1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 #include <linux/quotaops.h> 31 32 #include <cluster/masklog.h> 33 34 #include "ocfs2.h" 35 36 #include "alloc.h" 37 #include "aops.h" 38 #include "dlmglue.h" 39 #include "extent_map.h" 40 #include "file.h" 41 #include "inode.h" 42 #include "journal.h" 43 #include "suballoc.h" 44 #include "super.h" 45 #include "symlink.h" 46 #include "refcounttree.h" 47 #include "ocfs2_trace.h" 48 49 #include "buffer_head_io.h" 50 51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 52 struct buffer_head *bh_result, int create) 53 { 54 int err = -EIO; 55 int status; 56 struct ocfs2_dinode *fe = NULL; 57 struct buffer_head *bh = NULL; 58 struct buffer_head *buffer_cache_bh = NULL; 59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 60 void *kaddr; 61 62 trace_ocfs2_symlink_get_block( 63 (unsigned long long)OCFS2_I(inode)->ip_blkno, 64 (unsigned long long)iblock, bh_result, create); 65 66 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 67 68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 70 (unsigned long long)iblock); 71 goto bail; 72 } 73 74 status = ocfs2_read_inode_block(inode, &bh); 75 if (status < 0) { 76 mlog_errno(status); 77 goto bail; 78 } 79 fe = (struct ocfs2_dinode *) bh->b_data; 80 81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 82 le32_to_cpu(fe->i_clusters))) { 83 err = -ENOMEM; 84 mlog(ML_ERROR, "block offset is outside the allocated size: " 85 "%llu\n", (unsigned long long)iblock); 86 goto bail; 87 } 88 89 /* We don't use the page cache to create symlink data, so if 90 * need be, copy it over from the buffer cache. */ 91 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 92 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 93 iblock; 94 buffer_cache_bh = sb_getblk(osb->sb, blkno); 95 if (!buffer_cache_bh) { 96 err = -ENOMEM; 97 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 98 goto bail; 99 } 100 101 /* we haven't locked out transactions, so a commit 102 * could've happened. Since we've got a reference on 103 * the bh, even if it commits while we're doing the 104 * copy, the data is still good. */ 105 if (buffer_jbd(buffer_cache_bh) 106 && ocfs2_inode_is_new(inode)) { 107 kaddr = kmap_atomic(bh_result->b_page); 108 if (!kaddr) { 109 mlog(ML_ERROR, "couldn't kmap!\n"); 110 goto bail; 111 } 112 memcpy(kaddr + (bh_result->b_size * iblock), 113 buffer_cache_bh->b_data, 114 bh_result->b_size); 115 kunmap_atomic(kaddr); 116 set_buffer_uptodate(bh_result); 117 } 118 brelse(buffer_cache_bh); 119 } 120 121 map_bh(bh_result, inode->i_sb, 122 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 123 124 err = 0; 125 126 bail: 127 brelse(bh); 128 129 return err; 130 } 131 132 int ocfs2_get_block(struct inode *inode, sector_t iblock, 133 struct buffer_head *bh_result, int create) 134 { 135 int err = 0; 136 unsigned int ext_flags; 137 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 138 u64 p_blkno, count, past_eof; 139 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 140 141 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 142 (unsigned long long)iblock, bh_result, create); 143 144 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 145 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 146 inode, inode->i_ino); 147 148 if (S_ISLNK(inode->i_mode)) { 149 /* this always does I/O for some reason. */ 150 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 151 goto bail; 152 } 153 154 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 155 &ext_flags); 156 if (err) { 157 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 158 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 159 (unsigned long long)p_blkno); 160 goto bail; 161 } 162 163 if (max_blocks < count) 164 count = max_blocks; 165 166 /* 167 * ocfs2 never allocates in this function - the only time we 168 * need to use BH_New is when we're extending i_size on a file 169 * system which doesn't support holes, in which case BH_New 170 * allows __block_write_begin() to zero. 171 * 172 * If we see this on a sparse file system, then a truncate has 173 * raced us and removed the cluster. In this case, we clear 174 * the buffers dirty and uptodate bits and let the buffer code 175 * ignore it as a hole. 176 */ 177 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 178 clear_buffer_dirty(bh_result); 179 clear_buffer_uptodate(bh_result); 180 goto bail; 181 } 182 183 /* Treat the unwritten extent as a hole for zeroing purposes. */ 184 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 185 map_bh(bh_result, inode->i_sb, p_blkno); 186 187 bh_result->b_size = count << inode->i_blkbits; 188 189 if (!ocfs2_sparse_alloc(osb)) { 190 if (p_blkno == 0) { 191 err = -EIO; 192 mlog(ML_ERROR, 193 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 194 (unsigned long long)iblock, 195 (unsigned long long)p_blkno, 196 (unsigned long long)OCFS2_I(inode)->ip_blkno); 197 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 198 dump_stack(); 199 goto bail; 200 } 201 } 202 203 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 204 205 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 206 (unsigned long long)past_eof); 207 if (create && (iblock >= past_eof)) 208 set_buffer_new(bh_result); 209 210 bail: 211 if (err < 0) 212 err = -EIO; 213 214 return err; 215 } 216 217 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 218 struct buffer_head *di_bh) 219 { 220 void *kaddr; 221 loff_t size; 222 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 223 224 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 225 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag", 226 (unsigned long long)OCFS2_I(inode)->ip_blkno); 227 return -EROFS; 228 } 229 230 size = i_size_read(inode); 231 232 if (size > PAGE_CACHE_SIZE || 233 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 234 ocfs2_error(inode->i_sb, 235 "Inode %llu has with inline data has bad size: %Lu", 236 (unsigned long long)OCFS2_I(inode)->ip_blkno, 237 (unsigned long long)size); 238 return -EROFS; 239 } 240 241 kaddr = kmap_atomic(page); 242 if (size) 243 memcpy(kaddr, di->id2.i_data.id_data, size); 244 /* Clear the remaining part of the page */ 245 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); 246 flush_dcache_page(page); 247 kunmap_atomic(kaddr); 248 249 SetPageUptodate(page); 250 251 return 0; 252 } 253 254 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 255 { 256 int ret; 257 struct buffer_head *di_bh = NULL; 258 259 BUG_ON(!PageLocked(page)); 260 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 261 262 ret = ocfs2_read_inode_block(inode, &di_bh); 263 if (ret) { 264 mlog_errno(ret); 265 goto out; 266 } 267 268 ret = ocfs2_read_inline_data(inode, page, di_bh); 269 out: 270 unlock_page(page); 271 272 brelse(di_bh); 273 return ret; 274 } 275 276 static int ocfs2_readpage(struct file *file, struct page *page) 277 { 278 struct inode *inode = page->mapping->host; 279 struct ocfs2_inode_info *oi = OCFS2_I(inode); 280 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; 281 int ret, unlock = 1; 282 283 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 284 (page ? page->index : 0)); 285 286 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 287 if (ret != 0) { 288 if (ret == AOP_TRUNCATED_PAGE) 289 unlock = 0; 290 mlog_errno(ret); 291 goto out; 292 } 293 294 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 295 /* 296 * Unlock the page and cycle ip_alloc_sem so that we don't 297 * busyloop waiting for ip_alloc_sem to unlock 298 */ 299 ret = AOP_TRUNCATED_PAGE; 300 unlock_page(page); 301 unlock = 0; 302 down_read(&oi->ip_alloc_sem); 303 up_read(&oi->ip_alloc_sem); 304 goto out_inode_unlock; 305 } 306 307 /* 308 * i_size might have just been updated as we grabed the meta lock. We 309 * might now be discovering a truncate that hit on another node. 310 * block_read_full_page->get_block freaks out if it is asked to read 311 * beyond the end of a file, so we check here. Callers 312 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 313 * and notice that the page they just read isn't needed. 314 * 315 * XXX sys_readahead() seems to get that wrong? 316 */ 317 if (start >= i_size_read(inode)) { 318 zero_user(page, 0, PAGE_SIZE); 319 SetPageUptodate(page); 320 ret = 0; 321 goto out_alloc; 322 } 323 324 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 325 ret = ocfs2_readpage_inline(inode, page); 326 else 327 ret = block_read_full_page(page, ocfs2_get_block); 328 unlock = 0; 329 330 out_alloc: 331 up_read(&OCFS2_I(inode)->ip_alloc_sem); 332 out_inode_unlock: 333 ocfs2_inode_unlock(inode, 0); 334 out: 335 if (unlock) 336 unlock_page(page); 337 return ret; 338 } 339 340 /* 341 * This is used only for read-ahead. Failures or difficult to handle 342 * situations are safe to ignore. 343 * 344 * Right now, we don't bother with BH_Boundary - in-inode extent lists 345 * are quite large (243 extents on 4k blocks), so most inodes don't 346 * grow out to a tree. If need be, detecting boundary extents could 347 * trivially be added in a future version of ocfs2_get_block(). 348 */ 349 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 350 struct list_head *pages, unsigned nr_pages) 351 { 352 int ret, err = -EIO; 353 struct inode *inode = mapping->host; 354 struct ocfs2_inode_info *oi = OCFS2_I(inode); 355 loff_t start; 356 struct page *last; 357 358 /* 359 * Use the nonblocking flag for the dlm code to avoid page 360 * lock inversion, but don't bother with retrying. 361 */ 362 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 363 if (ret) 364 return err; 365 366 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 367 ocfs2_inode_unlock(inode, 0); 368 return err; 369 } 370 371 /* 372 * Don't bother with inline-data. There isn't anything 373 * to read-ahead in that case anyway... 374 */ 375 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 376 goto out_unlock; 377 378 /* 379 * Check whether a remote node truncated this file - we just 380 * drop out in that case as it's not worth handling here. 381 */ 382 last = list_entry(pages->prev, struct page, lru); 383 start = (loff_t)last->index << PAGE_CACHE_SHIFT; 384 if (start >= i_size_read(inode)) 385 goto out_unlock; 386 387 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 388 389 out_unlock: 390 up_read(&oi->ip_alloc_sem); 391 ocfs2_inode_unlock(inode, 0); 392 393 return err; 394 } 395 396 /* Note: Because we don't support holes, our allocation has 397 * already happened (allocation writes zeros to the file data) 398 * so we don't have to worry about ordered writes in 399 * ocfs2_writepage. 400 * 401 * ->writepage is called during the process of invalidating the page cache 402 * during blocked lock processing. It can't block on any cluster locks 403 * to during block mapping. It's relying on the fact that the block 404 * mapping can't have disappeared under the dirty pages that it is 405 * being asked to write back. 406 */ 407 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 408 { 409 trace_ocfs2_writepage( 410 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 411 page->index); 412 413 return block_write_full_page(page, ocfs2_get_block, wbc); 414 } 415 416 /* Taken from ext3. We don't necessarily need the full blown 417 * functionality yet, but IMHO it's better to cut and paste the whole 418 * thing so we can avoid introducing our own bugs (and easily pick up 419 * their fixes when they happen) --Mark */ 420 int walk_page_buffers( handle_t *handle, 421 struct buffer_head *head, 422 unsigned from, 423 unsigned to, 424 int *partial, 425 int (*fn)( handle_t *handle, 426 struct buffer_head *bh)) 427 { 428 struct buffer_head *bh; 429 unsigned block_start, block_end; 430 unsigned blocksize = head->b_size; 431 int err, ret = 0; 432 struct buffer_head *next; 433 434 for ( bh = head, block_start = 0; 435 ret == 0 && (bh != head || !block_start); 436 block_start = block_end, bh = next) 437 { 438 next = bh->b_this_page; 439 block_end = block_start + blocksize; 440 if (block_end <= from || block_start >= to) { 441 if (partial && !buffer_uptodate(bh)) 442 *partial = 1; 443 continue; 444 } 445 err = (*fn)(handle, bh); 446 if (!ret) 447 ret = err; 448 } 449 return ret; 450 } 451 452 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 453 { 454 sector_t status; 455 u64 p_blkno = 0; 456 int err = 0; 457 struct inode *inode = mapping->host; 458 459 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 460 (unsigned long long)block); 461 462 /* We don't need to lock journal system files, since they aren't 463 * accessed concurrently from multiple nodes. 464 */ 465 if (!INODE_JOURNAL(inode)) { 466 err = ocfs2_inode_lock(inode, NULL, 0); 467 if (err) { 468 if (err != -ENOENT) 469 mlog_errno(err); 470 goto bail; 471 } 472 down_read(&OCFS2_I(inode)->ip_alloc_sem); 473 } 474 475 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 476 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 477 NULL); 478 479 if (!INODE_JOURNAL(inode)) { 480 up_read(&OCFS2_I(inode)->ip_alloc_sem); 481 ocfs2_inode_unlock(inode, 0); 482 } 483 484 if (err) { 485 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 486 (unsigned long long)block); 487 mlog_errno(err); 488 goto bail; 489 } 490 491 bail: 492 status = err ? 0 : p_blkno; 493 494 return status; 495 } 496 497 /* 498 * TODO: Make this into a generic get_blocks function. 499 * 500 * From do_direct_io in direct-io.c: 501 * "So what we do is to permit the ->get_blocks function to populate 502 * bh.b_size with the size of IO which is permitted at this offset and 503 * this i_blkbits." 504 * 505 * This function is called directly from get_more_blocks in direct-io.c. 506 * 507 * called like this: dio->get_blocks(dio->inode, fs_startblk, 508 * fs_count, map_bh, dio->rw == WRITE); 509 * 510 * Note that we never bother to allocate blocks here, and thus ignore the 511 * create argument. 512 */ 513 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, 514 struct buffer_head *bh_result, int create) 515 { 516 int ret; 517 u64 p_blkno, inode_blocks, contig_blocks; 518 unsigned int ext_flags; 519 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 520 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; 521 522 /* This function won't even be called if the request isn't all 523 * nicely aligned and of the right size, so there's no need 524 * for us to check any of that. */ 525 526 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 527 528 /* This figures out the size of the next contiguous block, and 529 * our logical offset */ 530 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 531 &contig_blocks, &ext_flags); 532 if (ret) { 533 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 534 (unsigned long long)iblock); 535 ret = -EIO; 536 goto bail; 537 } 538 539 /* We should already CoW the refcounted extent in case of create. */ 540 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED)); 541 542 /* 543 * get_more_blocks() expects us to describe a hole by clearing 544 * the mapped bit on bh_result(). 545 * 546 * Consider an unwritten extent as a hole. 547 */ 548 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 549 map_bh(bh_result, inode->i_sb, p_blkno); 550 else 551 clear_buffer_mapped(bh_result); 552 553 /* make sure we don't map more than max_blocks blocks here as 554 that's all the kernel will handle at this point. */ 555 if (max_blocks < contig_blocks) 556 contig_blocks = max_blocks; 557 bh_result->b_size = contig_blocks << blocksize_bits; 558 bail: 559 return ret; 560 } 561 562 /* 563 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 564 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 565 * to protect io on one node from truncation on another. 566 */ 567 static void ocfs2_dio_end_io(struct kiocb *iocb, 568 loff_t offset, 569 ssize_t bytes, 570 void *private) 571 { 572 struct inode *inode = file_inode(iocb->ki_filp); 573 int level; 574 575 /* this io's submitter should not have unlocked this before we could */ 576 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 577 578 if (ocfs2_iocb_is_sem_locked(iocb)) 579 ocfs2_iocb_clear_sem_locked(iocb); 580 581 if (ocfs2_iocb_is_unaligned_aio(iocb)) { 582 ocfs2_iocb_clear_unaligned_aio(iocb); 583 584 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio); 585 } 586 587 ocfs2_iocb_clear_rw_locked(iocb); 588 589 level = ocfs2_iocb_rw_locked_level(iocb); 590 ocfs2_rw_unlock(inode, level); 591 } 592 593 static int ocfs2_releasepage(struct page *page, gfp_t wait) 594 { 595 if (!page_has_buffers(page)) 596 return 0; 597 return try_to_free_buffers(page); 598 } 599 600 static ssize_t ocfs2_direct_IO(int rw, 601 struct kiocb *iocb, 602 struct iov_iter *iter, 603 loff_t offset) 604 { 605 struct file *file = iocb->ki_filp; 606 struct inode *inode = file_inode(file)->i_mapping->host; 607 608 /* 609 * Fallback to buffered I/O if we see an inode without 610 * extents. 611 */ 612 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 613 return 0; 614 615 /* Fallback to buffered I/O if we are appending. */ 616 if (i_size_read(inode) <= offset) 617 return 0; 618 619 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, 620 iter, offset, 621 ocfs2_direct_IO_get_blocks, 622 ocfs2_dio_end_io, NULL, 0); 623 } 624 625 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 626 u32 cpos, 627 unsigned int *start, 628 unsigned int *end) 629 { 630 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; 631 632 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { 633 unsigned int cpp; 634 635 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); 636 637 cluster_start = cpos % cpp; 638 cluster_start = cluster_start << osb->s_clustersize_bits; 639 640 cluster_end = cluster_start + osb->s_clustersize; 641 } 642 643 BUG_ON(cluster_start > PAGE_SIZE); 644 BUG_ON(cluster_end > PAGE_SIZE); 645 646 if (start) 647 *start = cluster_start; 648 if (end) 649 *end = cluster_end; 650 } 651 652 /* 653 * 'from' and 'to' are the region in the page to avoid zeroing. 654 * 655 * If pagesize > clustersize, this function will avoid zeroing outside 656 * of the cluster boundary. 657 * 658 * from == to == 0 is code for "zero the entire cluster region" 659 */ 660 static void ocfs2_clear_page_regions(struct page *page, 661 struct ocfs2_super *osb, u32 cpos, 662 unsigned from, unsigned to) 663 { 664 void *kaddr; 665 unsigned int cluster_start, cluster_end; 666 667 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 668 669 kaddr = kmap_atomic(page); 670 671 if (from || to) { 672 if (from > cluster_start) 673 memset(kaddr + cluster_start, 0, from - cluster_start); 674 if (to < cluster_end) 675 memset(kaddr + to, 0, cluster_end - to); 676 } else { 677 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 678 } 679 680 kunmap_atomic(kaddr); 681 } 682 683 /* 684 * Nonsparse file systems fully allocate before we get to the write 685 * code. This prevents ocfs2_write() from tagging the write as an 686 * allocating one, which means ocfs2_map_page_blocks() might try to 687 * read-in the blocks at the tail of our file. Avoid reading them by 688 * testing i_size against each block offset. 689 */ 690 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 691 unsigned int block_start) 692 { 693 u64 offset = page_offset(page) + block_start; 694 695 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 696 return 1; 697 698 if (i_size_read(inode) > offset) 699 return 1; 700 701 return 0; 702 } 703 704 /* 705 * Some of this taken from __block_write_begin(). We already have our 706 * mapping by now though, and the entire write will be allocating or 707 * it won't, so not much need to use BH_New. 708 * 709 * This will also skip zeroing, which is handled externally. 710 */ 711 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 712 struct inode *inode, unsigned int from, 713 unsigned int to, int new) 714 { 715 int ret = 0; 716 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 717 unsigned int block_end, block_start; 718 unsigned int bsize = 1 << inode->i_blkbits; 719 720 if (!page_has_buffers(page)) 721 create_empty_buffers(page, bsize, 0); 722 723 head = page_buffers(page); 724 for (bh = head, block_start = 0; bh != head || !block_start; 725 bh = bh->b_this_page, block_start += bsize) { 726 block_end = block_start + bsize; 727 728 clear_buffer_new(bh); 729 730 /* 731 * Ignore blocks outside of our i/o range - 732 * they may belong to unallocated clusters. 733 */ 734 if (block_start >= to || block_end <= from) { 735 if (PageUptodate(page)) 736 set_buffer_uptodate(bh); 737 continue; 738 } 739 740 /* 741 * For an allocating write with cluster size >= page 742 * size, we always write the entire page. 743 */ 744 if (new) 745 set_buffer_new(bh); 746 747 if (!buffer_mapped(bh)) { 748 map_bh(bh, inode->i_sb, *p_blkno); 749 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 750 } 751 752 if (PageUptodate(page)) { 753 if (!buffer_uptodate(bh)) 754 set_buffer_uptodate(bh); 755 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 756 !buffer_new(bh) && 757 ocfs2_should_read_blk(inode, page, block_start) && 758 (block_start < from || block_end > to)) { 759 ll_rw_block(READ, 1, &bh); 760 *wait_bh++=bh; 761 } 762 763 *p_blkno = *p_blkno + 1; 764 } 765 766 /* 767 * If we issued read requests - let them complete. 768 */ 769 while(wait_bh > wait) { 770 wait_on_buffer(*--wait_bh); 771 if (!buffer_uptodate(*wait_bh)) 772 ret = -EIO; 773 } 774 775 if (ret == 0 || !new) 776 return ret; 777 778 /* 779 * If we get -EIO above, zero out any newly allocated blocks 780 * to avoid exposing stale data. 781 */ 782 bh = head; 783 block_start = 0; 784 do { 785 block_end = block_start + bsize; 786 if (block_end <= from) 787 goto next_bh; 788 if (block_start >= to) 789 break; 790 791 zero_user(page, block_start, bh->b_size); 792 set_buffer_uptodate(bh); 793 mark_buffer_dirty(bh); 794 795 next_bh: 796 block_start = block_end; 797 bh = bh->b_this_page; 798 } while (bh != head); 799 800 return ret; 801 } 802 803 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 804 #define OCFS2_MAX_CTXT_PAGES 1 805 #else 806 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) 807 #endif 808 809 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) 810 811 /* 812 * Describe the state of a single cluster to be written to. 813 */ 814 struct ocfs2_write_cluster_desc { 815 u32 c_cpos; 816 u32 c_phys; 817 /* 818 * Give this a unique field because c_phys eventually gets 819 * filled. 820 */ 821 unsigned c_new; 822 unsigned c_unwritten; 823 unsigned c_needs_zero; 824 }; 825 826 struct ocfs2_write_ctxt { 827 /* Logical cluster position / len of write */ 828 u32 w_cpos; 829 u32 w_clen; 830 831 /* First cluster allocated in a nonsparse extend */ 832 u32 w_first_new_cpos; 833 834 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 835 836 /* 837 * This is true if page_size > cluster_size. 838 * 839 * It triggers a set of special cases during write which might 840 * have to deal with allocating writes to partial pages. 841 */ 842 unsigned int w_large_pages; 843 844 /* 845 * Pages involved in this write. 846 * 847 * w_target_page is the page being written to by the user. 848 * 849 * w_pages is an array of pages which always contains 850 * w_target_page, and in the case of an allocating write with 851 * page_size < cluster size, it will contain zero'd and mapped 852 * pages adjacent to w_target_page which need to be written 853 * out in so that future reads from that region will get 854 * zero's. 855 */ 856 unsigned int w_num_pages; 857 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 858 struct page *w_target_page; 859 860 /* 861 * w_target_locked is used for page_mkwrite path indicating no unlocking 862 * against w_target_page in ocfs2_write_end_nolock. 863 */ 864 unsigned int w_target_locked:1; 865 866 /* 867 * ocfs2_write_end() uses this to know what the real range to 868 * write in the target should be. 869 */ 870 unsigned int w_target_from; 871 unsigned int w_target_to; 872 873 /* 874 * We could use journal_current_handle() but this is cleaner, 875 * IMHO -Mark 876 */ 877 handle_t *w_handle; 878 879 struct buffer_head *w_di_bh; 880 881 struct ocfs2_cached_dealloc_ctxt w_dealloc; 882 }; 883 884 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 885 { 886 int i; 887 888 for(i = 0; i < num_pages; i++) { 889 if (pages[i]) { 890 unlock_page(pages[i]); 891 mark_page_accessed(pages[i]); 892 page_cache_release(pages[i]); 893 } 894 } 895 } 896 897 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) 898 { 899 int i; 900 901 /* 902 * w_target_locked is only set to true in the page_mkwrite() case. 903 * The intent is to allow us to lock the target page from write_begin() 904 * to write_end(). The caller must hold a ref on w_target_page. 905 */ 906 if (wc->w_target_locked) { 907 BUG_ON(!wc->w_target_page); 908 for (i = 0; i < wc->w_num_pages; i++) { 909 if (wc->w_target_page == wc->w_pages[i]) { 910 wc->w_pages[i] = NULL; 911 break; 912 } 913 } 914 mark_page_accessed(wc->w_target_page); 915 page_cache_release(wc->w_target_page); 916 } 917 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 918 919 brelse(wc->w_di_bh); 920 kfree(wc); 921 } 922 923 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 924 struct ocfs2_super *osb, loff_t pos, 925 unsigned len, struct buffer_head *di_bh) 926 { 927 u32 cend; 928 struct ocfs2_write_ctxt *wc; 929 930 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 931 if (!wc) 932 return -ENOMEM; 933 934 wc->w_cpos = pos >> osb->s_clustersize_bits; 935 wc->w_first_new_cpos = UINT_MAX; 936 cend = (pos + len - 1) >> osb->s_clustersize_bits; 937 wc->w_clen = cend - wc->w_cpos + 1; 938 get_bh(di_bh); 939 wc->w_di_bh = di_bh; 940 941 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) 942 wc->w_large_pages = 1; 943 else 944 wc->w_large_pages = 0; 945 946 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 947 948 *wcp = wc; 949 950 return 0; 951 } 952 953 /* 954 * If a page has any new buffers, zero them out here, and mark them uptodate 955 * and dirty so they'll be written out (in order to prevent uninitialised 956 * block data from leaking). And clear the new bit. 957 */ 958 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 959 { 960 unsigned int block_start, block_end; 961 struct buffer_head *head, *bh; 962 963 BUG_ON(!PageLocked(page)); 964 if (!page_has_buffers(page)) 965 return; 966 967 bh = head = page_buffers(page); 968 block_start = 0; 969 do { 970 block_end = block_start + bh->b_size; 971 972 if (buffer_new(bh)) { 973 if (block_end > from && block_start < to) { 974 if (!PageUptodate(page)) { 975 unsigned start, end; 976 977 start = max(from, block_start); 978 end = min(to, block_end); 979 980 zero_user_segment(page, start, end); 981 set_buffer_uptodate(bh); 982 } 983 984 clear_buffer_new(bh); 985 mark_buffer_dirty(bh); 986 } 987 } 988 989 block_start = block_end; 990 bh = bh->b_this_page; 991 } while (bh != head); 992 } 993 994 /* 995 * Only called when we have a failure during allocating write to write 996 * zero's to the newly allocated region. 997 */ 998 static void ocfs2_write_failure(struct inode *inode, 999 struct ocfs2_write_ctxt *wc, 1000 loff_t user_pos, unsigned user_len) 1001 { 1002 int i; 1003 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), 1004 to = user_pos + user_len; 1005 struct page *tmppage; 1006 1007 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 1008 1009 for(i = 0; i < wc->w_num_pages; i++) { 1010 tmppage = wc->w_pages[i]; 1011 1012 if (page_has_buffers(tmppage)) { 1013 if (ocfs2_should_order_data(inode)) 1014 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1015 1016 block_commit_write(tmppage, from, to); 1017 } 1018 } 1019 } 1020 1021 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 1022 struct ocfs2_write_ctxt *wc, 1023 struct page *page, u32 cpos, 1024 loff_t user_pos, unsigned user_len, 1025 int new) 1026 { 1027 int ret; 1028 unsigned int map_from = 0, map_to = 0; 1029 unsigned int cluster_start, cluster_end; 1030 unsigned int user_data_from = 0, user_data_to = 0; 1031 1032 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 1033 &cluster_start, &cluster_end); 1034 1035 /* treat the write as new if the a hole/lseek spanned across 1036 * the page boundary. 1037 */ 1038 new = new | ((i_size_read(inode) <= page_offset(page)) && 1039 (page_offset(page) <= user_pos)); 1040 1041 if (page == wc->w_target_page) { 1042 map_from = user_pos & (PAGE_CACHE_SIZE - 1); 1043 map_to = map_from + user_len; 1044 1045 if (new) 1046 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1047 cluster_start, cluster_end, 1048 new); 1049 else 1050 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1051 map_from, map_to, new); 1052 if (ret) { 1053 mlog_errno(ret); 1054 goto out; 1055 } 1056 1057 user_data_from = map_from; 1058 user_data_to = map_to; 1059 if (new) { 1060 map_from = cluster_start; 1061 map_to = cluster_end; 1062 } 1063 } else { 1064 /* 1065 * If we haven't allocated the new page yet, we 1066 * shouldn't be writing it out without copying user 1067 * data. This is likely a math error from the caller. 1068 */ 1069 BUG_ON(!new); 1070 1071 map_from = cluster_start; 1072 map_to = cluster_end; 1073 1074 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1075 cluster_start, cluster_end, new); 1076 if (ret) { 1077 mlog_errno(ret); 1078 goto out; 1079 } 1080 } 1081 1082 /* 1083 * Parts of newly allocated pages need to be zero'd. 1084 * 1085 * Above, we have also rewritten 'to' and 'from' - as far as 1086 * the rest of the function is concerned, the entire cluster 1087 * range inside of a page needs to be written. 1088 * 1089 * We can skip this if the page is up to date - it's already 1090 * been zero'd from being read in as a hole. 1091 */ 1092 if (new && !PageUptodate(page)) 1093 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1094 cpos, user_data_from, user_data_to); 1095 1096 flush_dcache_page(page); 1097 1098 out: 1099 return ret; 1100 } 1101 1102 /* 1103 * This function will only grab one clusters worth of pages. 1104 */ 1105 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1106 struct ocfs2_write_ctxt *wc, 1107 u32 cpos, loff_t user_pos, 1108 unsigned user_len, int new, 1109 struct page *mmap_page) 1110 { 1111 int ret = 0, i; 1112 unsigned long start, target_index, end_index, index; 1113 struct inode *inode = mapping->host; 1114 loff_t last_byte; 1115 1116 target_index = user_pos >> PAGE_CACHE_SHIFT; 1117 1118 /* 1119 * Figure out how many pages we'll be manipulating here. For 1120 * non allocating write, we just change the one 1121 * page. Otherwise, we'll need a whole clusters worth. If we're 1122 * writing past i_size, we only need enough pages to cover the 1123 * last page of the write. 1124 */ 1125 if (new) { 1126 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1127 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1128 /* 1129 * We need the index *past* the last page we could possibly 1130 * touch. This is the page past the end of the write or 1131 * i_size, whichever is greater. 1132 */ 1133 last_byte = max(user_pos + user_len, i_size_read(inode)); 1134 BUG_ON(last_byte < 1); 1135 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1; 1136 if ((start + wc->w_num_pages) > end_index) 1137 wc->w_num_pages = end_index - start; 1138 } else { 1139 wc->w_num_pages = 1; 1140 start = target_index; 1141 } 1142 1143 for(i = 0; i < wc->w_num_pages; i++) { 1144 index = start + i; 1145 1146 if (index == target_index && mmap_page) { 1147 /* 1148 * ocfs2_pagemkwrite() is a little different 1149 * and wants us to directly use the page 1150 * passed in. 1151 */ 1152 lock_page(mmap_page); 1153 1154 /* Exit and let the caller retry */ 1155 if (mmap_page->mapping != mapping) { 1156 WARN_ON(mmap_page->mapping); 1157 unlock_page(mmap_page); 1158 ret = -EAGAIN; 1159 goto out; 1160 } 1161 1162 page_cache_get(mmap_page); 1163 wc->w_pages[i] = mmap_page; 1164 wc->w_target_locked = true; 1165 } else { 1166 wc->w_pages[i] = find_or_create_page(mapping, index, 1167 GFP_NOFS); 1168 if (!wc->w_pages[i]) { 1169 ret = -ENOMEM; 1170 mlog_errno(ret); 1171 goto out; 1172 } 1173 } 1174 wait_for_stable_page(wc->w_pages[i]); 1175 1176 if (index == target_index) 1177 wc->w_target_page = wc->w_pages[i]; 1178 } 1179 out: 1180 if (ret) 1181 wc->w_target_locked = false; 1182 return ret; 1183 } 1184 1185 /* 1186 * Prepare a single cluster for write one cluster into the file. 1187 */ 1188 static int ocfs2_write_cluster(struct address_space *mapping, 1189 u32 phys, unsigned int unwritten, 1190 unsigned int should_zero, 1191 struct ocfs2_alloc_context *data_ac, 1192 struct ocfs2_alloc_context *meta_ac, 1193 struct ocfs2_write_ctxt *wc, u32 cpos, 1194 loff_t user_pos, unsigned user_len) 1195 { 1196 int ret, i, new; 1197 u64 v_blkno, p_blkno; 1198 struct inode *inode = mapping->host; 1199 struct ocfs2_extent_tree et; 1200 1201 new = phys == 0 ? 1 : 0; 1202 if (new) { 1203 u32 tmp_pos; 1204 1205 /* 1206 * This is safe to call with the page locks - it won't take 1207 * any additional semaphores or cluster locks. 1208 */ 1209 tmp_pos = cpos; 1210 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1211 &tmp_pos, 1, 0, wc->w_di_bh, 1212 wc->w_handle, data_ac, 1213 meta_ac, NULL); 1214 /* 1215 * This shouldn't happen because we must have already 1216 * calculated the correct meta data allocation required. The 1217 * internal tree allocation code should know how to increase 1218 * transaction credits itself. 1219 * 1220 * If need be, we could handle -EAGAIN for a 1221 * RESTART_TRANS here. 1222 */ 1223 mlog_bug_on_msg(ret == -EAGAIN, 1224 "Inode %llu: EAGAIN return during allocation.\n", 1225 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1226 if (ret < 0) { 1227 mlog_errno(ret); 1228 goto out; 1229 } 1230 } else if (unwritten) { 1231 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1232 wc->w_di_bh); 1233 ret = ocfs2_mark_extent_written(inode, &et, 1234 wc->w_handle, cpos, 1, phys, 1235 meta_ac, &wc->w_dealloc); 1236 if (ret < 0) { 1237 mlog_errno(ret); 1238 goto out; 1239 } 1240 } 1241 1242 if (should_zero) 1243 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); 1244 else 1245 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; 1246 1247 /* 1248 * The only reason this should fail is due to an inability to 1249 * find the extent added. 1250 */ 1251 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, 1252 NULL); 1253 if (ret < 0) { 1254 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, " 1255 "at logical block %llu", 1256 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1257 (unsigned long long)v_blkno); 1258 goto out; 1259 } 1260 1261 BUG_ON(p_blkno == 0); 1262 1263 for(i = 0; i < wc->w_num_pages; i++) { 1264 int tmpret; 1265 1266 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1267 wc->w_pages[i], cpos, 1268 user_pos, user_len, 1269 should_zero); 1270 if (tmpret) { 1271 mlog_errno(tmpret); 1272 if (ret == 0) 1273 ret = tmpret; 1274 } 1275 } 1276 1277 /* 1278 * We only have cleanup to do in case of allocating write. 1279 */ 1280 if (ret && new) 1281 ocfs2_write_failure(inode, wc, user_pos, user_len); 1282 1283 out: 1284 1285 return ret; 1286 } 1287 1288 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1289 struct ocfs2_alloc_context *data_ac, 1290 struct ocfs2_alloc_context *meta_ac, 1291 struct ocfs2_write_ctxt *wc, 1292 loff_t pos, unsigned len) 1293 { 1294 int ret, i; 1295 loff_t cluster_off; 1296 unsigned int local_len = len; 1297 struct ocfs2_write_cluster_desc *desc; 1298 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1299 1300 for (i = 0; i < wc->w_clen; i++) { 1301 desc = &wc->w_desc[i]; 1302 1303 /* 1304 * We have to make sure that the total write passed in 1305 * doesn't extend past a single cluster. 1306 */ 1307 local_len = len; 1308 cluster_off = pos & (osb->s_clustersize - 1); 1309 if ((cluster_off + local_len) > osb->s_clustersize) 1310 local_len = osb->s_clustersize - cluster_off; 1311 1312 ret = ocfs2_write_cluster(mapping, desc->c_phys, 1313 desc->c_unwritten, 1314 desc->c_needs_zero, 1315 data_ac, meta_ac, 1316 wc, desc->c_cpos, pos, local_len); 1317 if (ret) { 1318 mlog_errno(ret); 1319 goto out; 1320 } 1321 1322 len -= local_len; 1323 pos += local_len; 1324 } 1325 1326 ret = 0; 1327 out: 1328 return ret; 1329 } 1330 1331 /* 1332 * ocfs2_write_end() wants to know which parts of the target page it 1333 * should complete the write on. It's easiest to compute them ahead of 1334 * time when a more complete view of the write is available. 1335 */ 1336 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1337 struct ocfs2_write_ctxt *wc, 1338 loff_t pos, unsigned len, int alloc) 1339 { 1340 struct ocfs2_write_cluster_desc *desc; 1341 1342 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); 1343 wc->w_target_to = wc->w_target_from + len; 1344 1345 if (alloc == 0) 1346 return; 1347 1348 /* 1349 * Allocating write - we may have different boundaries based 1350 * on page size and cluster size. 1351 * 1352 * NOTE: We can no longer compute one value from the other as 1353 * the actual write length and user provided length may be 1354 * different. 1355 */ 1356 1357 if (wc->w_large_pages) { 1358 /* 1359 * We only care about the 1st and last cluster within 1360 * our range and whether they should be zero'd or not. Either 1361 * value may be extended out to the start/end of a 1362 * newly allocated cluster. 1363 */ 1364 desc = &wc->w_desc[0]; 1365 if (desc->c_needs_zero) 1366 ocfs2_figure_cluster_boundaries(osb, 1367 desc->c_cpos, 1368 &wc->w_target_from, 1369 NULL); 1370 1371 desc = &wc->w_desc[wc->w_clen - 1]; 1372 if (desc->c_needs_zero) 1373 ocfs2_figure_cluster_boundaries(osb, 1374 desc->c_cpos, 1375 NULL, 1376 &wc->w_target_to); 1377 } else { 1378 wc->w_target_from = 0; 1379 wc->w_target_to = PAGE_CACHE_SIZE; 1380 } 1381 } 1382 1383 /* 1384 * Populate each single-cluster write descriptor in the write context 1385 * with information about the i/o to be done. 1386 * 1387 * Returns the number of clusters that will have to be allocated, as 1388 * well as a worst case estimate of the number of extent records that 1389 * would have to be created during a write to an unwritten region. 1390 */ 1391 static int ocfs2_populate_write_desc(struct inode *inode, 1392 struct ocfs2_write_ctxt *wc, 1393 unsigned int *clusters_to_alloc, 1394 unsigned int *extents_to_split) 1395 { 1396 int ret; 1397 struct ocfs2_write_cluster_desc *desc; 1398 unsigned int num_clusters = 0; 1399 unsigned int ext_flags = 0; 1400 u32 phys = 0; 1401 int i; 1402 1403 *clusters_to_alloc = 0; 1404 *extents_to_split = 0; 1405 1406 for (i = 0; i < wc->w_clen; i++) { 1407 desc = &wc->w_desc[i]; 1408 desc->c_cpos = wc->w_cpos + i; 1409 1410 if (num_clusters == 0) { 1411 /* 1412 * Need to look up the next extent record. 1413 */ 1414 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1415 &num_clusters, &ext_flags); 1416 if (ret) { 1417 mlog_errno(ret); 1418 goto out; 1419 } 1420 1421 /* We should already CoW the refcountd extent. */ 1422 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1423 1424 /* 1425 * Assume worst case - that we're writing in 1426 * the middle of the extent. 1427 * 1428 * We can assume that the write proceeds from 1429 * left to right, in which case the extent 1430 * insert code is smart enough to coalesce the 1431 * next splits into the previous records created. 1432 */ 1433 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1434 *extents_to_split = *extents_to_split + 2; 1435 } else if (phys) { 1436 /* 1437 * Only increment phys if it doesn't describe 1438 * a hole. 1439 */ 1440 phys++; 1441 } 1442 1443 /* 1444 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1445 * file that got extended. w_first_new_cpos tells us 1446 * where the newly allocated clusters are so we can 1447 * zero them. 1448 */ 1449 if (desc->c_cpos >= wc->w_first_new_cpos) { 1450 BUG_ON(phys == 0); 1451 desc->c_needs_zero = 1; 1452 } 1453 1454 desc->c_phys = phys; 1455 if (phys == 0) { 1456 desc->c_new = 1; 1457 desc->c_needs_zero = 1; 1458 *clusters_to_alloc = *clusters_to_alloc + 1; 1459 } 1460 1461 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1462 desc->c_unwritten = 1; 1463 desc->c_needs_zero = 1; 1464 } 1465 1466 num_clusters--; 1467 } 1468 1469 ret = 0; 1470 out: 1471 return ret; 1472 } 1473 1474 static int ocfs2_write_begin_inline(struct address_space *mapping, 1475 struct inode *inode, 1476 struct ocfs2_write_ctxt *wc) 1477 { 1478 int ret; 1479 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1480 struct page *page; 1481 handle_t *handle; 1482 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1483 1484 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1485 if (IS_ERR(handle)) { 1486 ret = PTR_ERR(handle); 1487 mlog_errno(ret); 1488 goto out; 1489 } 1490 1491 page = find_or_create_page(mapping, 0, GFP_NOFS); 1492 if (!page) { 1493 ocfs2_commit_trans(osb, handle); 1494 ret = -ENOMEM; 1495 mlog_errno(ret); 1496 goto out; 1497 } 1498 /* 1499 * If we don't set w_num_pages then this page won't get unlocked 1500 * and freed on cleanup of the write context. 1501 */ 1502 wc->w_pages[0] = wc->w_target_page = page; 1503 wc->w_num_pages = 1; 1504 1505 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1506 OCFS2_JOURNAL_ACCESS_WRITE); 1507 if (ret) { 1508 ocfs2_commit_trans(osb, handle); 1509 1510 mlog_errno(ret); 1511 goto out; 1512 } 1513 1514 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1515 ocfs2_set_inode_data_inline(inode, di); 1516 1517 if (!PageUptodate(page)) { 1518 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1519 if (ret) { 1520 ocfs2_commit_trans(osb, handle); 1521 1522 goto out; 1523 } 1524 } 1525 1526 wc->w_handle = handle; 1527 out: 1528 return ret; 1529 } 1530 1531 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1532 { 1533 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1534 1535 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1536 return 1; 1537 return 0; 1538 } 1539 1540 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1541 struct inode *inode, loff_t pos, 1542 unsigned len, struct page *mmap_page, 1543 struct ocfs2_write_ctxt *wc) 1544 { 1545 int ret, written = 0; 1546 loff_t end = pos + len; 1547 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1548 struct ocfs2_dinode *di = NULL; 1549 1550 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1551 len, (unsigned long long)pos, 1552 oi->ip_dyn_features); 1553 1554 /* 1555 * Handle inodes which already have inline data 1st. 1556 */ 1557 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1558 if (mmap_page == NULL && 1559 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1560 goto do_inline_write; 1561 1562 /* 1563 * The write won't fit - we have to give this inode an 1564 * inline extent list now. 1565 */ 1566 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1567 if (ret) 1568 mlog_errno(ret); 1569 goto out; 1570 } 1571 1572 /* 1573 * Check whether the inode can accept inline data. 1574 */ 1575 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1576 return 0; 1577 1578 /* 1579 * Check whether the write can fit. 1580 */ 1581 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1582 if (mmap_page || 1583 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1584 return 0; 1585 1586 do_inline_write: 1587 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1588 if (ret) { 1589 mlog_errno(ret); 1590 goto out; 1591 } 1592 1593 /* 1594 * This signals to the caller that the data can be written 1595 * inline. 1596 */ 1597 written = 1; 1598 out: 1599 return written ? written : ret; 1600 } 1601 1602 /* 1603 * This function only does anything for file systems which can't 1604 * handle sparse files. 1605 * 1606 * What we want to do here is fill in any hole between the current end 1607 * of allocation and the end of our write. That way the rest of the 1608 * write path can treat it as an non-allocating write, which has no 1609 * special case code for sparse/nonsparse files. 1610 */ 1611 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1612 struct buffer_head *di_bh, 1613 loff_t pos, unsigned len, 1614 struct ocfs2_write_ctxt *wc) 1615 { 1616 int ret; 1617 loff_t newsize = pos + len; 1618 1619 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1620 1621 if (newsize <= i_size_read(inode)) 1622 return 0; 1623 1624 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1625 if (ret) 1626 mlog_errno(ret); 1627 1628 wc->w_first_new_cpos = 1629 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1630 1631 return ret; 1632 } 1633 1634 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1635 loff_t pos) 1636 { 1637 int ret = 0; 1638 1639 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1640 if (pos > i_size_read(inode)) 1641 ret = ocfs2_zero_extend(inode, di_bh, pos); 1642 1643 return ret; 1644 } 1645 1646 /* 1647 * Try to flush truncate logs if we can free enough clusters from it. 1648 * As for return value, "< 0" means error, "0" no space and "1" means 1649 * we have freed enough spaces and let the caller try to allocate again. 1650 */ 1651 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 1652 unsigned int needed) 1653 { 1654 tid_t target; 1655 int ret = 0; 1656 unsigned int truncated_clusters; 1657 1658 mutex_lock(&osb->osb_tl_inode->i_mutex); 1659 truncated_clusters = osb->truncated_clusters; 1660 mutex_unlock(&osb->osb_tl_inode->i_mutex); 1661 1662 /* 1663 * Check whether we can succeed in allocating if we free 1664 * the truncate log. 1665 */ 1666 if (truncated_clusters < needed) 1667 goto out; 1668 1669 ret = ocfs2_flush_truncate_log(osb); 1670 if (ret) { 1671 mlog_errno(ret); 1672 goto out; 1673 } 1674 1675 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 1676 jbd2_log_wait_commit(osb->journal->j_journal, target); 1677 ret = 1; 1678 } 1679 out: 1680 return ret; 1681 } 1682 1683 int ocfs2_write_begin_nolock(struct file *filp, 1684 struct address_space *mapping, 1685 loff_t pos, unsigned len, unsigned flags, 1686 struct page **pagep, void **fsdata, 1687 struct buffer_head *di_bh, struct page *mmap_page) 1688 { 1689 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1690 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1691 struct ocfs2_write_ctxt *wc; 1692 struct inode *inode = mapping->host; 1693 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1694 struct ocfs2_dinode *di; 1695 struct ocfs2_alloc_context *data_ac = NULL; 1696 struct ocfs2_alloc_context *meta_ac = NULL; 1697 handle_t *handle; 1698 struct ocfs2_extent_tree et; 1699 int try_free = 1, ret1; 1700 1701 try_again: 1702 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); 1703 if (ret) { 1704 mlog_errno(ret); 1705 return ret; 1706 } 1707 1708 if (ocfs2_supports_inline_data(osb)) { 1709 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1710 mmap_page, wc); 1711 if (ret == 1) { 1712 ret = 0; 1713 goto success; 1714 } 1715 if (ret < 0) { 1716 mlog_errno(ret); 1717 goto out; 1718 } 1719 } 1720 1721 if (ocfs2_sparse_alloc(osb)) 1722 ret = ocfs2_zero_tail(inode, di_bh, pos); 1723 else 1724 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len, 1725 wc); 1726 if (ret) { 1727 mlog_errno(ret); 1728 goto out; 1729 } 1730 1731 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1732 if (ret < 0) { 1733 mlog_errno(ret); 1734 goto out; 1735 } else if (ret == 1) { 1736 clusters_need = wc->w_clen; 1737 ret = ocfs2_refcount_cow(inode, di_bh, 1738 wc->w_cpos, wc->w_clen, UINT_MAX); 1739 if (ret) { 1740 mlog_errno(ret); 1741 goto out; 1742 } 1743 } 1744 1745 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1746 &extents_to_split); 1747 if (ret) { 1748 mlog_errno(ret); 1749 goto out; 1750 } 1751 clusters_need += clusters_to_alloc; 1752 1753 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1754 1755 trace_ocfs2_write_begin_nolock( 1756 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1757 (long long)i_size_read(inode), 1758 le32_to_cpu(di->i_clusters), 1759 pos, len, flags, mmap_page, 1760 clusters_to_alloc, extents_to_split); 1761 1762 /* 1763 * We set w_target_from, w_target_to here so that 1764 * ocfs2_write_end() knows which range in the target page to 1765 * write out. An allocation requires that we write the entire 1766 * cluster range. 1767 */ 1768 if (clusters_to_alloc || extents_to_split) { 1769 /* 1770 * XXX: We are stretching the limits of 1771 * ocfs2_lock_allocators(). It greatly over-estimates 1772 * the work to be done. 1773 */ 1774 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1775 wc->w_di_bh); 1776 ret = ocfs2_lock_allocators(inode, &et, 1777 clusters_to_alloc, extents_to_split, 1778 &data_ac, &meta_ac); 1779 if (ret) { 1780 mlog_errno(ret); 1781 goto out; 1782 } 1783 1784 if (data_ac) 1785 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1786 1787 credits = ocfs2_calc_extend_credits(inode->i_sb, 1788 &di->id2.i_list); 1789 1790 } 1791 1792 /* 1793 * We have to zero sparse allocated clusters, unwritten extent clusters, 1794 * and non-sparse clusters we just extended. For non-sparse writes, 1795 * we know zeros will only be needed in the first and/or last cluster. 1796 */ 1797 if (clusters_to_alloc || extents_to_split || 1798 (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1799 wc->w_desc[wc->w_clen - 1].c_needs_zero))) 1800 cluster_of_pages = 1; 1801 else 1802 cluster_of_pages = 0; 1803 1804 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1805 1806 handle = ocfs2_start_trans(osb, credits); 1807 if (IS_ERR(handle)) { 1808 ret = PTR_ERR(handle); 1809 mlog_errno(ret); 1810 goto out; 1811 } 1812 1813 wc->w_handle = handle; 1814 1815 if (clusters_to_alloc) { 1816 ret = dquot_alloc_space_nodirty(inode, 1817 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1818 if (ret) 1819 goto out_commit; 1820 } 1821 /* 1822 * We don't want this to fail in ocfs2_write_end(), so do it 1823 * here. 1824 */ 1825 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1826 OCFS2_JOURNAL_ACCESS_WRITE); 1827 if (ret) { 1828 mlog_errno(ret); 1829 goto out_quota; 1830 } 1831 1832 /* 1833 * Fill our page array first. That way we've grabbed enough so 1834 * that we can zero and flush if we error after adding the 1835 * extent. 1836 */ 1837 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1838 cluster_of_pages, mmap_page); 1839 if (ret && ret != -EAGAIN) { 1840 mlog_errno(ret); 1841 goto out_quota; 1842 } 1843 1844 /* 1845 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 1846 * the target page. In this case, we exit with no error and no target 1847 * page. This will trigger the caller, page_mkwrite(), to re-try 1848 * the operation. 1849 */ 1850 if (ret == -EAGAIN) { 1851 BUG_ON(wc->w_target_page); 1852 ret = 0; 1853 goto out_quota; 1854 } 1855 1856 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1857 len); 1858 if (ret) { 1859 mlog_errno(ret); 1860 goto out_quota; 1861 } 1862 1863 if (data_ac) 1864 ocfs2_free_alloc_context(data_ac); 1865 if (meta_ac) 1866 ocfs2_free_alloc_context(meta_ac); 1867 1868 success: 1869 *pagep = wc->w_target_page; 1870 *fsdata = wc; 1871 return 0; 1872 out_quota: 1873 if (clusters_to_alloc) 1874 dquot_free_space(inode, 1875 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1876 out_commit: 1877 ocfs2_commit_trans(osb, handle); 1878 1879 out: 1880 ocfs2_free_write_ctxt(wc); 1881 1882 if (data_ac) { 1883 ocfs2_free_alloc_context(data_ac); 1884 data_ac = NULL; 1885 } 1886 if (meta_ac) { 1887 ocfs2_free_alloc_context(meta_ac); 1888 meta_ac = NULL; 1889 } 1890 1891 if (ret == -ENOSPC && try_free) { 1892 /* 1893 * Try to free some truncate log so that we can have enough 1894 * clusters to allocate. 1895 */ 1896 try_free = 0; 1897 1898 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1899 if (ret1 == 1) 1900 goto try_again; 1901 1902 if (ret1 < 0) 1903 mlog_errno(ret1); 1904 } 1905 1906 return ret; 1907 } 1908 1909 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1910 loff_t pos, unsigned len, unsigned flags, 1911 struct page **pagep, void **fsdata) 1912 { 1913 int ret; 1914 struct buffer_head *di_bh = NULL; 1915 struct inode *inode = mapping->host; 1916 1917 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1918 if (ret) { 1919 mlog_errno(ret); 1920 return ret; 1921 } 1922 1923 /* 1924 * Take alloc sem here to prevent concurrent lookups. That way 1925 * the mapping, zeroing and tree manipulation within 1926 * ocfs2_write() will be safe against ->readpage(). This 1927 * should also serve to lock out allocation from a shared 1928 * writeable region. 1929 */ 1930 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1931 1932 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep, 1933 fsdata, di_bh, NULL); 1934 if (ret) { 1935 mlog_errno(ret); 1936 goto out_fail; 1937 } 1938 1939 brelse(di_bh); 1940 1941 return 0; 1942 1943 out_fail: 1944 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1945 1946 brelse(di_bh); 1947 ocfs2_inode_unlock(inode, 1); 1948 1949 return ret; 1950 } 1951 1952 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1953 unsigned len, unsigned *copied, 1954 struct ocfs2_dinode *di, 1955 struct ocfs2_write_ctxt *wc) 1956 { 1957 void *kaddr; 1958 1959 if (unlikely(*copied < len)) { 1960 if (!PageUptodate(wc->w_target_page)) { 1961 *copied = 0; 1962 return; 1963 } 1964 } 1965 1966 kaddr = kmap_atomic(wc->w_target_page); 1967 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1968 kunmap_atomic(kaddr); 1969 1970 trace_ocfs2_write_end_inline( 1971 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1972 (unsigned long long)pos, *copied, 1973 le16_to_cpu(di->id2.i_data.id_count), 1974 le16_to_cpu(di->i_dyn_features)); 1975 } 1976 1977 int ocfs2_write_end_nolock(struct address_space *mapping, 1978 loff_t pos, unsigned len, unsigned copied, 1979 struct page *page, void *fsdata) 1980 { 1981 int i; 1982 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); 1983 struct inode *inode = mapping->host; 1984 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1985 struct ocfs2_write_ctxt *wc = fsdata; 1986 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1987 handle_t *handle = wc->w_handle; 1988 struct page *tmppage; 1989 1990 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1991 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1992 goto out_write_size; 1993 } 1994 1995 if (unlikely(copied < len)) { 1996 if (!PageUptodate(wc->w_target_page)) 1997 copied = 0; 1998 1999 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 2000 start+len); 2001 } 2002 flush_dcache_page(wc->w_target_page); 2003 2004 for(i = 0; i < wc->w_num_pages; i++) { 2005 tmppage = wc->w_pages[i]; 2006 2007 if (tmppage == wc->w_target_page) { 2008 from = wc->w_target_from; 2009 to = wc->w_target_to; 2010 2011 BUG_ON(from > PAGE_CACHE_SIZE || 2012 to > PAGE_CACHE_SIZE || 2013 to < from); 2014 } else { 2015 /* 2016 * Pages adjacent to the target (if any) imply 2017 * a hole-filling write in which case we want 2018 * to flush their entire range. 2019 */ 2020 from = 0; 2021 to = PAGE_CACHE_SIZE; 2022 } 2023 2024 if (page_has_buffers(tmppage)) { 2025 if (ocfs2_should_order_data(inode)) 2026 ocfs2_jbd2_file_inode(wc->w_handle, inode); 2027 block_commit_write(tmppage, from, to); 2028 } 2029 } 2030 2031 out_write_size: 2032 pos += copied; 2033 if (pos > i_size_read(inode)) { 2034 i_size_write(inode, pos); 2035 mark_inode_dirty(inode); 2036 } 2037 inode->i_blocks = ocfs2_inode_sector_count(inode); 2038 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2039 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2040 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2041 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2042 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2043 ocfs2_journal_dirty(handle, wc->w_di_bh); 2044 2045 ocfs2_commit_trans(osb, handle); 2046 2047 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2048 2049 ocfs2_free_write_ctxt(wc); 2050 2051 return copied; 2052 } 2053 2054 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2055 loff_t pos, unsigned len, unsigned copied, 2056 struct page *page, void *fsdata) 2057 { 2058 int ret; 2059 struct inode *inode = mapping->host; 2060 2061 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 2062 2063 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2064 ocfs2_inode_unlock(inode, 1); 2065 2066 return ret; 2067 } 2068 2069 const struct address_space_operations ocfs2_aops = { 2070 .readpage = ocfs2_readpage, 2071 .readpages = ocfs2_readpages, 2072 .writepage = ocfs2_writepage, 2073 .write_begin = ocfs2_write_begin, 2074 .write_end = ocfs2_write_end, 2075 .bmap = ocfs2_bmap, 2076 .direct_IO = ocfs2_direct_IO, 2077 .invalidatepage = block_invalidatepage, 2078 .releasepage = ocfs2_releasepage, 2079 .migratepage = buffer_migrate_page, 2080 .is_partially_uptodate = block_is_partially_uptodate, 2081 .error_remove_page = generic_error_remove_page, 2082 }; 2083