1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 #include <linux/quotaops.h> 31 #include <linux/blkdev.h> 32 #include <linux/uio.h> 33 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "dlmglue.h" 41 #include "extent_map.h" 42 #include "file.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "suballoc.h" 46 #include "super.h" 47 #include "symlink.h" 48 #include "refcounttree.h" 49 #include "ocfs2_trace.h" 50 51 #include "buffer_head_io.h" 52 #include "dir.h" 53 #include "namei.h" 54 #include "sysfile.h" 55 56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 57 struct buffer_head *bh_result, int create) 58 { 59 int err = -EIO; 60 int status; 61 struct ocfs2_dinode *fe = NULL; 62 struct buffer_head *bh = NULL; 63 struct buffer_head *buffer_cache_bh = NULL; 64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 65 void *kaddr; 66 67 trace_ocfs2_symlink_get_block( 68 (unsigned long long)OCFS2_I(inode)->ip_blkno, 69 (unsigned long long)iblock, bh_result, create); 70 71 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 72 73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 75 (unsigned long long)iblock); 76 goto bail; 77 } 78 79 status = ocfs2_read_inode_block(inode, &bh); 80 if (status < 0) { 81 mlog_errno(status); 82 goto bail; 83 } 84 fe = (struct ocfs2_dinode *) bh->b_data; 85 86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 87 le32_to_cpu(fe->i_clusters))) { 88 err = -ENOMEM; 89 mlog(ML_ERROR, "block offset is outside the allocated size: " 90 "%llu\n", (unsigned long long)iblock); 91 goto bail; 92 } 93 94 /* We don't use the page cache to create symlink data, so if 95 * need be, copy it over from the buffer cache. */ 96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 98 iblock; 99 buffer_cache_bh = sb_getblk(osb->sb, blkno); 100 if (!buffer_cache_bh) { 101 err = -ENOMEM; 102 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 103 goto bail; 104 } 105 106 /* we haven't locked out transactions, so a commit 107 * could've happened. Since we've got a reference on 108 * the bh, even if it commits while we're doing the 109 * copy, the data is still good. */ 110 if (buffer_jbd(buffer_cache_bh) 111 && ocfs2_inode_is_new(inode)) { 112 kaddr = kmap_atomic(bh_result->b_page); 113 if (!kaddr) { 114 mlog(ML_ERROR, "couldn't kmap!\n"); 115 goto bail; 116 } 117 memcpy(kaddr + (bh_result->b_size * iblock), 118 buffer_cache_bh->b_data, 119 bh_result->b_size); 120 kunmap_atomic(kaddr); 121 set_buffer_uptodate(bh_result); 122 } 123 brelse(buffer_cache_bh); 124 } 125 126 map_bh(bh_result, inode->i_sb, 127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 128 129 err = 0; 130 131 bail: 132 brelse(bh); 133 134 return err; 135 } 136 137 int ocfs2_get_block(struct inode *inode, sector_t iblock, 138 struct buffer_head *bh_result, int create) 139 { 140 int err = 0; 141 unsigned int ext_flags; 142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 143 u64 p_blkno, count, past_eof; 144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 145 146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 147 (unsigned long long)iblock, bh_result, create); 148 149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 151 inode, inode->i_ino); 152 153 if (S_ISLNK(inode->i_mode)) { 154 /* this always does I/O for some reason. */ 155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 156 goto bail; 157 } 158 159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 160 &ext_flags); 161 if (err) { 162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 164 (unsigned long long)p_blkno); 165 goto bail; 166 } 167 168 if (max_blocks < count) 169 count = max_blocks; 170 171 /* 172 * ocfs2 never allocates in this function - the only time we 173 * need to use BH_New is when we're extending i_size on a file 174 * system which doesn't support holes, in which case BH_New 175 * allows __block_write_begin() to zero. 176 * 177 * If we see this on a sparse file system, then a truncate has 178 * raced us and removed the cluster. In this case, we clear 179 * the buffers dirty and uptodate bits and let the buffer code 180 * ignore it as a hole. 181 */ 182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 183 clear_buffer_dirty(bh_result); 184 clear_buffer_uptodate(bh_result); 185 goto bail; 186 } 187 188 /* Treat the unwritten extent as a hole for zeroing purposes. */ 189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 190 map_bh(bh_result, inode->i_sb, p_blkno); 191 192 bh_result->b_size = count << inode->i_blkbits; 193 194 if (!ocfs2_sparse_alloc(osb)) { 195 if (p_blkno == 0) { 196 err = -EIO; 197 mlog(ML_ERROR, 198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 199 (unsigned long long)iblock, 200 (unsigned long long)p_blkno, 201 (unsigned long long)OCFS2_I(inode)->ip_blkno); 202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 203 dump_stack(); 204 goto bail; 205 } 206 } 207 208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 209 210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 211 (unsigned long long)past_eof); 212 if (create && (iblock >= past_eof)) 213 set_buffer_new(bh_result); 214 215 bail: 216 if (err < 0) 217 err = -EIO; 218 219 return err; 220 } 221 222 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 223 struct buffer_head *di_bh) 224 { 225 void *kaddr; 226 loff_t size; 227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 228 229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 231 (unsigned long long)OCFS2_I(inode)->ip_blkno); 232 return -EROFS; 233 } 234 235 size = i_size_read(inode); 236 237 if (size > PAGE_SIZE || 238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 239 ocfs2_error(inode->i_sb, 240 "Inode %llu has with inline data has bad size: %Lu\n", 241 (unsigned long long)OCFS2_I(inode)->ip_blkno, 242 (unsigned long long)size); 243 return -EROFS; 244 } 245 246 kaddr = kmap_atomic(page); 247 if (size) 248 memcpy(kaddr, di->id2.i_data.id_data, size); 249 /* Clear the remaining part of the page */ 250 memset(kaddr + size, 0, PAGE_SIZE - size); 251 flush_dcache_page(page); 252 kunmap_atomic(kaddr); 253 254 SetPageUptodate(page); 255 256 return 0; 257 } 258 259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 260 { 261 int ret; 262 struct buffer_head *di_bh = NULL; 263 264 BUG_ON(!PageLocked(page)); 265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 266 267 ret = ocfs2_read_inode_block(inode, &di_bh); 268 if (ret) { 269 mlog_errno(ret); 270 goto out; 271 } 272 273 ret = ocfs2_read_inline_data(inode, page, di_bh); 274 out: 275 unlock_page(page); 276 277 brelse(di_bh); 278 return ret; 279 } 280 281 static int ocfs2_readpage(struct file *file, struct page *page) 282 { 283 struct inode *inode = page->mapping->host; 284 struct ocfs2_inode_info *oi = OCFS2_I(inode); 285 loff_t start = (loff_t)page->index << PAGE_SHIFT; 286 int ret, unlock = 1; 287 288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 289 (page ? page->index : 0)); 290 291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 292 if (ret != 0) { 293 if (ret == AOP_TRUNCATED_PAGE) 294 unlock = 0; 295 mlog_errno(ret); 296 goto out; 297 } 298 299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 300 /* 301 * Unlock the page and cycle ip_alloc_sem so that we don't 302 * busyloop waiting for ip_alloc_sem to unlock 303 */ 304 ret = AOP_TRUNCATED_PAGE; 305 unlock_page(page); 306 unlock = 0; 307 down_read(&oi->ip_alloc_sem); 308 up_read(&oi->ip_alloc_sem); 309 goto out_inode_unlock; 310 } 311 312 /* 313 * i_size might have just been updated as we grabed the meta lock. We 314 * might now be discovering a truncate that hit on another node. 315 * block_read_full_page->get_block freaks out if it is asked to read 316 * beyond the end of a file, so we check here. Callers 317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 318 * and notice that the page they just read isn't needed. 319 * 320 * XXX sys_readahead() seems to get that wrong? 321 */ 322 if (start >= i_size_read(inode)) { 323 zero_user(page, 0, PAGE_SIZE); 324 SetPageUptodate(page); 325 ret = 0; 326 goto out_alloc; 327 } 328 329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 330 ret = ocfs2_readpage_inline(inode, page); 331 else 332 ret = block_read_full_page(page, ocfs2_get_block); 333 unlock = 0; 334 335 out_alloc: 336 up_read(&OCFS2_I(inode)->ip_alloc_sem); 337 out_inode_unlock: 338 ocfs2_inode_unlock(inode, 0); 339 out: 340 if (unlock) 341 unlock_page(page); 342 return ret; 343 } 344 345 /* 346 * This is used only for read-ahead. Failures or difficult to handle 347 * situations are safe to ignore. 348 * 349 * Right now, we don't bother with BH_Boundary - in-inode extent lists 350 * are quite large (243 extents on 4k blocks), so most inodes don't 351 * grow out to a tree. If need be, detecting boundary extents could 352 * trivially be added in a future version of ocfs2_get_block(). 353 */ 354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 355 struct list_head *pages, unsigned nr_pages) 356 { 357 int ret, err = -EIO; 358 struct inode *inode = mapping->host; 359 struct ocfs2_inode_info *oi = OCFS2_I(inode); 360 loff_t start; 361 struct page *last; 362 363 /* 364 * Use the nonblocking flag for the dlm code to avoid page 365 * lock inversion, but don't bother with retrying. 366 */ 367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 368 if (ret) 369 return err; 370 371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 372 ocfs2_inode_unlock(inode, 0); 373 return err; 374 } 375 376 /* 377 * Don't bother with inline-data. There isn't anything 378 * to read-ahead in that case anyway... 379 */ 380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 381 goto out_unlock; 382 383 /* 384 * Check whether a remote node truncated this file - we just 385 * drop out in that case as it's not worth handling here. 386 */ 387 last = list_entry(pages->prev, struct page, lru); 388 start = (loff_t)last->index << PAGE_SHIFT; 389 if (start >= i_size_read(inode)) 390 goto out_unlock; 391 392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 393 394 out_unlock: 395 up_read(&oi->ip_alloc_sem); 396 ocfs2_inode_unlock(inode, 0); 397 398 return err; 399 } 400 401 /* Note: Because we don't support holes, our allocation has 402 * already happened (allocation writes zeros to the file data) 403 * so we don't have to worry about ordered writes in 404 * ocfs2_writepage. 405 * 406 * ->writepage is called during the process of invalidating the page cache 407 * during blocked lock processing. It can't block on any cluster locks 408 * to during block mapping. It's relying on the fact that the block 409 * mapping can't have disappeared under the dirty pages that it is 410 * being asked to write back. 411 */ 412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 413 { 414 trace_ocfs2_writepage( 415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 416 page->index); 417 418 return block_write_full_page(page, ocfs2_get_block, wbc); 419 } 420 421 /* Taken from ext3. We don't necessarily need the full blown 422 * functionality yet, but IMHO it's better to cut and paste the whole 423 * thing so we can avoid introducing our own bugs (and easily pick up 424 * their fixes when they happen) --Mark */ 425 int walk_page_buffers( handle_t *handle, 426 struct buffer_head *head, 427 unsigned from, 428 unsigned to, 429 int *partial, 430 int (*fn)( handle_t *handle, 431 struct buffer_head *bh)) 432 { 433 struct buffer_head *bh; 434 unsigned block_start, block_end; 435 unsigned blocksize = head->b_size; 436 int err, ret = 0; 437 struct buffer_head *next; 438 439 for ( bh = head, block_start = 0; 440 ret == 0 && (bh != head || !block_start); 441 block_start = block_end, bh = next) 442 { 443 next = bh->b_this_page; 444 block_end = block_start + blocksize; 445 if (block_end <= from || block_start >= to) { 446 if (partial && !buffer_uptodate(bh)) 447 *partial = 1; 448 continue; 449 } 450 err = (*fn)(handle, bh); 451 if (!ret) 452 ret = err; 453 } 454 return ret; 455 } 456 457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 458 { 459 sector_t status; 460 u64 p_blkno = 0; 461 int err = 0; 462 struct inode *inode = mapping->host; 463 464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 465 (unsigned long long)block); 466 467 /* 468 * The swap code (ab-)uses ->bmap to get a block mapping and then 469 * bypasseѕ the file system for actual I/O. We really can't allow 470 * that on refcounted inodes, so we have to skip out here. And yes, 471 * 0 is the magic code for a bmap error.. 472 */ 473 if (ocfs2_is_refcount_inode(inode)) 474 return 0; 475 476 /* We don't need to lock journal system files, since they aren't 477 * accessed concurrently from multiple nodes. 478 */ 479 if (!INODE_JOURNAL(inode)) { 480 err = ocfs2_inode_lock(inode, NULL, 0); 481 if (err) { 482 if (err != -ENOENT) 483 mlog_errno(err); 484 goto bail; 485 } 486 down_read(&OCFS2_I(inode)->ip_alloc_sem); 487 } 488 489 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 490 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 491 NULL); 492 493 if (!INODE_JOURNAL(inode)) { 494 up_read(&OCFS2_I(inode)->ip_alloc_sem); 495 ocfs2_inode_unlock(inode, 0); 496 } 497 498 if (err) { 499 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 500 (unsigned long long)block); 501 mlog_errno(err); 502 goto bail; 503 } 504 505 bail: 506 status = err ? 0 : p_blkno; 507 508 return status; 509 } 510 511 static int ocfs2_releasepage(struct page *page, gfp_t wait) 512 { 513 if (!page_has_buffers(page)) 514 return 0; 515 return try_to_free_buffers(page); 516 } 517 518 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 519 u32 cpos, 520 unsigned int *start, 521 unsigned int *end) 522 { 523 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE; 524 525 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) { 526 unsigned int cpp; 527 528 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits); 529 530 cluster_start = cpos % cpp; 531 cluster_start = cluster_start << osb->s_clustersize_bits; 532 533 cluster_end = cluster_start + osb->s_clustersize; 534 } 535 536 BUG_ON(cluster_start > PAGE_SIZE); 537 BUG_ON(cluster_end > PAGE_SIZE); 538 539 if (start) 540 *start = cluster_start; 541 if (end) 542 *end = cluster_end; 543 } 544 545 /* 546 * 'from' and 'to' are the region in the page to avoid zeroing. 547 * 548 * If pagesize > clustersize, this function will avoid zeroing outside 549 * of the cluster boundary. 550 * 551 * from == to == 0 is code for "zero the entire cluster region" 552 */ 553 static void ocfs2_clear_page_regions(struct page *page, 554 struct ocfs2_super *osb, u32 cpos, 555 unsigned from, unsigned to) 556 { 557 void *kaddr; 558 unsigned int cluster_start, cluster_end; 559 560 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 561 562 kaddr = kmap_atomic(page); 563 564 if (from || to) { 565 if (from > cluster_start) 566 memset(kaddr + cluster_start, 0, from - cluster_start); 567 if (to < cluster_end) 568 memset(kaddr + to, 0, cluster_end - to); 569 } else { 570 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 571 } 572 573 kunmap_atomic(kaddr); 574 } 575 576 /* 577 * Nonsparse file systems fully allocate before we get to the write 578 * code. This prevents ocfs2_write() from tagging the write as an 579 * allocating one, which means ocfs2_map_page_blocks() might try to 580 * read-in the blocks at the tail of our file. Avoid reading them by 581 * testing i_size against each block offset. 582 */ 583 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 584 unsigned int block_start) 585 { 586 u64 offset = page_offset(page) + block_start; 587 588 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 589 return 1; 590 591 if (i_size_read(inode) > offset) 592 return 1; 593 594 return 0; 595 } 596 597 /* 598 * Some of this taken from __block_write_begin(). We already have our 599 * mapping by now though, and the entire write will be allocating or 600 * it won't, so not much need to use BH_New. 601 * 602 * This will also skip zeroing, which is handled externally. 603 */ 604 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 605 struct inode *inode, unsigned int from, 606 unsigned int to, int new) 607 { 608 int ret = 0; 609 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 610 unsigned int block_end, block_start; 611 unsigned int bsize = i_blocksize(inode); 612 613 if (!page_has_buffers(page)) 614 create_empty_buffers(page, bsize, 0); 615 616 head = page_buffers(page); 617 for (bh = head, block_start = 0; bh != head || !block_start; 618 bh = bh->b_this_page, block_start += bsize) { 619 block_end = block_start + bsize; 620 621 clear_buffer_new(bh); 622 623 /* 624 * Ignore blocks outside of our i/o range - 625 * they may belong to unallocated clusters. 626 */ 627 if (block_start >= to || block_end <= from) { 628 if (PageUptodate(page)) 629 set_buffer_uptodate(bh); 630 continue; 631 } 632 633 /* 634 * For an allocating write with cluster size >= page 635 * size, we always write the entire page. 636 */ 637 if (new) 638 set_buffer_new(bh); 639 640 if (!buffer_mapped(bh)) { 641 map_bh(bh, inode->i_sb, *p_blkno); 642 clean_bdev_bh_alias(bh); 643 } 644 645 if (PageUptodate(page)) { 646 if (!buffer_uptodate(bh)) 647 set_buffer_uptodate(bh); 648 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 649 !buffer_new(bh) && 650 ocfs2_should_read_blk(inode, page, block_start) && 651 (block_start < from || block_end > to)) { 652 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 653 *wait_bh++=bh; 654 } 655 656 *p_blkno = *p_blkno + 1; 657 } 658 659 /* 660 * If we issued read requests - let them complete. 661 */ 662 while(wait_bh > wait) { 663 wait_on_buffer(*--wait_bh); 664 if (!buffer_uptodate(*wait_bh)) 665 ret = -EIO; 666 } 667 668 if (ret == 0 || !new) 669 return ret; 670 671 /* 672 * If we get -EIO above, zero out any newly allocated blocks 673 * to avoid exposing stale data. 674 */ 675 bh = head; 676 block_start = 0; 677 do { 678 block_end = block_start + bsize; 679 if (block_end <= from) 680 goto next_bh; 681 if (block_start >= to) 682 break; 683 684 zero_user(page, block_start, bh->b_size); 685 set_buffer_uptodate(bh); 686 mark_buffer_dirty(bh); 687 688 next_bh: 689 block_start = block_end; 690 bh = bh->b_this_page; 691 } while (bh != head); 692 693 return ret; 694 } 695 696 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 697 #define OCFS2_MAX_CTXT_PAGES 1 698 #else 699 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE) 700 #endif 701 702 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE) 703 704 struct ocfs2_unwritten_extent { 705 struct list_head ue_node; 706 struct list_head ue_ip_node; 707 u32 ue_cpos; 708 u32 ue_phys; 709 }; 710 711 /* 712 * Describe the state of a single cluster to be written to. 713 */ 714 struct ocfs2_write_cluster_desc { 715 u32 c_cpos; 716 u32 c_phys; 717 /* 718 * Give this a unique field because c_phys eventually gets 719 * filled. 720 */ 721 unsigned c_new; 722 unsigned c_clear_unwritten; 723 unsigned c_needs_zero; 724 }; 725 726 struct ocfs2_write_ctxt { 727 /* Logical cluster position / len of write */ 728 u32 w_cpos; 729 u32 w_clen; 730 731 /* First cluster allocated in a nonsparse extend */ 732 u32 w_first_new_cpos; 733 734 /* Type of caller. Must be one of buffer, mmap, direct. */ 735 ocfs2_write_type_t w_type; 736 737 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 738 739 /* 740 * This is true if page_size > cluster_size. 741 * 742 * It triggers a set of special cases during write which might 743 * have to deal with allocating writes to partial pages. 744 */ 745 unsigned int w_large_pages; 746 747 /* 748 * Pages involved in this write. 749 * 750 * w_target_page is the page being written to by the user. 751 * 752 * w_pages is an array of pages which always contains 753 * w_target_page, and in the case of an allocating write with 754 * page_size < cluster size, it will contain zero'd and mapped 755 * pages adjacent to w_target_page which need to be written 756 * out in so that future reads from that region will get 757 * zero's. 758 */ 759 unsigned int w_num_pages; 760 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 761 struct page *w_target_page; 762 763 /* 764 * w_target_locked is used for page_mkwrite path indicating no unlocking 765 * against w_target_page in ocfs2_write_end_nolock. 766 */ 767 unsigned int w_target_locked:1; 768 769 /* 770 * ocfs2_write_end() uses this to know what the real range to 771 * write in the target should be. 772 */ 773 unsigned int w_target_from; 774 unsigned int w_target_to; 775 776 /* 777 * We could use journal_current_handle() but this is cleaner, 778 * IMHO -Mark 779 */ 780 handle_t *w_handle; 781 782 struct buffer_head *w_di_bh; 783 784 struct ocfs2_cached_dealloc_ctxt w_dealloc; 785 786 struct list_head w_unwritten_list; 787 }; 788 789 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 790 { 791 int i; 792 793 for(i = 0; i < num_pages; i++) { 794 if (pages[i]) { 795 unlock_page(pages[i]); 796 mark_page_accessed(pages[i]); 797 put_page(pages[i]); 798 } 799 } 800 } 801 802 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 803 { 804 int i; 805 806 /* 807 * w_target_locked is only set to true in the page_mkwrite() case. 808 * The intent is to allow us to lock the target page from write_begin() 809 * to write_end(). The caller must hold a ref on w_target_page. 810 */ 811 if (wc->w_target_locked) { 812 BUG_ON(!wc->w_target_page); 813 for (i = 0; i < wc->w_num_pages; i++) { 814 if (wc->w_target_page == wc->w_pages[i]) { 815 wc->w_pages[i] = NULL; 816 break; 817 } 818 } 819 mark_page_accessed(wc->w_target_page); 820 put_page(wc->w_target_page); 821 } 822 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 823 } 824 825 static void ocfs2_free_unwritten_list(struct inode *inode, 826 struct list_head *head) 827 { 828 struct ocfs2_inode_info *oi = OCFS2_I(inode); 829 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL; 830 831 list_for_each_entry_safe(ue, tmp, head, ue_node) { 832 list_del(&ue->ue_node); 833 spin_lock(&oi->ip_lock); 834 list_del(&ue->ue_ip_node); 835 spin_unlock(&oi->ip_lock); 836 kfree(ue); 837 } 838 } 839 840 static void ocfs2_free_write_ctxt(struct inode *inode, 841 struct ocfs2_write_ctxt *wc) 842 { 843 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list); 844 ocfs2_unlock_pages(wc); 845 brelse(wc->w_di_bh); 846 kfree(wc); 847 } 848 849 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 850 struct ocfs2_super *osb, loff_t pos, 851 unsigned len, ocfs2_write_type_t type, 852 struct buffer_head *di_bh) 853 { 854 u32 cend; 855 struct ocfs2_write_ctxt *wc; 856 857 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 858 if (!wc) 859 return -ENOMEM; 860 861 wc->w_cpos = pos >> osb->s_clustersize_bits; 862 wc->w_first_new_cpos = UINT_MAX; 863 cend = (pos + len - 1) >> osb->s_clustersize_bits; 864 wc->w_clen = cend - wc->w_cpos + 1; 865 get_bh(di_bh); 866 wc->w_di_bh = di_bh; 867 wc->w_type = type; 868 869 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) 870 wc->w_large_pages = 1; 871 else 872 wc->w_large_pages = 0; 873 874 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 875 INIT_LIST_HEAD(&wc->w_unwritten_list); 876 877 *wcp = wc; 878 879 return 0; 880 } 881 882 /* 883 * If a page has any new buffers, zero them out here, and mark them uptodate 884 * and dirty so they'll be written out (in order to prevent uninitialised 885 * block data from leaking). And clear the new bit. 886 */ 887 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 888 { 889 unsigned int block_start, block_end; 890 struct buffer_head *head, *bh; 891 892 BUG_ON(!PageLocked(page)); 893 if (!page_has_buffers(page)) 894 return; 895 896 bh = head = page_buffers(page); 897 block_start = 0; 898 do { 899 block_end = block_start + bh->b_size; 900 901 if (buffer_new(bh)) { 902 if (block_end > from && block_start < to) { 903 if (!PageUptodate(page)) { 904 unsigned start, end; 905 906 start = max(from, block_start); 907 end = min(to, block_end); 908 909 zero_user_segment(page, start, end); 910 set_buffer_uptodate(bh); 911 } 912 913 clear_buffer_new(bh); 914 mark_buffer_dirty(bh); 915 } 916 } 917 918 block_start = block_end; 919 bh = bh->b_this_page; 920 } while (bh != head); 921 } 922 923 /* 924 * Only called when we have a failure during allocating write to write 925 * zero's to the newly allocated region. 926 */ 927 static void ocfs2_write_failure(struct inode *inode, 928 struct ocfs2_write_ctxt *wc, 929 loff_t user_pos, unsigned user_len) 930 { 931 int i; 932 unsigned from = user_pos & (PAGE_SIZE - 1), 933 to = user_pos + user_len; 934 struct page *tmppage; 935 936 if (wc->w_target_page) 937 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 938 939 for(i = 0; i < wc->w_num_pages; i++) { 940 tmppage = wc->w_pages[i]; 941 942 if (tmppage && page_has_buffers(tmppage)) { 943 if (ocfs2_should_order_data(inode)) 944 ocfs2_jbd2_file_inode(wc->w_handle, inode); 945 946 block_commit_write(tmppage, from, to); 947 } 948 } 949 } 950 951 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 952 struct ocfs2_write_ctxt *wc, 953 struct page *page, u32 cpos, 954 loff_t user_pos, unsigned user_len, 955 int new) 956 { 957 int ret; 958 unsigned int map_from = 0, map_to = 0; 959 unsigned int cluster_start, cluster_end; 960 unsigned int user_data_from = 0, user_data_to = 0; 961 962 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 963 &cluster_start, &cluster_end); 964 965 /* treat the write as new if the a hole/lseek spanned across 966 * the page boundary. 967 */ 968 new = new | ((i_size_read(inode) <= page_offset(page)) && 969 (page_offset(page) <= user_pos)); 970 971 if (page == wc->w_target_page) { 972 map_from = user_pos & (PAGE_SIZE - 1); 973 map_to = map_from + user_len; 974 975 if (new) 976 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 977 cluster_start, cluster_end, 978 new); 979 else 980 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 981 map_from, map_to, new); 982 if (ret) { 983 mlog_errno(ret); 984 goto out; 985 } 986 987 user_data_from = map_from; 988 user_data_to = map_to; 989 if (new) { 990 map_from = cluster_start; 991 map_to = cluster_end; 992 } 993 } else { 994 /* 995 * If we haven't allocated the new page yet, we 996 * shouldn't be writing it out without copying user 997 * data. This is likely a math error from the caller. 998 */ 999 BUG_ON(!new); 1000 1001 map_from = cluster_start; 1002 map_to = cluster_end; 1003 1004 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1005 cluster_start, cluster_end, new); 1006 if (ret) { 1007 mlog_errno(ret); 1008 goto out; 1009 } 1010 } 1011 1012 /* 1013 * Parts of newly allocated pages need to be zero'd. 1014 * 1015 * Above, we have also rewritten 'to' and 'from' - as far as 1016 * the rest of the function is concerned, the entire cluster 1017 * range inside of a page needs to be written. 1018 * 1019 * We can skip this if the page is up to date - it's already 1020 * been zero'd from being read in as a hole. 1021 */ 1022 if (new && !PageUptodate(page)) 1023 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1024 cpos, user_data_from, user_data_to); 1025 1026 flush_dcache_page(page); 1027 1028 out: 1029 return ret; 1030 } 1031 1032 /* 1033 * This function will only grab one clusters worth of pages. 1034 */ 1035 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1036 struct ocfs2_write_ctxt *wc, 1037 u32 cpos, loff_t user_pos, 1038 unsigned user_len, int new, 1039 struct page *mmap_page) 1040 { 1041 int ret = 0, i; 1042 unsigned long start, target_index, end_index, index; 1043 struct inode *inode = mapping->host; 1044 loff_t last_byte; 1045 1046 target_index = user_pos >> PAGE_SHIFT; 1047 1048 /* 1049 * Figure out how many pages we'll be manipulating here. For 1050 * non allocating write, we just change the one 1051 * page. Otherwise, we'll need a whole clusters worth. If we're 1052 * writing past i_size, we only need enough pages to cover the 1053 * last page of the write. 1054 */ 1055 if (new) { 1056 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1057 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1058 /* 1059 * We need the index *past* the last page we could possibly 1060 * touch. This is the page past the end of the write or 1061 * i_size, whichever is greater. 1062 */ 1063 last_byte = max(user_pos + user_len, i_size_read(inode)); 1064 BUG_ON(last_byte < 1); 1065 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1; 1066 if ((start + wc->w_num_pages) > end_index) 1067 wc->w_num_pages = end_index - start; 1068 } else { 1069 wc->w_num_pages = 1; 1070 start = target_index; 1071 } 1072 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT; 1073 1074 for(i = 0; i < wc->w_num_pages; i++) { 1075 index = start + i; 1076 1077 if (index >= target_index && index <= end_index && 1078 wc->w_type == OCFS2_WRITE_MMAP) { 1079 /* 1080 * ocfs2_pagemkwrite() is a little different 1081 * and wants us to directly use the page 1082 * passed in. 1083 */ 1084 lock_page(mmap_page); 1085 1086 /* Exit and let the caller retry */ 1087 if (mmap_page->mapping != mapping) { 1088 WARN_ON(mmap_page->mapping); 1089 unlock_page(mmap_page); 1090 ret = -EAGAIN; 1091 goto out; 1092 } 1093 1094 get_page(mmap_page); 1095 wc->w_pages[i] = mmap_page; 1096 wc->w_target_locked = true; 1097 } else if (index >= target_index && index <= end_index && 1098 wc->w_type == OCFS2_WRITE_DIRECT) { 1099 /* Direct write has no mapping page. */ 1100 wc->w_pages[i] = NULL; 1101 continue; 1102 } else { 1103 wc->w_pages[i] = find_or_create_page(mapping, index, 1104 GFP_NOFS); 1105 if (!wc->w_pages[i]) { 1106 ret = -ENOMEM; 1107 mlog_errno(ret); 1108 goto out; 1109 } 1110 } 1111 wait_for_stable_page(wc->w_pages[i]); 1112 1113 if (index == target_index) 1114 wc->w_target_page = wc->w_pages[i]; 1115 } 1116 out: 1117 if (ret) 1118 wc->w_target_locked = false; 1119 return ret; 1120 } 1121 1122 /* 1123 * Prepare a single cluster for write one cluster into the file. 1124 */ 1125 static int ocfs2_write_cluster(struct address_space *mapping, 1126 u32 *phys, unsigned int new, 1127 unsigned int clear_unwritten, 1128 unsigned int should_zero, 1129 struct ocfs2_alloc_context *data_ac, 1130 struct ocfs2_alloc_context *meta_ac, 1131 struct ocfs2_write_ctxt *wc, u32 cpos, 1132 loff_t user_pos, unsigned user_len) 1133 { 1134 int ret, i; 1135 u64 p_blkno; 1136 struct inode *inode = mapping->host; 1137 struct ocfs2_extent_tree et; 1138 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); 1139 1140 if (new) { 1141 u32 tmp_pos; 1142 1143 /* 1144 * This is safe to call with the page locks - it won't take 1145 * any additional semaphores or cluster locks. 1146 */ 1147 tmp_pos = cpos; 1148 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1149 &tmp_pos, 1, !clear_unwritten, 1150 wc->w_di_bh, wc->w_handle, 1151 data_ac, meta_ac, NULL); 1152 /* 1153 * This shouldn't happen because we must have already 1154 * calculated the correct meta data allocation required. The 1155 * internal tree allocation code should know how to increase 1156 * transaction credits itself. 1157 * 1158 * If need be, we could handle -EAGAIN for a 1159 * RESTART_TRANS here. 1160 */ 1161 mlog_bug_on_msg(ret == -EAGAIN, 1162 "Inode %llu: EAGAIN return during allocation.\n", 1163 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1164 if (ret < 0) { 1165 mlog_errno(ret); 1166 goto out; 1167 } 1168 } else if (clear_unwritten) { 1169 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1170 wc->w_di_bh); 1171 ret = ocfs2_mark_extent_written(inode, &et, 1172 wc->w_handle, cpos, 1, *phys, 1173 meta_ac, &wc->w_dealloc); 1174 if (ret < 0) { 1175 mlog_errno(ret); 1176 goto out; 1177 } 1178 } 1179 1180 /* 1181 * The only reason this should fail is due to an inability to 1182 * find the extent added. 1183 */ 1184 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL); 1185 if (ret < 0) { 1186 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1187 "at logical cluster %u", 1188 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 1189 goto out; 1190 } 1191 1192 BUG_ON(*phys == 0); 1193 1194 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys); 1195 if (!should_zero) 1196 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1); 1197 1198 for(i = 0; i < wc->w_num_pages; i++) { 1199 int tmpret; 1200 1201 /* This is the direct io target page. */ 1202 if (wc->w_pages[i] == NULL) { 1203 p_blkno++; 1204 continue; 1205 } 1206 1207 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1208 wc->w_pages[i], cpos, 1209 user_pos, user_len, 1210 should_zero); 1211 if (tmpret) { 1212 mlog_errno(tmpret); 1213 if (ret == 0) 1214 ret = tmpret; 1215 } 1216 } 1217 1218 /* 1219 * We only have cleanup to do in case of allocating write. 1220 */ 1221 if (ret && new) 1222 ocfs2_write_failure(inode, wc, user_pos, user_len); 1223 1224 out: 1225 1226 return ret; 1227 } 1228 1229 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1230 struct ocfs2_alloc_context *data_ac, 1231 struct ocfs2_alloc_context *meta_ac, 1232 struct ocfs2_write_ctxt *wc, 1233 loff_t pos, unsigned len) 1234 { 1235 int ret, i; 1236 loff_t cluster_off; 1237 unsigned int local_len = len; 1238 struct ocfs2_write_cluster_desc *desc; 1239 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1240 1241 for (i = 0; i < wc->w_clen; i++) { 1242 desc = &wc->w_desc[i]; 1243 1244 /* 1245 * We have to make sure that the total write passed in 1246 * doesn't extend past a single cluster. 1247 */ 1248 local_len = len; 1249 cluster_off = pos & (osb->s_clustersize - 1); 1250 if ((cluster_off + local_len) > osb->s_clustersize) 1251 local_len = osb->s_clustersize - cluster_off; 1252 1253 ret = ocfs2_write_cluster(mapping, &desc->c_phys, 1254 desc->c_new, 1255 desc->c_clear_unwritten, 1256 desc->c_needs_zero, 1257 data_ac, meta_ac, 1258 wc, desc->c_cpos, pos, local_len); 1259 if (ret) { 1260 mlog_errno(ret); 1261 goto out; 1262 } 1263 1264 len -= local_len; 1265 pos += local_len; 1266 } 1267 1268 ret = 0; 1269 out: 1270 return ret; 1271 } 1272 1273 /* 1274 * ocfs2_write_end() wants to know which parts of the target page it 1275 * should complete the write on. It's easiest to compute them ahead of 1276 * time when a more complete view of the write is available. 1277 */ 1278 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1279 struct ocfs2_write_ctxt *wc, 1280 loff_t pos, unsigned len, int alloc) 1281 { 1282 struct ocfs2_write_cluster_desc *desc; 1283 1284 wc->w_target_from = pos & (PAGE_SIZE - 1); 1285 wc->w_target_to = wc->w_target_from + len; 1286 1287 if (alloc == 0) 1288 return; 1289 1290 /* 1291 * Allocating write - we may have different boundaries based 1292 * on page size and cluster size. 1293 * 1294 * NOTE: We can no longer compute one value from the other as 1295 * the actual write length and user provided length may be 1296 * different. 1297 */ 1298 1299 if (wc->w_large_pages) { 1300 /* 1301 * We only care about the 1st and last cluster within 1302 * our range and whether they should be zero'd or not. Either 1303 * value may be extended out to the start/end of a 1304 * newly allocated cluster. 1305 */ 1306 desc = &wc->w_desc[0]; 1307 if (desc->c_needs_zero) 1308 ocfs2_figure_cluster_boundaries(osb, 1309 desc->c_cpos, 1310 &wc->w_target_from, 1311 NULL); 1312 1313 desc = &wc->w_desc[wc->w_clen - 1]; 1314 if (desc->c_needs_zero) 1315 ocfs2_figure_cluster_boundaries(osb, 1316 desc->c_cpos, 1317 NULL, 1318 &wc->w_target_to); 1319 } else { 1320 wc->w_target_from = 0; 1321 wc->w_target_to = PAGE_SIZE; 1322 } 1323 } 1324 1325 /* 1326 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to 1327 * do the zero work. And should not to clear UNWRITTEN since it will be cleared 1328 * by the direct io procedure. 1329 * If this is a new extent that allocated by direct io, we should mark it in 1330 * the ip_unwritten_list. 1331 */ 1332 static int ocfs2_unwritten_check(struct inode *inode, 1333 struct ocfs2_write_ctxt *wc, 1334 struct ocfs2_write_cluster_desc *desc) 1335 { 1336 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1337 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL; 1338 int ret = 0; 1339 1340 if (!desc->c_needs_zero) 1341 return 0; 1342 1343 retry: 1344 spin_lock(&oi->ip_lock); 1345 /* Needs not to zero no metter buffer or direct. The one who is zero 1346 * the cluster is doing zero. And he will clear unwritten after all 1347 * cluster io finished. */ 1348 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) { 1349 if (desc->c_cpos == ue->ue_cpos) { 1350 BUG_ON(desc->c_new); 1351 desc->c_needs_zero = 0; 1352 desc->c_clear_unwritten = 0; 1353 goto unlock; 1354 } 1355 } 1356 1357 if (wc->w_type != OCFS2_WRITE_DIRECT) 1358 goto unlock; 1359 1360 if (new == NULL) { 1361 spin_unlock(&oi->ip_lock); 1362 new = kmalloc(sizeof(struct ocfs2_unwritten_extent), 1363 GFP_NOFS); 1364 if (new == NULL) { 1365 ret = -ENOMEM; 1366 goto out; 1367 } 1368 goto retry; 1369 } 1370 /* This direct write will doing zero. */ 1371 new->ue_cpos = desc->c_cpos; 1372 new->ue_phys = desc->c_phys; 1373 desc->c_clear_unwritten = 0; 1374 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list); 1375 list_add_tail(&new->ue_node, &wc->w_unwritten_list); 1376 new = NULL; 1377 unlock: 1378 spin_unlock(&oi->ip_lock); 1379 out: 1380 if (new) 1381 kfree(new); 1382 return ret; 1383 } 1384 1385 /* 1386 * Populate each single-cluster write descriptor in the write context 1387 * with information about the i/o to be done. 1388 * 1389 * Returns the number of clusters that will have to be allocated, as 1390 * well as a worst case estimate of the number of extent records that 1391 * would have to be created during a write to an unwritten region. 1392 */ 1393 static int ocfs2_populate_write_desc(struct inode *inode, 1394 struct ocfs2_write_ctxt *wc, 1395 unsigned int *clusters_to_alloc, 1396 unsigned int *extents_to_split) 1397 { 1398 int ret; 1399 struct ocfs2_write_cluster_desc *desc; 1400 unsigned int num_clusters = 0; 1401 unsigned int ext_flags = 0; 1402 u32 phys = 0; 1403 int i; 1404 1405 *clusters_to_alloc = 0; 1406 *extents_to_split = 0; 1407 1408 for (i = 0; i < wc->w_clen; i++) { 1409 desc = &wc->w_desc[i]; 1410 desc->c_cpos = wc->w_cpos + i; 1411 1412 if (num_clusters == 0) { 1413 /* 1414 * Need to look up the next extent record. 1415 */ 1416 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1417 &num_clusters, &ext_flags); 1418 if (ret) { 1419 mlog_errno(ret); 1420 goto out; 1421 } 1422 1423 /* We should already CoW the refcountd extent. */ 1424 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1425 1426 /* 1427 * Assume worst case - that we're writing in 1428 * the middle of the extent. 1429 * 1430 * We can assume that the write proceeds from 1431 * left to right, in which case the extent 1432 * insert code is smart enough to coalesce the 1433 * next splits into the previous records created. 1434 */ 1435 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1436 *extents_to_split = *extents_to_split + 2; 1437 } else if (phys) { 1438 /* 1439 * Only increment phys if it doesn't describe 1440 * a hole. 1441 */ 1442 phys++; 1443 } 1444 1445 /* 1446 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1447 * file that got extended. w_first_new_cpos tells us 1448 * where the newly allocated clusters are so we can 1449 * zero them. 1450 */ 1451 if (desc->c_cpos >= wc->w_first_new_cpos) { 1452 BUG_ON(phys == 0); 1453 desc->c_needs_zero = 1; 1454 } 1455 1456 desc->c_phys = phys; 1457 if (phys == 0) { 1458 desc->c_new = 1; 1459 desc->c_needs_zero = 1; 1460 desc->c_clear_unwritten = 1; 1461 *clusters_to_alloc = *clusters_to_alloc + 1; 1462 } 1463 1464 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1465 desc->c_clear_unwritten = 1; 1466 desc->c_needs_zero = 1; 1467 } 1468 1469 ret = ocfs2_unwritten_check(inode, wc, desc); 1470 if (ret) { 1471 mlog_errno(ret); 1472 goto out; 1473 } 1474 1475 num_clusters--; 1476 } 1477 1478 ret = 0; 1479 out: 1480 return ret; 1481 } 1482 1483 static int ocfs2_write_begin_inline(struct address_space *mapping, 1484 struct inode *inode, 1485 struct ocfs2_write_ctxt *wc) 1486 { 1487 int ret; 1488 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1489 struct page *page; 1490 handle_t *handle; 1491 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1492 1493 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1494 if (IS_ERR(handle)) { 1495 ret = PTR_ERR(handle); 1496 mlog_errno(ret); 1497 goto out; 1498 } 1499 1500 page = find_or_create_page(mapping, 0, GFP_NOFS); 1501 if (!page) { 1502 ocfs2_commit_trans(osb, handle); 1503 ret = -ENOMEM; 1504 mlog_errno(ret); 1505 goto out; 1506 } 1507 /* 1508 * If we don't set w_num_pages then this page won't get unlocked 1509 * and freed on cleanup of the write context. 1510 */ 1511 wc->w_pages[0] = wc->w_target_page = page; 1512 wc->w_num_pages = 1; 1513 1514 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1515 OCFS2_JOURNAL_ACCESS_WRITE); 1516 if (ret) { 1517 ocfs2_commit_trans(osb, handle); 1518 1519 mlog_errno(ret); 1520 goto out; 1521 } 1522 1523 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1524 ocfs2_set_inode_data_inline(inode, di); 1525 1526 if (!PageUptodate(page)) { 1527 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1528 if (ret) { 1529 ocfs2_commit_trans(osb, handle); 1530 1531 goto out; 1532 } 1533 } 1534 1535 wc->w_handle = handle; 1536 out: 1537 return ret; 1538 } 1539 1540 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1541 { 1542 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1543 1544 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1545 return 1; 1546 return 0; 1547 } 1548 1549 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1550 struct inode *inode, loff_t pos, 1551 unsigned len, struct page *mmap_page, 1552 struct ocfs2_write_ctxt *wc) 1553 { 1554 int ret, written = 0; 1555 loff_t end = pos + len; 1556 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1557 struct ocfs2_dinode *di = NULL; 1558 1559 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1560 len, (unsigned long long)pos, 1561 oi->ip_dyn_features); 1562 1563 /* 1564 * Handle inodes which already have inline data 1st. 1565 */ 1566 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1567 if (mmap_page == NULL && 1568 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1569 goto do_inline_write; 1570 1571 /* 1572 * The write won't fit - we have to give this inode an 1573 * inline extent list now. 1574 */ 1575 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1576 if (ret) 1577 mlog_errno(ret); 1578 goto out; 1579 } 1580 1581 /* 1582 * Check whether the inode can accept inline data. 1583 */ 1584 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1585 return 0; 1586 1587 /* 1588 * Check whether the write can fit. 1589 */ 1590 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1591 if (mmap_page || 1592 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1593 return 0; 1594 1595 do_inline_write: 1596 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1597 if (ret) { 1598 mlog_errno(ret); 1599 goto out; 1600 } 1601 1602 /* 1603 * This signals to the caller that the data can be written 1604 * inline. 1605 */ 1606 written = 1; 1607 out: 1608 return written ? written : ret; 1609 } 1610 1611 /* 1612 * This function only does anything for file systems which can't 1613 * handle sparse files. 1614 * 1615 * What we want to do here is fill in any hole between the current end 1616 * of allocation and the end of our write. That way the rest of the 1617 * write path can treat it as an non-allocating write, which has no 1618 * special case code for sparse/nonsparse files. 1619 */ 1620 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1621 struct buffer_head *di_bh, 1622 loff_t pos, unsigned len, 1623 struct ocfs2_write_ctxt *wc) 1624 { 1625 int ret; 1626 loff_t newsize = pos + len; 1627 1628 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1629 1630 if (newsize <= i_size_read(inode)) 1631 return 0; 1632 1633 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1634 if (ret) 1635 mlog_errno(ret); 1636 1637 /* There is no wc if this is call from direct. */ 1638 if (wc) 1639 wc->w_first_new_cpos = 1640 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1641 1642 return ret; 1643 } 1644 1645 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1646 loff_t pos) 1647 { 1648 int ret = 0; 1649 1650 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1651 if (pos > i_size_read(inode)) 1652 ret = ocfs2_zero_extend(inode, di_bh, pos); 1653 1654 return ret; 1655 } 1656 1657 int ocfs2_write_begin_nolock(struct address_space *mapping, 1658 loff_t pos, unsigned len, ocfs2_write_type_t type, 1659 struct page **pagep, void **fsdata, 1660 struct buffer_head *di_bh, struct page *mmap_page) 1661 { 1662 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1663 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1664 struct ocfs2_write_ctxt *wc; 1665 struct inode *inode = mapping->host; 1666 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1667 struct ocfs2_dinode *di; 1668 struct ocfs2_alloc_context *data_ac = NULL; 1669 struct ocfs2_alloc_context *meta_ac = NULL; 1670 handle_t *handle; 1671 struct ocfs2_extent_tree et; 1672 int try_free = 1, ret1; 1673 1674 try_again: 1675 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh); 1676 if (ret) { 1677 mlog_errno(ret); 1678 return ret; 1679 } 1680 1681 if (ocfs2_supports_inline_data(osb)) { 1682 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1683 mmap_page, wc); 1684 if (ret == 1) { 1685 ret = 0; 1686 goto success; 1687 } 1688 if (ret < 0) { 1689 mlog_errno(ret); 1690 goto out; 1691 } 1692 } 1693 1694 /* Direct io change i_size late, should not zero tail here. */ 1695 if (type != OCFS2_WRITE_DIRECT) { 1696 if (ocfs2_sparse_alloc(osb)) 1697 ret = ocfs2_zero_tail(inode, di_bh, pos); 1698 else 1699 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 1700 len, wc); 1701 if (ret) { 1702 mlog_errno(ret); 1703 goto out; 1704 } 1705 } 1706 1707 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1708 if (ret < 0) { 1709 mlog_errno(ret); 1710 goto out; 1711 } else if (ret == 1) { 1712 clusters_need = wc->w_clen; 1713 ret = ocfs2_refcount_cow(inode, di_bh, 1714 wc->w_cpos, wc->w_clen, UINT_MAX); 1715 if (ret) { 1716 mlog_errno(ret); 1717 goto out; 1718 } 1719 } 1720 1721 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1722 &extents_to_split); 1723 if (ret) { 1724 mlog_errno(ret); 1725 goto out; 1726 } 1727 clusters_need += clusters_to_alloc; 1728 1729 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1730 1731 trace_ocfs2_write_begin_nolock( 1732 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1733 (long long)i_size_read(inode), 1734 le32_to_cpu(di->i_clusters), 1735 pos, len, type, mmap_page, 1736 clusters_to_alloc, extents_to_split); 1737 1738 /* 1739 * We set w_target_from, w_target_to here so that 1740 * ocfs2_write_end() knows which range in the target page to 1741 * write out. An allocation requires that we write the entire 1742 * cluster range. 1743 */ 1744 if (clusters_to_alloc || extents_to_split) { 1745 /* 1746 * XXX: We are stretching the limits of 1747 * ocfs2_lock_allocators(). It greatly over-estimates 1748 * the work to be done. 1749 */ 1750 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1751 wc->w_di_bh); 1752 ret = ocfs2_lock_allocators(inode, &et, 1753 clusters_to_alloc, extents_to_split, 1754 &data_ac, &meta_ac); 1755 if (ret) { 1756 mlog_errno(ret); 1757 goto out; 1758 } 1759 1760 if (data_ac) 1761 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1762 1763 credits = ocfs2_calc_extend_credits(inode->i_sb, 1764 &di->id2.i_list); 1765 } else if (type == OCFS2_WRITE_DIRECT) 1766 /* direct write needs not to start trans if no extents alloc. */ 1767 goto success; 1768 1769 /* 1770 * We have to zero sparse allocated clusters, unwritten extent clusters, 1771 * and non-sparse clusters we just extended. For non-sparse writes, 1772 * we know zeros will only be needed in the first and/or last cluster. 1773 */ 1774 if (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1775 wc->w_desc[wc->w_clen - 1].c_needs_zero)) 1776 cluster_of_pages = 1; 1777 else 1778 cluster_of_pages = 0; 1779 1780 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1781 1782 handle = ocfs2_start_trans(osb, credits); 1783 if (IS_ERR(handle)) { 1784 ret = PTR_ERR(handle); 1785 mlog_errno(ret); 1786 goto out; 1787 } 1788 1789 wc->w_handle = handle; 1790 1791 if (clusters_to_alloc) { 1792 ret = dquot_alloc_space_nodirty(inode, 1793 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1794 if (ret) 1795 goto out_commit; 1796 } 1797 1798 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1799 OCFS2_JOURNAL_ACCESS_WRITE); 1800 if (ret) { 1801 mlog_errno(ret); 1802 goto out_quota; 1803 } 1804 1805 /* 1806 * Fill our page array first. That way we've grabbed enough so 1807 * that we can zero and flush if we error after adding the 1808 * extent. 1809 */ 1810 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1811 cluster_of_pages, mmap_page); 1812 if (ret && ret != -EAGAIN) { 1813 mlog_errno(ret); 1814 goto out_quota; 1815 } 1816 1817 /* 1818 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 1819 * the target page. In this case, we exit with no error and no target 1820 * page. This will trigger the caller, page_mkwrite(), to re-try 1821 * the operation. 1822 */ 1823 if (ret == -EAGAIN) { 1824 BUG_ON(wc->w_target_page); 1825 ret = 0; 1826 goto out_quota; 1827 } 1828 1829 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1830 len); 1831 if (ret) { 1832 mlog_errno(ret); 1833 goto out_quota; 1834 } 1835 1836 if (data_ac) 1837 ocfs2_free_alloc_context(data_ac); 1838 if (meta_ac) 1839 ocfs2_free_alloc_context(meta_ac); 1840 1841 success: 1842 if (pagep) 1843 *pagep = wc->w_target_page; 1844 *fsdata = wc; 1845 return 0; 1846 out_quota: 1847 if (clusters_to_alloc) 1848 dquot_free_space(inode, 1849 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1850 out_commit: 1851 ocfs2_commit_trans(osb, handle); 1852 1853 out: 1854 /* 1855 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(), 1856 * even in case of error here like ENOSPC and ENOMEM. So, we need 1857 * to unlock the target page manually to prevent deadlocks when 1858 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED 1859 * to VM code. 1860 */ 1861 if (wc->w_target_locked) 1862 unlock_page(mmap_page); 1863 1864 ocfs2_free_write_ctxt(inode, wc); 1865 1866 if (data_ac) { 1867 ocfs2_free_alloc_context(data_ac); 1868 data_ac = NULL; 1869 } 1870 if (meta_ac) { 1871 ocfs2_free_alloc_context(meta_ac); 1872 meta_ac = NULL; 1873 } 1874 1875 if (ret == -ENOSPC && try_free) { 1876 /* 1877 * Try to free some truncate log so that we can have enough 1878 * clusters to allocate. 1879 */ 1880 try_free = 0; 1881 1882 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1883 if (ret1 == 1) 1884 goto try_again; 1885 1886 if (ret1 < 0) 1887 mlog_errno(ret1); 1888 } 1889 1890 return ret; 1891 } 1892 1893 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1894 loff_t pos, unsigned len, unsigned flags, 1895 struct page **pagep, void **fsdata) 1896 { 1897 int ret; 1898 struct buffer_head *di_bh = NULL; 1899 struct inode *inode = mapping->host; 1900 1901 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1902 if (ret) { 1903 mlog_errno(ret); 1904 return ret; 1905 } 1906 1907 /* 1908 * Take alloc sem here to prevent concurrent lookups. That way 1909 * the mapping, zeroing and tree manipulation within 1910 * ocfs2_write() will be safe against ->readpage(). This 1911 * should also serve to lock out allocation from a shared 1912 * writeable region. 1913 */ 1914 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1915 1916 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER, 1917 pagep, fsdata, di_bh, NULL); 1918 if (ret) { 1919 mlog_errno(ret); 1920 goto out_fail; 1921 } 1922 1923 brelse(di_bh); 1924 1925 return 0; 1926 1927 out_fail: 1928 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1929 1930 brelse(di_bh); 1931 ocfs2_inode_unlock(inode, 1); 1932 1933 return ret; 1934 } 1935 1936 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1937 unsigned len, unsigned *copied, 1938 struct ocfs2_dinode *di, 1939 struct ocfs2_write_ctxt *wc) 1940 { 1941 void *kaddr; 1942 1943 if (unlikely(*copied < len)) { 1944 if (!PageUptodate(wc->w_target_page)) { 1945 *copied = 0; 1946 return; 1947 } 1948 } 1949 1950 kaddr = kmap_atomic(wc->w_target_page); 1951 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1952 kunmap_atomic(kaddr); 1953 1954 trace_ocfs2_write_end_inline( 1955 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1956 (unsigned long long)pos, *copied, 1957 le16_to_cpu(di->id2.i_data.id_count), 1958 le16_to_cpu(di->i_dyn_features)); 1959 } 1960 1961 int ocfs2_write_end_nolock(struct address_space *mapping, 1962 loff_t pos, unsigned len, unsigned copied, void *fsdata) 1963 { 1964 int i, ret; 1965 unsigned from, to, start = pos & (PAGE_SIZE - 1); 1966 struct inode *inode = mapping->host; 1967 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1968 struct ocfs2_write_ctxt *wc = fsdata; 1969 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1970 handle_t *handle = wc->w_handle; 1971 struct page *tmppage; 1972 1973 BUG_ON(!list_empty(&wc->w_unwritten_list)); 1974 1975 if (handle) { 1976 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), 1977 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); 1978 if (ret) { 1979 copied = ret; 1980 mlog_errno(ret); 1981 goto out; 1982 } 1983 } 1984 1985 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1986 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1987 goto out_write_size; 1988 } 1989 1990 if (unlikely(copied < len) && wc->w_target_page) { 1991 if (!PageUptodate(wc->w_target_page)) 1992 copied = 0; 1993 1994 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1995 start+len); 1996 } 1997 if (wc->w_target_page) 1998 flush_dcache_page(wc->w_target_page); 1999 2000 for(i = 0; i < wc->w_num_pages; i++) { 2001 tmppage = wc->w_pages[i]; 2002 2003 /* This is the direct io target page. */ 2004 if (tmppage == NULL) 2005 continue; 2006 2007 if (tmppage == wc->w_target_page) { 2008 from = wc->w_target_from; 2009 to = wc->w_target_to; 2010 2011 BUG_ON(from > PAGE_SIZE || 2012 to > PAGE_SIZE || 2013 to < from); 2014 } else { 2015 /* 2016 * Pages adjacent to the target (if any) imply 2017 * a hole-filling write in which case we want 2018 * to flush their entire range. 2019 */ 2020 from = 0; 2021 to = PAGE_SIZE; 2022 } 2023 2024 if (page_has_buffers(tmppage)) { 2025 if (handle && ocfs2_should_order_data(inode)) 2026 ocfs2_jbd2_file_inode(handle, inode); 2027 block_commit_write(tmppage, from, to); 2028 } 2029 } 2030 2031 out_write_size: 2032 /* Direct io do not update i_size here. */ 2033 if (wc->w_type != OCFS2_WRITE_DIRECT) { 2034 pos += copied; 2035 if (pos > i_size_read(inode)) { 2036 i_size_write(inode, pos); 2037 mark_inode_dirty(inode); 2038 } 2039 inode->i_blocks = ocfs2_inode_sector_count(inode); 2040 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2041 inode->i_mtime = inode->i_ctime = current_time(inode); 2042 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2043 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2044 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2045 } 2046 if (handle) 2047 ocfs2_journal_dirty(handle, wc->w_di_bh); 2048 2049 out: 2050 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2051 * lock, or it will cause a deadlock since journal commit threads holds 2052 * this lock and will ask for the page lock when flushing the data. 2053 * put it here to preserve the unlock order. 2054 */ 2055 ocfs2_unlock_pages(wc); 2056 2057 if (handle) 2058 ocfs2_commit_trans(osb, handle); 2059 2060 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2061 2062 brelse(wc->w_di_bh); 2063 kfree(wc); 2064 2065 return copied; 2066 } 2067 2068 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2069 loff_t pos, unsigned len, unsigned copied, 2070 struct page *page, void *fsdata) 2071 { 2072 int ret; 2073 struct inode *inode = mapping->host; 2074 2075 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata); 2076 2077 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2078 ocfs2_inode_unlock(inode, 1); 2079 2080 return ret; 2081 } 2082 2083 struct ocfs2_dio_write_ctxt { 2084 struct list_head dw_zero_list; 2085 unsigned dw_zero_count; 2086 int dw_orphaned; 2087 pid_t dw_writer_pid; 2088 }; 2089 2090 static struct ocfs2_dio_write_ctxt * 2091 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc) 2092 { 2093 struct ocfs2_dio_write_ctxt *dwc = NULL; 2094 2095 if (bh->b_private) 2096 return bh->b_private; 2097 2098 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS); 2099 if (dwc == NULL) 2100 return NULL; 2101 INIT_LIST_HEAD(&dwc->dw_zero_list); 2102 dwc->dw_zero_count = 0; 2103 dwc->dw_orphaned = 0; 2104 dwc->dw_writer_pid = task_pid_nr(current); 2105 bh->b_private = dwc; 2106 *alloc = 1; 2107 2108 return dwc; 2109 } 2110 2111 static void ocfs2_dio_free_write_ctx(struct inode *inode, 2112 struct ocfs2_dio_write_ctxt *dwc) 2113 { 2114 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list); 2115 kfree(dwc); 2116 } 2117 2118 /* 2119 * TODO: Make this into a generic get_blocks function. 2120 * 2121 * From do_direct_io in direct-io.c: 2122 * "So what we do is to permit the ->get_blocks function to populate 2123 * bh.b_size with the size of IO which is permitted at this offset and 2124 * this i_blkbits." 2125 * 2126 * This function is called directly from get_more_blocks in direct-io.c. 2127 * 2128 * called like this: dio->get_blocks(dio->inode, fs_startblk, 2129 * fs_count, map_bh, dio->rw == WRITE); 2130 */ 2131 static int ocfs2_dio_get_block(struct inode *inode, sector_t iblock, 2132 struct buffer_head *bh_result, int create) 2133 { 2134 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2135 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2136 struct ocfs2_write_ctxt *wc; 2137 struct ocfs2_write_cluster_desc *desc = NULL; 2138 struct ocfs2_dio_write_ctxt *dwc = NULL; 2139 struct buffer_head *di_bh = NULL; 2140 u64 p_blkno; 2141 loff_t pos = iblock << inode->i_sb->s_blocksize_bits; 2142 unsigned len, total_len = bh_result->b_size; 2143 int ret = 0, first_get_block = 0; 2144 2145 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1)); 2146 len = min(total_len, len); 2147 2148 mlog(0, "get block of %lu at %llu:%u req %u\n", 2149 inode->i_ino, pos, len, total_len); 2150 2151 /* 2152 * Because we need to change file size in ocfs2_dio_end_io_write(), or 2153 * we may need to add it to orphan dir. So can not fall to fast path 2154 * while file size will be changed. 2155 */ 2156 if (pos + total_len <= i_size_read(inode)) { 2157 down_read(&oi->ip_alloc_sem); 2158 /* This is the fast path for re-write. */ 2159 ret = ocfs2_get_block(inode, iblock, bh_result, create); 2160 2161 up_read(&oi->ip_alloc_sem); 2162 2163 if (buffer_mapped(bh_result) && 2164 !buffer_new(bh_result) && 2165 ret == 0) 2166 goto out; 2167 2168 /* Clear state set by ocfs2_get_block. */ 2169 bh_result->b_state = 0; 2170 } 2171 2172 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block); 2173 if (unlikely(dwc == NULL)) { 2174 ret = -ENOMEM; 2175 mlog_errno(ret); 2176 goto out; 2177 } 2178 2179 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) > 2180 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) && 2181 !dwc->dw_orphaned) { 2182 /* 2183 * when we are going to alloc extents beyond file size, add the 2184 * inode to orphan dir, so we can recall those spaces when 2185 * system crashed during write. 2186 */ 2187 ret = ocfs2_add_inode_to_orphan(osb, inode); 2188 if (ret < 0) { 2189 mlog_errno(ret); 2190 goto out; 2191 } 2192 dwc->dw_orphaned = 1; 2193 } 2194 2195 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2196 if (ret) { 2197 mlog_errno(ret); 2198 goto out; 2199 } 2200 2201 down_write(&oi->ip_alloc_sem); 2202 2203 if (first_get_block) { 2204 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 2205 ret = ocfs2_zero_tail(inode, di_bh, pos); 2206 else 2207 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 2208 total_len, NULL); 2209 if (ret < 0) { 2210 mlog_errno(ret); 2211 goto unlock; 2212 } 2213 } 2214 2215 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len, 2216 OCFS2_WRITE_DIRECT, NULL, 2217 (void **)&wc, di_bh, NULL); 2218 if (ret) { 2219 mlog_errno(ret); 2220 goto unlock; 2221 } 2222 2223 desc = &wc->w_desc[0]; 2224 2225 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys); 2226 BUG_ON(p_blkno == 0); 2227 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1); 2228 2229 map_bh(bh_result, inode->i_sb, p_blkno); 2230 bh_result->b_size = len; 2231 if (desc->c_needs_zero) 2232 set_buffer_new(bh_result); 2233 2234 /* May sleep in end_io. It should not happen in a irq context. So defer 2235 * it to dio work queue. */ 2236 set_buffer_defer_completion(bh_result); 2237 2238 if (!list_empty(&wc->w_unwritten_list)) { 2239 struct ocfs2_unwritten_extent *ue = NULL; 2240 2241 ue = list_first_entry(&wc->w_unwritten_list, 2242 struct ocfs2_unwritten_extent, 2243 ue_node); 2244 BUG_ON(ue->ue_cpos != desc->c_cpos); 2245 /* The physical address may be 0, fill it. */ 2246 ue->ue_phys = desc->c_phys; 2247 2248 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list); 2249 dwc->dw_zero_count++; 2250 } 2251 2252 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc); 2253 BUG_ON(ret != len); 2254 ret = 0; 2255 unlock: 2256 up_write(&oi->ip_alloc_sem); 2257 ocfs2_inode_unlock(inode, 1); 2258 brelse(di_bh); 2259 out: 2260 if (ret < 0) 2261 ret = -EIO; 2262 return ret; 2263 } 2264 2265 static int ocfs2_dio_end_io_write(struct inode *inode, 2266 struct ocfs2_dio_write_ctxt *dwc, 2267 loff_t offset, 2268 ssize_t bytes) 2269 { 2270 struct ocfs2_cached_dealloc_ctxt dealloc; 2271 struct ocfs2_extent_tree et; 2272 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2273 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2274 struct ocfs2_unwritten_extent *ue = NULL; 2275 struct buffer_head *di_bh = NULL; 2276 struct ocfs2_dinode *di; 2277 struct ocfs2_alloc_context *data_ac = NULL; 2278 struct ocfs2_alloc_context *meta_ac = NULL; 2279 handle_t *handle = NULL; 2280 loff_t end = offset + bytes; 2281 int ret = 0, credits = 0, locked = 0; 2282 2283 ocfs2_init_dealloc_ctxt(&dealloc); 2284 2285 /* We do clear unwritten, delete orphan, change i_size here. If neither 2286 * of these happen, we can skip all this. */ 2287 if (list_empty(&dwc->dw_zero_list) && 2288 end <= i_size_read(inode) && 2289 !dwc->dw_orphaned) 2290 goto out; 2291 2292 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we 2293 * are in that context. */ 2294 if (dwc->dw_writer_pid != task_pid_nr(current)) { 2295 inode_lock(inode); 2296 locked = 1; 2297 } 2298 2299 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2300 if (ret < 0) { 2301 mlog_errno(ret); 2302 goto out; 2303 } 2304 2305 down_write(&oi->ip_alloc_sem); 2306 2307 /* Delete orphan before acquire i_mutex. */ 2308 if (dwc->dw_orphaned) { 2309 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current)); 2310 2311 end = end > i_size_read(inode) ? end : 0; 2312 2313 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 2314 !!end, end); 2315 if (ret < 0) 2316 mlog_errno(ret); 2317 } 2318 2319 di = (struct ocfs2_dinode *)di_bh->b_data; 2320 2321 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 2322 2323 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2, 2324 &data_ac, &meta_ac); 2325 if (ret) { 2326 mlog_errno(ret); 2327 goto unlock; 2328 } 2329 2330 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list); 2331 2332 handle = ocfs2_start_trans(osb, credits); 2333 if (IS_ERR(handle)) { 2334 ret = PTR_ERR(handle); 2335 mlog_errno(ret); 2336 goto unlock; 2337 } 2338 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 2339 OCFS2_JOURNAL_ACCESS_WRITE); 2340 if (ret) { 2341 mlog_errno(ret); 2342 goto commit; 2343 } 2344 2345 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) { 2346 ret = ocfs2_mark_extent_written(inode, &et, handle, 2347 ue->ue_cpos, 1, 2348 ue->ue_phys, 2349 meta_ac, &dealloc); 2350 if (ret < 0) { 2351 mlog_errno(ret); 2352 break; 2353 } 2354 } 2355 2356 if (end > i_size_read(inode)) { 2357 ret = ocfs2_set_inode_size(handle, inode, di_bh, end); 2358 if (ret < 0) 2359 mlog_errno(ret); 2360 } 2361 commit: 2362 ocfs2_commit_trans(osb, handle); 2363 unlock: 2364 up_write(&oi->ip_alloc_sem); 2365 ocfs2_inode_unlock(inode, 1); 2366 brelse(di_bh); 2367 out: 2368 if (data_ac) 2369 ocfs2_free_alloc_context(data_ac); 2370 if (meta_ac) 2371 ocfs2_free_alloc_context(meta_ac); 2372 ocfs2_run_deallocs(osb, &dealloc); 2373 if (locked) 2374 inode_unlock(inode); 2375 ocfs2_dio_free_write_ctx(inode, dwc); 2376 2377 return ret; 2378 } 2379 2380 /* 2381 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 2382 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 2383 * to protect io on one node from truncation on another. 2384 */ 2385 static int ocfs2_dio_end_io(struct kiocb *iocb, 2386 loff_t offset, 2387 ssize_t bytes, 2388 void *private) 2389 { 2390 struct inode *inode = file_inode(iocb->ki_filp); 2391 int level; 2392 int ret = 0; 2393 2394 /* this io's submitter should not have unlocked this before we could */ 2395 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 2396 2397 if (bytes > 0 && private) 2398 ret = ocfs2_dio_end_io_write(inode, private, offset, bytes); 2399 2400 ocfs2_iocb_clear_rw_locked(iocb); 2401 2402 level = ocfs2_iocb_rw_locked_level(iocb); 2403 ocfs2_rw_unlock(inode, level); 2404 return ret; 2405 } 2406 2407 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2408 { 2409 struct file *file = iocb->ki_filp; 2410 struct inode *inode = file->f_mapping->host; 2411 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2412 get_block_t *get_block; 2413 2414 /* 2415 * Fallback to buffered I/O if we see an inode without 2416 * extents. 2417 */ 2418 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2419 return 0; 2420 2421 /* Fallback to buffered I/O if we do not support append dio. */ 2422 if (iocb->ki_pos + iter->count > i_size_read(inode) && 2423 !ocfs2_supports_append_dio(osb)) 2424 return 0; 2425 2426 if (iov_iter_rw(iter) == READ) 2427 get_block = ocfs2_get_block; 2428 else 2429 get_block = ocfs2_dio_get_block; 2430 2431 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2432 iter, get_block, 2433 ocfs2_dio_end_io, NULL, 0); 2434 } 2435 2436 const struct address_space_operations ocfs2_aops = { 2437 .readpage = ocfs2_readpage, 2438 .readpages = ocfs2_readpages, 2439 .writepage = ocfs2_writepage, 2440 .write_begin = ocfs2_write_begin, 2441 .write_end = ocfs2_write_end, 2442 .bmap = ocfs2_bmap, 2443 .direct_IO = ocfs2_direct_IO, 2444 .invalidatepage = block_invalidatepage, 2445 .releasepage = ocfs2_releasepage, 2446 .migratepage = buffer_migrate_page, 2447 .is_partially_uptodate = block_is_partially_uptodate, 2448 .error_remove_page = generic_error_remove_page, 2449 }; 2450