1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 31 #define MLOG_MASK_PREFIX ML_FILE_IO 32 #include <cluster/masklog.h> 33 34 #include "ocfs2.h" 35 36 #include "alloc.h" 37 #include "aops.h" 38 #include "dlmglue.h" 39 #include "extent_map.h" 40 #include "file.h" 41 #include "inode.h" 42 #include "journal.h" 43 #include "suballoc.h" 44 #include "super.h" 45 #include "symlink.h" 46 47 #include "buffer_head_io.h" 48 49 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 50 struct buffer_head *bh_result, int create) 51 { 52 int err = -EIO; 53 int status; 54 struct ocfs2_dinode *fe = NULL; 55 struct buffer_head *bh = NULL; 56 struct buffer_head *buffer_cache_bh = NULL; 57 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 58 void *kaddr; 59 60 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, 61 (unsigned long long)iblock, bh_result, create); 62 63 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 64 65 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 66 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 67 (unsigned long long)iblock); 68 goto bail; 69 } 70 71 status = ocfs2_read_block(OCFS2_SB(inode->i_sb), 72 OCFS2_I(inode)->ip_blkno, 73 &bh, OCFS2_BH_CACHED, inode); 74 if (status < 0) { 75 mlog_errno(status); 76 goto bail; 77 } 78 fe = (struct ocfs2_dinode *) bh->b_data; 79 80 if (!OCFS2_IS_VALID_DINODE(fe)) { 81 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n", 82 (unsigned long long)le64_to_cpu(fe->i_blkno), 7, 83 fe->i_signature); 84 goto bail; 85 } 86 87 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 88 le32_to_cpu(fe->i_clusters))) { 89 mlog(ML_ERROR, "block offset is outside the allocated size: " 90 "%llu\n", (unsigned long long)iblock); 91 goto bail; 92 } 93 94 /* We don't use the page cache to create symlink data, so if 95 * need be, copy it over from the buffer cache. */ 96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 98 iblock; 99 buffer_cache_bh = sb_getblk(osb->sb, blkno); 100 if (!buffer_cache_bh) { 101 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 102 goto bail; 103 } 104 105 /* we haven't locked out transactions, so a commit 106 * could've happened. Since we've got a reference on 107 * the bh, even if it commits while we're doing the 108 * copy, the data is still good. */ 109 if (buffer_jbd(buffer_cache_bh) 110 && ocfs2_inode_is_new(inode)) { 111 kaddr = kmap_atomic(bh_result->b_page, KM_USER0); 112 if (!kaddr) { 113 mlog(ML_ERROR, "couldn't kmap!\n"); 114 goto bail; 115 } 116 memcpy(kaddr + (bh_result->b_size * iblock), 117 buffer_cache_bh->b_data, 118 bh_result->b_size); 119 kunmap_atomic(kaddr, KM_USER0); 120 set_buffer_uptodate(bh_result); 121 } 122 brelse(buffer_cache_bh); 123 } 124 125 map_bh(bh_result, inode->i_sb, 126 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 127 128 err = 0; 129 130 bail: 131 if (bh) 132 brelse(bh); 133 134 mlog_exit(err); 135 return err; 136 } 137 138 static int ocfs2_get_block(struct inode *inode, sector_t iblock, 139 struct buffer_head *bh_result, int create) 140 { 141 int err = 0; 142 unsigned int ext_flags; 143 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 144 u64 p_blkno, count, past_eof; 145 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 146 147 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, 148 (unsigned long long)iblock, bh_result, create); 149 150 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 151 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 152 inode, inode->i_ino); 153 154 if (S_ISLNK(inode->i_mode)) { 155 /* this always does I/O for some reason. */ 156 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 157 goto bail; 158 } 159 160 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 161 &ext_flags); 162 if (err) { 163 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 164 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 165 (unsigned long long)p_blkno); 166 goto bail; 167 } 168 169 if (max_blocks < count) 170 count = max_blocks; 171 172 /* 173 * ocfs2 never allocates in this function - the only time we 174 * need to use BH_New is when we're extending i_size on a file 175 * system which doesn't support holes, in which case BH_New 176 * allows block_prepare_write() to zero. 177 * 178 * If we see this on a sparse file system, then a truncate has 179 * raced us and removed the cluster. In this case, we clear 180 * the buffers dirty and uptodate bits and let the buffer code 181 * ignore it as a hole. 182 */ 183 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 184 clear_buffer_dirty(bh_result); 185 clear_buffer_uptodate(bh_result); 186 goto bail; 187 } 188 189 /* Treat the unwritten extent as a hole for zeroing purposes. */ 190 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 191 map_bh(bh_result, inode->i_sb, p_blkno); 192 193 bh_result->b_size = count << inode->i_blkbits; 194 195 if (!ocfs2_sparse_alloc(osb)) { 196 if (p_blkno == 0) { 197 err = -EIO; 198 mlog(ML_ERROR, 199 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 200 (unsigned long long)iblock, 201 (unsigned long long)p_blkno, 202 (unsigned long long)OCFS2_I(inode)->ip_blkno); 203 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 204 dump_stack(); 205 } 206 207 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 208 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino, 209 (unsigned long long)past_eof); 210 211 if (create && (iblock >= past_eof)) 212 set_buffer_new(bh_result); 213 } 214 215 bail: 216 if (err < 0) 217 err = -EIO; 218 219 mlog_exit(err); 220 return err; 221 } 222 223 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 224 struct buffer_head *di_bh) 225 { 226 void *kaddr; 227 loff_t size; 228 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 229 230 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 231 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag", 232 (unsigned long long)OCFS2_I(inode)->ip_blkno); 233 return -EROFS; 234 } 235 236 size = i_size_read(inode); 237 238 if (size > PAGE_CACHE_SIZE || 239 size > ocfs2_max_inline_data(inode->i_sb)) { 240 ocfs2_error(inode->i_sb, 241 "Inode %llu has with inline data has bad size: %Lu", 242 (unsigned long long)OCFS2_I(inode)->ip_blkno, 243 (unsigned long long)size); 244 return -EROFS; 245 } 246 247 kaddr = kmap_atomic(page, KM_USER0); 248 if (size) 249 memcpy(kaddr, di->id2.i_data.id_data, size); 250 /* Clear the remaining part of the page */ 251 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); 252 flush_dcache_page(page); 253 kunmap_atomic(kaddr, KM_USER0); 254 255 SetPageUptodate(page); 256 257 return 0; 258 } 259 260 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 261 { 262 int ret; 263 struct buffer_head *di_bh = NULL; 264 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 265 266 BUG_ON(!PageLocked(page)); 267 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 268 269 ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh, 270 OCFS2_BH_CACHED, inode); 271 if (ret) { 272 mlog_errno(ret); 273 goto out; 274 } 275 276 ret = ocfs2_read_inline_data(inode, page, di_bh); 277 out: 278 unlock_page(page); 279 280 brelse(di_bh); 281 return ret; 282 } 283 284 static int ocfs2_readpage(struct file *file, struct page *page) 285 { 286 struct inode *inode = page->mapping->host; 287 struct ocfs2_inode_info *oi = OCFS2_I(inode); 288 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; 289 int ret, unlock = 1; 290 291 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0)); 292 293 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 294 if (ret != 0) { 295 if (ret == AOP_TRUNCATED_PAGE) 296 unlock = 0; 297 mlog_errno(ret); 298 goto out; 299 } 300 301 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 302 ret = AOP_TRUNCATED_PAGE; 303 goto out_inode_unlock; 304 } 305 306 /* 307 * i_size might have just been updated as we grabed the meta lock. We 308 * might now be discovering a truncate that hit on another node. 309 * block_read_full_page->get_block freaks out if it is asked to read 310 * beyond the end of a file, so we check here. Callers 311 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 312 * and notice that the page they just read isn't needed. 313 * 314 * XXX sys_readahead() seems to get that wrong? 315 */ 316 if (start >= i_size_read(inode)) { 317 zero_user(page, 0, PAGE_SIZE); 318 SetPageUptodate(page); 319 ret = 0; 320 goto out_alloc; 321 } 322 323 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 324 ret = ocfs2_readpage_inline(inode, page); 325 else 326 ret = block_read_full_page(page, ocfs2_get_block); 327 unlock = 0; 328 329 out_alloc: 330 up_read(&OCFS2_I(inode)->ip_alloc_sem); 331 out_inode_unlock: 332 ocfs2_inode_unlock(inode, 0); 333 out: 334 if (unlock) 335 unlock_page(page); 336 mlog_exit(ret); 337 return ret; 338 } 339 340 /* 341 * This is used only for read-ahead. Failures or difficult to handle 342 * situations are safe to ignore. 343 * 344 * Right now, we don't bother with BH_Boundary - in-inode extent lists 345 * are quite large (243 extents on 4k blocks), so most inodes don't 346 * grow out to a tree. If need be, detecting boundary extents could 347 * trivially be added in a future version of ocfs2_get_block(). 348 */ 349 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 350 struct list_head *pages, unsigned nr_pages) 351 { 352 int ret, err = -EIO; 353 struct inode *inode = mapping->host; 354 struct ocfs2_inode_info *oi = OCFS2_I(inode); 355 loff_t start; 356 struct page *last; 357 358 /* 359 * Use the nonblocking flag for the dlm code to avoid page 360 * lock inversion, but don't bother with retrying. 361 */ 362 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 363 if (ret) 364 return err; 365 366 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 367 ocfs2_inode_unlock(inode, 0); 368 return err; 369 } 370 371 /* 372 * Don't bother with inline-data. There isn't anything 373 * to read-ahead in that case anyway... 374 */ 375 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 376 goto out_unlock; 377 378 /* 379 * Check whether a remote node truncated this file - we just 380 * drop out in that case as it's not worth handling here. 381 */ 382 last = list_entry(pages->prev, struct page, lru); 383 start = (loff_t)last->index << PAGE_CACHE_SHIFT; 384 if (start >= i_size_read(inode)) 385 goto out_unlock; 386 387 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 388 389 out_unlock: 390 up_read(&oi->ip_alloc_sem); 391 ocfs2_inode_unlock(inode, 0); 392 393 return err; 394 } 395 396 /* Note: Because we don't support holes, our allocation has 397 * already happened (allocation writes zeros to the file data) 398 * so we don't have to worry about ordered writes in 399 * ocfs2_writepage. 400 * 401 * ->writepage is called during the process of invalidating the page cache 402 * during blocked lock processing. It can't block on any cluster locks 403 * to during block mapping. It's relying on the fact that the block 404 * mapping can't have disappeared under the dirty pages that it is 405 * being asked to write back. 406 */ 407 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 408 { 409 int ret; 410 411 mlog_entry("(0x%p)\n", page); 412 413 ret = block_write_full_page(page, ocfs2_get_block, wbc); 414 415 mlog_exit(ret); 416 417 return ret; 418 } 419 420 /* 421 * This is called from ocfs2_write_zero_page() which has handled it's 422 * own cluster locking and has ensured allocation exists for those 423 * blocks to be written. 424 */ 425 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page, 426 unsigned from, unsigned to) 427 { 428 int ret; 429 430 ret = block_prepare_write(page, from, to, ocfs2_get_block); 431 432 return ret; 433 } 434 435 /* Taken from ext3. We don't necessarily need the full blown 436 * functionality yet, but IMHO it's better to cut and paste the whole 437 * thing so we can avoid introducing our own bugs (and easily pick up 438 * their fixes when they happen) --Mark */ 439 int walk_page_buffers( handle_t *handle, 440 struct buffer_head *head, 441 unsigned from, 442 unsigned to, 443 int *partial, 444 int (*fn)( handle_t *handle, 445 struct buffer_head *bh)) 446 { 447 struct buffer_head *bh; 448 unsigned block_start, block_end; 449 unsigned blocksize = head->b_size; 450 int err, ret = 0; 451 struct buffer_head *next; 452 453 for ( bh = head, block_start = 0; 454 ret == 0 && (bh != head || !block_start); 455 block_start = block_end, bh = next) 456 { 457 next = bh->b_this_page; 458 block_end = block_start + blocksize; 459 if (block_end <= from || block_start >= to) { 460 if (partial && !buffer_uptodate(bh)) 461 *partial = 1; 462 continue; 463 } 464 err = (*fn)(handle, bh); 465 if (!ret) 466 ret = err; 467 } 468 return ret; 469 } 470 471 handle_t *ocfs2_start_walk_page_trans(struct inode *inode, 472 struct page *page, 473 unsigned from, 474 unsigned to) 475 { 476 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 477 handle_t *handle; 478 int ret = 0; 479 480 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 481 if (IS_ERR(handle)) { 482 ret = -ENOMEM; 483 mlog_errno(ret); 484 goto out; 485 } 486 487 if (ocfs2_should_order_data(inode)) { 488 ret = walk_page_buffers(handle, 489 page_buffers(page), 490 from, to, NULL, 491 ocfs2_journal_dirty_data); 492 if (ret < 0) 493 mlog_errno(ret); 494 } 495 out: 496 if (ret) { 497 if (!IS_ERR(handle)) 498 ocfs2_commit_trans(osb, handle); 499 handle = ERR_PTR(ret); 500 } 501 return handle; 502 } 503 504 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 505 { 506 sector_t status; 507 u64 p_blkno = 0; 508 int err = 0; 509 struct inode *inode = mapping->host; 510 511 mlog_entry("(block = %llu)\n", (unsigned long long)block); 512 513 /* We don't need to lock journal system files, since they aren't 514 * accessed concurrently from multiple nodes. 515 */ 516 if (!INODE_JOURNAL(inode)) { 517 err = ocfs2_inode_lock(inode, NULL, 0); 518 if (err) { 519 if (err != -ENOENT) 520 mlog_errno(err); 521 goto bail; 522 } 523 down_read(&OCFS2_I(inode)->ip_alloc_sem); 524 } 525 526 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 527 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 528 NULL); 529 530 if (!INODE_JOURNAL(inode)) { 531 up_read(&OCFS2_I(inode)->ip_alloc_sem); 532 ocfs2_inode_unlock(inode, 0); 533 } 534 535 if (err) { 536 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 537 (unsigned long long)block); 538 mlog_errno(err); 539 goto bail; 540 } 541 542 bail: 543 status = err ? 0 : p_blkno; 544 545 mlog_exit((int)status); 546 547 return status; 548 } 549 550 /* 551 * TODO: Make this into a generic get_blocks function. 552 * 553 * From do_direct_io in direct-io.c: 554 * "So what we do is to permit the ->get_blocks function to populate 555 * bh.b_size with the size of IO which is permitted at this offset and 556 * this i_blkbits." 557 * 558 * This function is called directly from get_more_blocks in direct-io.c. 559 * 560 * called like this: dio->get_blocks(dio->inode, fs_startblk, 561 * fs_count, map_bh, dio->rw == WRITE); 562 */ 563 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, 564 struct buffer_head *bh_result, int create) 565 { 566 int ret; 567 u64 p_blkno, inode_blocks, contig_blocks; 568 unsigned int ext_flags; 569 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 570 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; 571 572 /* This function won't even be called if the request isn't all 573 * nicely aligned and of the right size, so there's no need 574 * for us to check any of that. */ 575 576 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 577 578 /* 579 * Any write past EOF is not allowed because we'd be extending. 580 */ 581 if (create && (iblock + max_blocks) > inode_blocks) { 582 ret = -EIO; 583 goto bail; 584 } 585 586 /* This figures out the size of the next contiguous block, and 587 * our logical offset */ 588 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 589 &contig_blocks, &ext_flags); 590 if (ret) { 591 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 592 (unsigned long long)iblock); 593 ret = -EIO; 594 goto bail; 595 } 596 597 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) { 598 ocfs2_error(inode->i_sb, 599 "Inode %llu has a hole at block %llu\n", 600 (unsigned long long)OCFS2_I(inode)->ip_blkno, 601 (unsigned long long)iblock); 602 ret = -EROFS; 603 goto bail; 604 } 605 606 /* 607 * get_more_blocks() expects us to describe a hole by clearing 608 * the mapped bit on bh_result(). 609 * 610 * Consider an unwritten extent as a hole. 611 */ 612 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 613 map_bh(bh_result, inode->i_sb, p_blkno); 614 else { 615 /* 616 * ocfs2_prepare_inode_for_write() should have caught 617 * the case where we'd be filling a hole and triggered 618 * a buffered write instead. 619 */ 620 if (create) { 621 ret = -EIO; 622 mlog_errno(ret); 623 goto bail; 624 } 625 626 clear_buffer_mapped(bh_result); 627 } 628 629 /* make sure we don't map more than max_blocks blocks here as 630 that's all the kernel will handle at this point. */ 631 if (max_blocks < contig_blocks) 632 contig_blocks = max_blocks; 633 bh_result->b_size = contig_blocks << blocksize_bits; 634 bail: 635 return ret; 636 } 637 638 /* 639 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 640 * particularly interested in the aio/dio case. Like the core uses 641 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from 642 * truncation on another. 643 */ 644 static void ocfs2_dio_end_io(struct kiocb *iocb, 645 loff_t offset, 646 ssize_t bytes, 647 void *private) 648 { 649 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 650 int level; 651 652 /* this io's submitter should not have unlocked this before we could */ 653 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 654 655 ocfs2_iocb_clear_rw_locked(iocb); 656 657 level = ocfs2_iocb_rw_locked_level(iocb); 658 if (!level) 659 up_read(&inode->i_alloc_sem); 660 ocfs2_rw_unlock(inode, level); 661 } 662 663 /* 664 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen 665 * from ext3. PageChecked() bits have been removed as OCFS2 does not 666 * do journalled data. 667 */ 668 static void ocfs2_invalidatepage(struct page *page, unsigned long offset) 669 { 670 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 671 672 journal_invalidatepage(journal, page, offset); 673 } 674 675 static int ocfs2_releasepage(struct page *page, gfp_t wait) 676 { 677 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 678 679 if (!page_has_buffers(page)) 680 return 0; 681 return journal_try_to_free_buffers(journal, page, wait); 682 } 683 684 static ssize_t ocfs2_direct_IO(int rw, 685 struct kiocb *iocb, 686 const struct iovec *iov, 687 loff_t offset, 688 unsigned long nr_segs) 689 { 690 struct file *file = iocb->ki_filp; 691 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host; 692 int ret; 693 694 mlog_entry_void(); 695 696 /* 697 * Fallback to buffered I/O if we see an inode without 698 * extents. 699 */ 700 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 701 return 0; 702 703 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, 704 inode->i_sb->s_bdev, iov, offset, 705 nr_segs, 706 ocfs2_direct_IO_get_blocks, 707 ocfs2_dio_end_io); 708 709 mlog_exit(ret); 710 return ret; 711 } 712 713 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 714 u32 cpos, 715 unsigned int *start, 716 unsigned int *end) 717 { 718 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; 719 720 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { 721 unsigned int cpp; 722 723 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); 724 725 cluster_start = cpos % cpp; 726 cluster_start = cluster_start << osb->s_clustersize_bits; 727 728 cluster_end = cluster_start + osb->s_clustersize; 729 } 730 731 BUG_ON(cluster_start > PAGE_SIZE); 732 BUG_ON(cluster_end > PAGE_SIZE); 733 734 if (start) 735 *start = cluster_start; 736 if (end) 737 *end = cluster_end; 738 } 739 740 /* 741 * 'from' and 'to' are the region in the page to avoid zeroing. 742 * 743 * If pagesize > clustersize, this function will avoid zeroing outside 744 * of the cluster boundary. 745 * 746 * from == to == 0 is code for "zero the entire cluster region" 747 */ 748 static void ocfs2_clear_page_regions(struct page *page, 749 struct ocfs2_super *osb, u32 cpos, 750 unsigned from, unsigned to) 751 { 752 void *kaddr; 753 unsigned int cluster_start, cluster_end; 754 755 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 756 757 kaddr = kmap_atomic(page, KM_USER0); 758 759 if (from || to) { 760 if (from > cluster_start) 761 memset(kaddr + cluster_start, 0, from - cluster_start); 762 if (to < cluster_end) 763 memset(kaddr + to, 0, cluster_end - to); 764 } else { 765 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 766 } 767 768 kunmap_atomic(kaddr, KM_USER0); 769 } 770 771 /* 772 * Nonsparse file systems fully allocate before we get to the write 773 * code. This prevents ocfs2_write() from tagging the write as an 774 * allocating one, which means ocfs2_map_page_blocks() might try to 775 * read-in the blocks at the tail of our file. Avoid reading them by 776 * testing i_size against each block offset. 777 */ 778 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 779 unsigned int block_start) 780 { 781 u64 offset = page_offset(page) + block_start; 782 783 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 784 return 1; 785 786 if (i_size_read(inode) > offset) 787 return 1; 788 789 return 0; 790 } 791 792 /* 793 * Some of this taken from block_prepare_write(). We already have our 794 * mapping by now though, and the entire write will be allocating or 795 * it won't, so not much need to use BH_New. 796 * 797 * This will also skip zeroing, which is handled externally. 798 */ 799 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 800 struct inode *inode, unsigned int from, 801 unsigned int to, int new) 802 { 803 int ret = 0; 804 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 805 unsigned int block_end, block_start; 806 unsigned int bsize = 1 << inode->i_blkbits; 807 808 if (!page_has_buffers(page)) 809 create_empty_buffers(page, bsize, 0); 810 811 head = page_buffers(page); 812 for (bh = head, block_start = 0; bh != head || !block_start; 813 bh = bh->b_this_page, block_start += bsize) { 814 block_end = block_start + bsize; 815 816 clear_buffer_new(bh); 817 818 /* 819 * Ignore blocks outside of our i/o range - 820 * they may belong to unallocated clusters. 821 */ 822 if (block_start >= to || block_end <= from) { 823 if (PageUptodate(page)) 824 set_buffer_uptodate(bh); 825 continue; 826 } 827 828 /* 829 * For an allocating write with cluster size >= page 830 * size, we always write the entire page. 831 */ 832 if (new) 833 set_buffer_new(bh); 834 835 if (!buffer_mapped(bh)) { 836 map_bh(bh, inode->i_sb, *p_blkno); 837 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 838 } 839 840 if (PageUptodate(page)) { 841 if (!buffer_uptodate(bh)) 842 set_buffer_uptodate(bh); 843 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 844 !buffer_new(bh) && 845 ocfs2_should_read_blk(inode, page, block_start) && 846 (block_start < from || block_end > to)) { 847 ll_rw_block(READ, 1, &bh); 848 *wait_bh++=bh; 849 } 850 851 *p_blkno = *p_blkno + 1; 852 } 853 854 /* 855 * If we issued read requests - let them complete. 856 */ 857 while(wait_bh > wait) { 858 wait_on_buffer(*--wait_bh); 859 if (!buffer_uptodate(*wait_bh)) 860 ret = -EIO; 861 } 862 863 if (ret == 0 || !new) 864 return ret; 865 866 /* 867 * If we get -EIO above, zero out any newly allocated blocks 868 * to avoid exposing stale data. 869 */ 870 bh = head; 871 block_start = 0; 872 do { 873 block_end = block_start + bsize; 874 if (block_end <= from) 875 goto next_bh; 876 if (block_start >= to) 877 break; 878 879 zero_user(page, block_start, bh->b_size); 880 set_buffer_uptodate(bh); 881 mark_buffer_dirty(bh); 882 883 next_bh: 884 block_start = block_end; 885 bh = bh->b_this_page; 886 } while (bh != head); 887 888 return ret; 889 } 890 891 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 892 #define OCFS2_MAX_CTXT_PAGES 1 893 #else 894 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) 895 #endif 896 897 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) 898 899 /* 900 * Describe the state of a single cluster to be written to. 901 */ 902 struct ocfs2_write_cluster_desc { 903 u32 c_cpos; 904 u32 c_phys; 905 /* 906 * Give this a unique field because c_phys eventually gets 907 * filled. 908 */ 909 unsigned c_new; 910 unsigned c_unwritten; 911 }; 912 913 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d) 914 { 915 return d->c_new || d->c_unwritten; 916 } 917 918 struct ocfs2_write_ctxt { 919 /* Logical cluster position / len of write */ 920 u32 w_cpos; 921 u32 w_clen; 922 923 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 924 925 /* 926 * This is true if page_size > cluster_size. 927 * 928 * It triggers a set of special cases during write which might 929 * have to deal with allocating writes to partial pages. 930 */ 931 unsigned int w_large_pages; 932 933 /* 934 * Pages involved in this write. 935 * 936 * w_target_page is the page being written to by the user. 937 * 938 * w_pages is an array of pages which always contains 939 * w_target_page, and in the case of an allocating write with 940 * page_size < cluster size, it will contain zero'd and mapped 941 * pages adjacent to w_target_page which need to be written 942 * out in so that future reads from that region will get 943 * zero's. 944 */ 945 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 946 unsigned int w_num_pages; 947 struct page *w_target_page; 948 949 /* 950 * ocfs2_write_end() uses this to know what the real range to 951 * write in the target should be. 952 */ 953 unsigned int w_target_from; 954 unsigned int w_target_to; 955 956 /* 957 * We could use journal_current_handle() but this is cleaner, 958 * IMHO -Mark 959 */ 960 handle_t *w_handle; 961 962 struct buffer_head *w_di_bh; 963 964 struct ocfs2_cached_dealloc_ctxt w_dealloc; 965 }; 966 967 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 968 { 969 int i; 970 971 for(i = 0; i < num_pages; i++) { 972 if (pages[i]) { 973 unlock_page(pages[i]); 974 mark_page_accessed(pages[i]); 975 page_cache_release(pages[i]); 976 } 977 } 978 } 979 980 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) 981 { 982 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 983 984 brelse(wc->w_di_bh); 985 kfree(wc); 986 } 987 988 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 989 struct ocfs2_super *osb, loff_t pos, 990 unsigned len, struct buffer_head *di_bh) 991 { 992 u32 cend; 993 struct ocfs2_write_ctxt *wc; 994 995 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 996 if (!wc) 997 return -ENOMEM; 998 999 wc->w_cpos = pos >> osb->s_clustersize_bits; 1000 cend = (pos + len - 1) >> osb->s_clustersize_bits; 1001 wc->w_clen = cend - wc->w_cpos + 1; 1002 get_bh(di_bh); 1003 wc->w_di_bh = di_bh; 1004 1005 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) 1006 wc->w_large_pages = 1; 1007 else 1008 wc->w_large_pages = 0; 1009 1010 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 1011 1012 *wcp = wc; 1013 1014 return 0; 1015 } 1016 1017 /* 1018 * If a page has any new buffers, zero them out here, and mark them uptodate 1019 * and dirty so they'll be written out (in order to prevent uninitialised 1020 * block data from leaking). And clear the new bit. 1021 */ 1022 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1023 { 1024 unsigned int block_start, block_end; 1025 struct buffer_head *head, *bh; 1026 1027 BUG_ON(!PageLocked(page)); 1028 if (!page_has_buffers(page)) 1029 return; 1030 1031 bh = head = page_buffers(page); 1032 block_start = 0; 1033 do { 1034 block_end = block_start + bh->b_size; 1035 1036 if (buffer_new(bh)) { 1037 if (block_end > from && block_start < to) { 1038 if (!PageUptodate(page)) { 1039 unsigned start, end; 1040 1041 start = max(from, block_start); 1042 end = min(to, block_end); 1043 1044 zero_user_segment(page, start, end); 1045 set_buffer_uptodate(bh); 1046 } 1047 1048 clear_buffer_new(bh); 1049 mark_buffer_dirty(bh); 1050 } 1051 } 1052 1053 block_start = block_end; 1054 bh = bh->b_this_page; 1055 } while (bh != head); 1056 } 1057 1058 /* 1059 * Only called when we have a failure during allocating write to write 1060 * zero's to the newly allocated region. 1061 */ 1062 static void ocfs2_write_failure(struct inode *inode, 1063 struct ocfs2_write_ctxt *wc, 1064 loff_t user_pos, unsigned user_len) 1065 { 1066 int i; 1067 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), 1068 to = user_pos + user_len; 1069 struct page *tmppage; 1070 1071 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 1072 1073 for(i = 0; i < wc->w_num_pages; i++) { 1074 tmppage = wc->w_pages[i]; 1075 1076 if (page_has_buffers(tmppage)) { 1077 if (ocfs2_should_order_data(inode)) 1078 walk_page_buffers(wc->w_handle, 1079 page_buffers(tmppage), 1080 from, to, NULL, 1081 ocfs2_journal_dirty_data); 1082 1083 block_commit_write(tmppage, from, to); 1084 } 1085 } 1086 } 1087 1088 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 1089 struct ocfs2_write_ctxt *wc, 1090 struct page *page, u32 cpos, 1091 loff_t user_pos, unsigned user_len, 1092 int new) 1093 { 1094 int ret; 1095 unsigned int map_from = 0, map_to = 0; 1096 unsigned int cluster_start, cluster_end; 1097 unsigned int user_data_from = 0, user_data_to = 0; 1098 1099 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 1100 &cluster_start, &cluster_end); 1101 1102 if (page == wc->w_target_page) { 1103 map_from = user_pos & (PAGE_CACHE_SIZE - 1); 1104 map_to = map_from + user_len; 1105 1106 if (new) 1107 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1108 cluster_start, cluster_end, 1109 new); 1110 else 1111 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1112 map_from, map_to, new); 1113 if (ret) { 1114 mlog_errno(ret); 1115 goto out; 1116 } 1117 1118 user_data_from = map_from; 1119 user_data_to = map_to; 1120 if (new) { 1121 map_from = cluster_start; 1122 map_to = cluster_end; 1123 } 1124 } else { 1125 /* 1126 * If we haven't allocated the new page yet, we 1127 * shouldn't be writing it out without copying user 1128 * data. This is likely a math error from the caller. 1129 */ 1130 BUG_ON(!new); 1131 1132 map_from = cluster_start; 1133 map_to = cluster_end; 1134 1135 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1136 cluster_start, cluster_end, new); 1137 if (ret) { 1138 mlog_errno(ret); 1139 goto out; 1140 } 1141 } 1142 1143 /* 1144 * Parts of newly allocated pages need to be zero'd. 1145 * 1146 * Above, we have also rewritten 'to' and 'from' - as far as 1147 * the rest of the function is concerned, the entire cluster 1148 * range inside of a page needs to be written. 1149 * 1150 * We can skip this if the page is up to date - it's already 1151 * been zero'd from being read in as a hole. 1152 */ 1153 if (new && !PageUptodate(page)) 1154 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1155 cpos, user_data_from, user_data_to); 1156 1157 flush_dcache_page(page); 1158 1159 out: 1160 return ret; 1161 } 1162 1163 /* 1164 * This function will only grab one clusters worth of pages. 1165 */ 1166 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1167 struct ocfs2_write_ctxt *wc, 1168 u32 cpos, loff_t user_pos, int new, 1169 struct page *mmap_page) 1170 { 1171 int ret = 0, i; 1172 unsigned long start, target_index, index; 1173 struct inode *inode = mapping->host; 1174 1175 target_index = user_pos >> PAGE_CACHE_SHIFT; 1176 1177 /* 1178 * Figure out how many pages we'll be manipulating here. For 1179 * non allocating write, we just change the one 1180 * page. Otherwise, we'll need a whole clusters worth. 1181 */ 1182 if (new) { 1183 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1184 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1185 } else { 1186 wc->w_num_pages = 1; 1187 start = target_index; 1188 } 1189 1190 for(i = 0; i < wc->w_num_pages; i++) { 1191 index = start + i; 1192 1193 if (index == target_index && mmap_page) { 1194 /* 1195 * ocfs2_pagemkwrite() is a little different 1196 * and wants us to directly use the page 1197 * passed in. 1198 */ 1199 lock_page(mmap_page); 1200 1201 if (mmap_page->mapping != mapping) { 1202 unlock_page(mmap_page); 1203 /* 1204 * Sanity check - the locking in 1205 * ocfs2_pagemkwrite() should ensure 1206 * that this code doesn't trigger. 1207 */ 1208 ret = -EINVAL; 1209 mlog_errno(ret); 1210 goto out; 1211 } 1212 1213 page_cache_get(mmap_page); 1214 wc->w_pages[i] = mmap_page; 1215 } else { 1216 wc->w_pages[i] = find_or_create_page(mapping, index, 1217 GFP_NOFS); 1218 if (!wc->w_pages[i]) { 1219 ret = -ENOMEM; 1220 mlog_errno(ret); 1221 goto out; 1222 } 1223 } 1224 1225 if (index == target_index) 1226 wc->w_target_page = wc->w_pages[i]; 1227 } 1228 out: 1229 return ret; 1230 } 1231 1232 /* 1233 * Prepare a single cluster for write one cluster into the file. 1234 */ 1235 static int ocfs2_write_cluster(struct address_space *mapping, 1236 u32 phys, unsigned int unwritten, 1237 struct ocfs2_alloc_context *data_ac, 1238 struct ocfs2_alloc_context *meta_ac, 1239 struct ocfs2_write_ctxt *wc, u32 cpos, 1240 loff_t user_pos, unsigned user_len) 1241 { 1242 int ret, i, new, should_zero = 0; 1243 u64 v_blkno, p_blkno; 1244 struct inode *inode = mapping->host; 1245 1246 new = phys == 0 ? 1 : 0; 1247 if (new || unwritten) 1248 should_zero = 1; 1249 1250 if (new) { 1251 u32 tmp_pos; 1252 1253 /* 1254 * This is safe to call with the page locks - it won't take 1255 * any additional semaphores or cluster locks. 1256 */ 1257 tmp_pos = cpos; 1258 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode, 1259 &tmp_pos, 1, 0, wc->w_di_bh, 1260 wc->w_handle, data_ac, 1261 meta_ac, NULL); 1262 /* 1263 * This shouldn't happen because we must have already 1264 * calculated the correct meta data allocation required. The 1265 * internal tree allocation code should know how to increase 1266 * transaction credits itself. 1267 * 1268 * If need be, we could handle -EAGAIN for a 1269 * RESTART_TRANS here. 1270 */ 1271 mlog_bug_on_msg(ret == -EAGAIN, 1272 "Inode %llu: EAGAIN return during allocation.\n", 1273 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1274 if (ret < 0) { 1275 mlog_errno(ret); 1276 goto out; 1277 } 1278 } else if (unwritten) { 1279 ret = ocfs2_mark_extent_written(inode, wc->w_di_bh, 1280 wc->w_handle, cpos, 1, phys, 1281 meta_ac, &wc->w_dealloc); 1282 if (ret < 0) { 1283 mlog_errno(ret); 1284 goto out; 1285 } 1286 } 1287 1288 if (should_zero) 1289 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); 1290 else 1291 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; 1292 1293 /* 1294 * The only reason this should fail is due to an inability to 1295 * find the extent added. 1296 */ 1297 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, 1298 NULL); 1299 if (ret < 0) { 1300 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, " 1301 "at logical block %llu", 1302 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1303 (unsigned long long)v_blkno); 1304 goto out; 1305 } 1306 1307 BUG_ON(p_blkno == 0); 1308 1309 for(i = 0; i < wc->w_num_pages; i++) { 1310 int tmpret; 1311 1312 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1313 wc->w_pages[i], cpos, 1314 user_pos, user_len, 1315 should_zero); 1316 if (tmpret) { 1317 mlog_errno(tmpret); 1318 if (ret == 0) 1319 tmpret = ret; 1320 } 1321 } 1322 1323 /* 1324 * We only have cleanup to do in case of allocating write. 1325 */ 1326 if (ret && new) 1327 ocfs2_write_failure(inode, wc, user_pos, user_len); 1328 1329 out: 1330 1331 return ret; 1332 } 1333 1334 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1335 struct ocfs2_alloc_context *data_ac, 1336 struct ocfs2_alloc_context *meta_ac, 1337 struct ocfs2_write_ctxt *wc, 1338 loff_t pos, unsigned len) 1339 { 1340 int ret, i; 1341 loff_t cluster_off; 1342 unsigned int local_len = len; 1343 struct ocfs2_write_cluster_desc *desc; 1344 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1345 1346 for (i = 0; i < wc->w_clen; i++) { 1347 desc = &wc->w_desc[i]; 1348 1349 /* 1350 * We have to make sure that the total write passed in 1351 * doesn't extend past a single cluster. 1352 */ 1353 local_len = len; 1354 cluster_off = pos & (osb->s_clustersize - 1); 1355 if ((cluster_off + local_len) > osb->s_clustersize) 1356 local_len = osb->s_clustersize - cluster_off; 1357 1358 ret = ocfs2_write_cluster(mapping, desc->c_phys, 1359 desc->c_unwritten, data_ac, meta_ac, 1360 wc, desc->c_cpos, pos, local_len); 1361 if (ret) { 1362 mlog_errno(ret); 1363 goto out; 1364 } 1365 1366 len -= local_len; 1367 pos += local_len; 1368 } 1369 1370 ret = 0; 1371 out: 1372 return ret; 1373 } 1374 1375 /* 1376 * ocfs2_write_end() wants to know which parts of the target page it 1377 * should complete the write on. It's easiest to compute them ahead of 1378 * time when a more complete view of the write is available. 1379 */ 1380 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1381 struct ocfs2_write_ctxt *wc, 1382 loff_t pos, unsigned len, int alloc) 1383 { 1384 struct ocfs2_write_cluster_desc *desc; 1385 1386 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); 1387 wc->w_target_to = wc->w_target_from + len; 1388 1389 if (alloc == 0) 1390 return; 1391 1392 /* 1393 * Allocating write - we may have different boundaries based 1394 * on page size and cluster size. 1395 * 1396 * NOTE: We can no longer compute one value from the other as 1397 * the actual write length and user provided length may be 1398 * different. 1399 */ 1400 1401 if (wc->w_large_pages) { 1402 /* 1403 * We only care about the 1st and last cluster within 1404 * our range and whether they should be zero'd or not. Either 1405 * value may be extended out to the start/end of a 1406 * newly allocated cluster. 1407 */ 1408 desc = &wc->w_desc[0]; 1409 if (ocfs2_should_zero_cluster(desc)) 1410 ocfs2_figure_cluster_boundaries(osb, 1411 desc->c_cpos, 1412 &wc->w_target_from, 1413 NULL); 1414 1415 desc = &wc->w_desc[wc->w_clen - 1]; 1416 if (ocfs2_should_zero_cluster(desc)) 1417 ocfs2_figure_cluster_boundaries(osb, 1418 desc->c_cpos, 1419 NULL, 1420 &wc->w_target_to); 1421 } else { 1422 wc->w_target_from = 0; 1423 wc->w_target_to = PAGE_CACHE_SIZE; 1424 } 1425 } 1426 1427 /* 1428 * Populate each single-cluster write descriptor in the write context 1429 * with information about the i/o to be done. 1430 * 1431 * Returns the number of clusters that will have to be allocated, as 1432 * well as a worst case estimate of the number of extent records that 1433 * would have to be created during a write to an unwritten region. 1434 */ 1435 static int ocfs2_populate_write_desc(struct inode *inode, 1436 struct ocfs2_write_ctxt *wc, 1437 unsigned int *clusters_to_alloc, 1438 unsigned int *extents_to_split) 1439 { 1440 int ret; 1441 struct ocfs2_write_cluster_desc *desc; 1442 unsigned int num_clusters = 0; 1443 unsigned int ext_flags = 0; 1444 u32 phys = 0; 1445 int i; 1446 1447 *clusters_to_alloc = 0; 1448 *extents_to_split = 0; 1449 1450 for (i = 0; i < wc->w_clen; i++) { 1451 desc = &wc->w_desc[i]; 1452 desc->c_cpos = wc->w_cpos + i; 1453 1454 if (num_clusters == 0) { 1455 /* 1456 * Need to look up the next extent record. 1457 */ 1458 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1459 &num_clusters, &ext_flags); 1460 if (ret) { 1461 mlog_errno(ret); 1462 goto out; 1463 } 1464 1465 /* 1466 * Assume worst case - that we're writing in 1467 * the middle of the extent. 1468 * 1469 * We can assume that the write proceeds from 1470 * left to right, in which case the extent 1471 * insert code is smart enough to coalesce the 1472 * next splits into the previous records created. 1473 */ 1474 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1475 *extents_to_split = *extents_to_split + 2; 1476 } else if (phys) { 1477 /* 1478 * Only increment phys if it doesn't describe 1479 * a hole. 1480 */ 1481 phys++; 1482 } 1483 1484 desc->c_phys = phys; 1485 if (phys == 0) { 1486 desc->c_new = 1; 1487 *clusters_to_alloc = *clusters_to_alloc + 1; 1488 } 1489 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1490 desc->c_unwritten = 1; 1491 1492 num_clusters--; 1493 } 1494 1495 ret = 0; 1496 out: 1497 return ret; 1498 } 1499 1500 static int ocfs2_write_begin_inline(struct address_space *mapping, 1501 struct inode *inode, 1502 struct ocfs2_write_ctxt *wc) 1503 { 1504 int ret; 1505 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1506 struct page *page; 1507 handle_t *handle; 1508 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1509 1510 page = find_or_create_page(mapping, 0, GFP_NOFS); 1511 if (!page) { 1512 ret = -ENOMEM; 1513 mlog_errno(ret); 1514 goto out; 1515 } 1516 /* 1517 * If we don't set w_num_pages then this page won't get unlocked 1518 * and freed on cleanup of the write context. 1519 */ 1520 wc->w_pages[0] = wc->w_target_page = page; 1521 wc->w_num_pages = 1; 1522 1523 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1524 if (IS_ERR(handle)) { 1525 ret = PTR_ERR(handle); 1526 mlog_errno(ret); 1527 goto out; 1528 } 1529 1530 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh, 1531 OCFS2_JOURNAL_ACCESS_WRITE); 1532 if (ret) { 1533 ocfs2_commit_trans(osb, handle); 1534 1535 mlog_errno(ret); 1536 goto out; 1537 } 1538 1539 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1540 ocfs2_set_inode_data_inline(inode, di); 1541 1542 if (!PageUptodate(page)) { 1543 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1544 if (ret) { 1545 ocfs2_commit_trans(osb, handle); 1546 1547 goto out; 1548 } 1549 } 1550 1551 wc->w_handle = handle; 1552 out: 1553 return ret; 1554 } 1555 1556 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1557 { 1558 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1559 1560 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1561 return 1; 1562 return 0; 1563 } 1564 1565 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1566 struct inode *inode, loff_t pos, 1567 unsigned len, struct page *mmap_page, 1568 struct ocfs2_write_ctxt *wc) 1569 { 1570 int ret, written = 0; 1571 loff_t end = pos + len; 1572 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1573 1574 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n", 1575 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos, 1576 oi->ip_dyn_features); 1577 1578 /* 1579 * Handle inodes which already have inline data 1st. 1580 */ 1581 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1582 if (mmap_page == NULL && 1583 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1584 goto do_inline_write; 1585 1586 /* 1587 * The write won't fit - we have to give this inode an 1588 * inline extent list now. 1589 */ 1590 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1591 if (ret) 1592 mlog_errno(ret); 1593 goto out; 1594 } 1595 1596 /* 1597 * Check whether the inode can accept inline data. 1598 */ 1599 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1600 return 0; 1601 1602 /* 1603 * Check whether the write can fit. 1604 */ 1605 if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb)) 1606 return 0; 1607 1608 do_inline_write: 1609 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1610 if (ret) { 1611 mlog_errno(ret); 1612 goto out; 1613 } 1614 1615 /* 1616 * This signals to the caller that the data can be written 1617 * inline. 1618 */ 1619 written = 1; 1620 out: 1621 return written ? written : ret; 1622 } 1623 1624 /* 1625 * This function only does anything for file systems which can't 1626 * handle sparse files. 1627 * 1628 * What we want to do here is fill in any hole between the current end 1629 * of allocation and the end of our write. That way the rest of the 1630 * write path can treat it as an non-allocating write, which has no 1631 * special case code for sparse/nonsparse files. 1632 */ 1633 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos, 1634 unsigned len, 1635 struct ocfs2_write_ctxt *wc) 1636 { 1637 int ret; 1638 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1639 loff_t newsize = pos + len; 1640 1641 if (ocfs2_sparse_alloc(osb)) 1642 return 0; 1643 1644 if (newsize <= i_size_read(inode)) 1645 return 0; 1646 1647 ret = ocfs2_extend_no_holes(inode, newsize, newsize - len); 1648 if (ret) 1649 mlog_errno(ret); 1650 1651 return ret; 1652 } 1653 1654 int ocfs2_write_begin_nolock(struct address_space *mapping, 1655 loff_t pos, unsigned len, unsigned flags, 1656 struct page **pagep, void **fsdata, 1657 struct buffer_head *di_bh, struct page *mmap_page) 1658 { 1659 int ret, credits = OCFS2_INODE_UPDATE_CREDITS; 1660 unsigned int clusters_to_alloc, extents_to_split; 1661 struct ocfs2_write_ctxt *wc; 1662 struct inode *inode = mapping->host; 1663 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1664 struct ocfs2_dinode *di; 1665 struct ocfs2_alloc_context *data_ac = NULL; 1666 struct ocfs2_alloc_context *meta_ac = NULL; 1667 handle_t *handle; 1668 1669 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); 1670 if (ret) { 1671 mlog_errno(ret); 1672 return ret; 1673 } 1674 1675 if (ocfs2_supports_inline_data(osb)) { 1676 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1677 mmap_page, wc); 1678 if (ret == 1) { 1679 ret = 0; 1680 goto success; 1681 } 1682 if (ret < 0) { 1683 mlog_errno(ret); 1684 goto out; 1685 } 1686 } 1687 1688 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc); 1689 if (ret) { 1690 mlog_errno(ret); 1691 goto out; 1692 } 1693 1694 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1695 &extents_to_split); 1696 if (ret) { 1697 mlog_errno(ret); 1698 goto out; 1699 } 1700 1701 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1702 1703 /* 1704 * We set w_target_from, w_target_to here so that 1705 * ocfs2_write_end() knows which range in the target page to 1706 * write out. An allocation requires that we write the entire 1707 * cluster range. 1708 */ 1709 if (clusters_to_alloc || extents_to_split) { 1710 /* 1711 * XXX: We are stretching the limits of 1712 * ocfs2_lock_allocators(). It greatly over-estimates 1713 * the work to be done. 1714 */ 1715 ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc, 1716 extents_to_split, &data_ac, &meta_ac); 1717 if (ret) { 1718 mlog_errno(ret); 1719 goto out; 1720 } 1721 1722 credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1723 clusters_to_alloc); 1724 1725 } 1726 1727 ocfs2_set_target_boundaries(osb, wc, pos, len, 1728 clusters_to_alloc + extents_to_split); 1729 1730 handle = ocfs2_start_trans(osb, credits); 1731 if (IS_ERR(handle)) { 1732 ret = PTR_ERR(handle); 1733 mlog_errno(ret); 1734 goto out; 1735 } 1736 1737 wc->w_handle = handle; 1738 1739 /* 1740 * We don't want this to fail in ocfs2_write_end(), so do it 1741 * here. 1742 */ 1743 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh, 1744 OCFS2_JOURNAL_ACCESS_WRITE); 1745 if (ret) { 1746 mlog_errno(ret); 1747 goto out_commit; 1748 } 1749 1750 /* 1751 * Fill our page array first. That way we've grabbed enough so 1752 * that we can zero and flush if we error after adding the 1753 * extent. 1754 */ 1755 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, 1756 clusters_to_alloc + extents_to_split, 1757 mmap_page); 1758 if (ret) { 1759 mlog_errno(ret); 1760 goto out_commit; 1761 } 1762 1763 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1764 len); 1765 if (ret) { 1766 mlog_errno(ret); 1767 goto out_commit; 1768 } 1769 1770 if (data_ac) 1771 ocfs2_free_alloc_context(data_ac); 1772 if (meta_ac) 1773 ocfs2_free_alloc_context(meta_ac); 1774 1775 success: 1776 *pagep = wc->w_target_page; 1777 *fsdata = wc; 1778 return 0; 1779 out_commit: 1780 ocfs2_commit_trans(osb, handle); 1781 1782 out: 1783 ocfs2_free_write_ctxt(wc); 1784 1785 if (data_ac) 1786 ocfs2_free_alloc_context(data_ac); 1787 if (meta_ac) 1788 ocfs2_free_alloc_context(meta_ac); 1789 return ret; 1790 } 1791 1792 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1793 loff_t pos, unsigned len, unsigned flags, 1794 struct page **pagep, void **fsdata) 1795 { 1796 int ret; 1797 struct buffer_head *di_bh = NULL; 1798 struct inode *inode = mapping->host; 1799 1800 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1801 if (ret) { 1802 mlog_errno(ret); 1803 return ret; 1804 } 1805 1806 /* 1807 * Take alloc sem here to prevent concurrent lookups. That way 1808 * the mapping, zeroing and tree manipulation within 1809 * ocfs2_write() will be safe against ->readpage(). This 1810 * should also serve to lock out allocation from a shared 1811 * writeable region. 1812 */ 1813 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1814 1815 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep, 1816 fsdata, di_bh, NULL); 1817 if (ret) { 1818 mlog_errno(ret); 1819 goto out_fail; 1820 } 1821 1822 brelse(di_bh); 1823 1824 return 0; 1825 1826 out_fail: 1827 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1828 1829 brelse(di_bh); 1830 ocfs2_inode_unlock(inode, 1); 1831 1832 return ret; 1833 } 1834 1835 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1836 unsigned len, unsigned *copied, 1837 struct ocfs2_dinode *di, 1838 struct ocfs2_write_ctxt *wc) 1839 { 1840 void *kaddr; 1841 1842 if (unlikely(*copied < len)) { 1843 if (!PageUptodate(wc->w_target_page)) { 1844 *copied = 0; 1845 return; 1846 } 1847 } 1848 1849 kaddr = kmap_atomic(wc->w_target_page, KM_USER0); 1850 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1851 kunmap_atomic(kaddr, KM_USER0); 1852 1853 mlog(0, "Data written to inode at offset %llu. " 1854 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n", 1855 (unsigned long long)pos, *copied, 1856 le16_to_cpu(di->id2.i_data.id_count), 1857 le16_to_cpu(di->i_dyn_features)); 1858 } 1859 1860 int ocfs2_write_end_nolock(struct address_space *mapping, 1861 loff_t pos, unsigned len, unsigned copied, 1862 struct page *page, void *fsdata) 1863 { 1864 int i; 1865 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); 1866 struct inode *inode = mapping->host; 1867 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1868 struct ocfs2_write_ctxt *wc = fsdata; 1869 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1870 handle_t *handle = wc->w_handle; 1871 struct page *tmppage; 1872 1873 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1874 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1875 goto out_write_size; 1876 } 1877 1878 if (unlikely(copied < len)) { 1879 if (!PageUptodate(wc->w_target_page)) 1880 copied = 0; 1881 1882 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1883 start+len); 1884 } 1885 flush_dcache_page(wc->w_target_page); 1886 1887 for(i = 0; i < wc->w_num_pages; i++) { 1888 tmppage = wc->w_pages[i]; 1889 1890 if (tmppage == wc->w_target_page) { 1891 from = wc->w_target_from; 1892 to = wc->w_target_to; 1893 1894 BUG_ON(from > PAGE_CACHE_SIZE || 1895 to > PAGE_CACHE_SIZE || 1896 to < from); 1897 } else { 1898 /* 1899 * Pages adjacent to the target (if any) imply 1900 * a hole-filling write in which case we want 1901 * to flush their entire range. 1902 */ 1903 from = 0; 1904 to = PAGE_CACHE_SIZE; 1905 } 1906 1907 if (page_has_buffers(tmppage)) { 1908 if (ocfs2_should_order_data(inode)) 1909 walk_page_buffers(wc->w_handle, 1910 page_buffers(tmppage), 1911 from, to, NULL, 1912 ocfs2_journal_dirty_data); 1913 block_commit_write(tmppage, from, to); 1914 } 1915 } 1916 1917 out_write_size: 1918 pos += copied; 1919 if (pos > inode->i_size) { 1920 i_size_write(inode, pos); 1921 mark_inode_dirty(inode); 1922 } 1923 inode->i_blocks = ocfs2_inode_sector_count(inode); 1924 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 1925 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1926 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 1927 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 1928 ocfs2_journal_dirty(handle, wc->w_di_bh); 1929 1930 ocfs2_commit_trans(osb, handle); 1931 1932 ocfs2_run_deallocs(osb, &wc->w_dealloc); 1933 1934 ocfs2_free_write_ctxt(wc); 1935 1936 return copied; 1937 } 1938 1939 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 1940 loff_t pos, unsigned len, unsigned copied, 1941 struct page *page, void *fsdata) 1942 { 1943 int ret; 1944 struct inode *inode = mapping->host; 1945 1946 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 1947 1948 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1949 ocfs2_inode_unlock(inode, 1); 1950 1951 return ret; 1952 } 1953 1954 const struct address_space_operations ocfs2_aops = { 1955 .readpage = ocfs2_readpage, 1956 .readpages = ocfs2_readpages, 1957 .writepage = ocfs2_writepage, 1958 .write_begin = ocfs2_write_begin, 1959 .write_end = ocfs2_write_end, 1960 .bmap = ocfs2_bmap, 1961 .sync_page = block_sync_page, 1962 .direct_IO = ocfs2_direct_IO, 1963 .invalidatepage = ocfs2_invalidatepage, 1964 .releasepage = ocfs2_releasepage, 1965 .migratepage = buffer_migrate_page, 1966 }; 1967