1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/highmem.h> 9 #include <linux/pagemap.h> 10 #include <asm/byteorder.h> 11 #include <linux/swap.h> 12 #include <linux/mpage.h> 13 #include <linux/quotaops.h> 14 #include <linux/blkdev.h> 15 #include <linux/uio.h> 16 #include <linux/mm.h> 17 18 #include <cluster/masklog.h> 19 20 #include "ocfs2.h" 21 22 #include "alloc.h" 23 #include "aops.h" 24 #include "dlmglue.h" 25 #include "extent_map.h" 26 #include "file.h" 27 #include "inode.h" 28 #include "journal.h" 29 #include "suballoc.h" 30 #include "super.h" 31 #include "symlink.h" 32 #include "refcounttree.h" 33 #include "ocfs2_trace.h" 34 35 #include "buffer_head_io.h" 36 #include "dir.h" 37 #include "namei.h" 38 #include "sysfile.h" 39 40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 41 struct buffer_head *bh_result, int create) 42 { 43 int err = -EIO; 44 int status; 45 struct ocfs2_dinode *fe = NULL; 46 struct buffer_head *bh = NULL; 47 struct buffer_head *buffer_cache_bh = NULL; 48 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 49 void *kaddr; 50 51 trace_ocfs2_symlink_get_block( 52 (unsigned long long)OCFS2_I(inode)->ip_blkno, 53 (unsigned long long)iblock, bh_result, create); 54 55 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 56 57 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 58 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 59 (unsigned long long)iblock); 60 goto bail; 61 } 62 63 status = ocfs2_read_inode_block(inode, &bh); 64 if (status < 0) { 65 mlog_errno(status); 66 goto bail; 67 } 68 fe = (struct ocfs2_dinode *) bh->b_data; 69 70 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 71 le32_to_cpu(fe->i_clusters))) { 72 err = -ENOMEM; 73 mlog(ML_ERROR, "block offset is outside the allocated size: " 74 "%llu\n", (unsigned long long)iblock); 75 goto bail; 76 } 77 78 /* We don't use the page cache to create symlink data, so if 79 * need be, copy it over from the buffer cache. */ 80 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 81 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 82 iblock; 83 buffer_cache_bh = sb_getblk(osb->sb, blkno); 84 if (!buffer_cache_bh) { 85 err = -ENOMEM; 86 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 87 goto bail; 88 } 89 90 /* we haven't locked out transactions, so a commit 91 * could've happened. Since we've got a reference on 92 * the bh, even if it commits while we're doing the 93 * copy, the data is still good. */ 94 if (buffer_jbd(buffer_cache_bh) 95 && ocfs2_inode_is_new(inode)) { 96 kaddr = kmap_atomic(bh_result->b_page); 97 if (!kaddr) { 98 mlog(ML_ERROR, "couldn't kmap!\n"); 99 goto bail; 100 } 101 memcpy(kaddr + (bh_result->b_size * iblock), 102 buffer_cache_bh->b_data, 103 bh_result->b_size); 104 kunmap_atomic(kaddr); 105 set_buffer_uptodate(bh_result); 106 } 107 brelse(buffer_cache_bh); 108 } 109 110 map_bh(bh_result, inode->i_sb, 111 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 112 113 err = 0; 114 115 bail: 116 brelse(bh); 117 118 return err; 119 } 120 121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock, 122 struct buffer_head *bh_result, int create) 123 { 124 int ret = 0; 125 struct ocfs2_inode_info *oi = OCFS2_I(inode); 126 127 down_read(&oi->ip_alloc_sem); 128 ret = ocfs2_get_block(inode, iblock, bh_result, create); 129 up_read(&oi->ip_alloc_sem); 130 131 return ret; 132 } 133 134 int ocfs2_get_block(struct inode *inode, sector_t iblock, 135 struct buffer_head *bh_result, int create) 136 { 137 int err = 0; 138 unsigned int ext_flags; 139 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 140 u64 p_blkno, count, past_eof; 141 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 142 143 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 144 (unsigned long long)iblock, bh_result, create); 145 146 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 147 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 148 inode, inode->i_ino); 149 150 if (S_ISLNK(inode->i_mode)) { 151 /* this always does I/O for some reason. */ 152 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 153 goto bail; 154 } 155 156 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 157 &ext_flags); 158 if (err) { 159 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 160 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 161 (unsigned long long)p_blkno); 162 goto bail; 163 } 164 165 if (max_blocks < count) 166 count = max_blocks; 167 168 /* 169 * ocfs2 never allocates in this function - the only time we 170 * need to use BH_New is when we're extending i_size on a file 171 * system which doesn't support holes, in which case BH_New 172 * allows __block_write_begin() to zero. 173 * 174 * If we see this on a sparse file system, then a truncate has 175 * raced us and removed the cluster. In this case, we clear 176 * the buffers dirty and uptodate bits and let the buffer code 177 * ignore it as a hole. 178 */ 179 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 180 clear_buffer_dirty(bh_result); 181 clear_buffer_uptodate(bh_result); 182 goto bail; 183 } 184 185 /* Treat the unwritten extent as a hole for zeroing purposes. */ 186 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 187 map_bh(bh_result, inode->i_sb, p_blkno); 188 189 bh_result->b_size = count << inode->i_blkbits; 190 191 if (!ocfs2_sparse_alloc(osb)) { 192 if (p_blkno == 0) { 193 err = -EIO; 194 mlog(ML_ERROR, 195 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 196 (unsigned long long)iblock, 197 (unsigned long long)p_blkno, 198 (unsigned long long)OCFS2_I(inode)->ip_blkno); 199 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 200 dump_stack(); 201 goto bail; 202 } 203 } 204 205 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 206 207 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 208 (unsigned long long)past_eof); 209 if (create && (iblock >= past_eof)) 210 set_buffer_new(bh_result); 211 212 bail: 213 if (err < 0) 214 err = -EIO; 215 216 return err; 217 } 218 219 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 220 struct buffer_head *di_bh) 221 { 222 void *kaddr; 223 loff_t size; 224 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 225 226 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 227 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 228 (unsigned long long)OCFS2_I(inode)->ip_blkno); 229 return -EROFS; 230 } 231 232 size = i_size_read(inode); 233 234 if (size > PAGE_SIZE || 235 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 236 ocfs2_error(inode->i_sb, 237 "Inode %llu has with inline data has bad size: %Lu\n", 238 (unsigned long long)OCFS2_I(inode)->ip_blkno, 239 (unsigned long long)size); 240 return -EROFS; 241 } 242 243 kaddr = kmap_atomic(page); 244 if (size) 245 memcpy(kaddr, di->id2.i_data.id_data, size); 246 /* Clear the remaining part of the page */ 247 memset(kaddr + size, 0, PAGE_SIZE - size); 248 flush_dcache_page(page); 249 kunmap_atomic(kaddr); 250 251 SetPageUptodate(page); 252 253 return 0; 254 } 255 256 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 257 { 258 int ret; 259 struct buffer_head *di_bh = NULL; 260 261 BUG_ON(!PageLocked(page)); 262 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 263 264 ret = ocfs2_read_inode_block(inode, &di_bh); 265 if (ret) { 266 mlog_errno(ret); 267 goto out; 268 } 269 270 ret = ocfs2_read_inline_data(inode, page, di_bh); 271 out: 272 unlock_page(page); 273 274 brelse(di_bh); 275 return ret; 276 } 277 278 static int ocfs2_readpage(struct file *file, struct page *page) 279 { 280 struct inode *inode = page->mapping->host; 281 struct ocfs2_inode_info *oi = OCFS2_I(inode); 282 loff_t start = (loff_t)page->index << PAGE_SHIFT; 283 int ret, unlock = 1; 284 285 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 286 (page ? page->index : 0)); 287 288 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 289 if (ret != 0) { 290 if (ret == AOP_TRUNCATED_PAGE) 291 unlock = 0; 292 mlog_errno(ret); 293 goto out; 294 } 295 296 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 297 /* 298 * Unlock the page and cycle ip_alloc_sem so that we don't 299 * busyloop waiting for ip_alloc_sem to unlock 300 */ 301 ret = AOP_TRUNCATED_PAGE; 302 unlock_page(page); 303 unlock = 0; 304 down_read(&oi->ip_alloc_sem); 305 up_read(&oi->ip_alloc_sem); 306 goto out_inode_unlock; 307 } 308 309 /* 310 * i_size might have just been updated as we grabed the meta lock. We 311 * might now be discovering a truncate that hit on another node. 312 * block_read_full_page->get_block freaks out if it is asked to read 313 * beyond the end of a file, so we check here. Callers 314 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 315 * and notice that the page they just read isn't needed. 316 * 317 * XXX sys_readahead() seems to get that wrong? 318 */ 319 if (start >= i_size_read(inode)) { 320 zero_user(page, 0, PAGE_SIZE); 321 SetPageUptodate(page); 322 ret = 0; 323 goto out_alloc; 324 } 325 326 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 327 ret = ocfs2_readpage_inline(inode, page); 328 else 329 ret = block_read_full_page(page, ocfs2_get_block); 330 unlock = 0; 331 332 out_alloc: 333 up_read(&oi->ip_alloc_sem); 334 out_inode_unlock: 335 ocfs2_inode_unlock(inode, 0); 336 out: 337 if (unlock) 338 unlock_page(page); 339 return ret; 340 } 341 342 /* 343 * This is used only for read-ahead. Failures or difficult to handle 344 * situations are safe to ignore. 345 * 346 * Right now, we don't bother with BH_Boundary - in-inode extent lists 347 * are quite large (243 extents on 4k blocks), so most inodes don't 348 * grow out to a tree. If need be, detecting boundary extents could 349 * trivially be added in a future version of ocfs2_get_block(). 350 */ 351 static void ocfs2_readahead(struct readahead_control *rac) 352 { 353 int ret; 354 struct inode *inode = rac->mapping->host; 355 struct ocfs2_inode_info *oi = OCFS2_I(inode); 356 357 /* 358 * Use the nonblocking flag for the dlm code to avoid page 359 * lock inversion, but don't bother with retrying. 360 */ 361 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 362 if (ret) 363 return; 364 365 if (down_read_trylock(&oi->ip_alloc_sem) == 0) 366 goto out_unlock; 367 368 /* 369 * Don't bother with inline-data. There isn't anything 370 * to read-ahead in that case anyway... 371 */ 372 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 373 goto out_up; 374 375 /* 376 * Check whether a remote node truncated this file - we just 377 * drop out in that case as it's not worth handling here. 378 */ 379 if (readahead_pos(rac) >= i_size_read(inode)) 380 goto out_up; 381 382 mpage_readahead(rac, ocfs2_get_block); 383 384 out_up: 385 up_read(&oi->ip_alloc_sem); 386 out_unlock: 387 ocfs2_inode_unlock(inode, 0); 388 } 389 390 /* Note: Because we don't support holes, our allocation has 391 * already happened (allocation writes zeros to the file data) 392 * so we don't have to worry about ordered writes in 393 * ocfs2_writepage. 394 * 395 * ->writepage is called during the process of invalidating the page cache 396 * during blocked lock processing. It can't block on any cluster locks 397 * to during block mapping. It's relying on the fact that the block 398 * mapping can't have disappeared under the dirty pages that it is 399 * being asked to write back. 400 */ 401 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 402 { 403 trace_ocfs2_writepage( 404 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 405 page->index); 406 407 return block_write_full_page(page, ocfs2_get_block, wbc); 408 } 409 410 /* Taken from ext3. We don't necessarily need the full blown 411 * functionality yet, but IMHO it's better to cut and paste the whole 412 * thing so we can avoid introducing our own bugs (and easily pick up 413 * their fixes when they happen) --Mark */ 414 int walk_page_buffers( handle_t *handle, 415 struct buffer_head *head, 416 unsigned from, 417 unsigned to, 418 int *partial, 419 int (*fn)( handle_t *handle, 420 struct buffer_head *bh)) 421 { 422 struct buffer_head *bh; 423 unsigned block_start, block_end; 424 unsigned blocksize = head->b_size; 425 int err, ret = 0; 426 struct buffer_head *next; 427 428 for ( bh = head, block_start = 0; 429 ret == 0 && (bh != head || !block_start); 430 block_start = block_end, bh = next) 431 { 432 next = bh->b_this_page; 433 block_end = block_start + blocksize; 434 if (block_end <= from || block_start >= to) { 435 if (partial && !buffer_uptodate(bh)) 436 *partial = 1; 437 continue; 438 } 439 err = (*fn)(handle, bh); 440 if (!ret) 441 ret = err; 442 } 443 return ret; 444 } 445 446 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 447 { 448 sector_t status; 449 u64 p_blkno = 0; 450 int err = 0; 451 struct inode *inode = mapping->host; 452 453 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 454 (unsigned long long)block); 455 456 /* 457 * The swap code (ab-)uses ->bmap to get a block mapping and then 458 * bypasseѕ the file system for actual I/O. We really can't allow 459 * that on refcounted inodes, so we have to skip out here. And yes, 460 * 0 is the magic code for a bmap error.. 461 */ 462 if (ocfs2_is_refcount_inode(inode)) 463 return 0; 464 465 /* We don't need to lock journal system files, since they aren't 466 * accessed concurrently from multiple nodes. 467 */ 468 if (!INODE_JOURNAL(inode)) { 469 err = ocfs2_inode_lock(inode, NULL, 0); 470 if (err) { 471 if (err != -ENOENT) 472 mlog_errno(err); 473 goto bail; 474 } 475 down_read(&OCFS2_I(inode)->ip_alloc_sem); 476 } 477 478 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 479 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 480 NULL); 481 482 if (!INODE_JOURNAL(inode)) { 483 up_read(&OCFS2_I(inode)->ip_alloc_sem); 484 ocfs2_inode_unlock(inode, 0); 485 } 486 487 if (err) { 488 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 489 (unsigned long long)block); 490 mlog_errno(err); 491 goto bail; 492 } 493 494 bail: 495 status = err ? 0 : p_blkno; 496 497 return status; 498 } 499 500 static int ocfs2_releasepage(struct page *page, gfp_t wait) 501 { 502 if (!page_has_buffers(page)) 503 return 0; 504 return try_to_free_buffers(page); 505 } 506 507 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 508 u32 cpos, 509 unsigned int *start, 510 unsigned int *end) 511 { 512 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE; 513 514 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) { 515 unsigned int cpp; 516 517 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits); 518 519 cluster_start = cpos % cpp; 520 cluster_start = cluster_start << osb->s_clustersize_bits; 521 522 cluster_end = cluster_start + osb->s_clustersize; 523 } 524 525 BUG_ON(cluster_start > PAGE_SIZE); 526 BUG_ON(cluster_end > PAGE_SIZE); 527 528 if (start) 529 *start = cluster_start; 530 if (end) 531 *end = cluster_end; 532 } 533 534 /* 535 * 'from' and 'to' are the region in the page to avoid zeroing. 536 * 537 * If pagesize > clustersize, this function will avoid zeroing outside 538 * of the cluster boundary. 539 * 540 * from == to == 0 is code for "zero the entire cluster region" 541 */ 542 static void ocfs2_clear_page_regions(struct page *page, 543 struct ocfs2_super *osb, u32 cpos, 544 unsigned from, unsigned to) 545 { 546 void *kaddr; 547 unsigned int cluster_start, cluster_end; 548 549 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 550 551 kaddr = kmap_atomic(page); 552 553 if (from || to) { 554 if (from > cluster_start) 555 memset(kaddr + cluster_start, 0, from - cluster_start); 556 if (to < cluster_end) 557 memset(kaddr + to, 0, cluster_end - to); 558 } else { 559 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 560 } 561 562 kunmap_atomic(kaddr); 563 } 564 565 /* 566 * Nonsparse file systems fully allocate before we get to the write 567 * code. This prevents ocfs2_write() from tagging the write as an 568 * allocating one, which means ocfs2_map_page_blocks() might try to 569 * read-in the blocks at the tail of our file. Avoid reading them by 570 * testing i_size against each block offset. 571 */ 572 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 573 unsigned int block_start) 574 { 575 u64 offset = page_offset(page) + block_start; 576 577 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 578 return 1; 579 580 if (i_size_read(inode) > offset) 581 return 1; 582 583 return 0; 584 } 585 586 /* 587 * Some of this taken from __block_write_begin(). We already have our 588 * mapping by now though, and the entire write will be allocating or 589 * it won't, so not much need to use BH_New. 590 * 591 * This will also skip zeroing, which is handled externally. 592 */ 593 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 594 struct inode *inode, unsigned int from, 595 unsigned int to, int new) 596 { 597 int ret = 0; 598 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 599 unsigned int block_end, block_start; 600 unsigned int bsize = i_blocksize(inode); 601 602 if (!page_has_buffers(page)) 603 create_empty_buffers(page, bsize, 0); 604 605 head = page_buffers(page); 606 for (bh = head, block_start = 0; bh != head || !block_start; 607 bh = bh->b_this_page, block_start += bsize) { 608 block_end = block_start + bsize; 609 610 clear_buffer_new(bh); 611 612 /* 613 * Ignore blocks outside of our i/o range - 614 * they may belong to unallocated clusters. 615 */ 616 if (block_start >= to || block_end <= from) { 617 if (PageUptodate(page)) 618 set_buffer_uptodate(bh); 619 continue; 620 } 621 622 /* 623 * For an allocating write with cluster size >= page 624 * size, we always write the entire page. 625 */ 626 if (new) 627 set_buffer_new(bh); 628 629 if (!buffer_mapped(bh)) { 630 map_bh(bh, inode->i_sb, *p_blkno); 631 clean_bdev_bh_alias(bh); 632 } 633 634 if (PageUptodate(page)) { 635 set_buffer_uptodate(bh); 636 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 637 !buffer_new(bh) && 638 ocfs2_should_read_blk(inode, page, block_start) && 639 (block_start < from || block_end > to)) { 640 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 641 *wait_bh++=bh; 642 } 643 644 *p_blkno = *p_blkno + 1; 645 } 646 647 /* 648 * If we issued read requests - let them complete. 649 */ 650 while(wait_bh > wait) { 651 wait_on_buffer(*--wait_bh); 652 if (!buffer_uptodate(*wait_bh)) 653 ret = -EIO; 654 } 655 656 if (ret == 0 || !new) 657 return ret; 658 659 /* 660 * If we get -EIO above, zero out any newly allocated blocks 661 * to avoid exposing stale data. 662 */ 663 bh = head; 664 block_start = 0; 665 do { 666 block_end = block_start + bsize; 667 if (block_end <= from) 668 goto next_bh; 669 if (block_start >= to) 670 break; 671 672 zero_user(page, block_start, bh->b_size); 673 set_buffer_uptodate(bh); 674 mark_buffer_dirty(bh); 675 676 next_bh: 677 block_start = block_end; 678 bh = bh->b_this_page; 679 } while (bh != head); 680 681 return ret; 682 } 683 684 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 685 #define OCFS2_MAX_CTXT_PAGES 1 686 #else 687 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE) 688 #endif 689 690 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE) 691 692 struct ocfs2_unwritten_extent { 693 struct list_head ue_node; 694 struct list_head ue_ip_node; 695 u32 ue_cpos; 696 u32 ue_phys; 697 }; 698 699 /* 700 * Describe the state of a single cluster to be written to. 701 */ 702 struct ocfs2_write_cluster_desc { 703 u32 c_cpos; 704 u32 c_phys; 705 /* 706 * Give this a unique field because c_phys eventually gets 707 * filled. 708 */ 709 unsigned c_new; 710 unsigned c_clear_unwritten; 711 unsigned c_needs_zero; 712 }; 713 714 struct ocfs2_write_ctxt { 715 /* Logical cluster position / len of write */ 716 u32 w_cpos; 717 u32 w_clen; 718 719 /* First cluster allocated in a nonsparse extend */ 720 u32 w_first_new_cpos; 721 722 /* Type of caller. Must be one of buffer, mmap, direct. */ 723 ocfs2_write_type_t w_type; 724 725 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 726 727 /* 728 * This is true if page_size > cluster_size. 729 * 730 * It triggers a set of special cases during write which might 731 * have to deal with allocating writes to partial pages. 732 */ 733 unsigned int w_large_pages; 734 735 /* 736 * Pages involved in this write. 737 * 738 * w_target_page is the page being written to by the user. 739 * 740 * w_pages is an array of pages which always contains 741 * w_target_page, and in the case of an allocating write with 742 * page_size < cluster size, it will contain zero'd and mapped 743 * pages adjacent to w_target_page which need to be written 744 * out in so that future reads from that region will get 745 * zero's. 746 */ 747 unsigned int w_num_pages; 748 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 749 struct page *w_target_page; 750 751 /* 752 * w_target_locked is used for page_mkwrite path indicating no unlocking 753 * against w_target_page in ocfs2_write_end_nolock. 754 */ 755 unsigned int w_target_locked:1; 756 757 /* 758 * ocfs2_write_end() uses this to know what the real range to 759 * write in the target should be. 760 */ 761 unsigned int w_target_from; 762 unsigned int w_target_to; 763 764 /* 765 * We could use journal_current_handle() but this is cleaner, 766 * IMHO -Mark 767 */ 768 handle_t *w_handle; 769 770 struct buffer_head *w_di_bh; 771 772 struct ocfs2_cached_dealloc_ctxt w_dealloc; 773 774 struct list_head w_unwritten_list; 775 unsigned int w_unwritten_count; 776 }; 777 778 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 779 { 780 int i; 781 782 for(i = 0; i < num_pages; i++) { 783 if (pages[i]) { 784 unlock_page(pages[i]); 785 mark_page_accessed(pages[i]); 786 put_page(pages[i]); 787 } 788 } 789 } 790 791 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 792 { 793 int i; 794 795 /* 796 * w_target_locked is only set to true in the page_mkwrite() case. 797 * The intent is to allow us to lock the target page from write_begin() 798 * to write_end(). The caller must hold a ref on w_target_page. 799 */ 800 if (wc->w_target_locked) { 801 BUG_ON(!wc->w_target_page); 802 for (i = 0; i < wc->w_num_pages; i++) { 803 if (wc->w_target_page == wc->w_pages[i]) { 804 wc->w_pages[i] = NULL; 805 break; 806 } 807 } 808 mark_page_accessed(wc->w_target_page); 809 put_page(wc->w_target_page); 810 } 811 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 812 } 813 814 static void ocfs2_free_unwritten_list(struct inode *inode, 815 struct list_head *head) 816 { 817 struct ocfs2_inode_info *oi = OCFS2_I(inode); 818 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL; 819 820 list_for_each_entry_safe(ue, tmp, head, ue_node) { 821 list_del(&ue->ue_node); 822 spin_lock(&oi->ip_lock); 823 list_del(&ue->ue_ip_node); 824 spin_unlock(&oi->ip_lock); 825 kfree(ue); 826 } 827 } 828 829 static void ocfs2_free_write_ctxt(struct inode *inode, 830 struct ocfs2_write_ctxt *wc) 831 { 832 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list); 833 ocfs2_unlock_pages(wc); 834 brelse(wc->w_di_bh); 835 kfree(wc); 836 } 837 838 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 839 struct ocfs2_super *osb, loff_t pos, 840 unsigned len, ocfs2_write_type_t type, 841 struct buffer_head *di_bh) 842 { 843 u32 cend; 844 struct ocfs2_write_ctxt *wc; 845 846 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 847 if (!wc) 848 return -ENOMEM; 849 850 wc->w_cpos = pos >> osb->s_clustersize_bits; 851 wc->w_first_new_cpos = UINT_MAX; 852 cend = (pos + len - 1) >> osb->s_clustersize_bits; 853 wc->w_clen = cend - wc->w_cpos + 1; 854 get_bh(di_bh); 855 wc->w_di_bh = di_bh; 856 wc->w_type = type; 857 858 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) 859 wc->w_large_pages = 1; 860 else 861 wc->w_large_pages = 0; 862 863 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 864 INIT_LIST_HEAD(&wc->w_unwritten_list); 865 866 *wcp = wc; 867 868 return 0; 869 } 870 871 /* 872 * If a page has any new buffers, zero them out here, and mark them uptodate 873 * and dirty so they'll be written out (in order to prevent uninitialised 874 * block data from leaking). And clear the new bit. 875 */ 876 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 877 { 878 unsigned int block_start, block_end; 879 struct buffer_head *head, *bh; 880 881 BUG_ON(!PageLocked(page)); 882 if (!page_has_buffers(page)) 883 return; 884 885 bh = head = page_buffers(page); 886 block_start = 0; 887 do { 888 block_end = block_start + bh->b_size; 889 890 if (buffer_new(bh)) { 891 if (block_end > from && block_start < to) { 892 if (!PageUptodate(page)) { 893 unsigned start, end; 894 895 start = max(from, block_start); 896 end = min(to, block_end); 897 898 zero_user_segment(page, start, end); 899 set_buffer_uptodate(bh); 900 } 901 902 clear_buffer_new(bh); 903 mark_buffer_dirty(bh); 904 } 905 } 906 907 block_start = block_end; 908 bh = bh->b_this_page; 909 } while (bh != head); 910 } 911 912 /* 913 * Only called when we have a failure during allocating write to write 914 * zero's to the newly allocated region. 915 */ 916 static void ocfs2_write_failure(struct inode *inode, 917 struct ocfs2_write_ctxt *wc, 918 loff_t user_pos, unsigned user_len) 919 { 920 int i; 921 unsigned from = user_pos & (PAGE_SIZE - 1), 922 to = user_pos + user_len; 923 struct page *tmppage; 924 925 if (wc->w_target_page) 926 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 927 928 for(i = 0; i < wc->w_num_pages; i++) { 929 tmppage = wc->w_pages[i]; 930 931 if (tmppage && page_has_buffers(tmppage)) { 932 if (ocfs2_should_order_data(inode)) 933 ocfs2_jbd2_inode_add_write(wc->w_handle, inode, 934 user_pos, user_len); 935 936 block_commit_write(tmppage, from, to); 937 } 938 } 939 } 940 941 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 942 struct ocfs2_write_ctxt *wc, 943 struct page *page, u32 cpos, 944 loff_t user_pos, unsigned user_len, 945 int new) 946 { 947 int ret; 948 unsigned int map_from = 0, map_to = 0; 949 unsigned int cluster_start, cluster_end; 950 unsigned int user_data_from = 0, user_data_to = 0; 951 952 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 953 &cluster_start, &cluster_end); 954 955 /* treat the write as new if the a hole/lseek spanned across 956 * the page boundary. 957 */ 958 new = new | ((i_size_read(inode) <= page_offset(page)) && 959 (page_offset(page) <= user_pos)); 960 961 if (page == wc->w_target_page) { 962 map_from = user_pos & (PAGE_SIZE - 1); 963 map_to = map_from + user_len; 964 965 if (new) 966 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 967 cluster_start, cluster_end, 968 new); 969 else 970 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 971 map_from, map_to, new); 972 if (ret) { 973 mlog_errno(ret); 974 goto out; 975 } 976 977 user_data_from = map_from; 978 user_data_to = map_to; 979 if (new) { 980 map_from = cluster_start; 981 map_to = cluster_end; 982 } 983 } else { 984 /* 985 * If we haven't allocated the new page yet, we 986 * shouldn't be writing it out without copying user 987 * data. This is likely a math error from the caller. 988 */ 989 BUG_ON(!new); 990 991 map_from = cluster_start; 992 map_to = cluster_end; 993 994 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 995 cluster_start, cluster_end, new); 996 if (ret) { 997 mlog_errno(ret); 998 goto out; 999 } 1000 } 1001 1002 /* 1003 * Parts of newly allocated pages need to be zero'd. 1004 * 1005 * Above, we have also rewritten 'to' and 'from' - as far as 1006 * the rest of the function is concerned, the entire cluster 1007 * range inside of a page needs to be written. 1008 * 1009 * We can skip this if the page is up to date - it's already 1010 * been zero'd from being read in as a hole. 1011 */ 1012 if (new && !PageUptodate(page)) 1013 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1014 cpos, user_data_from, user_data_to); 1015 1016 flush_dcache_page(page); 1017 1018 out: 1019 return ret; 1020 } 1021 1022 /* 1023 * This function will only grab one clusters worth of pages. 1024 */ 1025 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1026 struct ocfs2_write_ctxt *wc, 1027 u32 cpos, loff_t user_pos, 1028 unsigned user_len, int new, 1029 struct page *mmap_page) 1030 { 1031 int ret = 0, i; 1032 unsigned long start, target_index, end_index, index; 1033 struct inode *inode = mapping->host; 1034 loff_t last_byte; 1035 1036 target_index = user_pos >> PAGE_SHIFT; 1037 1038 /* 1039 * Figure out how many pages we'll be manipulating here. For 1040 * non allocating write, we just change the one 1041 * page. Otherwise, we'll need a whole clusters worth. If we're 1042 * writing past i_size, we only need enough pages to cover the 1043 * last page of the write. 1044 */ 1045 if (new) { 1046 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1047 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1048 /* 1049 * We need the index *past* the last page we could possibly 1050 * touch. This is the page past the end of the write or 1051 * i_size, whichever is greater. 1052 */ 1053 last_byte = max(user_pos + user_len, i_size_read(inode)); 1054 BUG_ON(last_byte < 1); 1055 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1; 1056 if ((start + wc->w_num_pages) > end_index) 1057 wc->w_num_pages = end_index - start; 1058 } else { 1059 wc->w_num_pages = 1; 1060 start = target_index; 1061 } 1062 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT; 1063 1064 for(i = 0; i < wc->w_num_pages; i++) { 1065 index = start + i; 1066 1067 if (index >= target_index && index <= end_index && 1068 wc->w_type == OCFS2_WRITE_MMAP) { 1069 /* 1070 * ocfs2_pagemkwrite() is a little different 1071 * and wants us to directly use the page 1072 * passed in. 1073 */ 1074 lock_page(mmap_page); 1075 1076 /* Exit and let the caller retry */ 1077 if (mmap_page->mapping != mapping) { 1078 WARN_ON(mmap_page->mapping); 1079 unlock_page(mmap_page); 1080 ret = -EAGAIN; 1081 goto out; 1082 } 1083 1084 get_page(mmap_page); 1085 wc->w_pages[i] = mmap_page; 1086 wc->w_target_locked = true; 1087 } else if (index >= target_index && index <= end_index && 1088 wc->w_type == OCFS2_WRITE_DIRECT) { 1089 /* Direct write has no mapping page. */ 1090 wc->w_pages[i] = NULL; 1091 continue; 1092 } else { 1093 wc->w_pages[i] = find_or_create_page(mapping, index, 1094 GFP_NOFS); 1095 if (!wc->w_pages[i]) { 1096 ret = -ENOMEM; 1097 mlog_errno(ret); 1098 goto out; 1099 } 1100 } 1101 wait_for_stable_page(wc->w_pages[i]); 1102 1103 if (index == target_index) 1104 wc->w_target_page = wc->w_pages[i]; 1105 } 1106 out: 1107 if (ret) 1108 wc->w_target_locked = false; 1109 return ret; 1110 } 1111 1112 /* 1113 * Prepare a single cluster for write one cluster into the file. 1114 */ 1115 static int ocfs2_write_cluster(struct address_space *mapping, 1116 u32 *phys, unsigned int new, 1117 unsigned int clear_unwritten, 1118 unsigned int should_zero, 1119 struct ocfs2_alloc_context *data_ac, 1120 struct ocfs2_alloc_context *meta_ac, 1121 struct ocfs2_write_ctxt *wc, u32 cpos, 1122 loff_t user_pos, unsigned user_len) 1123 { 1124 int ret, i; 1125 u64 p_blkno; 1126 struct inode *inode = mapping->host; 1127 struct ocfs2_extent_tree et; 1128 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); 1129 1130 if (new) { 1131 u32 tmp_pos; 1132 1133 /* 1134 * This is safe to call with the page locks - it won't take 1135 * any additional semaphores or cluster locks. 1136 */ 1137 tmp_pos = cpos; 1138 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1139 &tmp_pos, 1, !clear_unwritten, 1140 wc->w_di_bh, wc->w_handle, 1141 data_ac, meta_ac, NULL); 1142 /* 1143 * This shouldn't happen because we must have already 1144 * calculated the correct meta data allocation required. The 1145 * internal tree allocation code should know how to increase 1146 * transaction credits itself. 1147 * 1148 * If need be, we could handle -EAGAIN for a 1149 * RESTART_TRANS here. 1150 */ 1151 mlog_bug_on_msg(ret == -EAGAIN, 1152 "Inode %llu: EAGAIN return during allocation.\n", 1153 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1154 if (ret < 0) { 1155 mlog_errno(ret); 1156 goto out; 1157 } 1158 } else if (clear_unwritten) { 1159 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1160 wc->w_di_bh); 1161 ret = ocfs2_mark_extent_written(inode, &et, 1162 wc->w_handle, cpos, 1, *phys, 1163 meta_ac, &wc->w_dealloc); 1164 if (ret < 0) { 1165 mlog_errno(ret); 1166 goto out; 1167 } 1168 } 1169 1170 /* 1171 * The only reason this should fail is due to an inability to 1172 * find the extent added. 1173 */ 1174 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL); 1175 if (ret < 0) { 1176 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1177 "at logical cluster %u", 1178 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 1179 goto out; 1180 } 1181 1182 BUG_ON(*phys == 0); 1183 1184 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys); 1185 if (!should_zero) 1186 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1); 1187 1188 for(i = 0; i < wc->w_num_pages; i++) { 1189 int tmpret; 1190 1191 /* This is the direct io target page. */ 1192 if (wc->w_pages[i] == NULL) { 1193 p_blkno++; 1194 continue; 1195 } 1196 1197 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1198 wc->w_pages[i], cpos, 1199 user_pos, user_len, 1200 should_zero); 1201 if (tmpret) { 1202 mlog_errno(tmpret); 1203 if (ret == 0) 1204 ret = tmpret; 1205 } 1206 } 1207 1208 /* 1209 * We only have cleanup to do in case of allocating write. 1210 */ 1211 if (ret && new) 1212 ocfs2_write_failure(inode, wc, user_pos, user_len); 1213 1214 out: 1215 1216 return ret; 1217 } 1218 1219 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1220 struct ocfs2_alloc_context *data_ac, 1221 struct ocfs2_alloc_context *meta_ac, 1222 struct ocfs2_write_ctxt *wc, 1223 loff_t pos, unsigned len) 1224 { 1225 int ret, i; 1226 loff_t cluster_off; 1227 unsigned int local_len = len; 1228 struct ocfs2_write_cluster_desc *desc; 1229 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1230 1231 for (i = 0; i < wc->w_clen; i++) { 1232 desc = &wc->w_desc[i]; 1233 1234 /* 1235 * We have to make sure that the total write passed in 1236 * doesn't extend past a single cluster. 1237 */ 1238 local_len = len; 1239 cluster_off = pos & (osb->s_clustersize - 1); 1240 if ((cluster_off + local_len) > osb->s_clustersize) 1241 local_len = osb->s_clustersize - cluster_off; 1242 1243 ret = ocfs2_write_cluster(mapping, &desc->c_phys, 1244 desc->c_new, 1245 desc->c_clear_unwritten, 1246 desc->c_needs_zero, 1247 data_ac, meta_ac, 1248 wc, desc->c_cpos, pos, local_len); 1249 if (ret) { 1250 mlog_errno(ret); 1251 goto out; 1252 } 1253 1254 len -= local_len; 1255 pos += local_len; 1256 } 1257 1258 ret = 0; 1259 out: 1260 return ret; 1261 } 1262 1263 /* 1264 * ocfs2_write_end() wants to know which parts of the target page it 1265 * should complete the write on. It's easiest to compute them ahead of 1266 * time when a more complete view of the write is available. 1267 */ 1268 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1269 struct ocfs2_write_ctxt *wc, 1270 loff_t pos, unsigned len, int alloc) 1271 { 1272 struct ocfs2_write_cluster_desc *desc; 1273 1274 wc->w_target_from = pos & (PAGE_SIZE - 1); 1275 wc->w_target_to = wc->w_target_from + len; 1276 1277 if (alloc == 0) 1278 return; 1279 1280 /* 1281 * Allocating write - we may have different boundaries based 1282 * on page size and cluster size. 1283 * 1284 * NOTE: We can no longer compute one value from the other as 1285 * the actual write length and user provided length may be 1286 * different. 1287 */ 1288 1289 if (wc->w_large_pages) { 1290 /* 1291 * We only care about the 1st and last cluster within 1292 * our range and whether they should be zero'd or not. Either 1293 * value may be extended out to the start/end of a 1294 * newly allocated cluster. 1295 */ 1296 desc = &wc->w_desc[0]; 1297 if (desc->c_needs_zero) 1298 ocfs2_figure_cluster_boundaries(osb, 1299 desc->c_cpos, 1300 &wc->w_target_from, 1301 NULL); 1302 1303 desc = &wc->w_desc[wc->w_clen - 1]; 1304 if (desc->c_needs_zero) 1305 ocfs2_figure_cluster_boundaries(osb, 1306 desc->c_cpos, 1307 NULL, 1308 &wc->w_target_to); 1309 } else { 1310 wc->w_target_from = 0; 1311 wc->w_target_to = PAGE_SIZE; 1312 } 1313 } 1314 1315 /* 1316 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to 1317 * do the zero work. And should not to clear UNWRITTEN since it will be cleared 1318 * by the direct io procedure. 1319 * If this is a new extent that allocated by direct io, we should mark it in 1320 * the ip_unwritten_list. 1321 */ 1322 static int ocfs2_unwritten_check(struct inode *inode, 1323 struct ocfs2_write_ctxt *wc, 1324 struct ocfs2_write_cluster_desc *desc) 1325 { 1326 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1327 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL; 1328 int ret = 0; 1329 1330 if (!desc->c_needs_zero) 1331 return 0; 1332 1333 retry: 1334 spin_lock(&oi->ip_lock); 1335 /* Needs not to zero no metter buffer or direct. The one who is zero 1336 * the cluster is doing zero. And he will clear unwritten after all 1337 * cluster io finished. */ 1338 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) { 1339 if (desc->c_cpos == ue->ue_cpos) { 1340 BUG_ON(desc->c_new); 1341 desc->c_needs_zero = 0; 1342 desc->c_clear_unwritten = 0; 1343 goto unlock; 1344 } 1345 } 1346 1347 if (wc->w_type != OCFS2_WRITE_DIRECT) 1348 goto unlock; 1349 1350 if (new == NULL) { 1351 spin_unlock(&oi->ip_lock); 1352 new = kmalloc(sizeof(struct ocfs2_unwritten_extent), 1353 GFP_NOFS); 1354 if (new == NULL) { 1355 ret = -ENOMEM; 1356 goto out; 1357 } 1358 goto retry; 1359 } 1360 /* This direct write will doing zero. */ 1361 new->ue_cpos = desc->c_cpos; 1362 new->ue_phys = desc->c_phys; 1363 desc->c_clear_unwritten = 0; 1364 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list); 1365 list_add_tail(&new->ue_node, &wc->w_unwritten_list); 1366 wc->w_unwritten_count++; 1367 new = NULL; 1368 unlock: 1369 spin_unlock(&oi->ip_lock); 1370 out: 1371 kfree(new); 1372 return ret; 1373 } 1374 1375 /* 1376 * Populate each single-cluster write descriptor in the write context 1377 * with information about the i/o to be done. 1378 * 1379 * Returns the number of clusters that will have to be allocated, as 1380 * well as a worst case estimate of the number of extent records that 1381 * would have to be created during a write to an unwritten region. 1382 */ 1383 static int ocfs2_populate_write_desc(struct inode *inode, 1384 struct ocfs2_write_ctxt *wc, 1385 unsigned int *clusters_to_alloc, 1386 unsigned int *extents_to_split) 1387 { 1388 int ret; 1389 struct ocfs2_write_cluster_desc *desc; 1390 unsigned int num_clusters = 0; 1391 unsigned int ext_flags = 0; 1392 u32 phys = 0; 1393 int i; 1394 1395 *clusters_to_alloc = 0; 1396 *extents_to_split = 0; 1397 1398 for (i = 0; i < wc->w_clen; i++) { 1399 desc = &wc->w_desc[i]; 1400 desc->c_cpos = wc->w_cpos + i; 1401 1402 if (num_clusters == 0) { 1403 /* 1404 * Need to look up the next extent record. 1405 */ 1406 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1407 &num_clusters, &ext_flags); 1408 if (ret) { 1409 mlog_errno(ret); 1410 goto out; 1411 } 1412 1413 /* We should already CoW the refcountd extent. */ 1414 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1415 1416 /* 1417 * Assume worst case - that we're writing in 1418 * the middle of the extent. 1419 * 1420 * We can assume that the write proceeds from 1421 * left to right, in which case the extent 1422 * insert code is smart enough to coalesce the 1423 * next splits into the previous records created. 1424 */ 1425 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1426 *extents_to_split = *extents_to_split + 2; 1427 } else if (phys) { 1428 /* 1429 * Only increment phys if it doesn't describe 1430 * a hole. 1431 */ 1432 phys++; 1433 } 1434 1435 /* 1436 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1437 * file that got extended. w_first_new_cpos tells us 1438 * where the newly allocated clusters are so we can 1439 * zero them. 1440 */ 1441 if (desc->c_cpos >= wc->w_first_new_cpos) { 1442 BUG_ON(phys == 0); 1443 desc->c_needs_zero = 1; 1444 } 1445 1446 desc->c_phys = phys; 1447 if (phys == 0) { 1448 desc->c_new = 1; 1449 desc->c_needs_zero = 1; 1450 desc->c_clear_unwritten = 1; 1451 *clusters_to_alloc = *clusters_to_alloc + 1; 1452 } 1453 1454 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1455 desc->c_clear_unwritten = 1; 1456 desc->c_needs_zero = 1; 1457 } 1458 1459 ret = ocfs2_unwritten_check(inode, wc, desc); 1460 if (ret) { 1461 mlog_errno(ret); 1462 goto out; 1463 } 1464 1465 num_clusters--; 1466 } 1467 1468 ret = 0; 1469 out: 1470 return ret; 1471 } 1472 1473 static int ocfs2_write_begin_inline(struct address_space *mapping, 1474 struct inode *inode, 1475 struct ocfs2_write_ctxt *wc) 1476 { 1477 int ret; 1478 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1479 struct page *page; 1480 handle_t *handle; 1481 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1482 1483 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1484 if (IS_ERR(handle)) { 1485 ret = PTR_ERR(handle); 1486 mlog_errno(ret); 1487 goto out; 1488 } 1489 1490 page = find_or_create_page(mapping, 0, GFP_NOFS); 1491 if (!page) { 1492 ocfs2_commit_trans(osb, handle); 1493 ret = -ENOMEM; 1494 mlog_errno(ret); 1495 goto out; 1496 } 1497 /* 1498 * If we don't set w_num_pages then this page won't get unlocked 1499 * and freed on cleanup of the write context. 1500 */ 1501 wc->w_pages[0] = wc->w_target_page = page; 1502 wc->w_num_pages = 1; 1503 1504 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1505 OCFS2_JOURNAL_ACCESS_WRITE); 1506 if (ret) { 1507 ocfs2_commit_trans(osb, handle); 1508 1509 mlog_errno(ret); 1510 goto out; 1511 } 1512 1513 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1514 ocfs2_set_inode_data_inline(inode, di); 1515 1516 if (!PageUptodate(page)) { 1517 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1518 if (ret) { 1519 ocfs2_commit_trans(osb, handle); 1520 1521 goto out; 1522 } 1523 } 1524 1525 wc->w_handle = handle; 1526 out: 1527 return ret; 1528 } 1529 1530 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1531 { 1532 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1533 1534 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1535 return 1; 1536 return 0; 1537 } 1538 1539 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1540 struct inode *inode, loff_t pos, 1541 unsigned len, struct page *mmap_page, 1542 struct ocfs2_write_ctxt *wc) 1543 { 1544 int ret, written = 0; 1545 loff_t end = pos + len; 1546 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1547 struct ocfs2_dinode *di = NULL; 1548 1549 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1550 len, (unsigned long long)pos, 1551 oi->ip_dyn_features); 1552 1553 /* 1554 * Handle inodes which already have inline data 1st. 1555 */ 1556 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1557 if (mmap_page == NULL && 1558 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1559 goto do_inline_write; 1560 1561 /* 1562 * The write won't fit - we have to give this inode an 1563 * inline extent list now. 1564 */ 1565 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1566 if (ret) 1567 mlog_errno(ret); 1568 goto out; 1569 } 1570 1571 /* 1572 * Check whether the inode can accept inline data. 1573 */ 1574 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1575 return 0; 1576 1577 /* 1578 * Check whether the write can fit. 1579 */ 1580 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1581 if (mmap_page || 1582 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1583 return 0; 1584 1585 do_inline_write: 1586 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1587 if (ret) { 1588 mlog_errno(ret); 1589 goto out; 1590 } 1591 1592 /* 1593 * This signals to the caller that the data can be written 1594 * inline. 1595 */ 1596 written = 1; 1597 out: 1598 return written ? written : ret; 1599 } 1600 1601 /* 1602 * This function only does anything for file systems which can't 1603 * handle sparse files. 1604 * 1605 * What we want to do here is fill in any hole between the current end 1606 * of allocation and the end of our write. That way the rest of the 1607 * write path can treat it as an non-allocating write, which has no 1608 * special case code for sparse/nonsparse files. 1609 */ 1610 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1611 struct buffer_head *di_bh, 1612 loff_t pos, unsigned len, 1613 struct ocfs2_write_ctxt *wc) 1614 { 1615 int ret; 1616 loff_t newsize = pos + len; 1617 1618 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1619 1620 if (newsize <= i_size_read(inode)) 1621 return 0; 1622 1623 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1624 if (ret) 1625 mlog_errno(ret); 1626 1627 /* There is no wc if this is call from direct. */ 1628 if (wc) 1629 wc->w_first_new_cpos = 1630 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1631 1632 return ret; 1633 } 1634 1635 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1636 loff_t pos) 1637 { 1638 int ret = 0; 1639 1640 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1641 if (pos > i_size_read(inode)) 1642 ret = ocfs2_zero_extend(inode, di_bh, pos); 1643 1644 return ret; 1645 } 1646 1647 int ocfs2_write_begin_nolock(struct address_space *mapping, 1648 loff_t pos, unsigned len, ocfs2_write_type_t type, 1649 struct page **pagep, void **fsdata, 1650 struct buffer_head *di_bh, struct page *mmap_page) 1651 { 1652 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1653 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1654 struct ocfs2_write_ctxt *wc; 1655 struct inode *inode = mapping->host; 1656 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1657 struct ocfs2_dinode *di; 1658 struct ocfs2_alloc_context *data_ac = NULL; 1659 struct ocfs2_alloc_context *meta_ac = NULL; 1660 handle_t *handle; 1661 struct ocfs2_extent_tree et; 1662 int try_free = 1, ret1; 1663 1664 try_again: 1665 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh); 1666 if (ret) { 1667 mlog_errno(ret); 1668 return ret; 1669 } 1670 1671 if (ocfs2_supports_inline_data(osb)) { 1672 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1673 mmap_page, wc); 1674 if (ret == 1) { 1675 ret = 0; 1676 goto success; 1677 } 1678 if (ret < 0) { 1679 mlog_errno(ret); 1680 goto out; 1681 } 1682 } 1683 1684 /* Direct io change i_size late, should not zero tail here. */ 1685 if (type != OCFS2_WRITE_DIRECT) { 1686 if (ocfs2_sparse_alloc(osb)) 1687 ret = ocfs2_zero_tail(inode, di_bh, pos); 1688 else 1689 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 1690 len, wc); 1691 if (ret) { 1692 mlog_errno(ret); 1693 goto out; 1694 } 1695 } 1696 1697 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1698 if (ret < 0) { 1699 mlog_errno(ret); 1700 goto out; 1701 } else if (ret == 1) { 1702 clusters_need = wc->w_clen; 1703 ret = ocfs2_refcount_cow(inode, di_bh, 1704 wc->w_cpos, wc->w_clen, UINT_MAX); 1705 if (ret) { 1706 mlog_errno(ret); 1707 goto out; 1708 } 1709 } 1710 1711 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1712 &extents_to_split); 1713 if (ret) { 1714 mlog_errno(ret); 1715 goto out; 1716 } 1717 clusters_need += clusters_to_alloc; 1718 1719 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1720 1721 trace_ocfs2_write_begin_nolock( 1722 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1723 (long long)i_size_read(inode), 1724 le32_to_cpu(di->i_clusters), 1725 pos, len, type, mmap_page, 1726 clusters_to_alloc, extents_to_split); 1727 1728 /* 1729 * We set w_target_from, w_target_to here so that 1730 * ocfs2_write_end() knows which range in the target page to 1731 * write out. An allocation requires that we write the entire 1732 * cluster range. 1733 */ 1734 if (clusters_to_alloc || extents_to_split) { 1735 /* 1736 * XXX: We are stretching the limits of 1737 * ocfs2_lock_allocators(). It greatly over-estimates 1738 * the work to be done. 1739 */ 1740 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1741 wc->w_di_bh); 1742 ret = ocfs2_lock_allocators(inode, &et, 1743 clusters_to_alloc, extents_to_split, 1744 &data_ac, &meta_ac); 1745 if (ret) { 1746 mlog_errno(ret); 1747 goto out; 1748 } 1749 1750 if (data_ac) 1751 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1752 1753 credits = ocfs2_calc_extend_credits(inode->i_sb, 1754 &di->id2.i_list); 1755 } else if (type == OCFS2_WRITE_DIRECT) 1756 /* direct write needs not to start trans if no extents alloc. */ 1757 goto success; 1758 1759 /* 1760 * We have to zero sparse allocated clusters, unwritten extent clusters, 1761 * and non-sparse clusters we just extended. For non-sparse writes, 1762 * we know zeros will only be needed in the first and/or last cluster. 1763 */ 1764 if (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1765 wc->w_desc[wc->w_clen - 1].c_needs_zero)) 1766 cluster_of_pages = 1; 1767 else 1768 cluster_of_pages = 0; 1769 1770 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1771 1772 handle = ocfs2_start_trans(osb, credits); 1773 if (IS_ERR(handle)) { 1774 ret = PTR_ERR(handle); 1775 mlog_errno(ret); 1776 goto out; 1777 } 1778 1779 wc->w_handle = handle; 1780 1781 if (clusters_to_alloc) { 1782 ret = dquot_alloc_space_nodirty(inode, 1783 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1784 if (ret) 1785 goto out_commit; 1786 } 1787 1788 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1789 OCFS2_JOURNAL_ACCESS_WRITE); 1790 if (ret) { 1791 mlog_errno(ret); 1792 goto out_quota; 1793 } 1794 1795 /* 1796 * Fill our page array first. That way we've grabbed enough so 1797 * that we can zero and flush if we error after adding the 1798 * extent. 1799 */ 1800 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1801 cluster_of_pages, mmap_page); 1802 if (ret) { 1803 /* 1804 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 1805 * the target page. In this case, we exit with no error and no target 1806 * page. This will trigger the caller, page_mkwrite(), to re-try 1807 * the operation. 1808 */ 1809 if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) { 1810 BUG_ON(wc->w_target_page); 1811 ret = 0; 1812 goto out_quota; 1813 } 1814 1815 mlog_errno(ret); 1816 goto out_quota; 1817 } 1818 1819 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1820 len); 1821 if (ret) { 1822 mlog_errno(ret); 1823 goto out_quota; 1824 } 1825 1826 if (data_ac) 1827 ocfs2_free_alloc_context(data_ac); 1828 if (meta_ac) 1829 ocfs2_free_alloc_context(meta_ac); 1830 1831 success: 1832 if (pagep) 1833 *pagep = wc->w_target_page; 1834 *fsdata = wc; 1835 return 0; 1836 out_quota: 1837 if (clusters_to_alloc) 1838 dquot_free_space(inode, 1839 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1840 out_commit: 1841 ocfs2_commit_trans(osb, handle); 1842 1843 out: 1844 /* 1845 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(), 1846 * even in case of error here like ENOSPC and ENOMEM. So, we need 1847 * to unlock the target page manually to prevent deadlocks when 1848 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED 1849 * to VM code. 1850 */ 1851 if (wc->w_target_locked) 1852 unlock_page(mmap_page); 1853 1854 ocfs2_free_write_ctxt(inode, wc); 1855 1856 if (data_ac) { 1857 ocfs2_free_alloc_context(data_ac); 1858 data_ac = NULL; 1859 } 1860 if (meta_ac) { 1861 ocfs2_free_alloc_context(meta_ac); 1862 meta_ac = NULL; 1863 } 1864 1865 if (ret == -ENOSPC && try_free) { 1866 /* 1867 * Try to free some truncate log so that we can have enough 1868 * clusters to allocate. 1869 */ 1870 try_free = 0; 1871 1872 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1873 if (ret1 == 1) 1874 goto try_again; 1875 1876 if (ret1 < 0) 1877 mlog_errno(ret1); 1878 } 1879 1880 return ret; 1881 } 1882 1883 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1884 loff_t pos, unsigned len, unsigned flags, 1885 struct page **pagep, void **fsdata) 1886 { 1887 int ret; 1888 struct buffer_head *di_bh = NULL; 1889 struct inode *inode = mapping->host; 1890 1891 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1892 if (ret) { 1893 mlog_errno(ret); 1894 return ret; 1895 } 1896 1897 /* 1898 * Take alloc sem here to prevent concurrent lookups. That way 1899 * the mapping, zeroing and tree manipulation within 1900 * ocfs2_write() will be safe against ->readpage(). This 1901 * should also serve to lock out allocation from a shared 1902 * writeable region. 1903 */ 1904 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1905 1906 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER, 1907 pagep, fsdata, di_bh, NULL); 1908 if (ret) { 1909 mlog_errno(ret); 1910 goto out_fail; 1911 } 1912 1913 brelse(di_bh); 1914 1915 return 0; 1916 1917 out_fail: 1918 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1919 1920 brelse(di_bh); 1921 ocfs2_inode_unlock(inode, 1); 1922 1923 return ret; 1924 } 1925 1926 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1927 unsigned len, unsigned *copied, 1928 struct ocfs2_dinode *di, 1929 struct ocfs2_write_ctxt *wc) 1930 { 1931 void *kaddr; 1932 1933 if (unlikely(*copied < len)) { 1934 if (!PageUptodate(wc->w_target_page)) { 1935 *copied = 0; 1936 return; 1937 } 1938 } 1939 1940 kaddr = kmap_atomic(wc->w_target_page); 1941 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1942 kunmap_atomic(kaddr); 1943 1944 trace_ocfs2_write_end_inline( 1945 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1946 (unsigned long long)pos, *copied, 1947 le16_to_cpu(di->id2.i_data.id_count), 1948 le16_to_cpu(di->i_dyn_features)); 1949 } 1950 1951 int ocfs2_write_end_nolock(struct address_space *mapping, 1952 loff_t pos, unsigned len, unsigned copied, void *fsdata) 1953 { 1954 int i, ret; 1955 unsigned from, to, start = pos & (PAGE_SIZE - 1); 1956 struct inode *inode = mapping->host; 1957 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1958 struct ocfs2_write_ctxt *wc = fsdata; 1959 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1960 handle_t *handle = wc->w_handle; 1961 struct page *tmppage; 1962 1963 BUG_ON(!list_empty(&wc->w_unwritten_list)); 1964 1965 if (handle) { 1966 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), 1967 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); 1968 if (ret) { 1969 copied = ret; 1970 mlog_errno(ret); 1971 goto out; 1972 } 1973 } 1974 1975 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1976 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1977 goto out_write_size; 1978 } 1979 1980 if (unlikely(copied < len) && wc->w_target_page) { 1981 if (!PageUptodate(wc->w_target_page)) 1982 copied = 0; 1983 1984 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1985 start+len); 1986 } 1987 if (wc->w_target_page) 1988 flush_dcache_page(wc->w_target_page); 1989 1990 for(i = 0; i < wc->w_num_pages; i++) { 1991 tmppage = wc->w_pages[i]; 1992 1993 /* This is the direct io target page. */ 1994 if (tmppage == NULL) 1995 continue; 1996 1997 if (tmppage == wc->w_target_page) { 1998 from = wc->w_target_from; 1999 to = wc->w_target_to; 2000 2001 BUG_ON(from > PAGE_SIZE || 2002 to > PAGE_SIZE || 2003 to < from); 2004 } else { 2005 /* 2006 * Pages adjacent to the target (if any) imply 2007 * a hole-filling write in which case we want 2008 * to flush their entire range. 2009 */ 2010 from = 0; 2011 to = PAGE_SIZE; 2012 } 2013 2014 if (page_has_buffers(tmppage)) { 2015 if (handle && ocfs2_should_order_data(inode)) { 2016 loff_t start_byte = 2017 ((loff_t)tmppage->index << PAGE_SHIFT) + 2018 from; 2019 loff_t length = to - from; 2020 ocfs2_jbd2_inode_add_write(handle, inode, 2021 start_byte, length); 2022 } 2023 block_commit_write(tmppage, from, to); 2024 } 2025 } 2026 2027 out_write_size: 2028 /* Direct io do not update i_size here. */ 2029 if (wc->w_type != OCFS2_WRITE_DIRECT) { 2030 pos += copied; 2031 if (pos > i_size_read(inode)) { 2032 i_size_write(inode, pos); 2033 mark_inode_dirty(inode); 2034 } 2035 inode->i_blocks = ocfs2_inode_sector_count(inode); 2036 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2037 inode->i_mtime = inode->i_ctime = current_time(inode); 2038 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2039 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2040 if (handle) 2041 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2042 } 2043 if (handle) 2044 ocfs2_journal_dirty(handle, wc->w_di_bh); 2045 2046 out: 2047 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2048 * lock, or it will cause a deadlock since journal commit threads holds 2049 * this lock and will ask for the page lock when flushing the data. 2050 * put it here to preserve the unlock order. 2051 */ 2052 ocfs2_unlock_pages(wc); 2053 2054 if (handle) 2055 ocfs2_commit_trans(osb, handle); 2056 2057 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2058 2059 brelse(wc->w_di_bh); 2060 kfree(wc); 2061 2062 return copied; 2063 } 2064 2065 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2066 loff_t pos, unsigned len, unsigned copied, 2067 struct page *page, void *fsdata) 2068 { 2069 int ret; 2070 struct inode *inode = mapping->host; 2071 2072 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata); 2073 2074 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2075 ocfs2_inode_unlock(inode, 1); 2076 2077 return ret; 2078 } 2079 2080 struct ocfs2_dio_write_ctxt { 2081 struct list_head dw_zero_list; 2082 unsigned dw_zero_count; 2083 int dw_orphaned; 2084 pid_t dw_writer_pid; 2085 }; 2086 2087 static struct ocfs2_dio_write_ctxt * 2088 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc) 2089 { 2090 struct ocfs2_dio_write_ctxt *dwc = NULL; 2091 2092 if (bh->b_private) 2093 return bh->b_private; 2094 2095 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS); 2096 if (dwc == NULL) 2097 return NULL; 2098 INIT_LIST_HEAD(&dwc->dw_zero_list); 2099 dwc->dw_zero_count = 0; 2100 dwc->dw_orphaned = 0; 2101 dwc->dw_writer_pid = task_pid_nr(current); 2102 bh->b_private = dwc; 2103 *alloc = 1; 2104 2105 return dwc; 2106 } 2107 2108 static void ocfs2_dio_free_write_ctx(struct inode *inode, 2109 struct ocfs2_dio_write_ctxt *dwc) 2110 { 2111 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list); 2112 kfree(dwc); 2113 } 2114 2115 /* 2116 * TODO: Make this into a generic get_blocks function. 2117 * 2118 * From do_direct_io in direct-io.c: 2119 * "So what we do is to permit the ->get_blocks function to populate 2120 * bh.b_size with the size of IO which is permitted at this offset and 2121 * this i_blkbits." 2122 * 2123 * This function is called directly from get_more_blocks in direct-io.c. 2124 * 2125 * called like this: dio->get_blocks(dio->inode, fs_startblk, 2126 * fs_count, map_bh, dio->rw == WRITE); 2127 */ 2128 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock, 2129 struct buffer_head *bh_result, int create) 2130 { 2131 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2132 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2133 struct ocfs2_write_ctxt *wc; 2134 struct ocfs2_write_cluster_desc *desc = NULL; 2135 struct ocfs2_dio_write_ctxt *dwc = NULL; 2136 struct buffer_head *di_bh = NULL; 2137 u64 p_blkno; 2138 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits; 2139 loff_t pos = iblock << i_blkbits; 2140 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits; 2141 unsigned len, total_len = bh_result->b_size; 2142 int ret = 0, first_get_block = 0; 2143 2144 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1)); 2145 len = min(total_len, len); 2146 2147 /* 2148 * bh_result->b_size is count in get_more_blocks according to write 2149 * "pos" and "end", we need map twice to return different buffer state: 2150 * 1. area in file size, not set NEW; 2151 * 2. area out file size, set NEW. 2152 * 2153 * iblock endblk 2154 * |--------|---------|---------|--------- 2155 * |<-------area in file------->| 2156 */ 2157 2158 if ((iblock <= endblk) && 2159 ((iblock + ((len - 1) >> i_blkbits)) > endblk)) 2160 len = (endblk - iblock + 1) << i_blkbits; 2161 2162 mlog(0, "get block of %lu at %llu:%u req %u\n", 2163 inode->i_ino, pos, len, total_len); 2164 2165 /* 2166 * Because we need to change file size in ocfs2_dio_end_io_write(), or 2167 * we may need to add it to orphan dir. So can not fall to fast path 2168 * while file size will be changed. 2169 */ 2170 if (pos + total_len <= i_size_read(inode)) { 2171 2172 /* This is the fast path for re-write. */ 2173 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create); 2174 if (buffer_mapped(bh_result) && 2175 !buffer_new(bh_result) && 2176 ret == 0) 2177 goto out; 2178 2179 /* Clear state set by ocfs2_get_block. */ 2180 bh_result->b_state = 0; 2181 } 2182 2183 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block); 2184 if (unlikely(dwc == NULL)) { 2185 ret = -ENOMEM; 2186 mlog_errno(ret); 2187 goto out; 2188 } 2189 2190 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) > 2191 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) && 2192 !dwc->dw_orphaned) { 2193 /* 2194 * when we are going to alloc extents beyond file size, add the 2195 * inode to orphan dir, so we can recall those spaces when 2196 * system crashed during write. 2197 */ 2198 ret = ocfs2_add_inode_to_orphan(osb, inode); 2199 if (ret < 0) { 2200 mlog_errno(ret); 2201 goto out; 2202 } 2203 dwc->dw_orphaned = 1; 2204 } 2205 2206 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2207 if (ret) { 2208 mlog_errno(ret); 2209 goto out; 2210 } 2211 2212 down_write(&oi->ip_alloc_sem); 2213 2214 if (first_get_block) { 2215 if (ocfs2_sparse_alloc(osb)) 2216 ret = ocfs2_zero_tail(inode, di_bh, pos); 2217 else 2218 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 2219 total_len, NULL); 2220 if (ret < 0) { 2221 mlog_errno(ret); 2222 goto unlock; 2223 } 2224 } 2225 2226 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len, 2227 OCFS2_WRITE_DIRECT, NULL, 2228 (void **)&wc, di_bh, NULL); 2229 if (ret) { 2230 mlog_errno(ret); 2231 goto unlock; 2232 } 2233 2234 desc = &wc->w_desc[0]; 2235 2236 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys); 2237 BUG_ON(p_blkno == 0); 2238 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1); 2239 2240 map_bh(bh_result, inode->i_sb, p_blkno); 2241 bh_result->b_size = len; 2242 if (desc->c_needs_zero) 2243 set_buffer_new(bh_result); 2244 2245 if (iblock > endblk) 2246 set_buffer_new(bh_result); 2247 2248 /* May sleep in end_io. It should not happen in a irq context. So defer 2249 * it to dio work queue. */ 2250 set_buffer_defer_completion(bh_result); 2251 2252 if (!list_empty(&wc->w_unwritten_list)) { 2253 struct ocfs2_unwritten_extent *ue = NULL; 2254 2255 ue = list_first_entry(&wc->w_unwritten_list, 2256 struct ocfs2_unwritten_extent, 2257 ue_node); 2258 BUG_ON(ue->ue_cpos != desc->c_cpos); 2259 /* The physical address may be 0, fill it. */ 2260 ue->ue_phys = desc->c_phys; 2261 2262 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list); 2263 dwc->dw_zero_count += wc->w_unwritten_count; 2264 } 2265 2266 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc); 2267 BUG_ON(ret != len); 2268 ret = 0; 2269 unlock: 2270 up_write(&oi->ip_alloc_sem); 2271 ocfs2_inode_unlock(inode, 1); 2272 brelse(di_bh); 2273 out: 2274 if (ret < 0) 2275 ret = -EIO; 2276 return ret; 2277 } 2278 2279 static int ocfs2_dio_end_io_write(struct inode *inode, 2280 struct ocfs2_dio_write_ctxt *dwc, 2281 loff_t offset, 2282 ssize_t bytes) 2283 { 2284 struct ocfs2_cached_dealloc_ctxt dealloc; 2285 struct ocfs2_extent_tree et; 2286 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2287 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2288 struct ocfs2_unwritten_extent *ue = NULL; 2289 struct buffer_head *di_bh = NULL; 2290 struct ocfs2_dinode *di; 2291 struct ocfs2_alloc_context *data_ac = NULL; 2292 struct ocfs2_alloc_context *meta_ac = NULL; 2293 handle_t *handle = NULL; 2294 loff_t end = offset + bytes; 2295 int ret = 0, credits = 0; 2296 2297 ocfs2_init_dealloc_ctxt(&dealloc); 2298 2299 /* We do clear unwritten, delete orphan, change i_size here. If neither 2300 * of these happen, we can skip all this. */ 2301 if (list_empty(&dwc->dw_zero_list) && 2302 end <= i_size_read(inode) && 2303 !dwc->dw_orphaned) 2304 goto out; 2305 2306 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2307 if (ret < 0) { 2308 mlog_errno(ret); 2309 goto out; 2310 } 2311 2312 down_write(&oi->ip_alloc_sem); 2313 2314 /* Delete orphan before acquire i_mutex. */ 2315 if (dwc->dw_orphaned) { 2316 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current)); 2317 2318 end = end > i_size_read(inode) ? end : 0; 2319 2320 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 2321 !!end, end); 2322 if (ret < 0) 2323 mlog_errno(ret); 2324 } 2325 2326 di = (struct ocfs2_dinode *)di_bh->b_data; 2327 2328 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 2329 2330 /* Attach dealloc with extent tree in case that we may reuse extents 2331 * which are already unlinked from current extent tree due to extent 2332 * rotation and merging. 2333 */ 2334 et.et_dealloc = &dealloc; 2335 2336 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2, 2337 &data_ac, &meta_ac); 2338 if (ret) { 2339 mlog_errno(ret); 2340 goto unlock; 2341 } 2342 2343 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list); 2344 2345 handle = ocfs2_start_trans(osb, credits); 2346 if (IS_ERR(handle)) { 2347 ret = PTR_ERR(handle); 2348 mlog_errno(ret); 2349 goto unlock; 2350 } 2351 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 2352 OCFS2_JOURNAL_ACCESS_WRITE); 2353 if (ret) { 2354 mlog_errno(ret); 2355 goto commit; 2356 } 2357 2358 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) { 2359 ret = ocfs2_mark_extent_written(inode, &et, handle, 2360 ue->ue_cpos, 1, 2361 ue->ue_phys, 2362 meta_ac, &dealloc); 2363 if (ret < 0) { 2364 mlog_errno(ret); 2365 break; 2366 } 2367 } 2368 2369 if (end > i_size_read(inode)) { 2370 ret = ocfs2_set_inode_size(handle, inode, di_bh, end); 2371 if (ret < 0) 2372 mlog_errno(ret); 2373 } 2374 commit: 2375 ocfs2_commit_trans(osb, handle); 2376 unlock: 2377 up_write(&oi->ip_alloc_sem); 2378 ocfs2_inode_unlock(inode, 1); 2379 brelse(di_bh); 2380 out: 2381 if (data_ac) 2382 ocfs2_free_alloc_context(data_ac); 2383 if (meta_ac) 2384 ocfs2_free_alloc_context(meta_ac); 2385 ocfs2_run_deallocs(osb, &dealloc); 2386 ocfs2_dio_free_write_ctx(inode, dwc); 2387 2388 return ret; 2389 } 2390 2391 /* 2392 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 2393 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 2394 * to protect io on one node from truncation on another. 2395 */ 2396 static int ocfs2_dio_end_io(struct kiocb *iocb, 2397 loff_t offset, 2398 ssize_t bytes, 2399 void *private) 2400 { 2401 struct inode *inode = file_inode(iocb->ki_filp); 2402 int level; 2403 int ret = 0; 2404 2405 /* this io's submitter should not have unlocked this before we could */ 2406 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 2407 2408 if (bytes <= 0) 2409 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld", 2410 (long long)bytes); 2411 if (private) { 2412 if (bytes > 0) 2413 ret = ocfs2_dio_end_io_write(inode, private, offset, 2414 bytes); 2415 else 2416 ocfs2_dio_free_write_ctx(inode, private); 2417 } 2418 2419 ocfs2_iocb_clear_rw_locked(iocb); 2420 2421 level = ocfs2_iocb_rw_locked_level(iocb); 2422 ocfs2_rw_unlock(inode, level); 2423 return ret; 2424 } 2425 2426 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2427 { 2428 struct file *file = iocb->ki_filp; 2429 struct inode *inode = file->f_mapping->host; 2430 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2431 get_block_t *get_block; 2432 2433 /* 2434 * Fallback to buffered I/O if we see an inode without 2435 * extents. 2436 */ 2437 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2438 return 0; 2439 2440 /* Fallback to buffered I/O if we do not support append dio. */ 2441 if (iocb->ki_pos + iter->count > i_size_read(inode) && 2442 !ocfs2_supports_append_dio(osb)) 2443 return 0; 2444 2445 if (iov_iter_rw(iter) == READ) 2446 get_block = ocfs2_lock_get_block; 2447 else 2448 get_block = ocfs2_dio_wr_get_block; 2449 2450 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2451 iter, get_block, 2452 ocfs2_dio_end_io, NULL, 0); 2453 } 2454 2455 const struct address_space_operations ocfs2_aops = { 2456 .set_page_dirty = __set_page_dirty_buffers, 2457 .readpage = ocfs2_readpage, 2458 .readahead = ocfs2_readahead, 2459 .writepage = ocfs2_writepage, 2460 .write_begin = ocfs2_write_begin, 2461 .write_end = ocfs2_write_end, 2462 .bmap = ocfs2_bmap, 2463 .direct_IO = ocfs2_direct_IO, 2464 .invalidatepage = block_invalidatepage, 2465 .releasepage = ocfs2_releasepage, 2466 .migratepage = buffer_migrate_page, 2467 .is_partially_uptodate = block_is_partially_uptodate, 2468 .error_remove_page = generic_error_remove_page, 2469 }; 2470