xref: /openbmc/linux/fs/ocfs2/aops.c (revision 64c70b1c)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 
30 #define MLOG_MASK_PREFIX ML_FILE_IO
31 #include <cluster/masklog.h>
32 
33 #include "ocfs2.h"
34 
35 #include "alloc.h"
36 #include "aops.h"
37 #include "dlmglue.h"
38 #include "extent_map.h"
39 #include "file.h"
40 #include "inode.h"
41 #include "journal.h"
42 #include "suballoc.h"
43 #include "super.h"
44 #include "symlink.h"
45 
46 #include "buffer_head_io.h"
47 
48 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
49 				   struct buffer_head *bh_result, int create)
50 {
51 	int err = -EIO;
52 	int status;
53 	struct ocfs2_dinode *fe = NULL;
54 	struct buffer_head *bh = NULL;
55 	struct buffer_head *buffer_cache_bh = NULL;
56 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
57 	void *kaddr;
58 
59 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
60 		   (unsigned long long)iblock, bh_result, create);
61 
62 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
63 
64 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
65 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
66 		     (unsigned long long)iblock);
67 		goto bail;
68 	}
69 
70 	status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
71 				  OCFS2_I(inode)->ip_blkno,
72 				  &bh, OCFS2_BH_CACHED, inode);
73 	if (status < 0) {
74 		mlog_errno(status);
75 		goto bail;
76 	}
77 	fe = (struct ocfs2_dinode *) bh->b_data;
78 
79 	if (!OCFS2_IS_VALID_DINODE(fe)) {
80 		mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
81 		     (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
82 		     fe->i_signature);
83 		goto bail;
84 	}
85 
86 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 						    le32_to_cpu(fe->i_clusters))) {
88 		mlog(ML_ERROR, "block offset is outside the allocated size: "
89 		     "%llu\n", (unsigned long long)iblock);
90 		goto bail;
91 	}
92 
93 	/* We don't use the page cache to create symlink data, so if
94 	 * need be, copy it over from the buffer cache. */
95 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97 			    iblock;
98 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
99 		if (!buffer_cache_bh) {
100 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
101 			goto bail;
102 		}
103 
104 		/* we haven't locked out transactions, so a commit
105 		 * could've happened. Since we've got a reference on
106 		 * the bh, even if it commits while we're doing the
107 		 * copy, the data is still good. */
108 		if (buffer_jbd(buffer_cache_bh)
109 		    && ocfs2_inode_is_new(inode)) {
110 			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
111 			if (!kaddr) {
112 				mlog(ML_ERROR, "couldn't kmap!\n");
113 				goto bail;
114 			}
115 			memcpy(kaddr + (bh_result->b_size * iblock),
116 			       buffer_cache_bh->b_data,
117 			       bh_result->b_size);
118 			kunmap_atomic(kaddr, KM_USER0);
119 			set_buffer_uptodate(bh_result);
120 		}
121 		brelse(buffer_cache_bh);
122 	}
123 
124 	map_bh(bh_result, inode->i_sb,
125 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
126 
127 	err = 0;
128 
129 bail:
130 	if (bh)
131 		brelse(bh);
132 
133 	mlog_exit(err);
134 	return err;
135 }
136 
137 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 			   struct buffer_head *bh_result, int create)
139 {
140 	int err = 0;
141 	unsigned int ext_flags;
142 	u64 p_blkno, past_eof;
143 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144 
145 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
146 		   (unsigned long long)iblock, bh_result, create);
147 
148 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150 		     inode, inode->i_ino);
151 
152 	if (S_ISLNK(inode->i_mode)) {
153 		/* this always does I/O for some reason. */
154 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155 		goto bail;
156 	}
157 
158 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
159 					  &ext_flags);
160 	if (err) {
161 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163 		     (unsigned long long)p_blkno);
164 		goto bail;
165 	}
166 
167 	/*
168 	 * ocfs2 never allocates in this function - the only time we
169 	 * need to use BH_New is when we're extending i_size on a file
170 	 * system which doesn't support holes, in which case BH_New
171 	 * allows block_prepare_write() to zero.
172 	 */
173 	mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
174 			"ino %lu, iblock %llu\n", inode->i_ino,
175 			(unsigned long long)iblock);
176 
177 	/* Treat the unwritten extent as a hole for zeroing purposes. */
178 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
179 		map_bh(bh_result, inode->i_sb, p_blkno);
180 
181 	if (!ocfs2_sparse_alloc(osb)) {
182 		if (p_blkno == 0) {
183 			err = -EIO;
184 			mlog(ML_ERROR,
185 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
186 			     (unsigned long long)iblock,
187 			     (unsigned long long)p_blkno,
188 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
189 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
190 			dump_stack();
191 		}
192 
193 		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
194 		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
195 		     (unsigned long long)past_eof);
196 
197 		if (create && (iblock >= past_eof))
198 			set_buffer_new(bh_result);
199 	}
200 
201 bail:
202 	if (err < 0)
203 		err = -EIO;
204 
205 	mlog_exit(err);
206 	return err;
207 }
208 
209 static int ocfs2_readpage(struct file *file, struct page *page)
210 {
211 	struct inode *inode = page->mapping->host;
212 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
213 	int ret, unlock = 1;
214 
215 	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
216 
217 	ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
218 	if (ret != 0) {
219 		if (ret == AOP_TRUNCATED_PAGE)
220 			unlock = 0;
221 		mlog_errno(ret);
222 		goto out;
223 	}
224 
225 	if (down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem) == 0) {
226 		ret = AOP_TRUNCATED_PAGE;
227 		goto out_meta_unlock;
228 	}
229 
230 	/*
231 	 * i_size might have just been updated as we grabed the meta lock.  We
232 	 * might now be discovering a truncate that hit on another node.
233 	 * block_read_full_page->get_block freaks out if it is asked to read
234 	 * beyond the end of a file, so we check here.  Callers
235 	 * (generic_file_read, fault->nopage) are clever enough to check i_size
236 	 * and notice that the page they just read isn't needed.
237 	 *
238 	 * XXX sys_readahead() seems to get that wrong?
239 	 */
240 	if (start >= i_size_read(inode)) {
241 		zero_user_page(page, 0, PAGE_SIZE, KM_USER0);
242 		SetPageUptodate(page);
243 		ret = 0;
244 		goto out_alloc;
245 	}
246 
247 	ret = ocfs2_data_lock_with_page(inode, 0, page);
248 	if (ret != 0) {
249 		if (ret == AOP_TRUNCATED_PAGE)
250 			unlock = 0;
251 		mlog_errno(ret);
252 		goto out_alloc;
253 	}
254 
255 	ret = block_read_full_page(page, ocfs2_get_block);
256 	unlock = 0;
257 
258 	ocfs2_data_unlock(inode, 0);
259 out_alloc:
260 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
261 out_meta_unlock:
262 	ocfs2_meta_unlock(inode, 0);
263 out:
264 	if (unlock)
265 		unlock_page(page);
266 	mlog_exit(ret);
267 	return ret;
268 }
269 
270 /* Note: Because we don't support holes, our allocation has
271  * already happened (allocation writes zeros to the file data)
272  * so we don't have to worry about ordered writes in
273  * ocfs2_writepage.
274  *
275  * ->writepage is called during the process of invalidating the page cache
276  * during blocked lock processing.  It can't block on any cluster locks
277  * to during block mapping.  It's relying on the fact that the block
278  * mapping can't have disappeared under the dirty pages that it is
279  * being asked to write back.
280  */
281 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
282 {
283 	int ret;
284 
285 	mlog_entry("(0x%p)\n", page);
286 
287 	ret = block_write_full_page(page, ocfs2_get_block, wbc);
288 
289 	mlog_exit(ret);
290 
291 	return ret;
292 }
293 
294 /*
295  * This is called from ocfs2_write_zero_page() which has handled it's
296  * own cluster locking and has ensured allocation exists for those
297  * blocks to be written.
298  */
299 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
300 			       unsigned from, unsigned to)
301 {
302 	int ret;
303 
304 	down_read(&OCFS2_I(inode)->ip_alloc_sem);
305 
306 	ret = block_prepare_write(page, from, to, ocfs2_get_block);
307 
308 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
309 
310 	return ret;
311 }
312 
313 /* Taken from ext3. We don't necessarily need the full blown
314  * functionality yet, but IMHO it's better to cut and paste the whole
315  * thing so we can avoid introducing our own bugs (and easily pick up
316  * their fixes when they happen) --Mark */
317 int walk_page_buffers(	handle_t *handle,
318 			struct buffer_head *head,
319 			unsigned from,
320 			unsigned to,
321 			int *partial,
322 			int (*fn)(	handle_t *handle,
323 					struct buffer_head *bh))
324 {
325 	struct buffer_head *bh;
326 	unsigned block_start, block_end;
327 	unsigned blocksize = head->b_size;
328 	int err, ret = 0;
329 	struct buffer_head *next;
330 
331 	for (	bh = head, block_start = 0;
332 		ret == 0 && (bh != head || !block_start);
333 	    	block_start = block_end, bh = next)
334 	{
335 		next = bh->b_this_page;
336 		block_end = block_start + blocksize;
337 		if (block_end <= from || block_start >= to) {
338 			if (partial && !buffer_uptodate(bh))
339 				*partial = 1;
340 			continue;
341 		}
342 		err = (*fn)(handle, bh);
343 		if (!ret)
344 			ret = err;
345 	}
346 	return ret;
347 }
348 
349 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
350 							 struct page *page,
351 							 unsigned from,
352 							 unsigned to)
353 {
354 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
355 	handle_t *handle = NULL;
356 	int ret = 0;
357 
358 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
359 	if (!handle) {
360 		ret = -ENOMEM;
361 		mlog_errno(ret);
362 		goto out;
363 	}
364 
365 	if (ocfs2_should_order_data(inode)) {
366 		ret = walk_page_buffers(handle,
367 					page_buffers(page),
368 					from, to, NULL,
369 					ocfs2_journal_dirty_data);
370 		if (ret < 0)
371 			mlog_errno(ret);
372 	}
373 out:
374 	if (ret) {
375 		if (handle)
376 			ocfs2_commit_trans(osb, handle);
377 		handle = ERR_PTR(ret);
378 	}
379 	return handle;
380 }
381 
382 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
383 {
384 	sector_t status;
385 	u64 p_blkno = 0;
386 	int err = 0;
387 	struct inode *inode = mapping->host;
388 
389 	mlog_entry("(block = %llu)\n", (unsigned long long)block);
390 
391 	/* We don't need to lock journal system files, since they aren't
392 	 * accessed concurrently from multiple nodes.
393 	 */
394 	if (!INODE_JOURNAL(inode)) {
395 		err = ocfs2_meta_lock(inode, NULL, 0);
396 		if (err) {
397 			if (err != -ENOENT)
398 				mlog_errno(err);
399 			goto bail;
400 		}
401 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
402 	}
403 
404 	err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, NULL);
405 
406 	if (!INODE_JOURNAL(inode)) {
407 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
408 		ocfs2_meta_unlock(inode, 0);
409 	}
410 
411 	if (err) {
412 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
413 		     (unsigned long long)block);
414 		mlog_errno(err);
415 		goto bail;
416 	}
417 
418 
419 bail:
420 	status = err ? 0 : p_blkno;
421 
422 	mlog_exit((int)status);
423 
424 	return status;
425 }
426 
427 /*
428  * TODO: Make this into a generic get_blocks function.
429  *
430  * From do_direct_io in direct-io.c:
431  *  "So what we do is to permit the ->get_blocks function to populate
432  *   bh.b_size with the size of IO which is permitted at this offset and
433  *   this i_blkbits."
434  *
435  * This function is called directly from get_more_blocks in direct-io.c.
436  *
437  * called like this: dio->get_blocks(dio->inode, fs_startblk,
438  * 					fs_count, map_bh, dio->rw == WRITE);
439  */
440 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
441 				     struct buffer_head *bh_result, int create)
442 {
443 	int ret;
444 	u64 p_blkno, inode_blocks, contig_blocks;
445 	unsigned int ext_flags;
446 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
447 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
448 
449 	/* This function won't even be called if the request isn't all
450 	 * nicely aligned and of the right size, so there's no need
451 	 * for us to check any of that. */
452 
453 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
454 
455 	/*
456 	 * Any write past EOF is not allowed because we'd be extending.
457 	 */
458 	if (create && (iblock + max_blocks) > inode_blocks) {
459 		ret = -EIO;
460 		goto bail;
461 	}
462 
463 	/* This figures out the size of the next contiguous block, and
464 	 * our logical offset */
465 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
466 					  &contig_blocks, &ext_flags);
467 	if (ret) {
468 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
469 		     (unsigned long long)iblock);
470 		ret = -EIO;
471 		goto bail;
472 	}
473 
474 	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
475 		ocfs2_error(inode->i_sb,
476 			    "Inode %llu has a hole at block %llu\n",
477 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
478 			    (unsigned long long)iblock);
479 		ret = -EROFS;
480 		goto bail;
481 	}
482 
483 	/*
484 	 * get_more_blocks() expects us to describe a hole by clearing
485 	 * the mapped bit on bh_result().
486 	 *
487 	 * Consider an unwritten extent as a hole.
488 	 */
489 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
490 		map_bh(bh_result, inode->i_sb, p_blkno);
491 	else {
492 		/*
493 		 * ocfs2_prepare_inode_for_write() should have caught
494 		 * the case where we'd be filling a hole and triggered
495 		 * a buffered write instead.
496 		 */
497 		if (create) {
498 			ret = -EIO;
499 			mlog_errno(ret);
500 			goto bail;
501 		}
502 
503 		clear_buffer_mapped(bh_result);
504 	}
505 
506 	/* make sure we don't map more than max_blocks blocks here as
507 	   that's all the kernel will handle at this point. */
508 	if (max_blocks < contig_blocks)
509 		contig_blocks = max_blocks;
510 	bh_result->b_size = contig_blocks << blocksize_bits;
511 bail:
512 	return ret;
513 }
514 
515 /*
516  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
517  * particularly interested in the aio/dio case.  Like the core uses
518  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
519  * truncation on another.
520  */
521 static void ocfs2_dio_end_io(struct kiocb *iocb,
522 			     loff_t offset,
523 			     ssize_t bytes,
524 			     void *private)
525 {
526 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
527 	int level;
528 
529 	/* this io's submitter should not have unlocked this before we could */
530 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
531 
532 	ocfs2_iocb_clear_rw_locked(iocb);
533 
534 	level = ocfs2_iocb_rw_locked_level(iocb);
535 	if (!level)
536 		up_read(&inode->i_alloc_sem);
537 	ocfs2_rw_unlock(inode, level);
538 }
539 
540 /*
541  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
542  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
543  * do journalled data.
544  */
545 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
546 {
547 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
548 
549 	journal_invalidatepage(journal, page, offset);
550 }
551 
552 static int ocfs2_releasepage(struct page *page, gfp_t wait)
553 {
554 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
555 
556 	if (!page_has_buffers(page))
557 		return 0;
558 	return journal_try_to_free_buffers(journal, page, wait);
559 }
560 
561 static ssize_t ocfs2_direct_IO(int rw,
562 			       struct kiocb *iocb,
563 			       const struct iovec *iov,
564 			       loff_t offset,
565 			       unsigned long nr_segs)
566 {
567 	struct file *file = iocb->ki_filp;
568 	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
569 	int ret;
570 
571 	mlog_entry_void();
572 
573 	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
574 		/*
575 		 * We get PR data locks even for O_DIRECT.  This
576 		 * allows concurrent O_DIRECT I/O but doesn't let
577 		 * O_DIRECT with extending and buffered zeroing writes
578 		 * race.  If they did race then the buffered zeroing
579 		 * could be written back after the O_DIRECT I/O.  It's
580 		 * one thing to tell people not to mix buffered and
581 		 * O_DIRECT writes, but expecting them to understand
582 		 * that file extension is also an implicit buffered
583 		 * write is too much.  By getting the PR we force
584 		 * writeback of the buffered zeroing before
585 		 * proceeding.
586 		 */
587 		ret = ocfs2_data_lock(inode, 0);
588 		if (ret < 0) {
589 			mlog_errno(ret);
590 			goto out;
591 		}
592 		ocfs2_data_unlock(inode, 0);
593 	}
594 
595 	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
596 					    inode->i_sb->s_bdev, iov, offset,
597 					    nr_segs,
598 					    ocfs2_direct_IO_get_blocks,
599 					    ocfs2_dio_end_io);
600 out:
601 	mlog_exit(ret);
602 	return ret;
603 }
604 
605 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
606 					    u32 cpos,
607 					    unsigned int *start,
608 					    unsigned int *end)
609 {
610 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
611 
612 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
613 		unsigned int cpp;
614 
615 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
616 
617 		cluster_start = cpos % cpp;
618 		cluster_start = cluster_start << osb->s_clustersize_bits;
619 
620 		cluster_end = cluster_start + osb->s_clustersize;
621 	}
622 
623 	BUG_ON(cluster_start > PAGE_SIZE);
624 	BUG_ON(cluster_end > PAGE_SIZE);
625 
626 	if (start)
627 		*start = cluster_start;
628 	if (end)
629 		*end = cluster_end;
630 }
631 
632 /*
633  * 'from' and 'to' are the region in the page to avoid zeroing.
634  *
635  * If pagesize > clustersize, this function will avoid zeroing outside
636  * of the cluster boundary.
637  *
638  * from == to == 0 is code for "zero the entire cluster region"
639  */
640 static void ocfs2_clear_page_regions(struct page *page,
641 				     struct ocfs2_super *osb, u32 cpos,
642 				     unsigned from, unsigned to)
643 {
644 	void *kaddr;
645 	unsigned int cluster_start, cluster_end;
646 
647 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
648 
649 	kaddr = kmap_atomic(page, KM_USER0);
650 
651 	if (from || to) {
652 		if (from > cluster_start)
653 			memset(kaddr + cluster_start, 0, from - cluster_start);
654 		if (to < cluster_end)
655 			memset(kaddr + to, 0, cluster_end - to);
656 	} else {
657 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
658 	}
659 
660 	kunmap_atomic(kaddr, KM_USER0);
661 }
662 
663 /*
664  * Some of this taken from block_prepare_write(). We already have our
665  * mapping by now though, and the entire write will be allocating or
666  * it won't, so not much need to use BH_New.
667  *
668  * This will also skip zeroing, which is handled externally.
669  */
670 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
671 			  struct inode *inode, unsigned int from,
672 			  unsigned int to, int new)
673 {
674 	int ret = 0;
675 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
676 	unsigned int block_end, block_start;
677 	unsigned int bsize = 1 << inode->i_blkbits;
678 
679 	if (!page_has_buffers(page))
680 		create_empty_buffers(page, bsize, 0);
681 
682 	head = page_buffers(page);
683 	for (bh = head, block_start = 0; bh != head || !block_start;
684 	     bh = bh->b_this_page, block_start += bsize) {
685 		block_end = block_start + bsize;
686 
687 		/*
688 		 * Ignore blocks outside of our i/o range -
689 		 * they may belong to unallocated clusters.
690 		 */
691 		if (block_start >= to || block_end <= from) {
692 			if (PageUptodate(page))
693 				set_buffer_uptodate(bh);
694 			continue;
695 		}
696 
697 		/*
698 		 * For an allocating write with cluster size >= page
699 		 * size, we always write the entire page.
700 		 */
701 
702 		if (buffer_new(bh))
703 			clear_buffer_new(bh);
704 
705 		if (!buffer_mapped(bh)) {
706 			map_bh(bh, inode->i_sb, *p_blkno);
707 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
708 		}
709 
710 		if (PageUptodate(page)) {
711 			if (!buffer_uptodate(bh))
712 				set_buffer_uptodate(bh);
713 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
714 		     (block_start < from || block_end > to)) {
715 			ll_rw_block(READ, 1, &bh);
716 			*wait_bh++=bh;
717 		}
718 
719 		*p_blkno = *p_blkno + 1;
720 	}
721 
722 	/*
723 	 * If we issued read requests - let them complete.
724 	 */
725 	while(wait_bh > wait) {
726 		wait_on_buffer(*--wait_bh);
727 		if (!buffer_uptodate(*wait_bh))
728 			ret = -EIO;
729 	}
730 
731 	if (ret == 0 || !new)
732 		return ret;
733 
734 	/*
735 	 * If we get -EIO above, zero out any newly allocated blocks
736 	 * to avoid exposing stale data.
737 	 */
738 	bh = head;
739 	block_start = 0;
740 	do {
741 		void *kaddr;
742 
743 		block_end = block_start + bsize;
744 		if (block_end <= from)
745 			goto next_bh;
746 		if (block_start >= to)
747 			break;
748 
749 		kaddr = kmap_atomic(page, KM_USER0);
750 		memset(kaddr+block_start, 0, bh->b_size);
751 		flush_dcache_page(page);
752 		kunmap_atomic(kaddr, KM_USER0);
753 		set_buffer_uptodate(bh);
754 		mark_buffer_dirty(bh);
755 
756 next_bh:
757 		block_start = block_end;
758 		bh = bh->b_this_page;
759 	} while (bh != head);
760 
761 	return ret;
762 }
763 
764 /*
765  * This will copy user data from the buffer page in the splice
766  * context.
767  *
768  * For now, we ignore SPLICE_F_MOVE as that would require some extra
769  * communication out all the way to ocfs2_write().
770  */
771 int ocfs2_map_and_write_splice_data(struct inode *inode,
772 				  struct ocfs2_write_ctxt *wc, u64 *p_blkno,
773 				  unsigned int *ret_from, unsigned int *ret_to)
774 {
775 	int ret;
776 	unsigned int to, from, cluster_start, cluster_end;
777 	char *src, *dst;
778 	struct ocfs2_splice_write_priv *sp = wc->w_private;
779 	struct pipe_buffer *buf = sp->s_buf;
780 	unsigned long bytes, src_from;
781 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
782 
783 	ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
784 					&cluster_end);
785 
786 	from = sp->s_offset;
787 	src_from = sp->s_buf_offset;
788 	bytes = wc->w_count;
789 
790 	if (wc->w_large_pages) {
791 		/*
792 		 * For cluster size < page size, we have to
793 		 * calculate pos within the cluster and obey
794 		 * the rightmost boundary.
795 		 */
796 		bytes = min(bytes, (unsigned long)(osb->s_clustersize
797 				   - (wc->w_pos & (osb->s_clustersize - 1))));
798 	}
799 	to = from + bytes;
800 
801 	BUG_ON(from > PAGE_CACHE_SIZE);
802 	BUG_ON(to > PAGE_CACHE_SIZE);
803 	BUG_ON(from < cluster_start);
804 	BUG_ON(to > cluster_end);
805 
806 	if (wc->w_this_page_new)
807 		ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
808 					    cluster_start, cluster_end, 1);
809 	else
810 		ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
811 					    from, to, 0);
812 	if (ret) {
813 		mlog_errno(ret);
814 		goto out;
815 	}
816 
817 	src = buf->ops->map(sp->s_pipe, buf, 1);
818 	dst = kmap_atomic(wc->w_this_page, KM_USER1);
819 	memcpy(dst + from, src + src_from, bytes);
820 	kunmap_atomic(wc->w_this_page, KM_USER1);
821 	buf->ops->unmap(sp->s_pipe, buf, src);
822 
823 	wc->w_finished_copy = 1;
824 
825 	*ret_from = from;
826 	*ret_to = to;
827 out:
828 
829 	return bytes ? (unsigned int)bytes : ret;
830 }
831 
832 /*
833  * This will copy user data from the iovec in the buffered write
834  * context.
835  */
836 int ocfs2_map_and_write_user_data(struct inode *inode,
837 				  struct ocfs2_write_ctxt *wc, u64 *p_blkno,
838 				  unsigned int *ret_from, unsigned int *ret_to)
839 {
840 	int ret;
841 	unsigned int to, from, cluster_start, cluster_end;
842 	unsigned long bytes, src_from;
843 	char *dst;
844 	struct ocfs2_buffered_write_priv *bp = wc->w_private;
845 	const struct iovec *cur_iov = bp->b_cur_iov;
846 	char __user *buf;
847 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
848 
849 	ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
850 					&cluster_end);
851 
852 	buf = cur_iov->iov_base + bp->b_cur_off;
853 	src_from = (unsigned long)buf & ~PAGE_CACHE_MASK;
854 
855 	from = wc->w_pos & (PAGE_CACHE_SIZE - 1);
856 
857 	/*
858 	 * This is a lot of comparisons, but it reads quite
859 	 * easily, which is important here.
860 	 */
861 	/* Stay within the src page */
862 	bytes = PAGE_SIZE - src_from;
863 	/* Stay within the vector */
864 	bytes = min(bytes,
865 		    (unsigned long)(cur_iov->iov_len - bp->b_cur_off));
866 	/* Stay within count */
867 	bytes = min(bytes, (unsigned long)wc->w_count);
868 	/*
869 	 * For clustersize > page size, just stay within
870 	 * target page, otherwise we have to calculate pos
871 	 * within the cluster and obey the rightmost
872 	 * boundary.
873 	 */
874 	if (wc->w_large_pages) {
875 		/*
876 		 * For cluster size < page size, we have to
877 		 * calculate pos within the cluster and obey
878 		 * the rightmost boundary.
879 		 */
880 		bytes = min(bytes, (unsigned long)(osb->s_clustersize
881 				   - (wc->w_pos & (osb->s_clustersize - 1))));
882 	} else {
883 		/*
884 		 * cluster size > page size is the most common
885 		 * case - we just stay within the target page
886 		 * boundary.
887 		 */
888 		bytes = min(bytes, PAGE_CACHE_SIZE - from);
889 	}
890 
891 	to = from + bytes;
892 
893 	BUG_ON(from > PAGE_CACHE_SIZE);
894 	BUG_ON(to > PAGE_CACHE_SIZE);
895 	BUG_ON(from < cluster_start);
896 	BUG_ON(to > cluster_end);
897 
898 	if (wc->w_this_page_new)
899 		ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
900 					    cluster_start, cluster_end, 1);
901 	else
902 		ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
903 					    from, to, 0);
904 	if (ret) {
905 		mlog_errno(ret);
906 		goto out;
907 	}
908 
909 	dst = kmap(wc->w_this_page);
910 	memcpy(dst + from, bp->b_src_buf + src_from, bytes);
911 	kunmap(wc->w_this_page);
912 
913 	/*
914 	 * XXX: This is slow, but simple. The caller of
915 	 * ocfs2_buffered_write_cluster() is responsible for
916 	 * passing through the iovecs, so it's difficult to
917 	 * predict what our next step is in here after our
918 	 * initial write. A future version should be pushing
919 	 * that iovec manipulation further down.
920 	 *
921 	 * By setting this, we indicate that a copy from user
922 	 * data was done, and subsequent calls for this
923 	 * cluster will skip copying more data.
924 	 */
925 	wc->w_finished_copy = 1;
926 
927 	*ret_from = from;
928 	*ret_to = to;
929 out:
930 
931 	return bytes ? (unsigned int)bytes : ret;
932 }
933 
934 /*
935  * Map, fill and write a page to disk.
936  *
937  * The work of copying data is done via callback.  Newly allocated
938  * pages which don't take user data will be zero'd (set 'new' to
939  * indicate an allocating write)
940  *
941  * Returns a negative error code or the number of bytes copied into
942  * the page.
943  */
944 static int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
945 				 u64 *p_blkno, struct page *page,
946 				 struct ocfs2_write_ctxt *wc, int new)
947 {
948 	int ret, copied = 0;
949 	unsigned int from = 0, to = 0;
950 	unsigned int cluster_start, cluster_end;
951 	unsigned int zero_from = 0, zero_to = 0;
952 
953 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), wc->w_cpos,
954 					&cluster_start, &cluster_end);
955 
956 	if ((wc->w_pos >> PAGE_CACHE_SHIFT) == page->index
957 	    && !wc->w_finished_copy) {
958 
959 		wc->w_this_page = page;
960 		wc->w_this_page_new = new;
961 		ret = wc->w_write_data_page(inode, wc, p_blkno, &from, &to);
962 		if (ret < 0) {
963 			mlog_errno(ret);
964 			goto out;
965 		}
966 
967 		copied = ret;
968 
969 		zero_from = from;
970 		zero_to = to;
971 		if (new) {
972 			from = cluster_start;
973 			to = cluster_end;
974 		}
975 	} else {
976 		/*
977 		 * If we haven't allocated the new page yet, we
978 		 * shouldn't be writing it out without copying user
979 		 * data. This is likely a math error from the caller.
980 		 */
981 		BUG_ON(!new);
982 
983 		from = cluster_start;
984 		to = cluster_end;
985 
986 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
987 					    cluster_start, cluster_end, 1);
988 		if (ret) {
989 			mlog_errno(ret);
990 			goto out;
991 		}
992 	}
993 
994 	/*
995 	 * Parts of newly allocated pages need to be zero'd.
996 	 *
997 	 * Above, we have also rewritten 'to' and 'from' - as far as
998 	 * the rest of the function is concerned, the entire cluster
999 	 * range inside of a page needs to be written.
1000 	 *
1001 	 * We can skip this if the page is up to date - it's already
1002 	 * been zero'd from being read in as a hole.
1003 	 */
1004 	if (new && !PageUptodate(page))
1005 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1006 					 wc->w_cpos, zero_from, zero_to);
1007 
1008 	flush_dcache_page(page);
1009 
1010 	if (ocfs2_should_order_data(inode)) {
1011 		ret = walk_page_buffers(handle,
1012 					page_buffers(page),
1013 					from, to, NULL,
1014 					ocfs2_journal_dirty_data);
1015 		if (ret < 0)
1016 			mlog_errno(ret);
1017 	}
1018 
1019 	/*
1020 	 * We don't use generic_commit_write() because we need to
1021 	 * handle our own i_size update.
1022 	 */
1023 	ret = block_commit_write(page, from, to);
1024 	if (ret)
1025 		mlog_errno(ret);
1026 out:
1027 
1028 	return copied ? copied : ret;
1029 }
1030 
1031 /*
1032  * Do the actual write of some data into an inode. Optionally allocate
1033  * in order to fulfill the write.
1034  *
1035  * cpos is the logical cluster offset within the file to write at
1036  *
1037  * 'phys' is the physical mapping of that offset. a 'phys' value of
1038  * zero indicates that allocation is required. In this case, data_ac
1039  * and meta_ac should be valid (meta_ac can be null if metadata
1040  * allocation isn't required).
1041  */
1042 static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle,
1043 			   struct buffer_head *di_bh,
1044 			   struct ocfs2_alloc_context *data_ac,
1045 			   struct ocfs2_alloc_context *meta_ac,
1046 			   struct ocfs2_write_ctxt *wc)
1047 {
1048 	int ret, i, numpages = 1, new;
1049 	unsigned int copied = 0;
1050 	u32 tmp_pos;
1051 	u64 v_blkno, p_blkno;
1052 	struct address_space *mapping = file->f_mapping;
1053 	struct inode *inode = mapping->host;
1054 	unsigned long index, start;
1055 	struct page **cpages;
1056 
1057 	new = phys == 0 ? 1 : 0;
1058 
1059 	/*
1060 	 * Figure out how many pages we'll be manipulating here. For
1061 	 * non allocating write, we just change the one
1062 	 * page. Otherwise, we'll need a whole clusters worth.
1063 	 */
1064 	if (new)
1065 		numpages = ocfs2_pages_per_cluster(inode->i_sb);
1066 
1067 	cpages = kzalloc(sizeof(*cpages) * numpages, GFP_NOFS);
1068 	if (!cpages) {
1069 		ret = -ENOMEM;
1070 		mlog_errno(ret);
1071 		return ret;
1072 	}
1073 
1074 	/*
1075 	 * Fill our page array first. That way we've grabbed enough so
1076 	 * that we can zero and flush if we error after adding the
1077 	 * extent.
1078 	 */
1079 	if (new) {
1080 		start = ocfs2_align_clusters_to_page_index(inode->i_sb,
1081 							   wc->w_cpos);
1082 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, wc->w_cpos);
1083 	} else {
1084 		start = wc->w_pos >> PAGE_CACHE_SHIFT;
1085 		v_blkno = wc->w_pos >> inode->i_sb->s_blocksize_bits;
1086 	}
1087 
1088 	for(i = 0; i < numpages; i++) {
1089 		index = start + i;
1090 
1091 		cpages[i] = find_or_create_page(mapping, index, GFP_NOFS);
1092 		if (!cpages[i]) {
1093 			ret = -ENOMEM;
1094 			mlog_errno(ret);
1095 			goto out;
1096 		}
1097 	}
1098 
1099 	if (new) {
1100 		/*
1101 		 * This is safe to call with the page locks - it won't take
1102 		 * any additional semaphores or cluster locks.
1103 		 */
1104 		tmp_pos = wc->w_cpos;
1105 		ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1106 						 &tmp_pos, 1, di_bh, handle,
1107 						 data_ac, meta_ac, NULL);
1108 		/*
1109 		 * This shouldn't happen because we must have already
1110 		 * calculated the correct meta data allocation required. The
1111 		 * internal tree allocation code should know how to increase
1112 		 * transaction credits itself.
1113 		 *
1114 		 * If need be, we could handle -EAGAIN for a
1115 		 * RESTART_TRANS here.
1116 		 */
1117 		mlog_bug_on_msg(ret == -EAGAIN,
1118 				"Inode %llu: EAGAIN return during allocation.\n",
1119 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1120 		if (ret < 0) {
1121 			mlog_errno(ret);
1122 			goto out;
1123 		}
1124 	}
1125 
1126 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1127 					  NULL);
1128 	if (ret < 0) {
1129 
1130 		/*
1131 		 * XXX: Should we go readonly here?
1132 		 */
1133 
1134 		mlog_errno(ret);
1135 		goto out;
1136 	}
1137 
1138 	BUG_ON(p_blkno == 0);
1139 
1140 	for(i = 0; i < numpages; i++) {
1141 		ret = ocfs2_write_data_page(inode, handle, &p_blkno, cpages[i],
1142 					    wc, new);
1143 		if (ret < 0) {
1144 			mlog_errno(ret);
1145 			goto out;
1146 		}
1147 
1148 		copied += ret;
1149 	}
1150 
1151 out:
1152 	for(i = 0; i < numpages; i++) {
1153 		unlock_page(cpages[i]);
1154 		mark_page_accessed(cpages[i]);
1155 		page_cache_release(cpages[i]);
1156 	}
1157 	kfree(cpages);
1158 
1159 	return copied ? copied : ret;
1160 }
1161 
1162 static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt *wc,
1163 				  struct ocfs2_super *osb, loff_t pos,
1164 				  size_t count, ocfs2_page_writer *cb,
1165 				  void *cb_priv)
1166 {
1167 	wc->w_count = count;
1168 	wc->w_pos = pos;
1169 	wc->w_cpos = wc->w_pos >> osb->s_clustersize_bits;
1170 	wc->w_finished_copy = 0;
1171 
1172 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1173 		wc->w_large_pages = 1;
1174 	else
1175 		wc->w_large_pages = 0;
1176 
1177 	wc->w_write_data_page = cb;
1178 	wc->w_private = cb_priv;
1179 }
1180 
1181 /*
1182  * Write a cluster to an inode. The cluster may not be allocated yet,
1183  * in which case it will be. This only exists for buffered writes -
1184  * O_DIRECT takes a more "traditional" path through the kernel.
1185  *
1186  * The caller is responsible for incrementing pos, written counts, etc
1187  *
1188  * For file systems that don't support sparse files, pre-allocation
1189  * and page zeroing up until cpos should be done prior to this
1190  * function call.
1191  *
1192  * Callers should be holding i_sem, and the rw cluster lock.
1193  *
1194  * Returns the number of user bytes written, or less than zero for
1195  * error.
1196  */
1197 ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
1198 				     size_t count, ocfs2_page_writer *actor,
1199 				     void *priv)
1200 {
1201 	int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1202 	ssize_t written = 0;
1203 	u32 phys;
1204 	struct inode *inode = file->f_mapping->host;
1205 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1206 	struct buffer_head *di_bh = NULL;
1207 	struct ocfs2_dinode *di;
1208 	struct ocfs2_alloc_context *data_ac = NULL;
1209 	struct ocfs2_alloc_context *meta_ac = NULL;
1210 	handle_t *handle;
1211 	struct ocfs2_write_ctxt wc;
1212 
1213 	ocfs2_write_ctxt_init(&wc, osb, pos, count, actor, priv);
1214 
1215 	ret = ocfs2_meta_lock(inode, &di_bh, 1);
1216 	if (ret) {
1217 		mlog_errno(ret);
1218 		goto out;
1219 	}
1220 	di = (struct ocfs2_dinode *)di_bh->b_data;
1221 
1222 	/*
1223 	 * Take alloc sem here to prevent concurrent lookups. That way
1224 	 * the mapping, zeroing and tree manipulation within
1225 	 * ocfs2_write() will be safe against ->readpage(). This
1226 	 * should also serve to lock out allocation from a shared
1227 	 * writeable region.
1228 	 */
1229 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1230 
1231 	ret = ocfs2_get_clusters(inode, wc.w_cpos, &phys, NULL, NULL);
1232 	if (ret) {
1233 		mlog_errno(ret);
1234 		goto out_meta;
1235 	}
1236 
1237 	/* phys == 0 means that allocation is required. */
1238 	if (phys == 0) {
1239 		ret = ocfs2_lock_allocators(inode, di, 1, &data_ac, &meta_ac);
1240 		if (ret) {
1241 			mlog_errno(ret);
1242 			goto out_meta;
1243 		}
1244 
1245 		credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1);
1246 	}
1247 
1248 	ret = ocfs2_data_lock(inode, 1);
1249 	if (ret) {
1250 		mlog_errno(ret);
1251 		goto out_meta;
1252 	}
1253 
1254 	handle = ocfs2_start_trans(osb, credits);
1255 	if (IS_ERR(handle)) {
1256 		ret = PTR_ERR(handle);
1257 		mlog_errno(ret);
1258 		goto out_data;
1259 	}
1260 
1261 	written = ocfs2_write(file, phys, handle, di_bh, data_ac,
1262 			      meta_ac, &wc);
1263 	if (written < 0) {
1264 		ret = written;
1265 		mlog_errno(ret);
1266 		goto out_commit;
1267 	}
1268 
1269 	ret = ocfs2_journal_access(handle, inode, di_bh,
1270 				   OCFS2_JOURNAL_ACCESS_WRITE);
1271 	if (ret) {
1272 		mlog_errno(ret);
1273 		goto out_commit;
1274 	}
1275 
1276 	pos += written;
1277 	if (pos > inode->i_size) {
1278 		i_size_write(inode, pos);
1279 		mark_inode_dirty(inode);
1280 	}
1281 	inode->i_blocks = ocfs2_inode_sector_count(inode);
1282 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1283 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1284 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1285 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1286 
1287 	ret = ocfs2_journal_dirty(handle, di_bh);
1288 	if (ret)
1289 		mlog_errno(ret);
1290 
1291 out_commit:
1292 	ocfs2_commit_trans(osb, handle);
1293 
1294 out_data:
1295 	ocfs2_data_unlock(inode, 1);
1296 
1297 out_meta:
1298 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1299 	ocfs2_meta_unlock(inode, 1);
1300 
1301 out:
1302 	brelse(di_bh);
1303 	if (data_ac)
1304 		ocfs2_free_alloc_context(data_ac);
1305 	if (meta_ac)
1306 		ocfs2_free_alloc_context(meta_ac);
1307 
1308 	return written ? written : ret;
1309 }
1310 
1311 const struct address_space_operations ocfs2_aops = {
1312 	.readpage	= ocfs2_readpage,
1313 	.writepage	= ocfs2_writepage,
1314 	.bmap		= ocfs2_bmap,
1315 	.sync_page	= block_sync_page,
1316 	.direct_IO	= ocfs2_direct_IO,
1317 	.invalidatepage	= ocfs2_invalidatepage,
1318 	.releasepage	= ocfs2_releasepage,
1319 	.migratepage	= buffer_migrate_page,
1320 };
1321