1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 #include <linux/quotaops.h> 31 32 #include <cluster/masklog.h> 33 34 #include "ocfs2.h" 35 36 #include "alloc.h" 37 #include "aops.h" 38 #include "dlmglue.h" 39 #include "extent_map.h" 40 #include "file.h" 41 #include "inode.h" 42 #include "journal.h" 43 #include "suballoc.h" 44 #include "super.h" 45 #include "symlink.h" 46 #include "refcounttree.h" 47 #include "ocfs2_trace.h" 48 49 #include "buffer_head_io.h" 50 51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 52 struct buffer_head *bh_result, int create) 53 { 54 int err = -EIO; 55 int status; 56 struct ocfs2_dinode *fe = NULL; 57 struct buffer_head *bh = NULL; 58 struct buffer_head *buffer_cache_bh = NULL; 59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 60 void *kaddr; 61 62 trace_ocfs2_symlink_get_block( 63 (unsigned long long)OCFS2_I(inode)->ip_blkno, 64 (unsigned long long)iblock, bh_result, create); 65 66 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 67 68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 70 (unsigned long long)iblock); 71 goto bail; 72 } 73 74 status = ocfs2_read_inode_block(inode, &bh); 75 if (status < 0) { 76 mlog_errno(status); 77 goto bail; 78 } 79 fe = (struct ocfs2_dinode *) bh->b_data; 80 81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 82 le32_to_cpu(fe->i_clusters))) { 83 mlog(ML_ERROR, "block offset is outside the allocated size: " 84 "%llu\n", (unsigned long long)iblock); 85 goto bail; 86 } 87 88 /* We don't use the page cache to create symlink data, so if 89 * need be, copy it over from the buffer cache. */ 90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 92 iblock; 93 buffer_cache_bh = sb_getblk(osb->sb, blkno); 94 if (!buffer_cache_bh) { 95 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 96 goto bail; 97 } 98 99 /* we haven't locked out transactions, so a commit 100 * could've happened. Since we've got a reference on 101 * the bh, even if it commits while we're doing the 102 * copy, the data is still good. */ 103 if (buffer_jbd(buffer_cache_bh) 104 && ocfs2_inode_is_new(inode)) { 105 kaddr = kmap_atomic(bh_result->b_page); 106 if (!kaddr) { 107 mlog(ML_ERROR, "couldn't kmap!\n"); 108 goto bail; 109 } 110 memcpy(kaddr + (bh_result->b_size * iblock), 111 buffer_cache_bh->b_data, 112 bh_result->b_size); 113 kunmap_atomic(kaddr); 114 set_buffer_uptodate(bh_result); 115 } 116 brelse(buffer_cache_bh); 117 } 118 119 map_bh(bh_result, inode->i_sb, 120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 121 122 err = 0; 123 124 bail: 125 brelse(bh); 126 127 return err; 128 } 129 130 int ocfs2_get_block(struct inode *inode, sector_t iblock, 131 struct buffer_head *bh_result, int create) 132 { 133 int err = 0; 134 unsigned int ext_flags; 135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 136 u64 p_blkno, count, past_eof; 137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 138 139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 140 (unsigned long long)iblock, bh_result, create); 141 142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 144 inode, inode->i_ino); 145 146 if (S_ISLNK(inode->i_mode)) { 147 /* this always does I/O for some reason. */ 148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 149 goto bail; 150 } 151 152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 153 &ext_flags); 154 if (err) { 155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 157 (unsigned long long)p_blkno); 158 goto bail; 159 } 160 161 if (max_blocks < count) 162 count = max_blocks; 163 164 /* 165 * ocfs2 never allocates in this function - the only time we 166 * need to use BH_New is when we're extending i_size on a file 167 * system which doesn't support holes, in which case BH_New 168 * allows __block_write_begin() to zero. 169 * 170 * If we see this on a sparse file system, then a truncate has 171 * raced us and removed the cluster. In this case, we clear 172 * the buffers dirty and uptodate bits and let the buffer code 173 * ignore it as a hole. 174 */ 175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 176 clear_buffer_dirty(bh_result); 177 clear_buffer_uptodate(bh_result); 178 goto bail; 179 } 180 181 /* Treat the unwritten extent as a hole for zeroing purposes. */ 182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 183 map_bh(bh_result, inode->i_sb, p_blkno); 184 185 bh_result->b_size = count << inode->i_blkbits; 186 187 if (!ocfs2_sparse_alloc(osb)) { 188 if (p_blkno == 0) { 189 err = -EIO; 190 mlog(ML_ERROR, 191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 192 (unsigned long long)iblock, 193 (unsigned long long)p_blkno, 194 (unsigned long long)OCFS2_I(inode)->ip_blkno); 195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 196 dump_stack(); 197 goto bail; 198 } 199 } 200 201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 202 203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 204 (unsigned long long)past_eof); 205 if (create && (iblock >= past_eof)) 206 set_buffer_new(bh_result); 207 208 bail: 209 if (err < 0) 210 err = -EIO; 211 212 return err; 213 } 214 215 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 216 struct buffer_head *di_bh) 217 { 218 void *kaddr; 219 loff_t size; 220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 221 222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag", 224 (unsigned long long)OCFS2_I(inode)->ip_blkno); 225 return -EROFS; 226 } 227 228 size = i_size_read(inode); 229 230 if (size > PAGE_CACHE_SIZE || 231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 232 ocfs2_error(inode->i_sb, 233 "Inode %llu has with inline data has bad size: %Lu", 234 (unsigned long long)OCFS2_I(inode)->ip_blkno, 235 (unsigned long long)size); 236 return -EROFS; 237 } 238 239 kaddr = kmap_atomic(page); 240 if (size) 241 memcpy(kaddr, di->id2.i_data.id_data, size); 242 /* Clear the remaining part of the page */ 243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); 244 flush_dcache_page(page); 245 kunmap_atomic(kaddr); 246 247 SetPageUptodate(page); 248 249 return 0; 250 } 251 252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 253 { 254 int ret; 255 struct buffer_head *di_bh = NULL; 256 257 BUG_ON(!PageLocked(page)); 258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 259 260 ret = ocfs2_read_inode_block(inode, &di_bh); 261 if (ret) { 262 mlog_errno(ret); 263 goto out; 264 } 265 266 ret = ocfs2_read_inline_data(inode, page, di_bh); 267 out: 268 unlock_page(page); 269 270 brelse(di_bh); 271 return ret; 272 } 273 274 static int ocfs2_readpage(struct file *file, struct page *page) 275 { 276 struct inode *inode = page->mapping->host; 277 struct ocfs2_inode_info *oi = OCFS2_I(inode); 278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; 279 int ret, unlock = 1; 280 281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 282 (page ? page->index : 0)); 283 284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 285 if (ret != 0) { 286 if (ret == AOP_TRUNCATED_PAGE) 287 unlock = 0; 288 mlog_errno(ret); 289 goto out; 290 } 291 292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 293 /* 294 * Unlock the page and cycle ip_alloc_sem so that we don't 295 * busyloop waiting for ip_alloc_sem to unlock 296 */ 297 ret = AOP_TRUNCATED_PAGE; 298 unlock_page(page); 299 unlock = 0; 300 down_read(&oi->ip_alloc_sem); 301 up_read(&oi->ip_alloc_sem); 302 goto out_inode_unlock; 303 } 304 305 /* 306 * i_size might have just been updated as we grabed the meta lock. We 307 * might now be discovering a truncate that hit on another node. 308 * block_read_full_page->get_block freaks out if it is asked to read 309 * beyond the end of a file, so we check here. Callers 310 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 311 * and notice that the page they just read isn't needed. 312 * 313 * XXX sys_readahead() seems to get that wrong? 314 */ 315 if (start >= i_size_read(inode)) { 316 zero_user(page, 0, PAGE_SIZE); 317 SetPageUptodate(page); 318 ret = 0; 319 goto out_alloc; 320 } 321 322 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 323 ret = ocfs2_readpage_inline(inode, page); 324 else 325 ret = block_read_full_page(page, ocfs2_get_block); 326 unlock = 0; 327 328 out_alloc: 329 up_read(&OCFS2_I(inode)->ip_alloc_sem); 330 out_inode_unlock: 331 ocfs2_inode_unlock(inode, 0); 332 out: 333 if (unlock) 334 unlock_page(page); 335 return ret; 336 } 337 338 /* 339 * This is used only for read-ahead. Failures or difficult to handle 340 * situations are safe to ignore. 341 * 342 * Right now, we don't bother with BH_Boundary - in-inode extent lists 343 * are quite large (243 extents on 4k blocks), so most inodes don't 344 * grow out to a tree. If need be, detecting boundary extents could 345 * trivially be added in a future version of ocfs2_get_block(). 346 */ 347 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 348 struct list_head *pages, unsigned nr_pages) 349 { 350 int ret, err = -EIO; 351 struct inode *inode = mapping->host; 352 struct ocfs2_inode_info *oi = OCFS2_I(inode); 353 loff_t start; 354 struct page *last; 355 356 /* 357 * Use the nonblocking flag for the dlm code to avoid page 358 * lock inversion, but don't bother with retrying. 359 */ 360 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 361 if (ret) 362 return err; 363 364 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 365 ocfs2_inode_unlock(inode, 0); 366 return err; 367 } 368 369 /* 370 * Don't bother with inline-data. There isn't anything 371 * to read-ahead in that case anyway... 372 */ 373 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 374 goto out_unlock; 375 376 /* 377 * Check whether a remote node truncated this file - we just 378 * drop out in that case as it's not worth handling here. 379 */ 380 last = list_entry(pages->prev, struct page, lru); 381 start = (loff_t)last->index << PAGE_CACHE_SHIFT; 382 if (start >= i_size_read(inode)) 383 goto out_unlock; 384 385 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 386 387 out_unlock: 388 up_read(&oi->ip_alloc_sem); 389 ocfs2_inode_unlock(inode, 0); 390 391 return err; 392 } 393 394 /* Note: Because we don't support holes, our allocation has 395 * already happened (allocation writes zeros to the file data) 396 * so we don't have to worry about ordered writes in 397 * ocfs2_writepage. 398 * 399 * ->writepage is called during the process of invalidating the page cache 400 * during blocked lock processing. It can't block on any cluster locks 401 * to during block mapping. It's relying on the fact that the block 402 * mapping can't have disappeared under the dirty pages that it is 403 * being asked to write back. 404 */ 405 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 406 { 407 trace_ocfs2_writepage( 408 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 409 page->index); 410 411 return block_write_full_page(page, ocfs2_get_block, wbc); 412 } 413 414 /* Taken from ext3. We don't necessarily need the full blown 415 * functionality yet, but IMHO it's better to cut and paste the whole 416 * thing so we can avoid introducing our own bugs (and easily pick up 417 * their fixes when they happen) --Mark */ 418 int walk_page_buffers( handle_t *handle, 419 struct buffer_head *head, 420 unsigned from, 421 unsigned to, 422 int *partial, 423 int (*fn)( handle_t *handle, 424 struct buffer_head *bh)) 425 { 426 struct buffer_head *bh; 427 unsigned block_start, block_end; 428 unsigned blocksize = head->b_size; 429 int err, ret = 0; 430 struct buffer_head *next; 431 432 for ( bh = head, block_start = 0; 433 ret == 0 && (bh != head || !block_start); 434 block_start = block_end, bh = next) 435 { 436 next = bh->b_this_page; 437 block_end = block_start + blocksize; 438 if (block_end <= from || block_start >= to) { 439 if (partial && !buffer_uptodate(bh)) 440 *partial = 1; 441 continue; 442 } 443 err = (*fn)(handle, bh); 444 if (!ret) 445 ret = err; 446 } 447 return ret; 448 } 449 450 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 451 { 452 sector_t status; 453 u64 p_blkno = 0; 454 int err = 0; 455 struct inode *inode = mapping->host; 456 457 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 458 (unsigned long long)block); 459 460 /* We don't need to lock journal system files, since they aren't 461 * accessed concurrently from multiple nodes. 462 */ 463 if (!INODE_JOURNAL(inode)) { 464 err = ocfs2_inode_lock(inode, NULL, 0); 465 if (err) { 466 if (err != -ENOENT) 467 mlog_errno(err); 468 goto bail; 469 } 470 down_read(&OCFS2_I(inode)->ip_alloc_sem); 471 } 472 473 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 474 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 475 NULL); 476 477 if (!INODE_JOURNAL(inode)) { 478 up_read(&OCFS2_I(inode)->ip_alloc_sem); 479 ocfs2_inode_unlock(inode, 0); 480 } 481 482 if (err) { 483 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 484 (unsigned long long)block); 485 mlog_errno(err); 486 goto bail; 487 } 488 489 bail: 490 status = err ? 0 : p_blkno; 491 492 return status; 493 } 494 495 /* 496 * TODO: Make this into a generic get_blocks function. 497 * 498 * From do_direct_io in direct-io.c: 499 * "So what we do is to permit the ->get_blocks function to populate 500 * bh.b_size with the size of IO which is permitted at this offset and 501 * this i_blkbits." 502 * 503 * This function is called directly from get_more_blocks in direct-io.c. 504 * 505 * called like this: dio->get_blocks(dio->inode, fs_startblk, 506 * fs_count, map_bh, dio->rw == WRITE); 507 * 508 * Note that we never bother to allocate blocks here, and thus ignore the 509 * create argument. 510 */ 511 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, 512 struct buffer_head *bh_result, int create) 513 { 514 int ret; 515 u64 p_blkno, inode_blocks, contig_blocks; 516 unsigned int ext_flags; 517 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 518 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; 519 520 /* This function won't even be called if the request isn't all 521 * nicely aligned and of the right size, so there's no need 522 * for us to check any of that. */ 523 524 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 525 526 /* This figures out the size of the next contiguous block, and 527 * our logical offset */ 528 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 529 &contig_blocks, &ext_flags); 530 if (ret) { 531 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 532 (unsigned long long)iblock); 533 ret = -EIO; 534 goto bail; 535 } 536 537 /* We should already CoW the refcounted extent in case of create. */ 538 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED)); 539 540 /* 541 * get_more_blocks() expects us to describe a hole by clearing 542 * the mapped bit on bh_result(). 543 * 544 * Consider an unwritten extent as a hole. 545 */ 546 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 547 map_bh(bh_result, inode->i_sb, p_blkno); 548 else 549 clear_buffer_mapped(bh_result); 550 551 /* make sure we don't map more than max_blocks blocks here as 552 that's all the kernel will handle at this point. */ 553 if (max_blocks < contig_blocks) 554 contig_blocks = max_blocks; 555 bh_result->b_size = contig_blocks << blocksize_bits; 556 bail: 557 return ret; 558 } 559 560 /* 561 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 562 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 563 * to protect io on one node from truncation on another. 564 */ 565 static void ocfs2_dio_end_io(struct kiocb *iocb, 566 loff_t offset, 567 ssize_t bytes, 568 void *private, 569 int ret, 570 bool is_async) 571 { 572 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 573 int level; 574 wait_queue_head_t *wq = ocfs2_ioend_wq(inode); 575 576 /* this io's submitter should not have unlocked this before we could */ 577 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 578 579 if (ocfs2_iocb_is_sem_locked(iocb)) 580 ocfs2_iocb_clear_sem_locked(iocb); 581 582 if (ocfs2_iocb_is_unaligned_aio(iocb)) { 583 ocfs2_iocb_clear_unaligned_aio(iocb); 584 585 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) && 586 waitqueue_active(wq)) { 587 wake_up_all(wq); 588 } 589 } 590 591 ocfs2_iocb_clear_rw_locked(iocb); 592 593 level = ocfs2_iocb_rw_locked_level(iocb); 594 ocfs2_rw_unlock(inode, level); 595 596 if (is_async) 597 aio_complete(iocb, ret, 0); 598 inode_dio_done(inode); 599 } 600 601 /* 602 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen 603 * from ext3. PageChecked() bits have been removed as OCFS2 does not 604 * do journalled data. 605 */ 606 static void ocfs2_invalidatepage(struct page *page, unsigned long offset) 607 { 608 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 609 610 jbd2_journal_invalidatepage(journal, page, offset); 611 } 612 613 static int ocfs2_releasepage(struct page *page, gfp_t wait) 614 { 615 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 616 617 if (!page_has_buffers(page)) 618 return 0; 619 return jbd2_journal_try_to_free_buffers(journal, page, wait); 620 } 621 622 static ssize_t ocfs2_direct_IO(int rw, 623 struct kiocb *iocb, 624 const struct iovec *iov, 625 loff_t offset, 626 unsigned long nr_segs) 627 { 628 struct file *file = iocb->ki_filp; 629 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host; 630 631 /* 632 * Fallback to buffered I/O if we see an inode without 633 * extents. 634 */ 635 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 636 return 0; 637 638 /* Fallback to buffered I/O if we are appending. */ 639 if (i_size_read(inode) <= offset) 640 return 0; 641 642 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, 643 iov, offset, nr_segs, 644 ocfs2_direct_IO_get_blocks, 645 ocfs2_dio_end_io, NULL, 0); 646 } 647 648 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 649 u32 cpos, 650 unsigned int *start, 651 unsigned int *end) 652 { 653 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; 654 655 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { 656 unsigned int cpp; 657 658 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); 659 660 cluster_start = cpos % cpp; 661 cluster_start = cluster_start << osb->s_clustersize_bits; 662 663 cluster_end = cluster_start + osb->s_clustersize; 664 } 665 666 BUG_ON(cluster_start > PAGE_SIZE); 667 BUG_ON(cluster_end > PAGE_SIZE); 668 669 if (start) 670 *start = cluster_start; 671 if (end) 672 *end = cluster_end; 673 } 674 675 /* 676 * 'from' and 'to' are the region in the page to avoid zeroing. 677 * 678 * If pagesize > clustersize, this function will avoid zeroing outside 679 * of the cluster boundary. 680 * 681 * from == to == 0 is code for "zero the entire cluster region" 682 */ 683 static void ocfs2_clear_page_regions(struct page *page, 684 struct ocfs2_super *osb, u32 cpos, 685 unsigned from, unsigned to) 686 { 687 void *kaddr; 688 unsigned int cluster_start, cluster_end; 689 690 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 691 692 kaddr = kmap_atomic(page); 693 694 if (from || to) { 695 if (from > cluster_start) 696 memset(kaddr + cluster_start, 0, from - cluster_start); 697 if (to < cluster_end) 698 memset(kaddr + to, 0, cluster_end - to); 699 } else { 700 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 701 } 702 703 kunmap_atomic(kaddr); 704 } 705 706 /* 707 * Nonsparse file systems fully allocate before we get to the write 708 * code. This prevents ocfs2_write() from tagging the write as an 709 * allocating one, which means ocfs2_map_page_blocks() might try to 710 * read-in the blocks at the tail of our file. Avoid reading them by 711 * testing i_size against each block offset. 712 */ 713 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 714 unsigned int block_start) 715 { 716 u64 offset = page_offset(page) + block_start; 717 718 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 719 return 1; 720 721 if (i_size_read(inode) > offset) 722 return 1; 723 724 return 0; 725 } 726 727 /* 728 * Some of this taken from __block_write_begin(). We already have our 729 * mapping by now though, and the entire write will be allocating or 730 * it won't, so not much need to use BH_New. 731 * 732 * This will also skip zeroing, which is handled externally. 733 */ 734 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 735 struct inode *inode, unsigned int from, 736 unsigned int to, int new) 737 { 738 int ret = 0; 739 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 740 unsigned int block_end, block_start; 741 unsigned int bsize = 1 << inode->i_blkbits; 742 743 if (!page_has_buffers(page)) 744 create_empty_buffers(page, bsize, 0); 745 746 head = page_buffers(page); 747 for (bh = head, block_start = 0; bh != head || !block_start; 748 bh = bh->b_this_page, block_start += bsize) { 749 block_end = block_start + bsize; 750 751 clear_buffer_new(bh); 752 753 /* 754 * Ignore blocks outside of our i/o range - 755 * they may belong to unallocated clusters. 756 */ 757 if (block_start >= to || block_end <= from) { 758 if (PageUptodate(page)) 759 set_buffer_uptodate(bh); 760 continue; 761 } 762 763 /* 764 * For an allocating write with cluster size >= page 765 * size, we always write the entire page. 766 */ 767 if (new) 768 set_buffer_new(bh); 769 770 if (!buffer_mapped(bh)) { 771 map_bh(bh, inode->i_sb, *p_blkno); 772 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 773 } 774 775 if (PageUptodate(page)) { 776 if (!buffer_uptodate(bh)) 777 set_buffer_uptodate(bh); 778 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 779 !buffer_new(bh) && 780 ocfs2_should_read_blk(inode, page, block_start) && 781 (block_start < from || block_end > to)) { 782 ll_rw_block(READ, 1, &bh); 783 *wait_bh++=bh; 784 } 785 786 *p_blkno = *p_blkno + 1; 787 } 788 789 /* 790 * If we issued read requests - let them complete. 791 */ 792 while(wait_bh > wait) { 793 wait_on_buffer(*--wait_bh); 794 if (!buffer_uptodate(*wait_bh)) 795 ret = -EIO; 796 } 797 798 if (ret == 0 || !new) 799 return ret; 800 801 /* 802 * If we get -EIO above, zero out any newly allocated blocks 803 * to avoid exposing stale data. 804 */ 805 bh = head; 806 block_start = 0; 807 do { 808 block_end = block_start + bsize; 809 if (block_end <= from) 810 goto next_bh; 811 if (block_start >= to) 812 break; 813 814 zero_user(page, block_start, bh->b_size); 815 set_buffer_uptodate(bh); 816 mark_buffer_dirty(bh); 817 818 next_bh: 819 block_start = block_end; 820 bh = bh->b_this_page; 821 } while (bh != head); 822 823 return ret; 824 } 825 826 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 827 #define OCFS2_MAX_CTXT_PAGES 1 828 #else 829 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) 830 #endif 831 832 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) 833 834 /* 835 * Describe the state of a single cluster to be written to. 836 */ 837 struct ocfs2_write_cluster_desc { 838 u32 c_cpos; 839 u32 c_phys; 840 /* 841 * Give this a unique field because c_phys eventually gets 842 * filled. 843 */ 844 unsigned c_new; 845 unsigned c_unwritten; 846 unsigned c_needs_zero; 847 }; 848 849 struct ocfs2_write_ctxt { 850 /* Logical cluster position / len of write */ 851 u32 w_cpos; 852 u32 w_clen; 853 854 /* First cluster allocated in a nonsparse extend */ 855 u32 w_first_new_cpos; 856 857 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 858 859 /* 860 * This is true if page_size > cluster_size. 861 * 862 * It triggers a set of special cases during write which might 863 * have to deal with allocating writes to partial pages. 864 */ 865 unsigned int w_large_pages; 866 867 /* 868 * Pages involved in this write. 869 * 870 * w_target_page is the page being written to by the user. 871 * 872 * w_pages is an array of pages which always contains 873 * w_target_page, and in the case of an allocating write with 874 * page_size < cluster size, it will contain zero'd and mapped 875 * pages adjacent to w_target_page which need to be written 876 * out in so that future reads from that region will get 877 * zero's. 878 */ 879 unsigned int w_num_pages; 880 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 881 struct page *w_target_page; 882 883 /* 884 * w_target_locked is used for page_mkwrite path indicating no unlocking 885 * against w_target_page in ocfs2_write_end_nolock. 886 */ 887 unsigned int w_target_locked:1; 888 889 /* 890 * ocfs2_write_end() uses this to know what the real range to 891 * write in the target should be. 892 */ 893 unsigned int w_target_from; 894 unsigned int w_target_to; 895 896 /* 897 * We could use journal_current_handle() but this is cleaner, 898 * IMHO -Mark 899 */ 900 handle_t *w_handle; 901 902 struct buffer_head *w_di_bh; 903 904 struct ocfs2_cached_dealloc_ctxt w_dealloc; 905 }; 906 907 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 908 { 909 int i; 910 911 for(i = 0; i < num_pages; i++) { 912 if (pages[i]) { 913 unlock_page(pages[i]); 914 mark_page_accessed(pages[i]); 915 page_cache_release(pages[i]); 916 } 917 } 918 } 919 920 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) 921 { 922 int i; 923 924 /* 925 * w_target_locked is only set to true in the page_mkwrite() case. 926 * The intent is to allow us to lock the target page from write_begin() 927 * to write_end(). The caller must hold a ref on w_target_page. 928 */ 929 if (wc->w_target_locked) { 930 BUG_ON(!wc->w_target_page); 931 for (i = 0; i < wc->w_num_pages; i++) { 932 if (wc->w_target_page == wc->w_pages[i]) { 933 wc->w_pages[i] = NULL; 934 break; 935 } 936 } 937 mark_page_accessed(wc->w_target_page); 938 page_cache_release(wc->w_target_page); 939 } 940 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 941 942 brelse(wc->w_di_bh); 943 kfree(wc); 944 } 945 946 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 947 struct ocfs2_super *osb, loff_t pos, 948 unsigned len, struct buffer_head *di_bh) 949 { 950 u32 cend; 951 struct ocfs2_write_ctxt *wc; 952 953 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 954 if (!wc) 955 return -ENOMEM; 956 957 wc->w_cpos = pos >> osb->s_clustersize_bits; 958 wc->w_first_new_cpos = UINT_MAX; 959 cend = (pos + len - 1) >> osb->s_clustersize_bits; 960 wc->w_clen = cend - wc->w_cpos + 1; 961 get_bh(di_bh); 962 wc->w_di_bh = di_bh; 963 964 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) 965 wc->w_large_pages = 1; 966 else 967 wc->w_large_pages = 0; 968 969 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 970 971 *wcp = wc; 972 973 return 0; 974 } 975 976 /* 977 * If a page has any new buffers, zero them out here, and mark them uptodate 978 * and dirty so they'll be written out (in order to prevent uninitialised 979 * block data from leaking). And clear the new bit. 980 */ 981 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 982 { 983 unsigned int block_start, block_end; 984 struct buffer_head *head, *bh; 985 986 BUG_ON(!PageLocked(page)); 987 if (!page_has_buffers(page)) 988 return; 989 990 bh = head = page_buffers(page); 991 block_start = 0; 992 do { 993 block_end = block_start + bh->b_size; 994 995 if (buffer_new(bh)) { 996 if (block_end > from && block_start < to) { 997 if (!PageUptodate(page)) { 998 unsigned start, end; 999 1000 start = max(from, block_start); 1001 end = min(to, block_end); 1002 1003 zero_user_segment(page, start, end); 1004 set_buffer_uptodate(bh); 1005 } 1006 1007 clear_buffer_new(bh); 1008 mark_buffer_dirty(bh); 1009 } 1010 } 1011 1012 block_start = block_end; 1013 bh = bh->b_this_page; 1014 } while (bh != head); 1015 } 1016 1017 /* 1018 * Only called when we have a failure during allocating write to write 1019 * zero's to the newly allocated region. 1020 */ 1021 static void ocfs2_write_failure(struct inode *inode, 1022 struct ocfs2_write_ctxt *wc, 1023 loff_t user_pos, unsigned user_len) 1024 { 1025 int i; 1026 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), 1027 to = user_pos + user_len; 1028 struct page *tmppage; 1029 1030 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 1031 1032 for(i = 0; i < wc->w_num_pages; i++) { 1033 tmppage = wc->w_pages[i]; 1034 1035 if (page_has_buffers(tmppage)) { 1036 if (ocfs2_should_order_data(inode)) 1037 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1038 1039 block_commit_write(tmppage, from, to); 1040 } 1041 } 1042 } 1043 1044 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 1045 struct ocfs2_write_ctxt *wc, 1046 struct page *page, u32 cpos, 1047 loff_t user_pos, unsigned user_len, 1048 int new) 1049 { 1050 int ret; 1051 unsigned int map_from = 0, map_to = 0; 1052 unsigned int cluster_start, cluster_end; 1053 unsigned int user_data_from = 0, user_data_to = 0; 1054 1055 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 1056 &cluster_start, &cluster_end); 1057 1058 /* treat the write as new if the a hole/lseek spanned across 1059 * the page boundary. 1060 */ 1061 new = new | ((i_size_read(inode) <= page_offset(page)) && 1062 (page_offset(page) <= user_pos)); 1063 1064 if (page == wc->w_target_page) { 1065 map_from = user_pos & (PAGE_CACHE_SIZE - 1); 1066 map_to = map_from + user_len; 1067 1068 if (new) 1069 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1070 cluster_start, cluster_end, 1071 new); 1072 else 1073 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1074 map_from, map_to, new); 1075 if (ret) { 1076 mlog_errno(ret); 1077 goto out; 1078 } 1079 1080 user_data_from = map_from; 1081 user_data_to = map_to; 1082 if (new) { 1083 map_from = cluster_start; 1084 map_to = cluster_end; 1085 } 1086 } else { 1087 /* 1088 * If we haven't allocated the new page yet, we 1089 * shouldn't be writing it out without copying user 1090 * data. This is likely a math error from the caller. 1091 */ 1092 BUG_ON(!new); 1093 1094 map_from = cluster_start; 1095 map_to = cluster_end; 1096 1097 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1098 cluster_start, cluster_end, new); 1099 if (ret) { 1100 mlog_errno(ret); 1101 goto out; 1102 } 1103 } 1104 1105 /* 1106 * Parts of newly allocated pages need to be zero'd. 1107 * 1108 * Above, we have also rewritten 'to' and 'from' - as far as 1109 * the rest of the function is concerned, the entire cluster 1110 * range inside of a page needs to be written. 1111 * 1112 * We can skip this if the page is up to date - it's already 1113 * been zero'd from being read in as a hole. 1114 */ 1115 if (new && !PageUptodate(page)) 1116 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1117 cpos, user_data_from, user_data_to); 1118 1119 flush_dcache_page(page); 1120 1121 out: 1122 return ret; 1123 } 1124 1125 /* 1126 * This function will only grab one clusters worth of pages. 1127 */ 1128 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1129 struct ocfs2_write_ctxt *wc, 1130 u32 cpos, loff_t user_pos, 1131 unsigned user_len, int new, 1132 struct page *mmap_page) 1133 { 1134 int ret = 0, i; 1135 unsigned long start, target_index, end_index, index; 1136 struct inode *inode = mapping->host; 1137 loff_t last_byte; 1138 1139 target_index = user_pos >> PAGE_CACHE_SHIFT; 1140 1141 /* 1142 * Figure out how many pages we'll be manipulating here. For 1143 * non allocating write, we just change the one 1144 * page. Otherwise, we'll need a whole clusters worth. If we're 1145 * writing past i_size, we only need enough pages to cover the 1146 * last page of the write. 1147 */ 1148 if (new) { 1149 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1150 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1151 /* 1152 * We need the index *past* the last page we could possibly 1153 * touch. This is the page past the end of the write or 1154 * i_size, whichever is greater. 1155 */ 1156 last_byte = max(user_pos + user_len, i_size_read(inode)); 1157 BUG_ON(last_byte < 1); 1158 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1; 1159 if ((start + wc->w_num_pages) > end_index) 1160 wc->w_num_pages = end_index - start; 1161 } else { 1162 wc->w_num_pages = 1; 1163 start = target_index; 1164 } 1165 1166 for(i = 0; i < wc->w_num_pages; i++) { 1167 index = start + i; 1168 1169 if (index == target_index && mmap_page) { 1170 /* 1171 * ocfs2_pagemkwrite() is a little different 1172 * and wants us to directly use the page 1173 * passed in. 1174 */ 1175 lock_page(mmap_page); 1176 1177 /* Exit and let the caller retry */ 1178 if (mmap_page->mapping != mapping) { 1179 WARN_ON(mmap_page->mapping); 1180 unlock_page(mmap_page); 1181 ret = -EAGAIN; 1182 goto out; 1183 } 1184 1185 page_cache_get(mmap_page); 1186 wc->w_pages[i] = mmap_page; 1187 wc->w_target_locked = true; 1188 } else { 1189 wc->w_pages[i] = find_or_create_page(mapping, index, 1190 GFP_NOFS); 1191 if (!wc->w_pages[i]) { 1192 ret = -ENOMEM; 1193 mlog_errno(ret); 1194 goto out; 1195 } 1196 } 1197 1198 if (index == target_index) 1199 wc->w_target_page = wc->w_pages[i]; 1200 } 1201 out: 1202 if (ret) 1203 wc->w_target_locked = false; 1204 return ret; 1205 } 1206 1207 /* 1208 * Prepare a single cluster for write one cluster into the file. 1209 */ 1210 static int ocfs2_write_cluster(struct address_space *mapping, 1211 u32 phys, unsigned int unwritten, 1212 unsigned int should_zero, 1213 struct ocfs2_alloc_context *data_ac, 1214 struct ocfs2_alloc_context *meta_ac, 1215 struct ocfs2_write_ctxt *wc, u32 cpos, 1216 loff_t user_pos, unsigned user_len) 1217 { 1218 int ret, i, new; 1219 u64 v_blkno, p_blkno; 1220 struct inode *inode = mapping->host; 1221 struct ocfs2_extent_tree et; 1222 1223 new = phys == 0 ? 1 : 0; 1224 if (new) { 1225 u32 tmp_pos; 1226 1227 /* 1228 * This is safe to call with the page locks - it won't take 1229 * any additional semaphores or cluster locks. 1230 */ 1231 tmp_pos = cpos; 1232 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1233 &tmp_pos, 1, 0, wc->w_di_bh, 1234 wc->w_handle, data_ac, 1235 meta_ac, NULL); 1236 /* 1237 * This shouldn't happen because we must have already 1238 * calculated the correct meta data allocation required. The 1239 * internal tree allocation code should know how to increase 1240 * transaction credits itself. 1241 * 1242 * If need be, we could handle -EAGAIN for a 1243 * RESTART_TRANS here. 1244 */ 1245 mlog_bug_on_msg(ret == -EAGAIN, 1246 "Inode %llu: EAGAIN return during allocation.\n", 1247 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1248 if (ret < 0) { 1249 mlog_errno(ret); 1250 goto out; 1251 } 1252 } else if (unwritten) { 1253 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1254 wc->w_di_bh); 1255 ret = ocfs2_mark_extent_written(inode, &et, 1256 wc->w_handle, cpos, 1, phys, 1257 meta_ac, &wc->w_dealloc); 1258 if (ret < 0) { 1259 mlog_errno(ret); 1260 goto out; 1261 } 1262 } 1263 1264 if (should_zero) 1265 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); 1266 else 1267 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; 1268 1269 /* 1270 * The only reason this should fail is due to an inability to 1271 * find the extent added. 1272 */ 1273 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, 1274 NULL); 1275 if (ret < 0) { 1276 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, " 1277 "at logical block %llu", 1278 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1279 (unsigned long long)v_blkno); 1280 goto out; 1281 } 1282 1283 BUG_ON(p_blkno == 0); 1284 1285 for(i = 0; i < wc->w_num_pages; i++) { 1286 int tmpret; 1287 1288 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1289 wc->w_pages[i], cpos, 1290 user_pos, user_len, 1291 should_zero); 1292 if (tmpret) { 1293 mlog_errno(tmpret); 1294 if (ret == 0) 1295 ret = tmpret; 1296 } 1297 } 1298 1299 /* 1300 * We only have cleanup to do in case of allocating write. 1301 */ 1302 if (ret && new) 1303 ocfs2_write_failure(inode, wc, user_pos, user_len); 1304 1305 out: 1306 1307 return ret; 1308 } 1309 1310 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1311 struct ocfs2_alloc_context *data_ac, 1312 struct ocfs2_alloc_context *meta_ac, 1313 struct ocfs2_write_ctxt *wc, 1314 loff_t pos, unsigned len) 1315 { 1316 int ret, i; 1317 loff_t cluster_off; 1318 unsigned int local_len = len; 1319 struct ocfs2_write_cluster_desc *desc; 1320 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1321 1322 for (i = 0; i < wc->w_clen; i++) { 1323 desc = &wc->w_desc[i]; 1324 1325 /* 1326 * We have to make sure that the total write passed in 1327 * doesn't extend past a single cluster. 1328 */ 1329 local_len = len; 1330 cluster_off = pos & (osb->s_clustersize - 1); 1331 if ((cluster_off + local_len) > osb->s_clustersize) 1332 local_len = osb->s_clustersize - cluster_off; 1333 1334 ret = ocfs2_write_cluster(mapping, desc->c_phys, 1335 desc->c_unwritten, 1336 desc->c_needs_zero, 1337 data_ac, meta_ac, 1338 wc, desc->c_cpos, pos, local_len); 1339 if (ret) { 1340 mlog_errno(ret); 1341 goto out; 1342 } 1343 1344 len -= local_len; 1345 pos += local_len; 1346 } 1347 1348 ret = 0; 1349 out: 1350 return ret; 1351 } 1352 1353 /* 1354 * ocfs2_write_end() wants to know which parts of the target page it 1355 * should complete the write on. It's easiest to compute them ahead of 1356 * time when a more complete view of the write is available. 1357 */ 1358 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1359 struct ocfs2_write_ctxt *wc, 1360 loff_t pos, unsigned len, int alloc) 1361 { 1362 struct ocfs2_write_cluster_desc *desc; 1363 1364 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); 1365 wc->w_target_to = wc->w_target_from + len; 1366 1367 if (alloc == 0) 1368 return; 1369 1370 /* 1371 * Allocating write - we may have different boundaries based 1372 * on page size and cluster size. 1373 * 1374 * NOTE: We can no longer compute one value from the other as 1375 * the actual write length and user provided length may be 1376 * different. 1377 */ 1378 1379 if (wc->w_large_pages) { 1380 /* 1381 * We only care about the 1st and last cluster within 1382 * our range and whether they should be zero'd or not. Either 1383 * value may be extended out to the start/end of a 1384 * newly allocated cluster. 1385 */ 1386 desc = &wc->w_desc[0]; 1387 if (desc->c_needs_zero) 1388 ocfs2_figure_cluster_boundaries(osb, 1389 desc->c_cpos, 1390 &wc->w_target_from, 1391 NULL); 1392 1393 desc = &wc->w_desc[wc->w_clen - 1]; 1394 if (desc->c_needs_zero) 1395 ocfs2_figure_cluster_boundaries(osb, 1396 desc->c_cpos, 1397 NULL, 1398 &wc->w_target_to); 1399 } else { 1400 wc->w_target_from = 0; 1401 wc->w_target_to = PAGE_CACHE_SIZE; 1402 } 1403 } 1404 1405 /* 1406 * Populate each single-cluster write descriptor in the write context 1407 * with information about the i/o to be done. 1408 * 1409 * Returns the number of clusters that will have to be allocated, as 1410 * well as a worst case estimate of the number of extent records that 1411 * would have to be created during a write to an unwritten region. 1412 */ 1413 static int ocfs2_populate_write_desc(struct inode *inode, 1414 struct ocfs2_write_ctxt *wc, 1415 unsigned int *clusters_to_alloc, 1416 unsigned int *extents_to_split) 1417 { 1418 int ret; 1419 struct ocfs2_write_cluster_desc *desc; 1420 unsigned int num_clusters = 0; 1421 unsigned int ext_flags = 0; 1422 u32 phys = 0; 1423 int i; 1424 1425 *clusters_to_alloc = 0; 1426 *extents_to_split = 0; 1427 1428 for (i = 0; i < wc->w_clen; i++) { 1429 desc = &wc->w_desc[i]; 1430 desc->c_cpos = wc->w_cpos + i; 1431 1432 if (num_clusters == 0) { 1433 /* 1434 * Need to look up the next extent record. 1435 */ 1436 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1437 &num_clusters, &ext_flags); 1438 if (ret) { 1439 mlog_errno(ret); 1440 goto out; 1441 } 1442 1443 /* We should already CoW the refcountd extent. */ 1444 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1445 1446 /* 1447 * Assume worst case - that we're writing in 1448 * the middle of the extent. 1449 * 1450 * We can assume that the write proceeds from 1451 * left to right, in which case the extent 1452 * insert code is smart enough to coalesce the 1453 * next splits into the previous records created. 1454 */ 1455 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1456 *extents_to_split = *extents_to_split + 2; 1457 } else if (phys) { 1458 /* 1459 * Only increment phys if it doesn't describe 1460 * a hole. 1461 */ 1462 phys++; 1463 } 1464 1465 /* 1466 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1467 * file that got extended. w_first_new_cpos tells us 1468 * where the newly allocated clusters are so we can 1469 * zero them. 1470 */ 1471 if (desc->c_cpos >= wc->w_first_new_cpos) { 1472 BUG_ON(phys == 0); 1473 desc->c_needs_zero = 1; 1474 } 1475 1476 desc->c_phys = phys; 1477 if (phys == 0) { 1478 desc->c_new = 1; 1479 desc->c_needs_zero = 1; 1480 *clusters_to_alloc = *clusters_to_alloc + 1; 1481 } 1482 1483 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1484 desc->c_unwritten = 1; 1485 desc->c_needs_zero = 1; 1486 } 1487 1488 num_clusters--; 1489 } 1490 1491 ret = 0; 1492 out: 1493 return ret; 1494 } 1495 1496 static int ocfs2_write_begin_inline(struct address_space *mapping, 1497 struct inode *inode, 1498 struct ocfs2_write_ctxt *wc) 1499 { 1500 int ret; 1501 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1502 struct page *page; 1503 handle_t *handle; 1504 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1505 1506 page = find_or_create_page(mapping, 0, GFP_NOFS); 1507 if (!page) { 1508 ret = -ENOMEM; 1509 mlog_errno(ret); 1510 goto out; 1511 } 1512 /* 1513 * If we don't set w_num_pages then this page won't get unlocked 1514 * and freed on cleanup of the write context. 1515 */ 1516 wc->w_pages[0] = wc->w_target_page = page; 1517 wc->w_num_pages = 1; 1518 1519 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1520 if (IS_ERR(handle)) { 1521 ret = PTR_ERR(handle); 1522 mlog_errno(ret); 1523 goto out; 1524 } 1525 1526 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1527 OCFS2_JOURNAL_ACCESS_WRITE); 1528 if (ret) { 1529 ocfs2_commit_trans(osb, handle); 1530 1531 mlog_errno(ret); 1532 goto out; 1533 } 1534 1535 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1536 ocfs2_set_inode_data_inline(inode, di); 1537 1538 if (!PageUptodate(page)) { 1539 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1540 if (ret) { 1541 ocfs2_commit_trans(osb, handle); 1542 1543 goto out; 1544 } 1545 } 1546 1547 wc->w_handle = handle; 1548 out: 1549 return ret; 1550 } 1551 1552 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1553 { 1554 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1555 1556 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1557 return 1; 1558 return 0; 1559 } 1560 1561 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1562 struct inode *inode, loff_t pos, 1563 unsigned len, struct page *mmap_page, 1564 struct ocfs2_write_ctxt *wc) 1565 { 1566 int ret, written = 0; 1567 loff_t end = pos + len; 1568 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1569 struct ocfs2_dinode *di = NULL; 1570 1571 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1572 len, (unsigned long long)pos, 1573 oi->ip_dyn_features); 1574 1575 /* 1576 * Handle inodes which already have inline data 1st. 1577 */ 1578 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1579 if (mmap_page == NULL && 1580 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1581 goto do_inline_write; 1582 1583 /* 1584 * The write won't fit - we have to give this inode an 1585 * inline extent list now. 1586 */ 1587 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1588 if (ret) 1589 mlog_errno(ret); 1590 goto out; 1591 } 1592 1593 /* 1594 * Check whether the inode can accept inline data. 1595 */ 1596 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1597 return 0; 1598 1599 /* 1600 * Check whether the write can fit. 1601 */ 1602 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1603 if (mmap_page || 1604 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1605 return 0; 1606 1607 do_inline_write: 1608 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1609 if (ret) { 1610 mlog_errno(ret); 1611 goto out; 1612 } 1613 1614 /* 1615 * This signals to the caller that the data can be written 1616 * inline. 1617 */ 1618 written = 1; 1619 out: 1620 return written ? written : ret; 1621 } 1622 1623 /* 1624 * This function only does anything for file systems which can't 1625 * handle sparse files. 1626 * 1627 * What we want to do here is fill in any hole between the current end 1628 * of allocation and the end of our write. That way the rest of the 1629 * write path can treat it as an non-allocating write, which has no 1630 * special case code for sparse/nonsparse files. 1631 */ 1632 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1633 struct buffer_head *di_bh, 1634 loff_t pos, unsigned len, 1635 struct ocfs2_write_ctxt *wc) 1636 { 1637 int ret; 1638 loff_t newsize = pos + len; 1639 1640 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1641 1642 if (newsize <= i_size_read(inode)) 1643 return 0; 1644 1645 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1646 if (ret) 1647 mlog_errno(ret); 1648 1649 wc->w_first_new_cpos = 1650 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1651 1652 return ret; 1653 } 1654 1655 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1656 loff_t pos) 1657 { 1658 int ret = 0; 1659 1660 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1661 if (pos > i_size_read(inode)) 1662 ret = ocfs2_zero_extend(inode, di_bh, pos); 1663 1664 return ret; 1665 } 1666 1667 /* 1668 * Try to flush truncate logs if we can free enough clusters from it. 1669 * As for return value, "< 0" means error, "0" no space and "1" means 1670 * we have freed enough spaces and let the caller try to allocate again. 1671 */ 1672 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 1673 unsigned int needed) 1674 { 1675 tid_t target; 1676 int ret = 0; 1677 unsigned int truncated_clusters; 1678 1679 mutex_lock(&osb->osb_tl_inode->i_mutex); 1680 truncated_clusters = osb->truncated_clusters; 1681 mutex_unlock(&osb->osb_tl_inode->i_mutex); 1682 1683 /* 1684 * Check whether we can succeed in allocating if we free 1685 * the truncate log. 1686 */ 1687 if (truncated_clusters < needed) 1688 goto out; 1689 1690 ret = ocfs2_flush_truncate_log(osb); 1691 if (ret) { 1692 mlog_errno(ret); 1693 goto out; 1694 } 1695 1696 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 1697 jbd2_log_wait_commit(osb->journal->j_journal, target); 1698 ret = 1; 1699 } 1700 out: 1701 return ret; 1702 } 1703 1704 int ocfs2_write_begin_nolock(struct file *filp, 1705 struct address_space *mapping, 1706 loff_t pos, unsigned len, unsigned flags, 1707 struct page **pagep, void **fsdata, 1708 struct buffer_head *di_bh, struct page *mmap_page) 1709 { 1710 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1711 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1712 struct ocfs2_write_ctxt *wc; 1713 struct inode *inode = mapping->host; 1714 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1715 struct ocfs2_dinode *di; 1716 struct ocfs2_alloc_context *data_ac = NULL; 1717 struct ocfs2_alloc_context *meta_ac = NULL; 1718 handle_t *handle; 1719 struct ocfs2_extent_tree et; 1720 int try_free = 1, ret1; 1721 1722 try_again: 1723 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); 1724 if (ret) { 1725 mlog_errno(ret); 1726 return ret; 1727 } 1728 1729 if (ocfs2_supports_inline_data(osb)) { 1730 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1731 mmap_page, wc); 1732 if (ret == 1) { 1733 ret = 0; 1734 goto success; 1735 } 1736 if (ret < 0) { 1737 mlog_errno(ret); 1738 goto out; 1739 } 1740 } 1741 1742 if (ocfs2_sparse_alloc(osb)) 1743 ret = ocfs2_zero_tail(inode, di_bh, pos); 1744 else 1745 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len, 1746 wc); 1747 if (ret) { 1748 mlog_errno(ret); 1749 goto out; 1750 } 1751 1752 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1753 if (ret < 0) { 1754 mlog_errno(ret); 1755 goto out; 1756 } else if (ret == 1) { 1757 clusters_need = wc->w_clen; 1758 ret = ocfs2_refcount_cow(inode, filp, di_bh, 1759 wc->w_cpos, wc->w_clen, UINT_MAX); 1760 if (ret) { 1761 mlog_errno(ret); 1762 goto out; 1763 } 1764 } 1765 1766 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1767 &extents_to_split); 1768 if (ret) { 1769 mlog_errno(ret); 1770 goto out; 1771 } 1772 clusters_need += clusters_to_alloc; 1773 1774 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1775 1776 trace_ocfs2_write_begin_nolock( 1777 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1778 (long long)i_size_read(inode), 1779 le32_to_cpu(di->i_clusters), 1780 pos, len, flags, mmap_page, 1781 clusters_to_alloc, extents_to_split); 1782 1783 /* 1784 * We set w_target_from, w_target_to here so that 1785 * ocfs2_write_end() knows which range in the target page to 1786 * write out. An allocation requires that we write the entire 1787 * cluster range. 1788 */ 1789 if (clusters_to_alloc || extents_to_split) { 1790 /* 1791 * XXX: We are stretching the limits of 1792 * ocfs2_lock_allocators(). It greatly over-estimates 1793 * the work to be done. 1794 */ 1795 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1796 wc->w_di_bh); 1797 ret = ocfs2_lock_allocators(inode, &et, 1798 clusters_to_alloc, extents_to_split, 1799 &data_ac, &meta_ac); 1800 if (ret) { 1801 mlog_errno(ret); 1802 goto out; 1803 } 1804 1805 if (data_ac) 1806 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1807 1808 credits = ocfs2_calc_extend_credits(inode->i_sb, 1809 &di->id2.i_list, 1810 clusters_to_alloc); 1811 1812 } 1813 1814 /* 1815 * We have to zero sparse allocated clusters, unwritten extent clusters, 1816 * and non-sparse clusters we just extended. For non-sparse writes, 1817 * we know zeros will only be needed in the first and/or last cluster. 1818 */ 1819 if (clusters_to_alloc || extents_to_split || 1820 (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1821 wc->w_desc[wc->w_clen - 1].c_needs_zero))) 1822 cluster_of_pages = 1; 1823 else 1824 cluster_of_pages = 0; 1825 1826 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1827 1828 handle = ocfs2_start_trans(osb, credits); 1829 if (IS_ERR(handle)) { 1830 ret = PTR_ERR(handle); 1831 mlog_errno(ret); 1832 goto out; 1833 } 1834 1835 wc->w_handle = handle; 1836 1837 if (clusters_to_alloc) { 1838 ret = dquot_alloc_space_nodirty(inode, 1839 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1840 if (ret) 1841 goto out_commit; 1842 } 1843 /* 1844 * We don't want this to fail in ocfs2_write_end(), so do it 1845 * here. 1846 */ 1847 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1848 OCFS2_JOURNAL_ACCESS_WRITE); 1849 if (ret) { 1850 mlog_errno(ret); 1851 goto out_quota; 1852 } 1853 1854 /* 1855 * Fill our page array first. That way we've grabbed enough so 1856 * that we can zero and flush if we error after adding the 1857 * extent. 1858 */ 1859 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1860 cluster_of_pages, mmap_page); 1861 if (ret && ret != -EAGAIN) { 1862 mlog_errno(ret); 1863 goto out_quota; 1864 } 1865 1866 /* 1867 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 1868 * the target page. In this case, we exit with no error and no target 1869 * page. This will trigger the caller, page_mkwrite(), to re-try 1870 * the operation. 1871 */ 1872 if (ret == -EAGAIN) { 1873 BUG_ON(wc->w_target_page); 1874 ret = 0; 1875 goto out_quota; 1876 } 1877 1878 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1879 len); 1880 if (ret) { 1881 mlog_errno(ret); 1882 goto out_quota; 1883 } 1884 1885 if (data_ac) 1886 ocfs2_free_alloc_context(data_ac); 1887 if (meta_ac) 1888 ocfs2_free_alloc_context(meta_ac); 1889 1890 success: 1891 *pagep = wc->w_target_page; 1892 *fsdata = wc; 1893 return 0; 1894 out_quota: 1895 if (clusters_to_alloc) 1896 dquot_free_space(inode, 1897 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1898 out_commit: 1899 ocfs2_commit_trans(osb, handle); 1900 1901 out: 1902 ocfs2_free_write_ctxt(wc); 1903 1904 if (data_ac) 1905 ocfs2_free_alloc_context(data_ac); 1906 if (meta_ac) 1907 ocfs2_free_alloc_context(meta_ac); 1908 1909 if (ret == -ENOSPC && try_free) { 1910 /* 1911 * Try to free some truncate log so that we can have enough 1912 * clusters to allocate. 1913 */ 1914 try_free = 0; 1915 1916 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1917 if (ret1 == 1) 1918 goto try_again; 1919 1920 if (ret1 < 0) 1921 mlog_errno(ret1); 1922 } 1923 1924 return ret; 1925 } 1926 1927 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1928 loff_t pos, unsigned len, unsigned flags, 1929 struct page **pagep, void **fsdata) 1930 { 1931 int ret; 1932 struct buffer_head *di_bh = NULL; 1933 struct inode *inode = mapping->host; 1934 1935 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1936 if (ret) { 1937 mlog_errno(ret); 1938 return ret; 1939 } 1940 1941 /* 1942 * Take alloc sem here to prevent concurrent lookups. That way 1943 * the mapping, zeroing and tree manipulation within 1944 * ocfs2_write() will be safe against ->readpage(). This 1945 * should also serve to lock out allocation from a shared 1946 * writeable region. 1947 */ 1948 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1949 1950 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep, 1951 fsdata, di_bh, NULL); 1952 if (ret) { 1953 mlog_errno(ret); 1954 goto out_fail; 1955 } 1956 1957 brelse(di_bh); 1958 1959 return 0; 1960 1961 out_fail: 1962 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1963 1964 brelse(di_bh); 1965 ocfs2_inode_unlock(inode, 1); 1966 1967 return ret; 1968 } 1969 1970 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1971 unsigned len, unsigned *copied, 1972 struct ocfs2_dinode *di, 1973 struct ocfs2_write_ctxt *wc) 1974 { 1975 void *kaddr; 1976 1977 if (unlikely(*copied < len)) { 1978 if (!PageUptodate(wc->w_target_page)) { 1979 *copied = 0; 1980 return; 1981 } 1982 } 1983 1984 kaddr = kmap_atomic(wc->w_target_page); 1985 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1986 kunmap_atomic(kaddr); 1987 1988 trace_ocfs2_write_end_inline( 1989 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1990 (unsigned long long)pos, *copied, 1991 le16_to_cpu(di->id2.i_data.id_count), 1992 le16_to_cpu(di->i_dyn_features)); 1993 } 1994 1995 int ocfs2_write_end_nolock(struct address_space *mapping, 1996 loff_t pos, unsigned len, unsigned copied, 1997 struct page *page, void *fsdata) 1998 { 1999 int i; 2000 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); 2001 struct inode *inode = mapping->host; 2002 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2003 struct ocfs2_write_ctxt *wc = fsdata; 2004 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 2005 handle_t *handle = wc->w_handle; 2006 struct page *tmppage; 2007 2008 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2009 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 2010 goto out_write_size; 2011 } 2012 2013 if (unlikely(copied < len)) { 2014 if (!PageUptodate(wc->w_target_page)) 2015 copied = 0; 2016 2017 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 2018 start+len); 2019 } 2020 flush_dcache_page(wc->w_target_page); 2021 2022 for(i = 0; i < wc->w_num_pages; i++) { 2023 tmppage = wc->w_pages[i]; 2024 2025 if (tmppage == wc->w_target_page) { 2026 from = wc->w_target_from; 2027 to = wc->w_target_to; 2028 2029 BUG_ON(from > PAGE_CACHE_SIZE || 2030 to > PAGE_CACHE_SIZE || 2031 to < from); 2032 } else { 2033 /* 2034 * Pages adjacent to the target (if any) imply 2035 * a hole-filling write in which case we want 2036 * to flush their entire range. 2037 */ 2038 from = 0; 2039 to = PAGE_CACHE_SIZE; 2040 } 2041 2042 if (page_has_buffers(tmppage)) { 2043 if (ocfs2_should_order_data(inode)) 2044 ocfs2_jbd2_file_inode(wc->w_handle, inode); 2045 block_commit_write(tmppage, from, to); 2046 } 2047 } 2048 2049 out_write_size: 2050 pos += copied; 2051 if (pos > inode->i_size) { 2052 i_size_write(inode, pos); 2053 mark_inode_dirty(inode); 2054 } 2055 inode->i_blocks = ocfs2_inode_sector_count(inode); 2056 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2057 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2058 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2059 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2060 ocfs2_journal_dirty(handle, wc->w_di_bh); 2061 2062 ocfs2_commit_trans(osb, handle); 2063 2064 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2065 2066 ocfs2_free_write_ctxt(wc); 2067 2068 return copied; 2069 } 2070 2071 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2072 loff_t pos, unsigned len, unsigned copied, 2073 struct page *page, void *fsdata) 2074 { 2075 int ret; 2076 struct inode *inode = mapping->host; 2077 2078 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 2079 2080 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2081 ocfs2_inode_unlock(inode, 1); 2082 2083 return ret; 2084 } 2085 2086 const struct address_space_operations ocfs2_aops = { 2087 .readpage = ocfs2_readpage, 2088 .readpages = ocfs2_readpages, 2089 .writepage = ocfs2_writepage, 2090 .write_begin = ocfs2_write_begin, 2091 .write_end = ocfs2_write_end, 2092 .bmap = ocfs2_bmap, 2093 .direct_IO = ocfs2_direct_IO, 2094 .invalidatepage = ocfs2_invalidatepage, 2095 .releasepage = ocfs2_releasepage, 2096 .migratepage = buffer_migrate_page, 2097 .is_partially_uptodate = block_is_partially_uptodate, 2098 .error_remove_page = generic_error_remove_page, 2099 }; 2100