1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* -*- mode: c; c-basic-offset: 8; -*- 3 * vim: noexpandtab sw=8 ts=8 sts=0: 4 * 5 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 6 */ 7 8 #include <linux/fs.h> 9 #include <linux/slab.h> 10 #include <linux/highmem.h> 11 #include <linux/pagemap.h> 12 #include <asm/byteorder.h> 13 #include <linux/swap.h> 14 #include <linux/pipe_fs_i.h> 15 #include <linux/mpage.h> 16 #include <linux/quotaops.h> 17 #include <linux/blkdev.h> 18 #include <linux/uio.h> 19 #include <linux/mm.h> 20 21 #include <cluster/masklog.h> 22 23 #include "ocfs2.h" 24 25 #include "alloc.h" 26 #include "aops.h" 27 #include "dlmglue.h" 28 #include "extent_map.h" 29 #include "file.h" 30 #include "inode.h" 31 #include "journal.h" 32 #include "suballoc.h" 33 #include "super.h" 34 #include "symlink.h" 35 #include "refcounttree.h" 36 #include "ocfs2_trace.h" 37 38 #include "buffer_head_io.h" 39 #include "dir.h" 40 #include "namei.h" 41 #include "sysfile.h" 42 43 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 44 struct buffer_head *bh_result, int create) 45 { 46 int err = -EIO; 47 int status; 48 struct ocfs2_dinode *fe = NULL; 49 struct buffer_head *bh = NULL; 50 struct buffer_head *buffer_cache_bh = NULL; 51 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 52 void *kaddr; 53 54 trace_ocfs2_symlink_get_block( 55 (unsigned long long)OCFS2_I(inode)->ip_blkno, 56 (unsigned long long)iblock, bh_result, create); 57 58 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 59 60 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 61 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 62 (unsigned long long)iblock); 63 goto bail; 64 } 65 66 status = ocfs2_read_inode_block(inode, &bh); 67 if (status < 0) { 68 mlog_errno(status); 69 goto bail; 70 } 71 fe = (struct ocfs2_dinode *) bh->b_data; 72 73 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 74 le32_to_cpu(fe->i_clusters))) { 75 err = -ENOMEM; 76 mlog(ML_ERROR, "block offset is outside the allocated size: " 77 "%llu\n", (unsigned long long)iblock); 78 goto bail; 79 } 80 81 /* We don't use the page cache to create symlink data, so if 82 * need be, copy it over from the buffer cache. */ 83 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 84 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 85 iblock; 86 buffer_cache_bh = sb_getblk(osb->sb, blkno); 87 if (!buffer_cache_bh) { 88 err = -ENOMEM; 89 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 90 goto bail; 91 } 92 93 /* we haven't locked out transactions, so a commit 94 * could've happened. Since we've got a reference on 95 * the bh, even if it commits while we're doing the 96 * copy, the data is still good. */ 97 if (buffer_jbd(buffer_cache_bh) 98 && ocfs2_inode_is_new(inode)) { 99 kaddr = kmap_atomic(bh_result->b_page); 100 if (!kaddr) { 101 mlog(ML_ERROR, "couldn't kmap!\n"); 102 goto bail; 103 } 104 memcpy(kaddr + (bh_result->b_size * iblock), 105 buffer_cache_bh->b_data, 106 bh_result->b_size); 107 kunmap_atomic(kaddr); 108 set_buffer_uptodate(bh_result); 109 } 110 brelse(buffer_cache_bh); 111 } 112 113 map_bh(bh_result, inode->i_sb, 114 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 115 116 err = 0; 117 118 bail: 119 brelse(bh); 120 121 return err; 122 } 123 124 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock, 125 struct buffer_head *bh_result, int create) 126 { 127 int ret = 0; 128 struct ocfs2_inode_info *oi = OCFS2_I(inode); 129 130 down_read(&oi->ip_alloc_sem); 131 ret = ocfs2_get_block(inode, iblock, bh_result, create); 132 up_read(&oi->ip_alloc_sem); 133 134 return ret; 135 } 136 137 int ocfs2_get_block(struct inode *inode, sector_t iblock, 138 struct buffer_head *bh_result, int create) 139 { 140 int err = 0; 141 unsigned int ext_flags; 142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 143 u64 p_blkno, count, past_eof; 144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 145 146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 147 (unsigned long long)iblock, bh_result, create); 148 149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 151 inode, inode->i_ino); 152 153 if (S_ISLNK(inode->i_mode)) { 154 /* this always does I/O for some reason. */ 155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 156 goto bail; 157 } 158 159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 160 &ext_flags); 161 if (err) { 162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 164 (unsigned long long)p_blkno); 165 goto bail; 166 } 167 168 if (max_blocks < count) 169 count = max_blocks; 170 171 /* 172 * ocfs2 never allocates in this function - the only time we 173 * need to use BH_New is when we're extending i_size on a file 174 * system which doesn't support holes, in which case BH_New 175 * allows __block_write_begin() to zero. 176 * 177 * If we see this on a sparse file system, then a truncate has 178 * raced us and removed the cluster. In this case, we clear 179 * the buffers dirty and uptodate bits and let the buffer code 180 * ignore it as a hole. 181 */ 182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 183 clear_buffer_dirty(bh_result); 184 clear_buffer_uptodate(bh_result); 185 goto bail; 186 } 187 188 /* Treat the unwritten extent as a hole for zeroing purposes. */ 189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 190 map_bh(bh_result, inode->i_sb, p_blkno); 191 192 bh_result->b_size = count << inode->i_blkbits; 193 194 if (!ocfs2_sparse_alloc(osb)) { 195 if (p_blkno == 0) { 196 err = -EIO; 197 mlog(ML_ERROR, 198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 199 (unsigned long long)iblock, 200 (unsigned long long)p_blkno, 201 (unsigned long long)OCFS2_I(inode)->ip_blkno); 202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 203 dump_stack(); 204 goto bail; 205 } 206 } 207 208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 209 210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 211 (unsigned long long)past_eof); 212 if (create && (iblock >= past_eof)) 213 set_buffer_new(bh_result); 214 215 bail: 216 if (err < 0) 217 err = -EIO; 218 219 return err; 220 } 221 222 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 223 struct buffer_head *di_bh) 224 { 225 void *kaddr; 226 loff_t size; 227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 228 229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 231 (unsigned long long)OCFS2_I(inode)->ip_blkno); 232 return -EROFS; 233 } 234 235 size = i_size_read(inode); 236 237 if (size > PAGE_SIZE || 238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 239 ocfs2_error(inode->i_sb, 240 "Inode %llu has with inline data has bad size: %Lu\n", 241 (unsigned long long)OCFS2_I(inode)->ip_blkno, 242 (unsigned long long)size); 243 return -EROFS; 244 } 245 246 kaddr = kmap_atomic(page); 247 if (size) 248 memcpy(kaddr, di->id2.i_data.id_data, size); 249 /* Clear the remaining part of the page */ 250 memset(kaddr + size, 0, PAGE_SIZE - size); 251 flush_dcache_page(page); 252 kunmap_atomic(kaddr); 253 254 SetPageUptodate(page); 255 256 return 0; 257 } 258 259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 260 { 261 int ret; 262 struct buffer_head *di_bh = NULL; 263 264 BUG_ON(!PageLocked(page)); 265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 266 267 ret = ocfs2_read_inode_block(inode, &di_bh); 268 if (ret) { 269 mlog_errno(ret); 270 goto out; 271 } 272 273 ret = ocfs2_read_inline_data(inode, page, di_bh); 274 out: 275 unlock_page(page); 276 277 brelse(di_bh); 278 return ret; 279 } 280 281 static int ocfs2_readpage(struct file *file, struct page *page) 282 { 283 struct inode *inode = page->mapping->host; 284 struct ocfs2_inode_info *oi = OCFS2_I(inode); 285 loff_t start = (loff_t)page->index << PAGE_SHIFT; 286 int ret, unlock = 1; 287 288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 289 (page ? page->index : 0)); 290 291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 292 if (ret != 0) { 293 if (ret == AOP_TRUNCATED_PAGE) 294 unlock = 0; 295 mlog_errno(ret); 296 goto out; 297 } 298 299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 300 /* 301 * Unlock the page and cycle ip_alloc_sem so that we don't 302 * busyloop waiting for ip_alloc_sem to unlock 303 */ 304 ret = AOP_TRUNCATED_PAGE; 305 unlock_page(page); 306 unlock = 0; 307 down_read(&oi->ip_alloc_sem); 308 up_read(&oi->ip_alloc_sem); 309 goto out_inode_unlock; 310 } 311 312 /* 313 * i_size might have just been updated as we grabed the meta lock. We 314 * might now be discovering a truncate that hit on another node. 315 * block_read_full_page->get_block freaks out if it is asked to read 316 * beyond the end of a file, so we check here. Callers 317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 318 * and notice that the page they just read isn't needed. 319 * 320 * XXX sys_readahead() seems to get that wrong? 321 */ 322 if (start >= i_size_read(inode)) { 323 zero_user(page, 0, PAGE_SIZE); 324 SetPageUptodate(page); 325 ret = 0; 326 goto out_alloc; 327 } 328 329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 330 ret = ocfs2_readpage_inline(inode, page); 331 else 332 ret = block_read_full_page(page, ocfs2_get_block); 333 unlock = 0; 334 335 out_alloc: 336 up_read(&oi->ip_alloc_sem); 337 out_inode_unlock: 338 ocfs2_inode_unlock(inode, 0); 339 out: 340 if (unlock) 341 unlock_page(page); 342 return ret; 343 } 344 345 /* 346 * This is used only for read-ahead. Failures or difficult to handle 347 * situations are safe to ignore. 348 * 349 * Right now, we don't bother with BH_Boundary - in-inode extent lists 350 * are quite large (243 extents on 4k blocks), so most inodes don't 351 * grow out to a tree. If need be, detecting boundary extents could 352 * trivially be added in a future version of ocfs2_get_block(). 353 */ 354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 355 struct list_head *pages, unsigned nr_pages) 356 { 357 int ret, err = -EIO; 358 struct inode *inode = mapping->host; 359 struct ocfs2_inode_info *oi = OCFS2_I(inode); 360 loff_t start; 361 struct page *last; 362 363 /* 364 * Use the nonblocking flag for the dlm code to avoid page 365 * lock inversion, but don't bother with retrying. 366 */ 367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 368 if (ret) 369 return err; 370 371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 372 ocfs2_inode_unlock(inode, 0); 373 return err; 374 } 375 376 /* 377 * Don't bother with inline-data. There isn't anything 378 * to read-ahead in that case anyway... 379 */ 380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 381 goto out_unlock; 382 383 /* 384 * Check whether a remote node truncated this file - we just 385 * drop out in that case as it's not worth handling here. 386 */ 387 last = lru_to_page(pages); 388 start = (loff_t)last->index << PAGE_SHIFT; 389 if (start >= i_size_read(inode)) 390 goto out_unlock; 391 392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 393 394 out_unlock: 395 up_read(&oi->ip_alloc_sem); 396 ocfs2_inode_unlock(inode, 0); 397 398 return err; 399 } 400 401 /* Note: Because we don't support holes, our allocation has 402 * already happened (allocation writes zeros to the file data) 403 * so we don't have to worry about ordered writes in 404 * ocfs2_writepage. 405 * 406 * ->writepage is called during the process of invalidating the page cache 407 * during blocked lock processing. It can't block on any cluster locks 408 * to during block mapping. It's relying on the fact that the block 409 * mapping can't have disappeared under the dirty pages that it is 410 * being asked to write back. 411 */ 412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 413 { 414 trace_ocfs2_writepage( 415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 416 page->index); 417 418 return block_write_full_page(page, ocfs2_get_block, wbc); 419 } 420 421 /* Taken from ext3. We don't necessarily need the full blown 422 * functionality yet, but IMHO it's better to cut and paste the whole 423 * thing so we can avoid introducing our own bugs (and easily pick up 424 * their fixes when they happen) --Mark */ 425 int walk_page_buffers( handle_t *handle, 426 struct buffer_head *head, 427 unsigned from, 428 unsigned to, 429 int *partial, 430 int (*fn)( handle_t *handle, 431 struct buffer_head *bh)) 432 { 433 struct buffer_head *bh; 434 unsigned block_start, block_end; 435 unsigned blocksize = head->b_size; 436 int err, ret = 0; 437 struct buffer_head *next; 438 439 for ( bh = head, block_start = 0; 440 ret == 0 && (bh != head || !block_start); 441 block_start = block_end, bh = next) 442 { 443 next = bh->b_this_page; 444 block_end = block_start + blocksize; 445 if (block_end <= from || block_start >= to) { 446 if (partial && !buffer_uptodate(bh)) 447 *partial = 1; 448 continue; 449 } 450 err = (*fn)(handle, bh); 451 if (!ret) 452 ret = err; 453 } 454 return ret; 455 } 456 457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 458 { 459 sector_t status; 460 u64 p_blkno = 0; 461 int err = 0; 462 struct inode *inode = mapping->host; 463 464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 465 (unsigned long long)block); 466 467 /* 468 * The swap code (ab-)uses ->bmap to get a block mapping and then 469 * bypasseѕ the file system for actual I/O. We really can't allow 470 * that on refcounted inodes, so we have to skip out here. And yes, 471 * 0 is the magic code for a bmap error.. 472 */ 473 if (ocfs2_is_refcount_inode(inode)) 474 return 0; 475 476 /* We don't need to lock journal system files, since they aren't 477 * accessed concurrently from multiple nodes. 478 */ 479 if (!INODE_JOURNAL(inode)) { 480 err = ocfs2_inode_lock(inode, NULL, 0); 481 if (err) { 482 if (err != -ENOENT) 483 mlog_errno(err); 484 goto bail; 485 } 486 down_read(&OCFS2_I(inode)->ip_alloc_sem); 487 } 488 489 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 490 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 491 NULL); 492 493 if (!INODE_JOURNAL(inode)) { 494 up_read(&OCFS2_I(inode)->ip_alloc_sem); 495 ocfs2_inode_unlock(inode, 0); 496 } 497 498 if (err) { 499 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 500 (unsigned long long)block); 501 mlog_errno(err); 502 goto bail; 503 } 504 505 bail: 506 status = err ? 0 : p_blkno; 507 508 return status; 509 } 510 511 static int ocfs2_releasepage(struct page *page, gfp_t wait) 512 { 513 if (!page_has_buffers(page)) 514 return 0; 515 return try_to_free_buffers(page); 516 } 517 518 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 519 u32 cpos, 520 unsigned int *start, 521 unsigned int *end) 522 { 523 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE; 524 525 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) { 526 unsigned int cpp; 527 528 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits); 529 530 cluster_start = cpos % cpp; 531 cluster_start = cluster_start << osb->s_clustersize_bits; 532 533 cluster_end = cluster_start + osb->s_clustersize; 534 } 535 536 BUG_ON(cluster_start > PAGE_SIZE); 537 BUG_ON(cluster_end > PAGE_SIZE); 538 539 if (start) 540 *start = cluster_start; 541 if (end) 542 *end = cluster_end; 543 } 544 545 /* 546 * 'from' and 'to' are the region in the page to avoid zeroing. 547 * 548 * If pagesize > clustersize, this function will avoid zeroing outside 549 * of the cluster boundary. 550 * 551 * from == to == 0 is code for "zero the entire cluster region" 552 */ 553 static void ocfs2_clear_page_regions(struct page *page, 554 struct ocfs2_super *osb, u32 cpos, 555 unsigned from, unsigned to) 556 { 557 void *kaddr; 558 unsigned int cluster_start, cluster_end; 559 560 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 561 562 kaddr = kmap_atomic(page); 563 564 if (from || to) { 565 if (from > cluster_start) 566 memset(kaddr + cluster_start, 0, from - cluster_start); 567 if (to < cluster_end) 568 memset(kaddr + to, 0, cluster_end - to); 569 } else { 570 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 571 } 572 573 kunmap_atomic(kaddr); 574 } 575 576 /* 577 * Nonsparse file systems fully allocate before we get to the write 578 * code. This prevents ocfs2_write() from tagging the write as an 579 * allocating one, which means ocfs2_map_page_blocks() might try to 580 * read-in the blocks at the tail of our file. Avoid reading them by 581 * testing i_size against each block offset. 582 */ 583 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 584 unsigned int block_start) 585 { 586 u64 offset = page_offset(page) + block_start; 587 588 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 589 return 1; 590 591 if (i_size_read(inode) > offset) 592 return 1; 593 594 return 0; 595 } 596 597 /* 598 * Some of this taken from __block_write_begin(). We already have our 599 * mapping by now though, and the entire write will be allocating or 600 * it won't, so not much need to use BH_New. 601 * 602 * This will also skip zeroing, which is handled externally. 603 */ 604 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 605 struct inode *inode, unsigned int from, 606 unsigned int to, int new) 607 { 608 int ret = 0; 609 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 610 unsigned int block_end, block_start; 611 unsigned int bsize = i_blocksize(inode); 612 613 if (!page_has_buffers(page)) 614 create_empty_buffers(page, bsize, 0); 615 616 head = page_buffers(page); 617 for (bh = head, block_start = 0; bh != head || !block_start; 618 bh = bh->b_this_page, block_start += bsize) { 619 block_end = block_start + bsize; 620 621 clear_buffer_new(bh); 622 623 /* 624 * Ignore blocks outside of our i/o range - 625 * they may belong to unallocated clusters. 626 */ 627 if (block_start >= to || block_end <= from) { 628 if (PageUptodate(page)) 629 set_buffer_uptodate(bh); 630 continue; 631 } 632 633 /* 634 * For an allocating write with cluster size >= page 635 * size, we always write the entire page. 636 */ 637 if (new) 638 set_buffer_new(bh); 639 640 if (!buffer_mapped(bh)) { 641 map_bh(bh, inode->i_sb, *p_blkno); 642 clean_bdev_bh_alias(bh); 643 } 644 645 if (PageUptodate(page)) { 646 if (!buffer_uptodate(bh)) 647 set_buffer_uptodate(bh); 648 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 649 !buffer_new(bh) && 650 ocfs2_should_read_blk(inode, page, block_start) && 651 (block_start < from || block_end > to)) { 652 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 653 *wait_bh++=bh; 654 } 655 656 *p_blkno = *p_blkno + 1; 657 } 658 659 /* 660 * If we issued read requests - let them complete. 661 */ 662 while(wait_bh > wait) { 663 wait_on_buffer(*--wait_bh); 664 if (!buffer_uptodate(*wait_bh)) 665 ret = -EIO; 666 } 667 668 if (ret == 0 || !new) 669 return ret; 670 671 /* 672 * If we get -EIO above, zero out any newly allocated blocks 673 * to avoid exposing stale data. 674 */ 675 bh = head; 676 block_start = 0; 677 do { 678 block_end = block_start + bsize; 679 if (block_end <= from) 680 goto next_bh; 681 if (block_start >= to) 682 break; 683 684 zero_user(page, block_start, bh->b_size); 685 set_buffer_uptodate(bh); 686 mark_buffer_dirty(bh); 687 688 next_bh: 689 block_start = block_end; 690 bh = bh->b_this_page; 691 } while (bh != head); 692 693 return ret; 694 } 695 696 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 697 #define OCFS2_MAX_CTXT_PAGES 1 698 #else 699 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE) 700 #endif 701 702 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE) 703 704 struct ocfs2_unwritten_extent { 705 struct list_head ue_node; 706 struct list_head ue_ip_node; 707 u32 ue_cpos; 708 u32 ue_phys; 709 }; 710 711 /* 712 * Describe the state of a single cluster to be written to. 713 */ 714 struct ocfs2_write_cluster_desc { 715 u32 c_cpos; 716 u32 c_phys; 717 /* 718 * Give this a unique field because c_phys eventually gets 719 * filled. 720 */ 721 unsigned c_new; 722 unsigned c_clear_unwritten; 723 unsigned c_needs_zero; 724 }; 725 726 struct ocfs2_write_ctxt { 727 /* Logical cluster position / len of write */ 728 u32 w_cpos; 729 u32 w_clen; 730 731 /* First cluster allocated in a nonsparse extend */ 732 u32 w_first_new_cpos; 733 734 /* Type of caller. Must be one of buffer, mmap, direct. */ 735 ocfs2_write_type_t w_type; 736 737 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 738 739 /* 740 * This is true if page_size > cluster_size. 741 * 742 * It triggers a set of special cases during write which might 743 * have to deal with allocating writes to partial pages. 744 */ 745 unsigned int w_large_pages; 746 747 /* 748 * Pages involved in this write. 749 * 750 * w_target_page is the page being written to by the user. 751 * 752 * w_pages is an array of pages which always contains 753 * w_target_page, and in the case of an allocating write with 754 * page_size < cluster size, it will contain zero'd and mapped 755 * pages adjacent to w_target_page which need to be written 756 * out in so that future reads from that region will get 757 * zero's. 758 */ 759 unsigned int w_num_pages; 760 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 761 struct page *w_target_page; 762 763 /* 764 * w_target_locked is used for page_mkwrite path indicating no unlocking 765 * against w_target_page in ocfs2_write_end_nolock. 766 */ 767 unsigned int w_target_locked:1; 768 769 /* 770 * ocfs2_write_end() uses this to know what the real range to 771 * write in the target should be. 772 */ 773 unsigned int w_target_from; 774 unsigned int w_target_to; 775 776 /* 777 * We could use journal_current_handle() but this is cleaner, 778 * IMHO -Mark 779 */ 780 handle_t *w_handle; 781 782 struct buffer_head *w_di_bh; 783 784 struct ocfs2_cached_dealloc_ctxt w_dealloc; 785 786 struct list_head w_unwritten_list; 787 unsigned int w_unwritten_count; 788 }; 789 790 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 791 { 792 int i; 793 794 for(i = 0; i < num_pages; i++) { 795 if (pages[i]) { 796 unlock_page(pages[i]); 797 mark_page_accessed(pages[i]); 798 put_page(pages[i]); 799 } 800 } 801 } 802 803 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 804 { 805 int i; 806 807 /* 808 * w_target_locked is only set to true in the page_mkwrite() case. 809 * The intent is to allow us to lock the target page from write_begin() 810 * to write_end(). The caller must hold a ref on w_target_page. 811 */ 812 if (wc->w_target_locked) { 813 BUG_ON(!wc->w_target_page); 814 for (i = 0; i < wc->w_num_pages; i++) { 815 if (wc->w_target_page == wc->w_pages[i]) { 816 wc->w_pages[i] = NULL; 817 break; 818 } 819 } 820 mark_page_accessed(wc->w_target_page); 821 put_page(wc->w_target_page); 822 } 823 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 824 } 825 826 static void ocfs2_free_unwritten_list(struct inode *inode, 827 struct list_head *head) 828 { 829 struct ocfs2_inode_info *oi = OCFS2_I(inode); 830 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL; 831 832 list_for_each_entry_safe(ue, tmp, head, ue_node) { 833 list_del(&ue->ue_node); 834 spin_lock(&oi->ip_lock); 835 list_del(&ue->ue_ip_node); 836 spin_unlock(&oi->ip_lock); 837 kfree(ue); 838 } 839 } 840 841 static void ocfs2_free_write_ctxt(struct inode *inode, 842 struct ocfs2_write_ctxt *wc) 843 { 844 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list); 845 ocfs2_unlock_pages(wc); 846 brelse(wc->w_di_bh); 847 kfree(wc); 848 } 849 850 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 851 struct ocfs2_super *osb, loff_t pos, 852 unsigned len, ocfs2_write_type_t type, 853 struct buffer_head *di_bh) 854 { 855 u32 cend; 856 struct ocfs2_write_ctxt *wc; 857 858 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 859 if (!wc) 860 return -ENOMEM; 861 862 wc->w_cpos = pos >> osb->s_clustersize_bits; 863 wc->w_first_new_cpos = UINT_MAX; 864 cend = (pos + len - 1) >> osb->s_clustersize_bits; 865 wc->w_clen = cend - wc->w_cpos + 1; 866 get_bh(di_bh); 867 wc->w_di_bh = di_bh; 868 wc->w_type = type; 869 870 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) 871 wc->w_large_pages = 1; 872 else 873 wc->w_large_pages = 0; 874 875 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 876 INIT_LIST_HEAD(&wc->w_unwritten_list); 877 878 *wcp = wc; 879 880 return 0; 881 } 882 883 /* 884 * If a page has any new buffers, zero them out here, and mark them uptodate 885 * and dirty so they'll be written out (in order to prevent uninitialised 886 * block data from leaking). And clear the new bit. 887 */ 888 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 889 { 890 unsigned int block_start, block_end; 891 struct buffer_head *head, *bh; 892 893 BUG_ON(!PageLocked(page)); 894 if (!page_has_buffers(page)) 895 return; 896 897 bh = head = page_buffers(page); 898 block_start = 0; 899 do { 900 block_end = block_start + bh->b_size; 901 902 if (buffer_new(bh)) { 903 if (block_end > from && block_start < to) { 904 if (!PageUptodate(page)) { 905 unsigned start, end; 906 907 start = max(from, block_start); 908 end = min(to, block_end); 909 910 zero_user_segment(page, start, end); 911 set_buffer_uptodate(bh); 912 } 913 914 clear_buffer_new(bh); 915 mark_buffer_dirty(bh); 916 } 917 } 918 919 block_start = block_end; 920 bh = bh->b_this_page; 921 } while (bh != head); 922 } 923 924 /* 925 * Only called when we have a failure during allocating write to write 926 * zero's to the newly allocated region. 927 */ 928 static void ocfs2_write_failure(struct inode *inode, 929 struct ocfs2_write_ctxt *wc, 930 loff_t user_pos, unsigned user_len) 931 { 932 int i; 933 unsigned from = user_pos & (PAGE_SIZE - 1), 934 to = user_pos + user_len; 935 struct page *tmppage; 936 937 if (wc->w_target_page) 938 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 939 940 for(i = 0; i < wc->w_num_pages; i++) { 941 tmppage = wc->w_pages[i]; 942 943 if (tmppage && page_has_buffers(tmppage)) { 944 if (ocfs2_should_order_data(inode)) 945 ocfs2_jbd2_file_inode(wc->w_handle, inode); 946 947 block_commit_write(tmppage, from, to); 948 } 949 } 950 } 951 952 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 953 struct ocfs2_write_ctxt *wc, 954 struct page *page, u32 cpos, 955 loff_t user_pos, unsigned user_len, 956 int new) 957 { 958 int ret; 959 unsigned int map_from = 0, map_to = 0; 960 unsigned int cluster_start, cluster_end; 961 unsigned int user_data_from = 0, user_data_to = 0; 962 963 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 964 &cluster_start, &cluster_end); 965 966 /* treat the write as new if the a hole/lseek spanned across 967 * the page boundary. 968 */ 969 new = new | ((i_size_read(inode) <= page_offset(page)) && 970 (page_offset(page) <= user_pos)); 971 972 if (page == wc->w_target_page) { 973 map_from = user_pos & (PAGE_SIZE - 1); 974 map_to = map_from + user_len; 975 976 if (new) 977 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 978 cluster_start, cluster_end, 979 new); 980 else 981 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 982 map_from, map_to, new); 983 if (ret) { 984 mlog_errno(ret); 985 goto out; 986 } 987 988 user_data_from = map_from; 989 user_data_to = map_to; 990 if (new) { 991 map_from = cluster_start; 992 map_to = cluster_end; 993 } 994 } else { 995 /* 996 * If we haven't allocated the new page yet, we 997 * shouldn't be writing it out without copying user 998 * data. This is likely a math error from the caller. 999 */ 1000 BUG_ON(!new); 1001 1002 map_from = cluster_start; 1003 map_to = cluster_end; 1004 1005 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1006 cluster_start, cluster_end, new); 1007 if (ret) { 1008 mlog_errno(ret); 1009 goto out; 1010 } 1011 } 1012 1013 /* 1014 * Parts of newly allocated pages need to be zero'd. 1015 * 1016 * Above, we have also rewritten 'to' and 'from' - as far as 1017 * the rest of the function is concerned, the entire cluster 1018 * range inside of a page needs to be written. 1019 * 1020 * We can skip this if the page is up to date - it's already 1021 * been zero'd from being read in as a hole. 1022 */ 1023 if (new && !PageUptodate(page)) 1024 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1025 cpos, user_data_from, user_data_to); 1026 1027 flush_dcache_page(page); 1028 1029 out: 1030 return ret; 1031 } 1032 1033 /* 1034 * This function will only grab one clusters worth of pages. 1035 */ 1036 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1037 struct ocfs2_write_ctxt *wc, 1038 u32 cpos, loff_t user_pos, 1039 unsigned user_len, int new, 1040 struct page *mmap_page) 1041 { 1042 int ret = 0, i; 1043 unsigned long start, target_index, end_index, index; 1044 struct inode *inode = mapping->host; 1045 loff_t last_byte; 1046 1047 target_index = user_pos >> PAGE_SHIFT; 1048 1049 /* 1050 * Figure out how many pages we'll be manipulating here. For 1051 * non allocating write, we just change the one 1052 * page. Otherwise, we'll need a whole clusters worth. If we're 1053 * writing past i_size, we only need enough pages to cover the 1054 * last page of the write. 1055 */ 1056 if (new) { 1057 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1058 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1059 /* 1060 * We need the index *past* the last page we could possibly 1061 * touch. This is the page past the end of the write or 1062 * i_size, whichever is greater. 1063 */ 1064 last_byte = max(user_pos + user_len, i_size_read(inode)); 1065 BUG_ON(last_byte < 1); 1066 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1; 1067 if ((start + wc->w_num_pages) > end_index) 1068 wc->w_num_pages = end_index - start; 1069 } else { 1070 wc->w_num_pages = 1; 1071 start = target_index; 1072 } 1073 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT; 1074 1075 for(i = 0; i < wc->w_num_pages; i++) { 1076 index = start + i; 1077 1078 if (index >= target_index && index <= end_index && 1079 wc->w_type == OCFS2_WRITE_MMAP) { 1080 /* 1081 * ocfs2_pagemkwrite() is a little different 1082 * and wants us to directly use the page 1083 * passed in. 1084 */ 1085 lock_page(mmap_page); 1086 1087 /* Exit and let the caller retry */ 1088 if (mmap_page->mapping != mapping) { 1089 WARN_ON(mmap_page->mapping); 1090 unlock_page(mmap_page); 1091 ret = -EAGAIN; 1092 goto out; 1093 } 1094 1095 get_page(mmap_page); 1096 wc->w_pages[i] = mmap_page; 1097 wc->w_target_locked = true; 1098 } else if (index >= target_index && index <= end_index && 1099 wc->w_type == OCFS2_WRITE_DIRECT) { 1100 /* Direct write has no mapping page. */ 1101 wc->w_pages[i] = NULL; 1102 continue; 1103 } else { 1104 wc->w_pages[i] = find_or_create_page(mapping, index, 1105 GFP_NOFS); 1106 if (!wc->w_pages[i]) { 1107 ret = -ENOMEM; 1108 mlog_errno(ret); 1109 goto out; 1110 } 1111 } 1112 wait_for_stable_page(wc->w_pages[i]); 1113 1114 if (index == target_index) 1115 wc->w_target_page = wc->w_pages[i]; 1116 } 1117 out: 1118 if (ret) 1119 wc->w_target_locked = false; 1120 return ret; 1121 } 1122 1123 /* 1124 * Prepare a single cluster for write one cluster into the file. 1125 */ 1126 static int ocfs2_write_cluster(struct address_space *mapping, 1127 u32 *phys, unsigned int new, 1128 unsigned int clear_unwritten, 1129 unsigned int should_zero, 1130 struct ocfs2_alloc_context *data_ac, 1131 struct ocfs2_alloc_context *meta_ac, 1132 struct ocfs2_write_ctxt *wc, u32 cpos, 1133 loff_t user_pos, unsigned user_len) 1134 { 1135 int ret, i; 1136 u64 p_blkno; 1137 struct inode *inode = mapping->host; 1138 struct ocfs2_extent_tree et; 1139 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); 1140 1141 if (new) { 1142 u32 tmp_pos; 1143 1144 /* 1145 * This is safe to call with the page locks - it won't take 1146 * any additional semaphores or cluster locks. 1147 */ 1148 tmp_pos = cpos; 1149 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1150 &tmp_pos, 1, !clear_unwritten, 1151 wc->w_di_bh, wc->w_handle, 1152 data_ac, meta_ac, NULL); 1153 /* 1154 * This shouldn't happen because we must have already 1155 * calculated the correct meta data allocation required. The 1156 * internal tree allocation code should know how to increase 1157 * transaction credits itself. 1158 * 1159 * If need be, we could handle -EAGAIN for a 1160 * RESTART_TRANS here. 1161 */ 1162 mlog_bug_on_msg(ret == -EAGAIN, 1163 "Inode %llu: EAGAIN return during allocation.\n", 1164 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1165 if (ret < 0) { 1166 mlog_errno(ret); 1167 goto out; 1168 } 1169 } else if (clear_unwritten) { 1170 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1171 wc->w_di_bh); 1172 ret = ocfs2_mark_extent_written(inode, &et, 1173 wc->w_handle, cpos, 1, *phys, 1174 meta_ac, &wc->w_dealloc); 1175 if (ret < 0) { 1176 mlog_errno(ret); 1177 goto out; 1178 } 1179 } 1180 1181 /* 1182 * The only reason this should fail is due to an inability to 1183 * find the extent added. 1184 */ 1185 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL); 1186 if (ret < 0) { 1187 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1188 "at logical cluster %u", 1189 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 1190 goto out; 1191 } 1192 1193 BUG_ON(*phys == 0); 1194 1195 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys); 1196 if (!should_zero) 1197 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1); 1198 1199 for(i = 0; i < wc->w_num_pages; i++) { 1200 int tmpret; 1201 1202 /* This is the direct io target page. */ 1203 if (wc->w_pages[i] == NULL) { 1204 p_blkno++; 1205 continue; 1206 } 1207 1208 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1209 wc->w_pages[i], cpos, 1210 user_pos, user_len, 1211 should_zero); 1212 if (tmpret) { 1213 mlog_errno(tmpret); 1214 if (ret == 0) 1215 ret = tmpret; 1216 } 1217 } 1218 1219 /* 1220 * We only have cleanup to do in case of allocating write. 1221 */ 1222 if (ret && new) 1223 ocfs2_write_failure(inode, wc, user_pos, user_len); 1224 1225 out: 1226 1227 return ret; 1228 } 1229 1230 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1231 struct ocfs2_alloc_context *data_ac, 1232 struct ocfs2_alloc_context *meta_ac, 1233 struct ocfs2_write_ctxt *wc, 1234 loff_t pos, unsigned len) 1235 { 1236 int ret, i; 1237 loff_t cluster_off; 1238 unsigned int local_len = len; 1239 struct ocfs2_write_cluster_desc *desc; 1240 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1241 1242 for (i = 0; i < wc->w_clen; i++) { 1243 desc = &wc->w_desc[i]; 1244 1245 /* 1246 * We have to make sure that the total write passed in 1247 * doesn't extend past a single cluster. 1248 */ 1249 local_len = len; 1250 cluster_off = pos & (osb->s_clustersize - 1); 1251 if ((cluster_off + local_len) > osb->s_clustersize) 1252 local_len = osb->s_clustersize - cluster_off; 1253 1254 ret = ocfs2_write_cluster(mapping, &desc->c_phys, 1255 desc->c_new, 1256 desc->c_clear_unwritten, 1257 desc->c_needs_zero, 1258 data_ac, meta_ac, 1259 wc, desc->c_cpos, pos, local_len); 1260 if (ret) { 1261 mlog_errno(ret); 1262 goto out; 1263 } 1264 1265 len -= local_len; 1266 pos += local_len; 1267 } 1268 1269 ret = 0; 1270 out: 1271 return ret; 1272 } 1273 1274 /* 1275 * ocfs2_write_end() wants to know which parts of the target page it 1276 * should complete the write on. It's easiest to compute them ahead of 1277 * time when a more complete view of the write is available. 1278 */ 1279 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1280 struct ocfs2_write_ctxt *wc, 1281 loff_t pos, unsigned len, int alloc) 1282 { 1283 struct ocfs2_write_cluster_desc *desc; 1284 1285 wc->w_target_from = pos & (PAGE_SIZE - 1); 1286 wc->w_target_to = wc->w_target_from + len; 1287 1288 if (alloc == 0) 1289 return; 1290 1291 /* 1292 * Allocating write - we may have different boundaries based 1293 * on page size and cluster size. 1294 * 1295 * NOTE: We can no longer compute one value from the other as 1296 * the actual write length and user provided length may be 1297 * different. 1298 */ 1299 1300 if (wc->w_large_pages) { 1301 /* 1302 * We only care about the 1st and last cluster within 1303 * our range and whether they should be zero'd or not. Either 1304 * value may be extended out to the start/end of a 1305 * newly allocated cluster. 1306 */ 1307 desc = &wc->w_desc[0]; 1308 if (desc->c_needs_zero) 1309 ocfs2_figure_cluster_boundaries(osb, 1310 desc->c_cpos, 1311 &wc->w_target_from, 1312 NULL); 1313 1314 desc = &wc->w_desc[wc->w_clen - 1]; 1315 if (desc->c_needs_zero) 1316 ocfs2_figure_cluster_boundaries(osb, 1317 desc->c_cpos, 1318 NULL, 1319 &wc->w_target_to); 1320 } else { 1321 wc->w_target_from = 0; 1322 wc->w_target_to = PAGE_SIZE; 1323 } 1324 } 1325 1326 /* 1327 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to 1328 * do the zero work. And should not to clear UNWRITTEN since it will be cleared 1329 * by the direct io procedure. 1330 * If this is a new extent that allocated by direct io, we should mark it in 1331 * the ip_unwritten_list. 1332 */ 1333 static int ocfs2_unwritten_check(struct inode *inode, 1334 struct ocfs2_write_ctxt *wc, 1335 struct ocfs2_write_cluster_desc *desc) 1336 { 1337 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1338 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL; 1339 int ret = 0; 1340 1341 if (!desc->c_needs_zero) 1342 return 0; 1343 1344 retry: 1345 spin_lock(&oi->ip_lock); 1346 /* Needs not to zero no metter buffer or direct. The one who is zero 1347 * the cluster is doing zero. And he will clear unwritten after all 1348 * cluster io finished. */ 1349 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) { 1350 if (desc->c_cpos == ue->ue_cpos) { 1351 BUG_ON(desc->c_new); 1352 desc->c_needs_zero = 0; 1353 desc->c_clear_unwritten = 0; 1354 goto unlock; 1355 } 1356 } 1357 1358 if (wc->w_type != OCFS2_WRITE_DIRECT) 1359 goto unlock; 1360 1361 if (new == NULL) { 1362 spin_unlock(&oi->ip_lock); 1363 new = kmalloc(sizeof(struct ocfs2_unwritten_extent), 1364 GFP_NOFS); 1365 if (new == NULL) { 1366 ret = -ENOMEM; 1367 goto out; 1368 } 1369 goto retry; 1370 } 1371 /* This direct write will doing zero. */ 1372 new->ue_cpos = desc->c_cpos; 1373 new->ue_phys = desc->c_phys; 1374 desc->c_clear_unwritten = 0; 1375 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list); 1376 list_add_tail(&new->ue_node, &wc->w_unwritten_list); 1377 wc->w_unwritten_count++; 1378 new = NULL; 1379 unlock: 1380 spin_unlock(&oi->ip_lock); 1381 out: 1382 kfree(new); 1383 return ret; 1384 } 1385 1386 /* 1387 * Populate each single-cluster write descriptor in the write context 1388 * with information about the i/o to be done. 1389 * 1390 * Returns the number of clusters that will have to be allocated, as 1391 * well as a worst case estimate of the number of extent records that 1392 * would have to be created during a write to an unwritten region. 1393 */ 1394 static int ocfs2_populate_write_desc(struct inode *inode, 1395 struct ocfs2_write_ctxt *wc, 1396 unsigned int *clusters_to_alloc, 1397 unsigned int *extents_to_split) 1398 { 1399 int ret; 1400 struct ocfs2_write_cluster_desc *desc; 1401 unsigned int num_clusters = 0; 1402 unsigned int ext_flags = 0; 1403 u32 phys = 0; 1404 int i; 1405 1406 *clusters_to_alloc = 0; 1407 *extents_to_split = 0; 1408 1409 for (i = 0; i < wc->w_clen; i++) { 1410 desc = &wc->w_desc[i]; 1411 desc->c_cpos = wc->w_cpos + i; 1412 1413 if (num_clusters == 0) { 1414 /* 1415 * Need to look up the next extent record. 1416 */ 1417 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1418 &num_clusters, &ext_flags); 1419 if (ret) { 1420 mlog_errno(ret); 1421 goto out; 1422 } 1423 1424 /* We should already CoW the refcountd extent. */ 1425 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1426 1427 /* 1428 * Assume worst case - that we're writing in 1429 * the middle of the extent. 1430 * 1431 * We can assume that the write proceeds from 1432 * left to right, in which case the extent 1433 * insert code is smart enough to coalesce the 1434 * next splits into the previous records created. 1435 */ 1436 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1437 *extents_to_split = *extents_to_split + 2; 1438 } else if (phys) { 1439 /* 1440 * Only increment phys if it doesn't describe 1441 * a hole. 1442 */ 1443 phys++; 1444 } 1445 1446 /* 1447 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1448 * file that got extended. w_first_new_cpos tells us 1449 * where the newly allocated clusters are so we can 1450 * zero them. 1451 */ 1452 if (desc->c_cpos >= wc->w_first_new_cpos) { 1453 BUG_ON(phys == 0); 1454 desc->c_needs_zero = 1; 1455 } 1456 1457 desc->c_phys = phys; 1458 if (phys == 0) { 1459 desc->c_new = 1; 1460 desc->c_needs_zero = 1; 1461 desc->c_clear_unwritten = 1; 1462 *clusters_to_alloc = *clusters_to_alloc + 1; 1463 } 1464 1465 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1466 desc->c_clear_unwritten = 1; 1467 desc->c_needs_zero = 1; 1468 } 1469 1470 ret = ocfs2_unwritten_check(inode, wc, desc); 1471 if (ret) { 1472 mlog_errno(ret); 1473 goto out; 1474 } 1475 1476 num_clusters--; 1477 } 1478 1479 ret = 0; 1480 out: 1481 return ret; 1482 } 1483 1484 static int ocfs2_write_begin_inline(struct address_space *mapping, 1485 struct inode *inode, 1486 struct ocfs2_write_ctxt *wc) 1487 { 1488 int ret; 1489 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1490 struct page *page; 1491 handle_t *handle; 1492 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1493 1494 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1495 if (IS_ERR(handle)) { 1496 ret = PTR_ERR(handle); 1497 mlog_errno(ret); 1498 goto out; 1499 } 1500 1501 page = find_or_create_page(mapping, 0, GFP_NOFS); 1502 if (!page) { 1503 ocfs2_commit_trans(osb, handle); 1504 ret = -ENOMEM; 1505 mlog_errno(ret); 1506 goto out; 1507 } 1508 /* 1509 * If we don't set w_num_pages then this page won't get unlocked 1510 * and freed on cleanup of the write context. 1511 */ 1512 wc->w_pages[0] = wc->w_target_page = page; 1513 wc->w_num_pages = 1; 1514 1515 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1516 OCFS2_JOURNAL_ACCESS_WRITE); 1517 if (ret) { 1518 ocfs2_commit_trans(osb, handle); 1519 1520 mlog_errno(ret); 1521 goto out; 1522 } 1523 1524 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1525 ocfs2_set_inode_data_inline(inode, di); 1526 1527 if (!PageUptodate(page)) { 1528 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1529 if (ret) { 1530 ocfs2_commit_trans(osb, handle); 1531 1532 goto out; 1533 } 1534 } 1535 1536 wc->w_handle = handle; 1537 out: 1538 return ret; 1539 } 1540 1541 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1542 { 1543 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1544 1545 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1546 return 1; 1547 return 0; 1548 } 1549 1550 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1551 struct inode *inode, loff_t pos, 1552 unsigned len, struct page *mmap_page, 1553 struct ocfs2_write_ctxt *wc) 1554 { 1555 int ret, written = 0; 1556 loff_t end = pos + len; 1557 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1558 struct ocfs2_dinode *di = NULL; 1559 1560 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1561 len, (unsigned long long)pos, 1562 oi->ip_dyn_features); 1563 1564 /* 1565 * Handle inodes which already have inline data 1st. 1566 */ 1567 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1568 if (mmap_page == NULL && 1569 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1570 goto do_inline_write; 1571 1572 /* 1573 * The write won't fit - we have to give this inode an 1574 * inline extent list now. 1575 */ 1576 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1577 if (ret) 1578 mlog_errno(ret); 1579 goto out; 1580 } 1581 1582 /* 1583 * Check whether the inode can accept inline data. 1584 */ 1585 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1586 return 0; 1587 1588 /* 1589 * Check whether the write can fit. 1590 */ 1591 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1592 if (mmap_page || 1593 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1594 return 0; 1595 1596 do_inline_write: 1597 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1598 if (ret) { 1599 mlog_errno(ret); 1600 goto out; 1601 } 1602 1603 /* 1604 * This signals to the caller that the data can be written 1605 * inline. 1606 */ 1607 written = 1; 1608 out: 1609 return written ? written : ret; 1610 } 1611 1612 /* 1613 * This function only does anything for file systems which can't 1614 * handle sparse files. 1615 * 1616 * What we want to do here is fill in any hole between the current end 1617 * of allocation and the end of our write. That way the rest of the 1618 * write path can treat it as an non-allocating write, which has no 1619 * special case code for sparse/nonsparse files. 1620 */ 1621 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1622 struct buffer_head *di_bh, 1623 loff_t pos, unsigned len, 1624 struct ocfs2_write_ctxt *wc) 1625 { 1626 int ret; 1627 loff_t newsize = pos + len; 1628 1629 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1630 1631 if (newsize <= i_size_read(inode)) 1632 return 0; 1633 1634 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1635 if (ret) 1636 mlog_errno(ret); 1637 1638 /* There is no wc if this is call from direct. */ 1639 if (wc) 1640 wc->w_first_new_cpos = 1641 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1642 1643 return ret; 1644 } 1645 1646 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1647 loff_t pos) 1648 { 1649 int ret = 0; 1650 1651 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1652 if (pos > i_size_read(inode)) 1653 ret = ocfs2_zero_extend(inode, di_bh, pos); 1654 1655 return ret; 1656 } 1657 1658 int ocfs2_write_begin_nolock(struct address_space *mapping, 1659 loff_t pos, unsigned len, ocfs2_write_type_t type, 1660 struct page **pagep, void **fsdata, 1661 struct buffer_head *di_bh, struct page *mmap_page) 1662 { 1663 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1664 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1665 struct ocfs2_write_ctxt *wc; 1666 struct inode *inode = mapping->host; 1667 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1668 struct ocfs2_dinode *di; 1669 struct ocfs2_alloc_context *data_ac = NULL; 1670 struct ocfs2_alloc_context *meta_ac = NULL; 1671 handle_t *handle; 1672 struct ocfs2_extent_tree et; 1673 int try_free = 1, ret1; 1674 1675 try_again: 1676 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh); 1677 if (ret) { 1678 mlog_errno(ret); 1679 return ret; 1680 } 1681 1682 if (ocfs2_supports_inline_data(osb)) { 1683 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1684 mmap_page, wc); 1685 if (ret == 1) { 1686 ret = 0; 1687 goto success; 1688 } 1689 if (ret < 0) { 1690 mlog_errno(ret); 1691 goto out; 1692 } 1693 } 1694 1695 /* Direct io change i_size late, should not zero tail here. */ 1696 if (type != OCFS2_WRITE_DIRECT) { 1697 if (ocfs2_sparse_alloc(osb)) 1698 ret = ocfs2_zero_tail(inode, di_bh, pos); 1699 else 1700 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 1701 len, wc); 1702 if (ret) { 1703 mlog_errno(ret); 1704 goto out; 1705 } 1706 } 1707 1708 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1709 if (ret < 0) { 1710 mlog_errno(ret); 1711 goto out; 1712 } else if (ret == 1) { 1713 clusters_need = wc->w_clen; 1714 ret = ocfs2_refcount_cow(inode, di_bh, 1715 wc->w_cpos, wc->w_clen, UINT_MAX); 1716 if (ret) { 1717 mlog_errno(ret); 1718 goto out; 1719 } 1720 } 1721 1722 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1723 &extents_to_split); 1724 if (ret) { 1725 mlog_errno(ret); 1726 goto out; 1727 } 1728 clusters_need += clusters_to_alloc; 1729 1730 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1731 1732 trace_ocfs2_write_begin_nolock( 1733 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1734 (long long)i_size_read(inode), 1735 le32_to_cpu(di->i_clusters), 1736 pos, len, type, mmap_page, 1737 clusters_to_alloc, extents_to_split); 1738 1739 /* 1740 * We set w_target_from, w_target_to here so that 1741 * ocfs2_write_end() knows which range in the target page to 1742 * write out. An allocation requires that we write the entire 1743 * cluster range. 1744 */ 1745 if (clusters_to_alloc || extents_to_split) { 1746 /* 1747 * XXX: We are stretching the limits of 1748 * ocfs2_lock_allocators(). It greatly over-estimates 1749 * the work to be done. 1750 */ 1751 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1752 wc->w_di_bh); 1753 ret = ocfs2_lock_allocators(inode, &et, 1754 clusters_to_alloc, extents_to_split, 1755 &data_ac, &meta_ac); 1756 if (ret) { 1757 mlog_errno(ret); 1758 goto out; 1759 } 1760 1761 if (data_ac) 1762 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1763 1764 credits = ocfs2_calc_extend_credits(inode->i_sb, 1765 &di->id2.i_list); 1766 } else if (type == OCFS2_WRITE_DIRECT) 1767 /* direct write needs not to start trans if no extents alloc. */ 1768 goto success; 1769 1770 /* 1771 * We have to zero sparse allocated clusters, unwritten extent clusters, 1772 * and non-sparse clusters we just extended. For non-sparse writes, 1773 * we know zeros will only be needed in the first and/or last cluster. 1774 */ 1775 if (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1776 wc->w_desc[wc->w_clen - 1].c_needs_zero)) 1777 cluster_of_pages = 1; 1778 else 1779 cluster_of_pages = 0; 1780 1781 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1782 1783 handle = ocfs2_start_trans(osb, credits); 1784 if (IS_ERR(handle)) { 1785 ret = PTR_ERR(handle); 1786 mlog_errno(ret); 1787 goto out; 1788 } 1789 1790 wc->w_handle = handle; 1791 1792 if (clusters_to_alloc) { 1793 ret = dquot_alloc_space_nodirty(inode, 1794 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1795 if (ret) 1796 goto out_commit; 1797 } 1798 1799 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1800 OCFS2_JOURNAL_ACCESS_WRITE); 1801 if (ret) { 1802 mlog_errno(ret); 1803 goto out_quota; 1804 } 1805 1806 /* 1807 * Fill our page array first. That way we've grabbed enough so 1808 * that we can zero and flush if we error after adding the 1809 * extent. 1810 */ 1811 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1812 cluster_of_pages, mmap_page); 1813 if (ret && ret != -EAGAIN) { 1814 mlog_errno(ret); 1815 goto out_quota; 1816 } 1817 1818 /* 1819 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 1820 * the target page. In this case, we exit with no error and no target 1821 * page. This will trigger the caller, page_mkwrite(), to re-try 1822 * the operation. 1823 */ 1824 if (ret == -EAGAIN) { 1825 BUG_ON(wc->w_target_page); 1826 ret = 0; 1827 goto out_quota; 1828 } 1829 1830 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1831 len); 1832 if (ret) { 1833 mlog_errno(ret); 1834 goto out_quota; 1835 } 1836 1837 if (data_ac) 1838 ocfs2_free_alloc_context(data_ac); 1839 if (meta_ac) 1840 ocfs2_free_alloc_context(meta_ac); 1841 1842 success: 1843 if (pagep) 1844 *pagep = wc->w_target_page; 1845 *fsdata = wc; 1846 return 0; 1847 out_quota: 1848 if (clusters_to_alloc) 1849 dquot_free_space(inode, 1850 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1851 out_commit: 1852 ocfs2_commit_trans(osb, handle); 1853 1854 out: 1855 /* 1856 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(), 1857 * even in case of error here like ENOSPC and ENOMEM. So, we need 1858 * to unlock the target page manually to prevent deadlocks when 1859 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED 1860 * to VM code. 1861 */ 1862 if (wc->w_target_locked) 1863 unlock_page(mmap_page); 1864 1865 ocfs2_free_write_ctxt(inode, wc); 1866 1867 if (data_ac) { 1868 ocfs2_free_alloc_context(data_ac); 1869 data_ac = NULL; 1870 } 1871 if (meta_ac) { 1872 ocfs2_free_alloc_context(meta_ac); 1873 meta_ac = NULL; 1874 } 1875 1876 if (ret == -ENOSPC && try_free) { 1877 /* 1878 * Try to free some truncate log so that we can have enough 1879 * clusters to allocate. 1880 */ 1881 try_free = 0; 1882 1883 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1884 if (ret1 == 1) 1885 goto try_again; 1886 1887 if (ret1 < 0) 1888 mlog_errno(ret1); 1889 } 1890 1891 return ret; 1892 } 1893 1894 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1895 loff_t pos, unsigned len, unsigned flags, 1896 struct page **pagep, void **fsdata) 1897 { 1898 int ret; 1899 struct buffer_head *di_bh = NULL; 1900 struct inode *inode = mapping->host; 1901 1902 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1903 if (ret) { 1904 mlog_errno(ret); 1905 return ret; 1906 } 1907 1908 /* 1909 * Take alloc sem here to prevent concurrent lookups. That way 1910 * the mapping, zeroing and tree manipulation within 1911 * ocfs2_write() will be safe against ->readpage(). This 1912 * should also serve to lock out allocation from a shared 1913 * writeable region. 1914 */ 1915 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1916 1917 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER, 1918 pagep, fsdata, di_bh, NULL); 1919 if (ret) { 1920 mlog_errno(ret); 1921 goto out_fail; 1922 } 1923 1924 brelse(di_bh); 1925 1926 return 0; 1927 1928 out_fail: 1929 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1930 1931 brelse(di_bh); 1932 ocfs2_inode_unlock(inode, 1); 1933 1934 return ret; 1935 } 1936 1937 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1938 unsigned len, unsigned *copied, 1939 struct ocfs2_dinode *di, 1940 struct ocfs2_write_ctxt *wc) 1941 { 1942 void *kaddr; 1943 1944 if (unlikely(*copied < len)) { 1945 if (!PageUptodate(wc->w_target_page)) { 1946 *copied = 0; 1947 return; 1948 } 1949 } 1950 1951 kaddr = kmap_atomic(wc->w_target_page); 1952 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1953 kunmap_atomic(kaddr); 1954 1955 trace_ocfs2_write_end_inline( 1956 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1957 (unsigned long long)pos, *copied, 1958 le16_to_cpu(di->id2.i_data.id_count), 1959 le16_to_cpu(di->i_dyn_features)); 1960 } 1961 1962 int ocfs2_write_end_nolock(struct address_space *mapping, 1963 loff_t pos, unsigned len, unsigned copied, void *fsdata) 1964 { 1965 int i, ret; 1966 unsigned from, to, start = pos & (PAGE_SIZE - 1); 1967 struct inode *inode = mapping->host; 1968 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1969 struct ocfs2_write_ctxt *wc = fsdata; 1970 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1971 handle_t *handle = wc->w_handle; 1972 struct page *tmppage; 1973 1974 BUG_ON(!list_empty(&wc->w_unwritten_list)); 1975 1976 if (handle) { 1977 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), 1978 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); 1979 if (ret) { 1980 copied = ret; 1981 mlog_errno(ret); 1982 goto out; 1983 } 1984 } 1985 1986 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1987 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1988 goto out_write_size; 1989 } 1990 1991 if (unlikely(copied < len) && wc->w_target_page) { 1992 if (!PageUptodate(wc->w_target_page)) 1993 copied = 0; 1994 1995 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1996 start+len); 1997 } 1998 if (wc->w_target_page) 1999 flush_dcache_page(wc->w_target_page); 2000 2001 for(i = 0; i < wc->w_num_pages; i++) { 2002 tmppage = wc->w_pages[i]; 2003 2004 /* This is the direct io target page. */ 2005 if (tmppage == NULL) 2006 continue; 2007 2008 if (tmppage == wc->w_target_page) { 2009 from = wc->w_target_from; 2010 to = wc->w_target_to; 2011 2012 BUG_ON(from > PAGE_SIZE || 2013 to > PAGE_SIZE || 2014 to < from); 2015 } else { 2016 /* 2017 * Pages adjacent to the target (if any) imply 2018 * a hole-filling write in which case we want 2019 * to flush their entire range. 2020 */ 2021 from = 0; 2022 to = PAGE_SIZE; 2023 } 2024 2025 if (page_has_buffers(tmppage)) { 2026 if (handle && ocfs2_should_order_data(inode)) 2027 ocfs2_jbd2_file_inode(handle, inode); 2028 block_commit_write(tmppage, from, to); 2029 } 2030 } 2031 2032 out_write_size: 2033 /* Direct io do not update i_size here. */ 2034 if (wc->w_type != OCFS2_WRITE_DIRECT) { 2035 pos += copied; 2036 if (pos > i_size_read(inode)) { 2037 i_size_write(inode, pos); 2038 mark_inode_dirty(inode); 2039 } 2040 inode->i_blocks = ocfs2_inode_sector_count(inode); 2041 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2042 inode->i_mtime = inode->i_ctime = current_time(inode); 2043 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2044 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2045 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2046 } 2047 if (handle) 2048 ocfs2_journal_dirty(handle, wc->w_di_bh); 2049 2050 out: 2051 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2052 * lock, or it will cause a deadlock since journal commit threads holds 2053 * this lock and will ask for the page lock when flushing the data. 2054 * put it here to preserve the unlock order. 2055 */ 2056 ocfs2_unlock_pages(wc); 2057 2058 if (handle) 2059 ocfs2_commit_trans(osb, handle); 2060 2061 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2062 2063 brelse(wc->w_di_bh); 2064 kfree(wc); 2065 2066 return copied; 2067 } 2068 2069 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2070 loff_t pos, unsigned len, unsigned copied, 2071 struct page *page, void *fsdata) 2072 { 2073 int ret; 2074 struct inode *inode = mapping->host; 2075 2076 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata); 2077 2078 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2079 ocfs2_inode_unlock(inode, 1); 2080 2081 return ret; 2082 } 2083 2084 struct ocfs2_dio_write_ctxt { 2085 struct list_head dw_zero_list; 2086 unsigned dw_zero_count; 2087 int dw_orphaned; 2088 pid_t dw_writer_pid; 2089 }; 2090 2091 static struct ocfs2_dio_write_ctxt * 2092 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc) 2093 { 2094 struct ocfs2_dio_write_ctxt *dwc = NULL; 2095 2096 if (bh->b_private) 2097 return bh->b_private; 2098 2099 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS); 2100 if (dwc == NULL) 2101 return NULL; 2102 INIT_LIST_HEAD(&dwc->dw_zero_list); 2103 dwc->dw_zero_count = 0; 2104 dwc->dw_orphaned = 0; 2105 dwc->dw_writer_pid = task_pid_nr(current); 2106 bh->b_private = dwc; 2107 *alloc = 1; 2108 2109 return dwc; 2110 } 2111 2112 static void ocfs2_dio_free_write_ctx(struct inode *inode, 2113 struct ocfs2_dio_write_ctxt *dwc) 2114 { 2115 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list); 2116 kfree(dwc); 2117 } 2118 2119 /* 2120 * TODO: Make this into a generic get_blocks function. 2121 * 2122 * From do_direct_io in direct-io.c: 2123 * "So what we do is to permit the ->get_blocks function to populate 2124 * bh.b_size with the size of IO which is permitted at this offset and 2125 * this i_blkbits." 2126 * 2127 * This function is called directly from get_more_blocks in direct-io.c. 2128 * 2129 * called like this: dio->get_blocks(dio->inode, fs_startblk, 2130 * fs_count, map_bh, dio->rw == WRITE); 2131 */ 2132 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock, 2133 struct buffer_head *bh_result, int create) 2134 { 2135 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2136 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2137 struct ocfs2_write_ctxt *wc; 2138 struct ocfs2_write_cluster_desc *desc = NULL; 2139 struct ocfs2_dio_write_ctxt *dwc = NULL; 2140 struct buffer_head *di_bh = NULL; 2141 u64 p_blkno; 2142 loff_t pos = iblock << inode->i_sb->s_blocksize_bits; 2143 unsigned len, total_len = bh_result->b_size; 2144 int ret = 0, first_get_block = 0; 2145 2146 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1)); 2147 len = min(total_len, len); 2148 2149 mlog(0, "get block of %lu at %llu:%u req %u\n", 2150 inode->i_ino, pos, len, total_len); 2151 2152 /* 2153 * Because we need to change file size in ocfs2_dio_end_io_write(), or 2154 * we may need to add it to orphan dir. So can not fall to fast path 2155 * while file size will be changed. 2156 */ 2157 if (pos + total_len <= i_size_read(inode)) { 2158 2159 /* This is the fast path for re-write. */ 2160 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create); 2161 if (buffer_mapped(bh_result) && 2162 !buffer_new(bh_result) && 2163 ret == 0) 2164 goto out; 2165 2166 /* Clear state set by ocfs2_get_block. */ 2167 bh_result->b_state = 0; 2168 } 2169 2170 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block); 2171 if (unlikely(dwc == NULL)) { 2172 ret = -ENOMEM; 2173 mlog_errno(ret); 2174 goto out; 2175 } 2176 2177 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) > 2178 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) && 2179 !dwc->dw_orphaned) { 2180 /* 2181 * when we are going to alloc extents beyond file size, add the 2182 * inode to orphan dir, so we can recall those spaces when 2183 * system crashed during write. 2184 */ 2185 ret = ocfs2_add_inode_to_orphan(osb, inode); 2186 if (ret < 0) { 2187 mlog_errno(ret); 2188 goto out; 2189 } 2190 dwc->dw_orphaned = 1; 2191 } 2192 2193 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2194 if (ret) { 2195 mlog_errno(ret); 2196 goto out; 2197 } 2198 2199 down_write(&oi->ip_alloc_sem); 2200 2201 if (first_get_block) { 2202 if (ocfs2_sparse_alloc(osb)) 2203 ret = ocfs2_zero_tail(inode, di_bh, pos); 2204 else 2205 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 2206 total_len, NULL); 2207 if (ret < 0) { 2208 mlog_errno(ret); 2209 goto unlock; 2210 } 2211 } 2212 2213 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len, 2214 OCFS2_WRITE_DIRECT, NULL, 2215 (void **)&wc, di_bh, NULL); 2216 if (ret) { 2217 mlog_errno(ret); 2218 goto unlock; 2219 } 2220 2221 desc = &wc->w_desc[0]; 2222 2223 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys); 2224 BUG_ON(p_blkno == 0); 2225 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1); 2226 2227 map_bh(bh_result, inode->i_sb, p_blkno); 2228 bh_result->b_size = len; 2229 if (desc->c_needs_zero) 2230 set_buffer_new(bh_result); 2231 2232 /* May sleep in end_io. It should not happen in a irq context. So defer 2233 * it to dio work queue. */ 2234 set_buffer_defer_completion(bh_result); 2235 2236 if (!list_empty(&wc->w_unwritten_list)) { 2237 struct ocfs2_unwritten_extent *ue = NULL; 2238 2239 ue = list_first_entry(&wc->w_unwritten_list, 2240 struct ocfs2_unwritten_extent, 2241 ue_node); 2242 BUG_ON(ue->ue_cpos != desc->c_cpos); 2243 /* The physical address may be 0, fill it. */ 2244 ue->ue_phys = desc->c_phys; 2245 2246 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list); 2247 dwc->dw_zero_count += wc->w_unwritten_count; 2248 } 2249 2250 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc); 2251 BUG_ON(ret != len); 2252 ret = 0; 2253 unlock: 2254 up_write(&oi->ip_alloc_sem); 2255 ocfs2_inode_unlock(inode, 1); 2256 brelse(di_bh); 2257 out: 2258 if (ret < 0) 2259 ret = -EIO; 2260 return ret; 2261 } 2262 2263 static int ocfs2_dio_end_io_write(struct inode *inode, 2264 struct ocfs2_dio_write_ctxt *dwc, 2265 loff_t offset, 2266 ssize_t bytes) 2267 { 2268 struct ocfs2_cached_dealloc_ctxt dealloc; 2269 struct ocfs2_extent_tree et; 2270 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2271 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2272 struct ocfs2_unwritten_extent *ue = NULL; 2273 struct buffer_head *di_bh = NULL; 2274 struct ocfs2_dinode *di; 2275 struct ocfs2_alloc_context *data_ac = NULL; 2276 struct ocfs2_alloc_context *meta_ac = NULL; 2277 handle_t *handle = NULL; 2278 loff_t end = offset + bytes; 2279 int ret = 0, credits = 0, locked = 0; 2280 2281 ocfs2_init_dealloc_ctxt(&dealloc); 2282 2283 /* We do clear unwritten, delete orphan, change i_size here. If neither 2284 * of these happen, we can skip all this. */ 2285 if (list_empty(&dwc->dw_zero_list) && 2286 end <= i_size_read(inode) && 2287 !dwc->dw_orphaned) 2288 goto out; 2289 2290 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we 2291 * are in that context. */ 2292 if (dwc->dw_writer_pid != task_pid_nr(current)) { 2293 inode_lock(inode); 2294 locked = 1; 2295 } 2296 2297 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2298 if (ret < 0) { 2299 mlog_errno(ret); 2300 goto out; 2301 } 2302 2303 down_write(&oi->ip_alloc_sem); 2304 2305 /* Delete orphan before acquire i_mutex. */ 2306 if (dwc->dw_orphaned) { 2307 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current)); 2308 2309 end = end > i_size_read(inode) ? end : 0; 2310 2311 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 2312 !!end, end); 2313 if (ret < 0) 2314 mlog_errno(ret); 2315 } 2316 2317 di = (struct ocfs2_dinode *)di_bh->b_data; 2318 2319 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 2320 2321 /* Attach dealloc with extent tree in case that we may reuse extents 2322 * which are already unlinked from current extent tree due to extent 2323 * rotation and merging. 2324 */ 2325 et.et_dealloc = &dealloc; 2326 2327 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2, 2328 &data_ac, &meta_ac); 2329 if (ret) { 2330 mlog_errno(ret); 2331 goto unlock; 2332 } 2333 2334 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list); 2335 2336 handle = ocfs2_start_trans(osb, credits); 2337 if (IS_ERR(handle)) { 2338 ret = PTR_ERR(handle); 2339 mlog_errno(ret); 2340 goto unlock; 2341 } 2342 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 2343 OCFS2_JOURNAL_ACCESS_WRITE); 2344 if (ret) { 2345 mlog_errno(ret); 2346 goto commit; 2347 } 2348 2349 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) { 2350 ret = ocfs2_mark_extent_written(inode, &et, handle, 2351 ue->ue_cpos, 1, 2352 ue->ue_phys, 2353 meta_ac, &dealloc); 2354 if (ret < 0) { 2355 mlog_errno(ret); 2356 break; 2357 } 2358 } 2359 2360 if (end > i_size_read(inode)) { 2361 ret = ocfs2_set_inode_size(handle, inode, di_bh, end); 2362 if (ret < 0) 2363 mlog_errno(ret); 2364 } 2365 commit: 2366 ocfs2_commit_trans(osb, handle); 2367 unlock: 2368 up_write(&oi->ip_alloc_sem); 2369 ocfs2_inode_unlock(inode, 1); 2370 brelse(di_bh); 2371 out: 2372 if (data_ac) 2373 ocfs2_free_alloc_context(data_ac); 2374 if (meta_ac) 2375 ocfs2_free_alloc_context(meta_ac); 2376 ocfs2_run_deallocs(osb, &dealloc); 2377 if (locked) 2378 inode_unlock(inode); 2379 ocfs2_dio_free_write_ctx(inode, dwc); 2380 2381 return ret; 2382 } 2383 2384 /* 2385 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 2386 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 2387 * to protect io on one node from truncation on another. 2388 */ 2389 static int ocfs2_dio_end_io(struct kiocb *iocb, 2390 loff_t offset, 2391 ssize_t bytes, 2392 void *private) 2393 { 2394 struct inode *inode = file_inode(iocb->ki_filp); 2395 int level; 2396 int ret = 0; 2397 2398 /* this io's submitter should not have unlocked this before we could */ 2399 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 2400 2401 if (bytes <= 0) 2402 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld", 2403 (long long)bytes); 2404 if (private) { 2405 if (bytes > 0) 2406 ret = ocfs2_dio_end_io_write(inode, private, offset, 2407 bytes); 2408 else 2409 ocfs2_dio_free_write_ctx(inode, private); 2410 } 2411 2412 ocfs2_iocb_clear_rw_locked(iocb); 2413 2414 level = ocfs2_iocb_rw_locked_level(iocb); 2415 ocfs2_rw_unlock(inode, level); 2416 return ret; 2417 } 2418 2419 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2420 { 2421 struct file *file = iocb->ki_filp; 2422 struct inode *inode = file->f_mapping->host; 2423 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2424 get_block_t *get_block; 2425 2426 /* 2427 * Fallback to buffered I/O if we see an inode without 2428 * extents. 2429 */ 2430 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2431 return 0; 2432 2433 /* Fallback to buffered I/O if we do not support append dio. */ 2434 if (iocb->ki_pos + iter->count > i_size_read(inode) && 2435 !ocfs2_supports_append_dio(osb)) 2436 return 0; 2437 2438 if (iov_iter_rw(iter) == READ) 2439 get_block = ocfs2_lock_get_block; 2440 else 2441 get_block = ocfs2_dio_wr_get_block; 2442 2443 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2444 iter, get_block, 2445 ocfs2_dio_end_io, NULL, 0); 2446 } 2447 2448 const struct address_space_operations ocfs2_aops = { 2449 .readpage = ocfs2_readpage, 2450 .readpages = ocfs2_readpages, 2451 .writepage = ocfs2_writepage, 2452 .write_begin = ocfs2_write_begin, 2453 .write_end = ocfs2_write_end, 2454 .bmap = ocfs2_bmap, 2455 .direct_IO = ocfs2_direct_IO, 2456 .invalidatepage = block_invalidatepage, 2457 .releasepage = ocfs2_releasepage, 2458 .migratepage = buffer_migrate_page, 2459 .is_partially_uptodate = block_is_partially_uptodate, 2460 .error_remove_page = generic_error_remove_page, 2461 }; 2462