->c_clear_unwritten = 1; 1457 desc->c_needs_zero = 1; 1458 } 1459 1460 ret = ocfs2_unwritten_check(inode, wc, desc); 1461 if (ret) { 1462 mlog_errno(ret); 1463 goto out; 1464 } 1465 1466 num_clusters--; 1467 } 1468 1469 ret = 0; 1470 out: 1471 return ret; 1472 } 1473 1474 static int ocfs2_write_begin_inline(struct address_space *mapping, 1475 struct inode *inode, 1476 struct ocfs2_write_ctxt *wc) 1477 { 1478 int ret; 1479 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1480 struct page *page; 1481 handle_t *handle; 1482 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1483 1484 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1485 if (IS_ERR(handle)) { 1486 ret = PTR_ERR(handle); 1487 mlog_errno(ret); 1488 goto out; 1489 } 1490 1491 page = find_or_create_page(mapping, 0, GFP_NOFS); 1492 if (!page) { 1493 ocfs2_commit_trans(osb, handle); 1494 ret = -ENOMEM; 1495 mlog_errno(ret); 1496 goto out; 1497 } 1498 /* 1499 * If we don't set w_num_pages then this page won't get unlocked 1500 * and freed on cleanup of the write context. 1501 */ 1502 wc->w_pages[0] = wc->w_target_page = page; 1503 wc->w_num_pages = 1; 1504 1505 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1506 OCFS2_JOURNAL_ACCESS_WRITE); 1507 if (ret) { 1508 ocfs2_commit_trans(osb, handle); 1509 1510 mlog_errno(ret); 1511 goto out; 1512 } 1513 1514 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1515 ocfs2_set_inode_data_inline(inode, di); 1516 1517 if (!PageUptodate(page)) { 1518 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1519 if (ret) { 1520 ocfs2_commit_trans(osb, handle); 1521 1522 goto out; 1523 } 1524 } 1525 1526 wc->w_handle = handle; 1527 out: 1528 return ret; 1529 } 1530 1531 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1532 { 1533 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1534 1535 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1536 return 1; 1537 return 0; 1538 } 1539 1540 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1541 struct inode *inode, loff_t pos, 1542 unsigned len, struct page *mmap_page, 1543 struct ocfs2_write_ctxt *wc) 1544 { 1545 int ret, written = 0; 1546 loff_t end = pos + len; 1547 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1548 struct ocfs2_dinode *di = NULL; 1549 1550 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1551 len, (unsigned long long)pos, 1552 oi->ip_dyn_features); 1553 1554 /* 1555 * Handle inodes which already have inline data 1st. 1556 */ 1557 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1558 if (mmap_page == NULL && 1559 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1560 goto do_inline_write; 1561 1562 /* 1563 * The write won't fit - we have to give this inode an 1564 * inline extent list now. 1565 */ 1566 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1567 if (ret) 1568 mlog_errno(ret); 1569 goto out; 1570 } 1571 1572 /* 1573 * Check whether the inode can accept inline data. 1574 */ 1575 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1576 return 0; 1577 1578 /* 1579 * Check whether the write can fit. 1580 */ 1581 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1582 if (mmap_page || 1583 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1584 return 0; 1585 1586 do_inline_write: 1587 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1588 if (ret) { 1589 mlog_errno(ret); 1590 goto out; 1591 } 1592 1593 /* 1594 * This signals to the caller that the data can be written 1595 * inline. 1596 */ 1597 written = 1; 1598 out: 1599 return written ? written : ret; 1600 } 1601 1602 /* 1603 * This function only does anything for file systems which can't 1604 * handle sparse files. 1605 * 1606 * What we want to do here is fill in any hole between the current end 1607 * of allocation and the end of our write. That way the rest of the 1608 * write path can treat it as an non-allocating write, which has no 1609 * special case code for sparse/nonsparse files. 1610 */ 1611 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1612 struct buffer_head *di_bh, 1613 loff_t pos, unsigned len, 1614 struct ocfs2_write_ctxt *wc) 1615 { 1616 int ret; 1617 loff_t newsize = pos + len; 1618 1619 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1620 1621 if (newsize <= i_size_read(inode)) 1622 return 0; 1623 1624 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1625 if (ret) 1626 mlog_errno(ret); 1627 1628 /* There is no wc if this is call from direct. */ 1629 if (wc) 1630 wc->w_first_new_cpos = 1631 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1632 1633 return ret; 1634 } 1635 1636 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1637 loff_t pos) 1638 { 1639 int ret = 0; 1640 1641 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1642 if (pos > i_size_read(inode)) 1643 ret = ocfs2_zero_extend(inode, di_bh, pos); 1644 1645 return ret; 1646 } 1647 1648 int ocfs2_write_begin_nolock(struct address_space *mapping, 1649 loff_t pos, unsigned len, ocfs2_write_type_t type, 1650 struct page **pagep, void **fsdata, 1651 struct buffer_head *di_bh, struct page *mmap_page) 1652 { 1653 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1654 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1655 struct ocfs2_write_ctxt *wc; 1656 struct inode *inode = mapping->host; 1657 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1658 struct ocfs2_dinode *di; 1659 struct ocfs2_alloc_context *data_ac = NULL; 1660 struct ocfs2_alloc_context *meta_ac = NULL; 1661 handle_t *handle; 1662 struct ocfs2_extent_tree et; 1663 int try_free = 1, ret1; 1664 1665 try_again: 1666 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh); 1667 if (ret) { 1668 mlog_errno(ret); 1669 return ret; 1670 } 1671 1672 if (ocfs2_supports_inline_data(osb)) { 1673 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1674 mmap_page, wc); 1675 if (ret == 1) { 1676 ret = 0; 1677 goto success; 1678 } 1679 if (ret < 0) { 1680 mlog_errno(ret); 1681 goto out; 1682 } 1683 } 1684 1685 /* Direct io change i_size late, should not zero tail here. */ 1686 if (type != OCFS2_WRITE_DIRECT) { 1687 if (ocfs2_sparse_alloc(osb)) 1688 ret = ocfs2_zero_tail(inode, di_bh, pos); 1689 else 1690 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 1691 len, wc); 1692 if (ret) { 1693 mlog_errno(ret); 1694 goto out; 1695 } 1696 } 1697 1698 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1699 if (ret < 0) { 1700 mlog_errno(ret); 1701 goto out; 1702 } else if (ret == 1) { 1703 clusters_need = wc->w_clen; 1704 ret = ocfs2_refcount_cow(inode, di_bh, 1705 wc->w_cpos, wc->w_clen, UINT_MAX); 1706 if (ret) { 1707 mlog_errno(ret); 1708 goto out; 1709 } 1710 } 1711 1712 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1713 &extents_to_split); 1714 if (ret) { 1715 mlog_errno(ret); 1716 goto out; 1717 } 1718 clusters_need += clusters_to_alloc; 1719 1720 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1721 1722 trace_ocfs2_write_begin_nolock( 1723 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1724 (long long)i_size_read(inode), 1725 le32_to_cpu(di->i_clusters), 1726 pos, len, type, mmap_page, 1727 clusters_to_alloc, extents_to_split); 1728 1729 /* 1730 * We set w_target_from, w_target_to here so that 1731 * ocfs2_write_end() knows which range in the target page to 1732 * write out. An allocation requires that we write the entire 1733 * cluster range. 1734 */ 1735 if (clusters_to_alloc || extents_to_split) { 1736 /* 1737 * XXX: We are stretching the limits of 1738 * ocfs2_lock_allocators(). It greatly over-estimates 1739 * the work to be done. 1740 */ 1741 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1742 wc->w_di_bh); 1743 ret = ocfs2_lock_allocators(inode, &et, 1744 clusters_to_alloc, extents_to_split, 1745 &data_ac, &meta_ac); 1746 if (ret) { 1747 mlog_errno(ret); 1748 goto out; 1749 } 1750 1751 if (data_ac) 1752 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1753 1754 credits = ocfs2_calc_extend_credits(inode->i_sb, 1755 &di->id2.i_list); 1756 } else if (type == OCFS2_WRITE_DIRECT) 1757 /* direct write needs not to start trans if no extents alloc. */ 1758 goto success; 1759 1760 /* 1761 * We have to zero sparse allocated clusters, unwritten extent clusters, 1762 * and non-sparse clusters we just extended. For non-sparse writes, 1763 * we know zeros will only be needed in the first and/or last cluster. 1764 */ 1765 if (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1766 wc->w_desc[wc->w_clen - 1].c_needs_zero)) 1767 cluster_of_pages = 1; 1768 else 1769 cluster_of_pages = 0; 1770 1771 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1772 1773 handle = ocfs2_start_trans(osb, credits); 1774 if (IS_ERR(handle)) { 1775 ret = PTR_ERR(handle); 1776 mlog_errno(ret); 1777 goto out; 1778 } 1779 1780 wc->w_handle = handle; 1781 1782 if (clusters_to_alloc) { 1783 ret = dquot_alloc_space_nodirty(inode, 1784 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1785 if (ret) 1786 goto out_commit; 1787 } 1788 1789 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1790 OCFS2_JOURNAL_ACCESS_WRITE); 1791 if (ret) { 1792 mlog_errno(ret); 1793 goto out_quota; 1794 } 1795 1796 /* 1797 * Fill our page array first. That way we've grabbed enough so 1798 * that we can zero and flush if we error after adding the 1799 * extent. 1800 */ 1801 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1802 cluster_of_pages, mmap_page); 1803 if (ret && ret != -EAGAIN) { 1804 mlog_errno(ret); 1805 goto out_quota; 1806 } 1807 1808 /* 1809 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 1810 * the target page. In this case, we exit with no error and no target 1811 * page. This will trigger the caller, page_mkwrite(), to re-try 1812 * the operation. 1813 */ 1814 if (ret == -EAGAIN) { 1815 BUG_ON(wc->w_target_page); 1816 ret = 0; 1817 goto out_quota; 1818 } 1819 1820 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1821 len); 1822 if (ret) { 1823 mlog_errno(ret); 1824 goto out_quota; 1825 } 1826 1827 if (data_ac) 1828 ocfs2_free_alloc_context(data_ac); 1829 if (meta_ac) 1830 ocfs2_free_alloc_context(meta_ac); 1831 1832 success: 1833 if (pagep) 1834 *pagep = wc->w_target_page; 1835 *fsdata = wc; 1836 return 0; 1837 out_quota: 1838 if (clusters_to_alloc) 1839 dquot_free_space(inode, 1840 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1841 out_commit: 1842 ocfs2_commit_trans(osb, handle); 1843 1844 out: 1845 /* 1846 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(), 1847 * even in case of error here like ENOSPC and ENOMEM. So, we need 1848 * to unlock the target page manually to prevent deadlocks when 1849 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED 1850 * to VM code. 1851 */ 1852 if (wc->w_target_locked) 1853 unlock_page(mmap_page); 1854 1855 ocfs2_free_write_ctxt(inode, wc); 1856 1857 if (data_ac) { 1858 ocfs2_free_alloc_context(data_ac); 1859 data_ac = NULL; 1860 } 1861 if (meta_ac) { 1862 ocfs2_free_alloc_context(meta_ac); 1863 meta_ac = NULL; 1864 } 1865 1866 if (ret == -ENOSPC && try_free) { 1867 /* 1868 * Try to free some truncate log so that we can have enough 1869 * clusters to allocate. 1870 */ 1871 try_free = 0; 1872 1873 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1874 if (ret1 == 1) 1875 goto try_again; 1876 1877 if (ret1 < 0) 1878 mlog_errno(ret1); 1879 } 1880 1881 return ret; 1882 } 1883 1884 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1885 loff_t pos, unsigned len, unsigned flags, 1886 struct page **pagep, void **fsdata) 1887 { 1888 int ret; 1889 struct buffer_head *di_bh = NULL; 1890 struct inode *inode = mapping->host; 1891 1892 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1893 if (ret) { 1894 mlog_errno(ret); 1895 return ret; 1896 } 1897 1898 /* 1899 * Take alloc sem here to prevent concurrent lookups. That way 1900 * the mapping, zeroing and tree manipulation within 1901 * ocfs2_write() will be safe against ->readpage(). This 1902 * should also serve to lock out allocation from a shared 1903 * writeable region. 1904 */ 1905 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1906 1907 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER, 1908 pagep, fsdata, di_bh, NULL); 1909 if (ret) { 1910 mlog_errno(ret); 1911 goto out_fail; 1912 } 1913 1914 brelse(di_bh); 1915 1916 return 0; 1917 1918 out_fail: 1919 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1920 1921 brelse(di_bh); 1922 ocfs2_inode_unlock(inode, 1); 1923 1924 return ret; 1925 } 1926 1927 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1928 unsigned len, unsigned *copied, 1929 struct ocfs2_dinode *di, 1930 struct ocfs2_write_ctxt *wc) 1931 { 1932 void *kaddr; 1933 1934 if (unlikely(*copied < len)) { 1935 if (!PageUptodate(wc->w_target_page)) { 1936 *copied = 0; 1937 return; 1938 } 1939 } 1940 1941 kaddr = kmap_atomic(wc->w_target_page); 1942 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1943 kunmap_atomic(kaddr); 1944 1945 trace_ocfs2_write_end_inline( 1946 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1947 (unsigned long long)pos, *copied, 1948 le16_to_cpu(di->id2.i_data.id_count), 1949 le16_to_cpu(di->i_dyn_features)); 1950 } 1951 1952 int ocfs2_write_end_nolock(struct address_space *mapping, 1953 loff_t pos, unsigned len, unsigned copied, 1954 struct page *page, void *fsdata) 1955 { 1956 int i, ret; 1957 unsigned from, to, start = pos & (PAGE_SIZE - 1); 1958 struct inode *inode = mapping->host; 1959 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1960 struct ocfs2_write_ctxt *wc = fsdata; 1961 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1962 handle_t *handle = wc->w_handle; 1963 struct page *tmppage; 1964 1965 BUG_ON(!list_empty(&wc->w_unwritten_list)); 1966 1967 if (handle) { 1968 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), 1969 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); 1970 if (ret) { 1971 copied = ret; 1972 mlog_errno(ret); 1973 goto out; 1974 } 1975 } 1976 1977 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1978 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1979 goto out_write_size; 1980 } 1981 1982 if (unlikely(copied < len) && wc->w_target_page) { 1983 if (!PageUptodate(wc->w_target_page)) 1984 copied = 0; 1985 1986 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1987 start+len); 1988 } 1989 if (wc->w_target_page) 1990 flush_dcache_page(wc->w_target_page); 1991 1992 for(i = 0; i < wc->w_num_pages; i++) { 1993 tmppage = wc->w_pages[i]; 1994 1995 /* This is the direct io target page. */ 1996 if (tmppage == NULL) 1997 continue; 1998 1999 if (tmppage == wc->w_target_page) { 2000 from = wc->w_target_from; 2001 to = wc->w_target_to; 2002 2003 BUG_ON(from > PAGE_SIZE || 2004 to > PAGE_SIZE || 2005 to < from); 2006 } else { 2007 /* 2008 * Pages adjacent to the target (if any) imply 2009 * a hole-filling write in which case we want 2010 * to flush their entire range. 2011 */ 2012 from = 0; 2013 to = PAGE_SIZE; 2014 } 2015 2016 if (page_has_buffers(tmppage)) { 2017 if (handle && ocfs2_should_order_data(inode)) 2018 ocfs2_jbd2_file_inode(handle, inode); 2019 block_commit_write(tmppage, from, to); 2020 } 2021 } 2022 2023 out_write_size: 2024 /* Direct io do not update i_size here. */ 2025 if (wc->w_type != OCFS2_WRITE_DIRECT) { 2026 pos += copied; 2027 if (pos > i_size_read(inode)) { 2028 i_size_write(inode, pos); 2029 mark_inode_dirty(inode); 2030 } 2031 inode->i_blocks = ocfs2_inode_sector_count(inode); 2032 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2033 inode->i_mtime = inode->i_ctime = current_time(inode); 2034 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2035 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2036 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2037 } 2038 if (handle) 2039 ocfs2_journal_dirty(handle, wc->w_di_bh); 2040 2041 out: 2042 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2043 * lock, or it will cause a deadlock since journal commit threads holds 2044 * this lock and will ask for the page lock when flushing the data. 2045 * put it here to preserve the unlock order. 2046 */ 2047 ocfs2_unlock_pages(wc); 2048 2049 if (handle) 2050 ocfs2_commit_trans(osb, handle); 2051 2052 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2053 2054 brelse(wc->w_di_bh); 2055 kfree(wc); 2056 2057 return copied; 2058 } 2059 2060 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2061 loff_t pos, unsigned len, unsigned copied, 2062 struct page *page, void *fsdata) 2063 { 2064 int ret; 2065 struct inode *inode = mapping->host; 2066 2067 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 2068 2069 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2070 ocfs2_inode_unlock(inode, 1); 2071 2072 return ret; 2073 } 2074 2075 struct ocfs2_dio_write_ctxt { 2076 struct list_head dw_zero_list; 2077 unsigned dw_zero_count; 2078 int dw_orphaned; 2079 pid_t dw_writer_pid; 2080 }; 2081 2082 static struct ocfs2_dio_write_ctxt * 2083 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc) 2084 { 2085 struct ocfs2_dio_write_ctxt *dwc = NULL; 2086 2087 if (bh->b_private) 2088 return bh->b_private; 2089 2090 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS); 2091 if (dwc == NULL) 2092 return NULL; 2093 INIT_LIST_HEAD(&dwc->dw_zero_list); 2094 dwc->dw_zero_count = 0; 2095 dwc->dw_orphaned = 0; 2096 dwc->dw_writer_pid = task_pid_nr(current); 2097 bh->b_private = dwc; 2098 *alloc = 1; 2099 2100 return dwc; 2101 } 2102 2103 static void ocfs2_dio_free_write_ctx(struct inode *inode, 2104 struct ocfs2_dio_write_ctxt *dwc) 2105 { 2106 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list); 2107 kfree(dwc); 2108 } 2109 2110 /* 2111 * TODO: Make this into a generic get_blocks function. 2112 * 2113 * From do_direct_io in direct-io.c: 2114 * "So what we do is to permit the ->get_blocks function to populate 2115 * bh.b_size with the size of IO which is permitted at this offset and 2116 * this i_blkbits." 2117 * 2118 * This function is called directly from get_more_blocks in direct-io.c. 2119 * 2120 * called like this: dio->get_blocks(dio->inode, fs_startblk, 2121 * fs_count, map_bh, dio->rw == WRITE); 2122 */ 2123 static int ocfs2_dio_get_block(struct inode *inode, sector_t iblock, 2124 struct buffer_head *bh_result, int create) 2125 { 2126 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2127 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2128 struct ocfs2_write_ctxt *wc; 2129 struct ocfs2_write_cluster_desc *desc = NULL; 2130 struct ocfs2_dio_write_ctxt *dwc = NULL; 2131 struct buffer_head *di_bh = NULL; 2132 u64 p_blkno; 2133 loff_t pos = iblock << inode->i_sb->s_blocksize_bits; 2134 unsigned len, total_len = bh_result->b_size; 2135 int ret = 0, first_get_block = 0; 2136 2137 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1)); 2138 len = min(total_len, len); 2139 2140 mlog(0, "get block of %lu at %llu:%u req %u\n", 2141 inode->i_ino, pos, len, total_len); 2142 2143 /* 2144 * Because we need to change file size in ocfs2_dio_end_io_write(), or 2145 * we may need to add it to orphan dir. So can not fall to fast path 2146 * while file size will be changed. 2147 */ 2148 if (pos + total_len <= i_size_read(inode)) { 2149 down_read(&oi->ip_alloc_sem); 2150 /* This is the fast path for re-write. */ 2151 ret = ocfs2_get_block(inode, iblock, bh_result, create); 2152 2153 up_read(&oi->ip_alloc_sem); 2154 2155 if (buffer_mapped(bh_result) && 2156 !buffer_new(bh_result) && 2157 ret == 0) 2158 goto out; 2159 2160 /* Clear state set by ocfs2_get_block. */ 2161 bh_result->b_state = 0; 2162 } 2163 2164 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block); 2165 if (unlikely(dwc == NULL)) { 2166 ret = -ENOMEM; 2167 mlog_errno(ret); 2168 goto out; 2169 } 2170 2171 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) > 2172 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) && 2173 !dwc->dw_orphaned) { 2174 /* 2175 * when we are going to alloc extents beyond file size, add the 2176 * inode to orphan dir, so we can recall those spaces when 2177 * system crashed during write. 2178 */ 2179 ret = ocfs2_add_inode_to_orphan(osb, inode); 2180 if (ret < 0) { 2181 mlog_errno(ret); 2182 goto out; 2183 } 2184 dwc->dw_orphaned = 1; 2185 } 2186 2187 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2188 if (ret) { 2189 mlog_errno(ret); 2190 goto out; 2191 } 2192 2193 down_write(&oi->ip_alloc_sem); 2194 2195 if (first_get_block) { 2196 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 2197 ret = ocfs2_zero_tail(inode, di_bh, pos); 2198 else 2199 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 2200 total_len, NULL); 2201 if (ret < 0) { 2202 mlog_errno(ret); 2203 goto unlock; 2204 } 2205 } 2206 2207 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len, 2208 OCFS2_WRITE_DIRECT, NULL, 2209 (void **)&wc, di_bh, NULL); 2210 if (ret) { 2211 mlog_errno(ret); 2212 goto unlock; 2213 } 2214 2215 desc = &wc->w_desc[0]; 2216 2217 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys); 2218 BUG_ON(p_blkno == 0); 2219 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1); 2220 2221 map_bh(bh_result, inode->i_sb, p_blkno); 2222 bh_result->b_size = len; 2223 if (desc->c_needs_zero) 2224 set_buffer_new(bh_result); 2225 2226 /* May sleep in end_io. It should not happen in a irq context. So defer 2227 * it to dio work queue. */ 2228 set_buffer_defer_completion(bh_result); 2229 2230 if (!list_empty(&wc->w_unwritten_list)) { 2231 struct ocfs2_unwritten_extent *ue = NULL; 2232 2233 ue = list_first_entry(&wc->w_unwritten_list, 2234 struct ocfs2_unwritten_extent, 2235 ue_node); 2236 BUG_ON(ue->ue_cpos != desc->c_cpos); 2237 /* The physical address may be 0, fill it. */ 2238 ue->ue_phys = desc->c_phys; 2239 2240 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list); 2241 dwc->dw_zero_count++; 2242 } 2243 2244 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, NULL, wc); 2245 BUG_ON(ret != len); 2246 ret = 0; 2247 unlock: 2248 up_write(&oi->ip_alloc_sem); 2249 ocfs2_inode_unlock(inode, 1); 2250 brelse(di_bh); 2251 out: 2252 if (ret < 0) 2253 ret = -EIO; 2254 return ret; 2255 } 2256 2257 static void ocfs2_dio_end_io_write(struct inode *inode, 2258 struct ocfs2_dio_write_ctxt *dwc, 2259 loff_t offset, 2260 ssize_t bytes) 2261 { 2262 struct ocfs2_cached_dealloc_ctxt dealloc; 2263 struct ocfs2_extent_tree et; 2264 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2265 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2266 struct ocfs2_unwritten_extent *ue = NULL; 2267 struct buffer_head *di_bh = NULL; 2268 struct ocfs2_dinode *di; 2269 struct ocfs2_alloc_context *data_ac = NULL; 2270 struct ocfs2_alloc_context *meta_ac = NULL; 2271 handle_t *handle = NULL; 2272 loff_t end = offset + bytes; 2273 int ret = 0, credits = 0, locked = 0; 2274 2275 ocfs2_init_dealloc_ctxt(&dealloc); 2276 2277 /* We do clear unwritten, delete orphan, change i_size here. If neither 2278 * of these happen, we can skip all this. */ 2279 if (list_empty(&dwc->dw_zero_list) && 2280 end <= i_size_read(inode) && 2281 !dwc->dw_orphaned) 2282 goto out; 2283 2284 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we 2285 * are in that context. */ 2286 if (dwc->dw_writer_pid != task_pid_nr(current)) { 2287 inode_lock(inode); 2288 locked = 1; 2289 } 2290 2291 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2292 if (ret < 0) { 2293 mlog_errno(ret); 2294 goto out; 2295 } 2296 2297 down_write(&oi->ip_alloc_sem); 2298 2299 /* Delete orphan before acquire i_mutex. */ 2300 if (dwc->dw_orphaned) { 2301 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current)); 2302 2303 end = end > i_size_read(inode) ? end : 0; 2304 2305 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 2306 !!end, end); 2307 if (ret < 0) 2308 mlog_errno(ret); 2309 } 2310 2311 di = (struct ocfs2_dinode *)di_bh; 2312 2313 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 2314 2315 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2, 2316 &data_ac, &meta_ac); 2317 if (ret) { 2318 mlog_errno(ret); 2319 goto unlock; 2320 } 2321 2322 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list); 2323 2324 handle = ocfs2_start_trans(osb, credits); 2325 if (IS_ERR(handle)) { 2326 ret = PTR_ERR(handle); 2327 mlog_errno(ret); 2328 goto unlock; 2329 } 2330 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 2331 OCFS2_JOURNAL_ACCESS_WRITE); 2332 if (ret) { 2333 mlog_errno(ret); 2334 goto commit; 2335 } 2336 2337 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) { 2338 ret = ocfs2_mark_extent_written(inode, &et, handle, 2339 ue->ue_cpos, 1, 2340 ue->ue_phys, 2341 meta_ac, &dealloc); 2342 if (ret < 0) { 2343 mlog_errno(ret); 2344 break; 2345 } 2346 } 2347 2348 if (end > i_size_read(inode)) { 2349 ret = ocfs2_set_inode_size(handle, inode, di_bh, end); 2350 if (ret < 0) 2351 mlog_errno(ret); 2352 } 2353 commit: 2354 ocfs2_commit_trans(osb, handle); 2355 unlock: 2356 up_write(&oi->ip_alloc_sem); 2357 ocfs2_inode_unlock(inode, 1); 2358 brelse(di_bh); 2359 out: 2360 if (data_ac) 2361 ocfs2_free_alloc_context(data_ac); 2362 if (meta_ac) 2363 ocfs2_free_alloc_context(meta_ac); 2364 ocfs2_run_deallocs(osb, &dealloc); 2365 if (locked) 2366 inode_unlock(inode); 2367 ocfs2_dio_free_write_ctx(inode, dwc); 2368 } 2369 2370 /* 2371 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 2372 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 2373 * to protect io on one node from truncation on another. 2374 */ 2375 static int ocfs2_dio_end_io(struct kiocb *iocb, 2376 loff_t offset, 2377 ssize_t bytes, 2378 void *private) 2379 { 2380 struct inode *inode = file_inode(iocb->ki_filp); 2381 int level; 2382 2383 if (bytes <= 0) 2384 return 0; 2385 2386 /* this io's submitter should not have unlocked this before we could */ 2387 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 2388 2389 if (private) 2390 ocfs2_dio_end_io_write(inode, private, offset, bytes); 2391 2392 ocfs2_iocb_clear_rw_locked(iocb); 2393 2394 level = ocfs2_iocb_rw_locked_level(iocb); 2395 ocfs2_rw_unlock(inode, level); 2396 return 0; 2397 } 2398 2399 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2400 { 2401 struct file *file = iocb->ki_filp; 2402 struct inode *inode = file->f_mapping->host; 2403 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2404 get_block_t *get_block; 2405 2406 /* 2407 * Fallback to buffered I/O if we see an inode without 2408 * extents. 2409 */ 2410 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2411 return 0; 2412 2413 /* Fallback to buffered I/O if we do not support append dio. */ 2414 if (iocb->ki_pos + iter->count > i_size_read(inode) && 2415 !ocfs2_supports_append_dio(osb)) 2416 return 0; 2417 2418 if (iov_iter_rw(iter) == READ) 2419 get_block = ocfs2_get_block; 2420 else 2421 get_block = ocfs2_dio_get_block; 2422 2423 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2424 iter, get_block, 2425 ocfs2_dio_end_io, NULL, 0); 2426 } 2427 2428 const struct address_space_operations ocfs2_aops = { 2429 .readpage = ocfs2_readpage, 2430 .readpages = ocfs2_readpages, 2431 .writepage = ocfs2_writepage, 2432 .write_begin = ocfs2_write_begin, 2433 .write_end = ocfs2_write_end, 2434 .bmap = ocfs2_bmap, 2435 .direct_IO = ocfs2_direct_IO, 2436 .invalidatepage = block_invalidatepage, 2437 .releasepage = ocfs2_releasepage, 2438 .migratepage = buffer_migrate_page, 2439 .is_partially_uptodate = block_is_partially_uptodate, 2440 .error_remove_page = generic_error_remove_page, 2441 }; 2442