1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/highmem.h> 9 #include <linux/pagemap.h> 10 #include <asm/byteorder.h> 11 #include <linux/swap.h> 12 #include <linux/mpage.h> 13 #include <linux/quotaops.h> 14 #include <linux/blkdev.h> 15 #include <linux/uio.h> 16 #include <linux/mm.h> 17 18 #include <cluster/masklog.h> 19 20 #include "ocfs2.h" 21 22 #include "alloc.h" 23 #include "aops.h" 24 #include "dlmglue.h" 25 #include "extent_map.h" 26 #include "file.h" 27 #include "inode.h" 28 #include "journal.h" 29 #include "suballoc.h" 30 #include "super.h" 31 #include "symlink.h" 32 #include "refcounttree.h" 33 #include "ocfs2_trace.h" 34 35 #include "buffer_head_io.h" 36 #include "dir.h" 37 #include "namei.h" 38 #include "sysfile.h" 39 40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 41 struct buffer_head *bh_result, int create) 42 { 43 int err = -EIO; 44 int status; 45 struct ocfs2_dinode *fe = NULL; 46 struct buffer_head *bh = NULL; 47 struct buffer_head *buffer_cache_bh = NULL; 48 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 49 void *kaddr; 50 51 trace_ocfs2_symlink_get_block( 52 (unsigned long long)OCFS2_I(inode)->ip_blkno, 53 (unsigned long long)iblock, bh_result, create); 54 55 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 56 57 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 58 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 59 (unsigned long long)iblock); 60 goto bail; 61 } 62 63 status = ocfs2_read_inode_block(inode, &bh); 64 if (status < 0) { 65 mlog_errno(status); 66 goto bail; 67 } 68 fe = (struct ocfs2_dinode *) bh->b_data; 69 70 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 71 le32_to_cpu(fe->i_clusters))) { 72 err = -ENOMEM; 73 mlog(ML_ERROR, "block offset is outside the allocated size: " 74 "%llu\n", (unsigned long long)iblock); 75 goto bail; 76 } 77 78 /* We don't use the page cache to create symlink data, so if 79 * need be, copy it over from the buffer cache. */ 80 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 81 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 82 iblock; 83 buffer_cache_bh = sb_getblk(osb->sb, blkno); 84 if (!buffer_cache_bh) { 85 err = -ENOMEM; 86 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 87 goto bail; 88 } 89 90 /* we haven't locked out transactions, so a commit 91 * could've happened. Since we've got a reference on 92 * the bh, even if it commits while we're doing the 93 * copy, the data is still good. */ 94 if (buffer_jbd(buffer_cache_bh) 95 && ocfs2_inode_is_new(inode)) { 96 kaddr = kmap_atomic(bh_result->b_page); 97 if (!kaddr) { 98 mlog(ML_ERROR, "couldn't kmap!\n"); 99 goto bail; 100 } 101 memcpy(kaddr + (bh_result->b_size * iblock), 102 buffer_cache_bh->b_data, 103 bh_result->b_size); 104 kunmap_atomic(kaddr); 105 set_buffer_uptodate(bh_result); 106 } 107 brelse(buffer_cache_bh); 108 } 109 110 map_bh(bh_result, inode->i_sb, 111 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 112 113 err = 0; 114 115 bail: 116 brelse(bh); 117 118 return err; 119 } 120 121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock, 122 struct buffer_head *bh_result, int create) 123 { 124 int ret = 0; 125 struct ocfs2_inode_info *oi = OCFS2_I(inode); 126 127 down_read(&oi->ip_alloc_sem); 128 ret = ocfs2_get_block(inode, iblock, bh_result, create); 129 up_read(&oi->ip_alloc_sem); 130 131 return ret; 132 } 133 134 int ocfs2_get_block(struct inode *inode, sector_t iblock, 135 struct buffer_head *bh_result, int create) 136 { 137 int err = 0; 138 unsigned int ext_flags; 139 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 140 u64 p_blkno, count, past_eof; 141 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 142 143 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 144 (unsigned long long)iblock, bh_result, create); 145 146 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 147 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 148 inode, inode->i_ino); 149 150 if (S_ISLNK(inode->i_mode)) { 151 /* this always does I/O for some reason. */ 152 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 153 goto bail; 154 } 155 156 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 157 &ext_flags); 158 if (err) { 159 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 160 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 161 (unsigned long long)p_blkno); 162 goto bail; 163 } 164 165 if (max_blocks < count) 166 count = max_blocks; 167 168 /* 169 * ocfs2 never allocates in this function - the only time we 170 * need to use BH_New is when we're extending i_size on a file 171 * system which doesn't support holes, in which case BH_New 172 * allows __block_write_begin() to zero. 173 * 174 * If we see this on a sparse file system, then a truncate has 175 * raced us and removed the cluster. In this case, we clear 176 * the buffers dirty and uptodate bits and let the buffer code 177 * ignore it as a hole. 178 */ 179 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 180 clear_buffer_dirty(bh_result); 181 clear_buffer_uptodate(bh_result); 182 goto bail; 183 } 184 185 /* Treat the unwritten extent as a hole for zeroing purposes. */ 186 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 187 map_bh(bh_result, inode->i_sb, p_blkno); 188 189 bh_result->b_size = count << inode->i_blkbits; 190 191 if (!ocfs2_sparse_alloc(osb)) { 192 if (p_blkno == 0) { 193 err = -EIO; 194 mlog(ML_ERROR, 195 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 196 (unsigned long long)iblock, 197 (unsigned long long)p_blkno, 198 (unsigned long long)OCFS2_I(inode)->ip_blkno); 199 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 200 dump_stack(); 201 goto bail; 202 } 203 } 204 205 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 206 207 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 208 (unsigned long long)past_eof); 209 if (create && (iblock >= past_eof)) 210 set_buffer_new(bh_result); 211 212 bail: 213 if (err < 0) 214 err = -EIO; 215 216 return err; 217 } 218 219 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 220 struct buffer_head *di_bh) 221 { 222 void *kaddr; 223 loff_t size; 224 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 225 226 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 227 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 228 (unsigned long long)OCFS2_I(inode)->ip_blkno); 229 return -EROFS; 230 } 231 232 size = i_size_read(inode); 233 234 if (size > PAGE_SIZE || 235 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 236 ocfs2_error(inode->i_sb, 237 "Inode %llu has with inline data has bad size: %Lu\n", 238 (unsigned long long)OCFS2_I(inode)->ip_blkno, 239 (unsigned long long)size); 240 return -EROFS; 241 } 242 243 kaddr = kmap_atomic(page); 244 if (size) 245 memcpy(kaddr, di->id2.i_data.id_data, size); 246 /* Clear the remaining part of the page */ 247 memset(kaddr + size, 0, PAGE_SIZE - size); 248 flush_dcache_page(page); 249 kunmap_atomic(kaddr); 250 251 SetPageUptodate(page); 252 253 return 0; 254 } 255 256 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 257 { 258 int ret; 259 struct buffer_head *di_bh = NULL; 260 261 BUG_ON(!PageLocked(page)); 262 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 263 264 ret = ocfs2_read_inode_block(inode, &di_bh); 265 if (ret) { 266 mlog_errno(ret); 267 goto out; 268 } 269 270 ret = ocfs2_read_inline_data(inode, page, di_bh); 271 out: 272 unlock_page(page); 273 274 brelse(di_bh); 275 return ret; 276 } 277 278 static int ocfs2_read_folio(struct file *file, struct folio *folio) 279 { 280 struct inode *inode = folio->mapping->host; 281 struct ocfs2_inode_info *oi = OCFS2_I(inode); 282 loff_t start = folio_pos(folio); 283 int ret, unlock = 1; 284 285 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index); 286 287 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, &folio->page); 288 if (ret != 0) { 289 if (ret == AOP_TRUNCATED_PAGE) 290 unlock = 0; 291 mlog_errno(ret); 292 goto out; 293 } 294 295 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 296 /* 297 * Unlock the folio and cycle ip_alloc_sem so that we don't 298 * busyloop waiting for ip_alloc_sem to unlock 299 */ 300 ret = AOP_TRUNCATED_PAGE; 301 folio_unlock(folio); 302 unlock = 0; 303 down_read(&oi->ip_alloc_sem); 304 up_read(&oi->ip_alloc_sem); 305 goto out_inode_unlock; 306 } 307 308 /* 309 * i_size might have just been updated as we grabed the meta lock. We 310 * might now be discovering a truncate that hit on another node. 311 * block_read_full_folio->get_block freaks out if it is asked to read 312 * beyond the end of a file, so we check here. Callers 313 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 314 * and notice that the folio they just read isn't needed. 315 * 316 * XXX sys_readahead() seems to get that wrong? 317 */ 318 if (start >= i_size_read(inode)) { 319 folio_zero_segment(folio, 0, folio_size(folio)); 320 folio_mark_uptodate(folio); 321 ret = 0; 322 goto out_alloc; 323 } 324 325 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 326 ret = ocfs2_readpage_inline(inode, &folio->page); 327 else 328 ret = block_read_full_folio(folio, ocfs2_get_block); 329 unlock = 0; 330 331 out_alloc: 332 up_read(&oi->ip_alloc_sem); 333 out_inode_unlock: 334 ocfs2_inode_unlock(inode, 0); 335 out: 336 if (unlock) 337 folio_unlock(folio); 338 return ret; 339 } 340 341 /* 342 * This is used only for read-ahead. Failures or difficult to handle 343 * situations are safe to ignore. 344 * 345 * Right now, we don't bother with BH_Boundary - in-inode extent lists 346 * are quite large (243 extents on 4k blocks), so most inodes don't 347 * grow out to a tree. If need be, detecting boundary extents could 348 * trivially be added in a future version of ocfs2_get_block(). 349 */ 350 static void ocfs2_readahead(struct readahead_control *rac) 351 { 352 int ret; 353 struct inode *inode = rac->mapping->host; 354 struct ocfs2_inode_info *oi = OCFS2_I(inode); 355 356 /* 357 * Use the nonblocking flag for the dlm code to avoid page 358 * lock inversion, but don't bother with retrying. 359 */ 360 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 361 if (ret) 362 return; 363 364 if (down_read_trylock(&oi->ip_alloc_sem) == 0) 365 goto out_unlock; 366 367 /* 368 * Don't bother with inline-data. There isn't anything 369 * to read-ahead in that case anyway... 370 */ 371 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 372 goto out_up; 373 374 /* 375 * Check whether a remote node truncated this file - we just 376 * drop out in that case as it's not worth handling here. 377 */ 378 if (readahead_pos(rac) >= i_size_read(inode)) 379 goto out_up; 380 381 mpage_readahead(rac, ocfs2_get_block); 382 383 out_up: 384 up_read(&oi->ip_alloc_sem); 385 out_unlock: 386 ocfs2_inode_unlock(inode, 0); 387 } 388 389 /* Note: Because we don't support holes, our allocation has 390 * already happened (allocation writes zeros to the file data) 391 * so we don't have to worry about ordered writes in 392 * ocfs2_writepage. 393 * 394 * ->writepage is called during the process of invalidating the page cache 395 * during blocked lock processing. It can't block on any cluster locks 396 * to during block mapping. It's relying on the fact that the block 397 * mapping can't have disappeared under the dirty pages that it is 398 * being asked to write back. 399 */ 400 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 401 { 402 trace_ocfs2_writepage( 403 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 404 page->index); 405 406 return block_write_full_page(page, ocfs2_get_block, wbc); 407 } 408 409 /* Taken from ext3. We don't necessarily need the full blown 410 * functionality yet, but IMHO it's better to cut and paste the whole 411 * thing so we can avoid introducing our own bugs (and easily pick up 412 * their fixes when they happen) --Mark */ 413 int walk_page_buffers( handle_t *handle, 414 struct buffer_head *head, 415 unsigned from, 416 unsigned to, 417 int *partial, 418 int (*fn)( handle_t *handle, 419 struct buffer_head *bh)) 420 { 421 struct buffer_head *bh; 422 unsigned block_start, block_end; 423 unsigned blocksize = head->b_size; 424 int err, ret = 0; 425 struct buffer_head *next; 426 427 for ( bh = head, block_start = 0; 428 ret == 0 && (bh != head || !block_start); 429 block_start = block_end, bh = next) 430 { 431 next = bh->b_this_page; 432 block_end = block_start + blocksize; 433 if (block_end <= from || block_start >= to) { 434 if (partial && !buffer_uptodate(bh)) 435 *partial = 1; 436 continue; 437 } 438 err = (*fn)(handle, bh); 439 if (!ret) 440 ret = err; 441 } 442 return ret; 443 } 444 445 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 446 { 447 sector_t status; 448 u64 p_blkno = 0; 449 int err = 0; 450 struct inode *inode = mapping->host; 451 452 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 453 (unsigned long long)block); 454 455 /* 456 * The swap code (ab-)uses ->bmap to get a block mapping and then 457 * bypasseѕ the file system for actual I/O. We really can't allow 458 * that on refcounted inodes, so we have to skip out here. And yes, 459 * 0 is the magic code for a bmap error.. 460 */ 461 if (ocfs2_is_refcount_inode(inode)) 462 return 0; 463 464 /* We don't need to lock journal system files, since they aren't 465 * accessed concurrently from multiple nodes. 466 */ 467 if (!INODE_JOURNAL(inode)) { 468 err = ocfs2_inode_lock(inode, NULL, 0); 469 if (err) { 470 if (err != -ENOENT) 471 mlog_errno(err); 472 goto bail; 473 } 474 down_read(&OCFS2_I(inode)->ip_alloc_sem); 475 } 476 477 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 478 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 479 NULL); 480 481 if (!INODE_JOURNAL(inode)) { 482 up_read(&OCFS2_I(inode)->ip_alloc_sem); 483 ocfs2_inode_unlock(inode, 0); 484 } 485 486 if (err) { 487 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 488 (unsigned long long)block); 489 mlog_errno(err); 490 goto bail; 491 } 492 493 bail: 494 status = err ? 0 : p_blkno; 495 496 return status; 497 } 498 499 static bool ocfs2_release_folio(struct folio *folio, gfp_t wait) 500 { 501 if (!folio_buffers(folio)) 502 return false; 503 return try_to_free_buffers(folio); 504 } 505 506 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 507 u32 cpos, 508 unsigned int *start, 509 unsigned int *end) 510 { 511 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE; 512 513 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) { 514 unsigned int cpp; 515 516 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits); 517 518 cluster_start = cpos % cpp; 519 cluster_start = cluster_start << osb->s_clustersize_bits; 520 521 cluster_end = cluster_start + osb->s_clustersize; 522 } 523 524 BUG_ON(cluster_start > PAGE_SIZE); 525 BUG_ON(cluster_end > PAGE_SIZE); 526 527 if (start) 528 *start = cluster_start; 529 if (end) 530 *end = cluster_end; 531 } 532 533 /* 534 * 'from' and 'to' are the region in the page to avoid zeroing. 535 * 536 * If pagesize > clustersize, this function will avoid zeroing outside 537 * of the cluster boundary. 538 * 539 * from == to == 0 is code for "zero the entire cluster region" 540 */ 541 static void ocfs2_clear_page_regions(struct page *page, 542 struct ocfs2_super *osb, u32 cpos, 543 unsigned from, unsigned to) 544 { 545 void *kaddr; 546 unsigned int cluster_start, cluster_end; 547 548 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 549 550 kaddr = kmap_atomic(page); 551 552 if (from || to) { 553 if (from > cluster_start) 554 memset(kaddr + cluster_start, 0, from - cluster_start); 555 if (to < cluster_end) 556 memset(kaddr + to, 0, cluster_end - to); 557 } else { 558 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 559 } 560 561 kunmap_atomic(kaddr); 562 } 563 564 /* 565 * Nonsparse file systems fully allocate before we get to the write 566 * code. This prevents ocfs2_write() from tagging the write as an 567 * allocating one, which means ocfs2_map_page_blocks() might try to 568 * read-in the blocks at the tail of our file. Avoid reading them by 569 * testing i_size against each block offset. 570 */ 571 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 572 unsigned int block_start) 573 { 574 u64 offset = page_offset(page) + block_start; 575 576 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 577 return 1; 578 579 if (i_size_read(inode) > offset) 580 return 1; 581 582 return 0; 583 } 584 585 /* 586 * Some of this taken from __block_write_begin(). We already have our 587 * mapping by now though, and the entire write will be allocating or 588 * it won't, so not much need to use BH_New. 589 * 590 * This will also skip zeroing, which is handled externally. 591 */ 592 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 593 struct inode *inode, unsigned int from, 594 unsigned int to, int new) 595 { 596 int ret = 0; 597 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 598 unsigned int block_end, block_start; 599 unsigned int bsize = i_blocksize(inode); 600 601 if (!page_has_buffers(page)) 602 create_empty_buffers(page, bsize, 0); 603 604 head = page_buffers(page); 605 for (bh = head, block_start = 0; bh != head || !block_start; 606 bh = bh->b_this_page, block_start += bsize) { 607 block_end = block_start + bsize; 608 609 clear_buffer_new(bh); 610 611 /* 612 * Ignore blocks outside of our i/o range - 613 * they may belong to unallocated clusters. 614 */ 615 if (block_start >= to || block_end <= from) { 616 if (PageUptodate(page)) 617 set_buffer_uptodate(bh); 618 continue; 619 } 620 621 /* 622 * For an allocating write with cluster size >= page 623 * size, we always write the entire page. 624 */ 625 if (new) 626 set_buffer_new(bh); 627 628 if (!buffer_mapped(bh)) { 629 map_bh(bh, inode->i_sb, *p_blkno); 630 clean_bdev_bh_alias(bh); 631 } 632 633 if (PageUptodate(page)) { 634 set_buffer_uptodate(bh); 635 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 636 !buffer_new(bh) && 637 ocfs2_should_read_blk(inode, page, block_start) && 638 (block_start < from || block_end > to)) { 639 bh_read_nowait(bh, 0); 640 *wait_bh++=bh; 641 } 642 643 *p_blkno = *p_blkno + 1; 644 } 645 646 /* 647 * If we issued read requests - let them complete. 648 */ 649 while(wait_bh > wait) { 650 wait_on_buffer(*--wait_bh); 651 if (!buffer_uptodate(*wait_bh)) 652 ret = -EIO; 653 } 654 655 if (ret == 0 || !new) 656 return ret; 657 658 /* 659 * If we get -EIO above, zero out any newly allocated blocks 660 * to avoid exposing stale data. 661 */ 662 bh = head; 663 block_start = 0; 664 do { 665 block_end = block_start + bsize; 666 if (block_end <= from) 667 goto next_bh; 668 if (block_start >= to) 669 break; 670 671 zero_user(page, block_start, bh->b_size); 672 set_buffer_uptodate(bh); 673 mark_buffer_dirty(bh); 674 675 next_bh: 676 block_start = block_end; 677 bh = bh->b_this_page; 678 } while (bh != head); 679 680 return ret; 681 } 682 683 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 684 #define OCFS2_MAX_CTXT_PAGES 1 685 #else 686 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE) 687 #endif 688 689 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE) 690 691 struct ocfs2_unwritten_extent { 692 struct list_head ue_node; 693 struct list_head ue_ip_node; 694 u32 ue_cpos; 695 u32 ue_phys; 696 }; 697 698 /* 699 * Describe the state of a single cluster to be written to. 700 */ 701 struct ocfs2_write_cluster_desc { 702 u32 c_cpos; 703 u32 c_phys; 704 /* 705 * Give this a unique field because c_phys eventually gets 706 * filled. 707 */ 708 unsigned c_new; 709 unsigned c_clear_unwritten; 710 unsigned c_needs_zero; 711 }; 712 713 struct ocfs2_write_ctxt { 714 /* Logical cluster position / len of write */ 715 u32 w_cpos; 716 u32 w_clen; 717 718 /* First cluster allocated in a nonsparse extend */ 719 u32 w_first_new_cpos; 720 721 /* Type of caller. Must be one of buffer, mmap, direct. */ 722 ocfs2_write_type_t w_type; 723 724 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 725 726 /* 727 * This is true if page_size > cluster_size. 728 * 729 * It triggers a set of special cases during write which might 730 * have to deal with allocating writes to partial pages. 731 */ 732 unsigned int w_large_pages; 733 734 /* 735 * Pages involved in this write. 736 * 737 * w_target_page is the page being written to by the user. 738 * 739 * w_pages is an array of pages which always contains 740 * w_target_page, and in the case of an allocating write with 741 * page_size < cluster size, it will contain zero'd and mapped 742 * pages adjacent to w_target_page which need to be written 743 * out in so that future reads from that region will get 744 * zero's. 745 */ 746 unsigned int w_num_pages; 747 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 748 struct page *w_target_page; 749 750 /* 751 * w_target_locked is used for page_mkwrite path indicating no unlocking 752 * against w_target_page in ocfs2_write_end_nolock. 753 */ 754 unsigned int w_target_locked:1; 755 756 /* 757 * ocfs2_write_end() uses this to know what the real range to 758 * write in the target should be. 759 */ 760 unsigned int w_target_from; 761 unsigned int w_target_to; 762 763 /* 764 * We could use journal_current_handle() but this is cleaner, 765 * IMHO -Mark 766 */ 767 handle_t *w_handle; 768 769 struct buffer_head *w_di_bh; 770 771 struct ocfs2_cached_dealloc_ctxt w_dealloc; 772 773 struct list_head w_unwritten_list; 774 unsigned int w_unwritten_count; 775 }; 776 777 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 778 { 779 int i; 780 781 for(i = 0; i < num_pages; i++) { 782 if (pages[i]) { 783 unlock_page(pages[i]); 784 mark_page_accessed(pages[i]); 785 put_page(pages[i]); 786 } 787 } 788 } 789 790 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 791 { 792 int i; 793 794 /* 795 * w_target_locked is only set to true in the page_mkwrite() case. 796 * The intent is to allow us to lock the target page from write_begin() 797 * to write_end(). The caller must hold a ref on w_target_page. 798 */ 799 if (wc->w_target_locked) { 800 BUG_ON(!wc->w_target_page); 801 for (i = 0; i < wc->w_num_pages; i++) { 802 if (wc->w_target_page == wc->w_pages[i]) { 803 wc->w_pages[i] = NULL; 804 break; 805 } 806 } 807 mark_page_accessed(wc->w_target_page); 808 put_page(wc->w_target_page); 809 } 810 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 811 } 812 813 static void ocfs2_free_unwritten_list(struct inode *inode, 814 struct list_head *head) 815 { 816 struct ocfs2_inode_info *oi = OCFS2_I(inode); 817 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL; 818 819 list_for_each_entry_safe(ue, tmp, head, ue_node) { 820 list_del(&ue->ue_node); 821 spin_lock(&oi->ip_lock); 822 list_del(&ue->ue_ip_node); 823 spin_unlock(&oi->ip_lock); 824 kfree(ue); 825 } 826 } 827 828 static void ocfs2_free_write_ctxt(struct inode *inode, 829 struct ocfs2_write_ctxt *wc) 830 { 831 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list); 832 ocfs2_unlock_pages(wc); 833 brelse(wc->w_di_bh); 834 kfree(wc); 835 } 836 837 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 838 struct ocfs2_super *osb, loff_t pos, 839 unsigned len, ocfs2_write_type_t type, 840 struct buffer_head *di_bh) 841 { 842 u32 cend; 843 struct ocfs2_write_ctxt *wc; 844 845 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 846 if (!wc) 847 return -ENOMEM; 848 849 wc->w_cpos = pos >> osb->s_clustersize_bits; 850 wc->w_first_new_cpos = UINT_MAX; 851 cend = (pos + len - 1) >> osb->s_clustersize_bits; 852 wc->w_clen = cend - wc->w_cpos + 1; 853 get_bh(di_bh); 854 wc->w_di_bh = di_bh; 855 wc->w_type = type; 856 857 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) 858 wc->w_large_pages = 1; 859 else 860 wc->w_large_pages = 0; 861 862 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 863 INIT_LIST_HEAD(&wc->w_unwritten_list); 864 865 *wcp = wc; 866 867 return 0; 868 } 869 870 /* 871 * If a page has any new buffers, zero them out here, and mark them uptodate 872 * and dirty so they'll be written out (in order to prevent uninitialised 873 * block data from leaking). And clear the new bit. 874 */ 875 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 876 { 877 unsigned int block_start, block_end; 878 struct buffer_head *head, *bh; 879 880 BUG_ON(!PageLocked(page)); 881 if (!page_has_buffers(page)) 882 return; 883 884 bh = head = page_buffers(page); 885 block_start = 0; 886 do { 887 block_end = block_start + bh->b_size; 888 889 if (buffer_new(bh)) { 890 if (block_end > from && block_start < to) { 891 if (!PageUptodate(page)) { 892 unsigned start, end; 893 894 start = max(from, block_start); 895 end = min(to, block_end); 896 897 zero_user_segment(page, start, end); 898 set_buffer_uptodate(bh); 899 } 900 901 clear_buffer_new(bh); 902 mark_buffer_dirty(bh); 903 } 904 } 905 906 block_start = block_end; 907 bh = bh->b_this_page; 908 } while (bh != head); 909 } 910 911 /* 912 * Only called when we have a failure during allocating write to write 913 * zero's to the newly allocated region. 914 */ 915 static void ocfs2_write_failure(struct inode *inode, 916 struct ocfs2_write_ctxt *wc, 917 loff_t user_pos, unsigned user_len) 918 { 919 int i; 920 unsigned from = user_pos & (PAGE_SIZE - 1), 921 to = user_pos + user_len; 922 struct page *tmppage; 923 924 if (wc->w_target_page) 925 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 926 927 for(i = 0; i < wc->w_num_pages; i++) { 928 tmppage = wc->w_pages[i]; 929 930 if (tmppage && page_has_buffers(tmppage)) { 931 if (ocfs2_should_order_data(inode)) 932 ocfs2_jbd2_inode_add_write(wc->w_handle, inode, 933 user_pos, user_len); 934 935 block_commit_write(tmppage, from, to); 936 } 937 } 938 } 939 940 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 941 struct ocfs2_write_ctxt *wc, 942 struct page *page, u32 cpos, 943 loff_t user_pos, unsigned user_len, 944 int new) 945 { 946 int ret; 947 unsigned int map_from = 0, map_to = 0; 948 unsigned int cluster_start, cluster_end; 949 unsigned int user_data_from = 0, user_data_to = 0; 950 951 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 952 &cluster_start, &cluster_end); 953 954 /* treat the write as new if the a hole/lseek spanned across 955 * the page boundary. 956 */ 957 new = new | ((i_size_read(inode) <= page_offset(page)) && 958 (page_offset(page) <= user_pos)); 959 960 if (page == wc->w_target_page) { 961 map_from = user_pos & (PAGE_SIZE - 1); 962 map_to = map_from + user_len; 963 964 if (new) 965 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 966 cluster_start, cluster_end, 967 new); 968 else 969 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 970 map_from, map_to, new); 971 if (ret) { 972 mlog_errno(ret); 973 goto out; 974 } 975 976 user_data_from = map_from; 977 user_data_to = map_to; 978 if (new) { 979 map_from = cluster_start; 980 map_to = cluster_end; 981 } 982 } else { 983 /* 984 * If we haven't allocated the new page yet, we 985 * shouldn't be writing it out without copying user 986 * data. This is likely a math error from the caller. 987 */ 988 BUG_ON(!new); 989 990 map_from = cluster_start; 991 map_to = cluster_end; 992 993 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 994 cluster_start, cluster_end, new); 995 if (ret) { 996 mlog_errno(ret); 997 goto out; 998 } 999 } 1000 1001 /* 1002 * Parts of newly allocated pages need to be zero'd. 1003 * 1004 * Above, we have also rewritten 'to' and 'from' - as far as 1005 * the rest of the function is concerned, the entire cluster 1006 * range inside of a page needs to be written. 1007 * 1008 * We can skip this if the page is up to date - it's already 1009 * been zero'd from being read in as a hole. 1010 */ 1011 if (new && !PageUptodate(page)) 1012 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1013 cpos, user_data_from, user_data_to); 1014 1015 flush_dcache_page(page); 1016 1017 out: 1018 return ret; 1019 } 1020 1021 /* 1022 * This function will only grab one clusters worth of pages. 1023 */ 1024 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1025 struct ocfs2_write_ctxt *wc, 1026 u32 cpos, loff_t user_pos, 1027 unsigned user_len, int new, 1028 struct page *mmap_page) 1029 { 1030 int ret = 0, i; 1031 unsigned long start, target_index, end_index, index; 1032 struct inode *inode = mapping->host; 1033 loff_t last_byte; 1034 1035 target_index = user_pos >> PAGE_SHIFT; 1036 1037 /* 1038 * Figure out how many pages we'll be manipulating here. For 1039 * non allocating write, we just change the one 1040 * page. Otherwise, we'll need a whole clusters worth. If we're 1041 * writing past i_size, we only need enough pages to cover the 1042 * last page of the write. 1043 */ 1044 if (new) { 1045 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1046 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1047 /* 1048 * We need the index *past* the last page we could possibly 1049 * touch. This is the page past the end of the write or 1050 * i_size, whichever is greater. 1051 */ 1052 last_byte = max(user_pos + user_len, i_size_read(inode)); 1053 BUG_ON(last_byte < 1); 1054 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1; 1055 if ((start + wc->w_num_pages) > end_index) 1056 wc->w_num_pages = end_index - start; 1057 } else { 1058 wc->w_num_pages = 1; 1059 start = target_index; 1060 } 1061 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT; 1062 1063 for(i = 0; i < wc->w_num_pages; i++) { 1064 index = start + i; 1065 1066 if (index >= target_index && index <= end_index && 1067 wc->w_type == OCFS2_WRITE_MMAP) { 1068 /* 1069 * ocfs2_pagemkwrite() is a little different 1070 * and wants us to directly use the page 1071 * passed in. 1072 */ 1073 lock_page(mmap_page); 1074 1075 /* Exit and let the caller retry */ 1076 if (mmap_page->mapping != mapping) { 1077 WARN_ON(mmap_page->mapping); 1078 unlock_page(mmap_page); 1079 ret = -EAGAIN; 1080 goto out; 1081 } 1082 1083 get_page(mmap_page); 1084 wc->w_pages[i] = mmap_page; 1085 wc->w_target_locked = true; 1086 } else if (index >= target_index && index <= end_index && 1087 wc->w_type == OCFS2_WRITE_DIRECT) { 1088 /* Direct write has no mapping page. */ 1089 wc->w_pages[i] = NULL; 1090 continue; 1091 } else { 1092 wc->w_pages[i] = find_or_create_page(mapping, index, 1093 GFP_NOFS); 1094 if (!wc->w_pages[i]) { 1095 ret = -ENOMEM; 1096 mlog_errno(ret); 1097 goto out; 1098 } 1099 } 1100 wait_for_stable_page(wc->w_pages[i]); 1101 1102 if (index == target_index) 1103 wc->w_target_page = wc->w_pages[i]; 1104 } 1105 out: 1106 if (ret) 1107 wc->w_target_locked = false; 1108 return ret; 1109 } 1110 1111 /* 1112 * Prepare a single cluster for write one cluster into the file. 1113 */ 1114 static int ocfs2_write_cluster(struct address_space *mapping, 1115 u32 *phys, unsigned int new, 1116 unsigned int clear_unwritten, 1117 unsigned int should_zero, 1118 struct ocfs2_alloc_context *data_ac, 1119 struct ocfs2_alloc_context *meta_ac, 1120 struct ocfs2_write_ctxt *wc, u32 cpos, 1121 loff_t user_pos, unsigned user_len) 1122 { 1123 int ret, i; 1124 u64 p_blkno; 1125 struct inode *inode = mapping->host; 1126 struct ocfs2_extent_tree et; 1127 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); 1128 1129 if (new) { 1130 u32 tmp_pos; 1131 1132 /* 1133 * This is safe to call with the page locks - it won't take 1134 * any additional semaphores or cluster locks. 1135 */ 1136 tmp_pos = cpos; 1137 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1138 &tmp_pos, 1, !clear_unwritten, 1139 wc->w_di_bh, wc->w_handle, 1140 data_ac, meta_ac, NULL); 1141 /* 1142 * This shouldn't happen because we must have already 1143 * calculated the correct meta data allocation required. The 1144 * internal tree allocation code should know how to increase 1145 * transaction credits itself. 1146 * 1147 * If need be, we could handle -EAGAIN for a 1148 * RESTART_TRANS here. 1149 */ 1150 mlog_bug_on_msg(ret == -EAGAIN, 1151 "Inode %llu: EAGAIN return during allocation.\n", 1152 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1153 if (ret < 0) { 1154 mlog_errno(ret); 1155 goto out; 1156 } 1157 } else if (clear_unwritten) { 1158 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1159 wc->w_di_bh); 1160 ret = ocfs2_mark_extent_written(inode, &et, 1161 wc->w_handle, cpos, 1, *phys, 1162 meta_ac, &wc->w_dealloc); 1163 if (ret < 0) { 1164 mlog_errno(ret); 1165 goto out; 1166 } 1167 } 1168 1169 /* 1170 * The only reason this should fail is due to an inability to 1171 * find the extent added. 1172 */ 1173 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL); 1174 if (ret < 0) { 1175 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1176 "at logical cluster %u", 1177 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 1178 goto out; 1179 } 1180 1181 BUG_ON(*phys == 0); 1182 1183 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys); 1184 if (!should_zero) 1185 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1); 1186 1187 for(i = 0; i < wc->w_num_pages; i++) { 1188 int tmpret; 1189 1190 /* This is the direct io target page. */ 1191 if (wc->w_pages[i] == NULL) { 1192 p_blkno++; 1193 continue; 1194 } 1195 1196 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1197 wc->w_pages[i], cpos, 1198 user_pos, user_len, 1199 should_zero); 1200 if (tmpret) { 1201 mlog_errno(tmpret); 1202 if (ret == 0) 1203 ret = tmpret; 1204 } 1205 } 1206 1207 /* 1208 * We only have cleanup to do in case of allocating write. 1209 */ 1210 if (ret && new) 1211 ocfs2_write_failure(inode, wc, user_pos, user_len); 1212 1213 out: 1214 1215 return ret; 1216 } 1217 1218 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1219 struct ocfs2_alloc_context *data_ac, 1220 struct ocfs2_alloc_context *meta_ac, 1221 struct ocfs2_write_ctxt *wc, 1222 loff_t pos, unsigned len) 1223 { 1224 int ret, i; 1225 loff_t cluster_off; 1226 unsigned int local_len = len; 1227 struct ocfs2_write_cluster_desc *desc; 1228 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1229 1230 for (i = 0; i < wc->w_clen; i++) { 1231 desc = &wc->w_desc[i]; 1232 1233 /* 1234 * We have to make sure that the total write passed in 1235 * doesn't extend past a single cluster. 1236 */ 1237 local_len = len; 1238 cluster_off = pos & (osb->s_clustersize - 1); 1239 if ((cluster_off + local_len) > osb->s_clustersize) 1240 local_len = osb->s_clustersize - cluster_off; 1241 1242 ret = ocfs2_write_cluster(mapping, &desc->c_phys, 1243 desc->c_new, 1244 desc->c_clear_unwritten, 1245 desc->c_needs_zero, 1246 data_ac, meta_ac, 1247 wc, desc->c_cpos, pos, local_len); 1248 if (ret) { 1249 mlog_errno(ret); 1250 goto out; 1251 } 1252 1253 len -= local_len; 1254 pos += local_len; 1255 } 1256 1257 ret = 0; 1258 out: 1259 return ret; 1260 } 1261 1262 /* 1263 * ocfs2_write_end() wants to know which parts of the target page it 1264 * should complete the write on. It's easiest to compute them ahead of 1265 * time when a more complete view of the write is available. 1266 */ 1267 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1268 struct ocfs2_write_ctxt *wc, 1269 loff_t pos, unsigned len, int alloc) 1270 { 1271 struct ocfs2_write_cluster_desc *desc; 1272 1273 wc->w_target_from = pos & (PAGE_SIZE - 1); 1274 wc->w_target_to = wc->w_target_from + len; 1275 1276 if (alloc == 0) 1277 return; 1278 1279 /* 1280 * Allocating write - we may have different boundaries based 1281 * on page size and cluster size. 1282 * 1283 * NOTE: We can no longer compute one value from the other as 1284 * the actual write length and user provided length may be 1285 * different. 1286 */ 1287 1288 if (wc->w_large_pages) { 1289 /* 1290 * We only care about the 1st and last cluster within 1291 * our range and whether they should be zero'd or not. Either 1292 * value may be extended out to the start/end of a 1293 * newly allocated cluster. 1294 */ 1295 desc = &wc->w_desc[0]; 1296 if (desc->c_needs_zero) 1297 ocfs2_figure_cluster_boundaries(osb, 1298 desc->c_cpos, 1299 &wc->w_target_from, 1300 NULL); 1301 1302 desc = &wc->w_desc[wc->w_clen - 1]; 1303 if (desc->c_needs_zero) 1304 ocfs2_figure_cluster_boundaries(osb, 1305 desc->c_cpos, 1306 NULL, 1307 &wc->w_target_to); 1308 } else { 1309 wc->w_target_from = 0; 1310 wc->w_target_to = PAGE_SIZE; 1311 } 1312 } 1313 1314 /* 1315 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to 1316 * do the zero work. And should not to clear UNWRITTEN since it will be cleared 1317 * by the direct io procedure. 1318 * If this is a new extent that allocated by direct io, we should mark it in 1319 * the ip_unwritten_list. 1320 */ 1321 static int ocfs2_unwritten_check(struct inode *inode, 1322 struct ocfs2_write_ctxt *wc, 1323 struct ocfs2_write_cluster_desc *desc) 1324 { 1325 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1326 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL; 1327 int ret = 0; 1328 1329 if (!desc->c_needs_zero) 1330 return 0; 1331 1332 retry: 1333 spin_lock(&oi->ip_lock); 1334 /* Needs not to zero no metter buffer or direct. The one who is zero 1335 * the cluster is doing zero. And he will clear unwritten after all 1336 * cluster io finished. */ 1337 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) { 1338 if (desc->c_cpos == ue->ue_cpos) { 1339 BUG_ON(desc->c_new); 1340 desc->c_needs_zero = 0; 1341 desc->c_clear_unwritten = 0; 1342 goto unlock; 1343 } 1344 } 1345 1346 if (wc->w_type != OCFS2_WRITE_DIRECT) 1347 goto unlock; 1348 1349 if (new == NULL) { 1350 spin_unlock(&oi->ip_lock); 1351 new = kmalloc(sizeof(struct ocfs2_unwritten_extent), 1352 GFP_NOFS); 1353 if (new == NULL) { 1354 ret = -ENOMEM; 1355 goto out; 1356 } 1357 goto retry; 1358 } 1359 /* This direct write will doing zero. */ 1360 new->ue_cpos = desc->c_cpos; 1361 new->ue_phys = desc->c_phys; 1362 desc->c_clear_unwritten = 0; 1363 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list); 1364 list_add_tail(&new->ue_node, &wc->w_unwritten_list); 1365 wc->w_unwritten_count++; 1366 new = NULL; 1367 unlock: 1368 spin_unlock(&oi->ip_lock); 1369 out: 1370 kfree(new); 1371 return ret; 1372 } 1373 1374 /* 1375 * Populate each single-cluster write descriptor in the write context 1376 * with information about the i/o to be done. 1377 * 1378 * Returns the number of clusters that will have to be allocated, as 1379 * well as a worst case estimate of the number of extent records that 1380 * would have to be created during a write to an unwritten region. 1381 */ 1382 static int ocfs2_populate_write_desc(struct inode *inode, 1383 struct ocfs2_write_ctxt *wc, 1384 unsigned int *clusters_to_alloc, 1385 unsigned int *extents_to_split) 1386 { 1387 int ret; 1388 struct ocfs2_write_cluster_desc *desc; 1389 unsigned int num_clusters = 0; 1390 unsigned int ext_flags = 0; 1391 u32 phys = 0; 1392 int i; 1393 1394 *clusters_to_alloc = 0; 1395 *extents_to_split = 0; 1396 1397 for (i = 0; i < wc->w_clen; i++) { 1398 desc = &wc->w_desc[i]; 1399 desc->c_cpos = wc->w_cpos + i; 1400 1401 if (num_clusters == 0) { 1402 /* 1403 * Need to look up the next extent record. 1404 */ 1405 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1406 &num_clusters, &ext_flags); 1407 if (ret) { 1408 mlog_errno(ret); 1409 goto out; 1410 } 1411 1412 /* We should already CoW the refcountd extent. */ 1413 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1414 1415 /* 1416 * Assume worst case - that we're writing in 1417 * the middle of the extent. 1418 * 1419 * We can assume that the write proceeds from 1420 * left to right, in which case the extent 1421 * insert code is smart enough to coalesce the 1422 * next splits into the previous records created. 1423 */ 1424 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1425 *extents_to_split = *extents_to_split + 2; 1426 } else if (phys) { 1427 /* 1428 * Only increment phys if it doesn't describe 1429 * a hole. 1430 */ 1431 phys++; 1432 } 1433 1434 /* 1435 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1436 * file that got extended. w_first_new_cpos tells us 1437 * where the newly allocated clusters are so we can 1438 * zero them. 1439 */ 1440 if (desc->c_cpos >= wc->w_first_new_cpos) { 1441 BUG_ON(phys == 0); 1442 desc->c_needs_zero = 1; 1443 } 1444 1445 desc->c_phys = phys; 1446 if (phys == 0) { 1447 desc->c_new = 1; 1448 desc->c_needs_zero = 1; 1449 desc->c_clear_unwritten = 1; 1450 *clusters_to_alloc = *clusters_to_alloc + 1; 1451 } 1452 1453 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1454 desc->c_clear_unwritten = 1; 1455 desc->c_needs_zero = 1; 1456 } 1457 1458 ret = ocfs2_unwritten_check(inode, wc, desc); 1459 if (ret) { 1460 mlog_errno(ret); 1461 goto out; 1462 } 1463 1464 num_clusters--; 1465 } 1466 1467 ret = 0; 1468 out: 1469 return ret; 1470 } 1471 1472 static int ocfs2_write_begin_inline(struct address_space *mapping, 1473 struct inode *inode, 1474 struct ocfs2_write_ctxt *wc) 1475 { 1476 int ret; 1477 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1478 struct page *page; 1479 handle_t *handle; 1480 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1481 1482 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1483 if (IS_ERR(handle)) { 1484 ret = PTR_ERR(handle); 1485 mlog_errno(ret); 1486 goto out; 1487 } 1488 1489 page = find_or_create_page(mapping, 0, GFP_NOFS); 1490 if (!page) { 1491 ocfs2_commit_trans(osb, handle); 1492 ret = -ENOMEM; 1493 mlog_errno(ret); 1494 goto out; 1495 } 1496 /* 1497 * If we don't set w_num_pages then this page won't get unlocked 1498 * and freed on cleanup of the write context. 1499 */ 1500 wc->w_pages[0] = wc->w_target_page = page; 1501 wc->w_num_pages = 1; 1502 1503 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1504 OCFS2_JOURNAL_ACCESS_WRITE); 1505 if (ret) { 1506 ocfs2_commit_trans(osb, handle); 1507 1508 mlog_errno(ret); 1509 goto out; 1510 } 1511 1512 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1513 ocfs2_set_inode_data_inline(inode, di); 1514 1515 if (!PageUptodate(page)) { 1516 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1517 if (ret) { 1518 ocfs2_commit_trans(osb, handle); 1519 1520 goto out; 1521 } 1522 } 1523 1524 wc->w_handle = handle; 1525 out: 1526 return ret; 1527 } 1528 1529 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1530 { 1531 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1532 1533 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1534 return 1; 1535 return 0; 1536 } 1537 1538 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1539 struct inode *inode, loff_t pos, 1540 unsigned len, struct page *mmap_page, 1541 struct ocfs2_write_ctxt *wc) 1542 { 1543 int ret, written = 0; 1544 loff_t end = pos + len; 1545 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1546 struct ocfs2_dinode *di = NULL; 1547 1548 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1549 len, (unsigned long long)pos, 1550 oi->ip_dyn_features); 1551 1552 /* 1553 * Handle inodes which already have inline data 1st. 1554 */ 1555 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1556 if (mmap_page == NULL && 1557 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1558 goto do_inline_write; 1559 1560 /* 1561 * The write won't fit - we have to give this inode an 1562 * inline extent list now. 1563 */ 1564 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1565 if (ret) 1566 mlog_errno(ret); 1567 goto out; 1568 } 1569 1570 /* 1571 * Check whether the inode can accept inline data. 1572 */ 1573 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1574 return 0; 1575 1576 /* 1577 * Check whether the write can fit. 1578 */ 1579 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1580 if (mmap_page || 1581 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1582 return 0; 1583 1584 do_inline_write: 1585 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1586 if (ret) { 1587 mlog_errno(ret); 1588 goto out; 1589 } 1590 1591 /* 1592 * This signals to the caller that the data can be written 1593 * inline. 1594 */ 1595 written = 1; 1596 out: 1597 return written ? written : ret; 1598 } 1599 1600 /* 1601 * This function only does anything for file systems which can't 1602 * handle sparse files. 1603 * 1604 * What we want to do here is fill in any hole between the current end 1605 * of allocation and the end of our write. That way the rest of the 1606 * write path can treat it as an non-allocating write, which has no 1607 * special case code for sparse/nonsparse files. 1608 */ 1609 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1610 struct buffer_head *di_bh, 1611 loff_t pos, unsigned len, 1612 struct ocfs2_write_ctxt *wc) 1613 { 1614 int ret; 1615 loff_t newsize = pos + len; 1616 1617 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1618 1619 if (newsize <= i_size_read(inode)) 1620 return 0; 1621 1622 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1623 if (ret) 1624 mlog_errno(ret); 1625 1626 /* There is no wc if this is call from direct. */ 1627 if (wc) 1628 wc->w_first_new_cpos = 1629 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1630 1631 return ret; 1632 } 1633 1634 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1635 loff_t pos) 1636 { 1637 int ret = 0; 1638 1639 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1640 if (pos > i_size_read(inode)) 1641 ret = ocfs2_zero_extend(inode, di_bh, pos); 1642 1643 return ret; 1644 } 1645 1646 int ocfs2_write_begin_nolock(struct address_space *mapping, 1647 loff_t pos, unsigned len, ocfs2_write_type_t type, 1648 struct page **pagep, void **fsdata, 1649 struct buffer_head *di_bh, struct page *mmap_page) 1650 { 1651 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1652 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1653 struct ocfs2_write_ctxt *wc; 1654 struct inode *inode = mapping->host; 1655 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1656 struct ocfs2_dinode *di; 1657 struct ocfs2_alloc_context *data_ac = NULL; 1658 struct ocfs2_alloc_context *meta_ac = NULL; 1659 handle_t *handle; 1660 struct ocfs2_extent_tree et; 1661 int try_free = 1, ret1; 1662 1663 try_again: 1664 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh); 1665 if (ret) { 1666 mlog_errno(ret); 1667 return ret; 1668 } 1669 1670 if (ocfs2_supports_inline_data(osb)) { 1671 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1672 mmap_page, wc); 1673 if (ret == 1) { 1674 ret = 0; 1675 goto success; 1676 } 1677 if (ret < 0) { 1678 mlog_errno(ret); 1679 goto out; 1680 } 1681 } 1682 1683 /* Direct io change i_size late, should not zero tail here. */ 1684 if (type != OCFS2_WRITE_DIRECT) { 1685 if (ocfs2_sparse_alloc(osb)) 1686 ret = ocfs2_zero_tail(inode, di_bh, pos); 1687 else 1688 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 1689 len, wc); 1690 if (ret) { 1691 mlog_errno(ret); 1692 goto out; 1693 } 1694 } 1695 1696 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1697 if (ret < 0) { 1698 mlog_errno(ret); 1699 goto out; 1700 } else if (ret == 1) { 1701 clusters_need = wc->w_clen; 1702 ret = ocfs2_refcount_cow(inode, di_bh, 1703 wc->w_cpos, wc->w_clen, UINT_MAX); 1704 if (ret) { 1705 mlog_errno(ret); 1706 goto out; 1707 } 1708 } 1709 1710 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1711 &extents_to_split); 1712 if (ret) { 1713 mlog_errno(ret); 1714 goto out; 1715 } 1716 clusters_need += clusters_to_alloc; 1717 1718 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1719 1720 trace_ocfs2_write_begin_nolock( 1721 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1722 (long long)i_size_read(inode), 1723 le32_to_cpu(di->i_clusters), 1724 pos, len, type, mmap_page, 1725 clusters_to_alloc, extents_to_split); 1726 1727 /* 1728 * We set w_target_from, w_target_to here so that 1729 * ocfs2_write_end() knows which range in the target page to 1730 * write out. An allocation requires that we write the entire 1731 * cluster range. 1732 */ 1733 if (clusters_to_alloc || extents_to_split) { 1734 /* 1735 * XXX: We are stretching the limits of 1736 * ocfs2_lock_allocators(). It greatly over-estimates 1737 * the work to be done. 1738 */ 1739 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1740 wc->w_di_bh); 1741 ret = ocfs2_lock_allocators(inode, &et, 1742 clusters_to_alloc, extents_to_split, 1743 &data_ac, &meta_ac); 1744 if (ret) { 1745 mlog_errno(ret); 1746 goto out; 1747 } 1748 1749 if (data_ac) 1750 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1751 1752 credits = ocfs2_calc_extend_credits(inode->i_sb, 1753 &di->id2.i_list); 1754 } else if (type == OCFS2_WRITE_DIRECT) 1755 /* direct write needs not to start trans if no extents alloc. */ 1756 goto success; 1757 1758 /* 1759 * We have to zero sparse allocated clusters, unwritten extent clusters, 1760 * and non-sparse clusters we just extended. For non-sparse writes, 1761 * we know zeros will only be needed in the first and/or last cluster. 1762 */ 1763 if (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1764 wc->w_desc[wc->w_clen - 1].c_needs_zero)) 1765 cluster_of_pages = 1; 1766 else 1767 cluster_of_pages = 0; 1768 1769 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1770 1771 handle = ocfs2_start_trans(osb, credits); 1772 if (IS_ERR(handle)) { 1773 ret = PTR_ERR(handle); 1774 mlog_errno(ret); 1775 goto out; 1776 } 1777 1778 wc->w_handle = handle; 1779 1780 if (clusters_to_alloc) { 1781 ret = dquot_alloc_space_nodirty(inode, 1782 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1783 if (ret) 1784 goto out_commit; 1785 } 1786 1787 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1788 OCFS2_JOURNAL_ACCESS_WRITE); 1789 if (ret) { 1790 mlog_errno(ret); 1791 goto out_quota; 1792 } 1793 1794 /* 1795 * Fill our page array first. That way we've grabbed enough so 1796 * that we can zero and flush if we error after adding the 1797 * extent. 1798 */ 1799 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1800 cluster_of_pages, mmap_page); 1801 if (ret) { 1802 /* 1803 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 1804 * the target page. In this case, we exit with no error and no target 1805 * page. This will trigger the caller, page_mkwrite(), to re-try 1806 * the operation. 1807 */ 1808 if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) { 1809 BUG_ON(wc->w_target_page); 1810 ret = 0; 1811 goto out_quota; 1812 } 1813 1814 mlog_errno(ret); 1815 goto out_quota; 1816 } 1817 1818 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1819 len); 1820 if (ret) { 1821 mlog_errno(ret); 1822 goto out_quota; 1823 } 1824 1825 if (data_ac) 1826 ocfs2_free_alloc_context(data_ac); 1827 if (meta_ac) 1828 ocfs2_free_alloc_context(meta_ac); 1829 1830 success: 1831 if (pagep) 1832 *pagep = wc->w_target_page; 1833 *fsdata = wc; 1834 return 0; 1835 out_quota: 1836 if (clusters_to_alloc) 1837 dquot_free_space(inode, 1838 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1839 out_commit: 1840 ocfs2_commit_trans(osb, handle); 1841 1842 out: 1843 /* 1844 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(), 1845 * even in case of error here like ENOSPC and ENOMEM. So, we need 1846 * to unlock the target page manually to prevent deadlocks when 1847 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED 1848 * to VM code. 1849 */ 1850 if (wc->w_target_locked) 1851 unlock_page(mmap_page); 1852 1853 ocfs2_free_write_ctxt(inode, wc); 1854 1855 if (data_ac) { 1856 ocfs2_free_alloc_context(data_ac); 1857 data_ac = NULL; 1858 } 1859 if (meta_ac) { 1860 ocfs2_free_alloc_context(meta_ac); 1861 meta_ac = NULL; 1862 } 1863 1864 if (ret == -ENOSPC && try_free) { 1865 /* 1866 * Try to free some truncate log so that we can have enough 1867 * clusters to allocate. 1868 */ 1869 try_free = 0; 1870 1871 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1872 if (ret1 == 1) 1873 goto try_again; 1874 1875 if (ret1 < 0) 1876 mlog_errno(ret1); 1877 } 1878 1879 return ret; 1880 } 1881 1882 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1883 loff_t pos, unsigned len, 1884 struct page **pagep, void **fsdata) 1885 { 1886 int ret; 1887 struct buffer_head *di_bh = NULL; 1888 struct inode *inode = mapping->host; 1889 1890 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1891 if (ret) { 1892 mlog_errno(ret); 1893 return ret; 1894 } 1895 1896 /* 1897 * Take alloc sem here to prevent concurrent lookups. That way 1898 * the mapping, zeroing and tree manipulation within 1899 * ocfs2_write() will be safe against ->read_folio(). This 1900 * should also serve to lock out allocation from a shared 1901 * writeable region. 1902 */ 1903 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1904 1905 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER, 1906 pagep, fsdata, di_bh, NULL); 1907 if (ret) { 1908 mlog_errno(ret); 1909 goto out_fail; 1910 } 1911 1912 brelse(di_bh); 1913 1914 return 0; 1915 1916 out_fail: 1917 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1918 1919 brelse(di_bh); 1920 ocfs2_inode_unlock(inode, 1); 1921 1922 return ret; 1923 } 1924 1925 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1926 unsigned len, unsigned *copied, 1927 struct ocfs2_dinode *di, 1928 struct ocfs2_write_ctxt *wc) 1929 { 1930 void *kaddr; 1931 1932 if (unlikely(*copied < len)) { 1933 if (!PageUptodate(wc->w_target_page)) { 1934 *copied = 0; 1935 return; 1936 } 1937 } 1938 1939 kaddr = kmap_atomic(wc->w_target_page); 1940 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1941 kunmap_atomic(kaddr); 1942 1943 trace_ocfs2_write_end_inline( 1944 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1945 (unsigned long long)pos, *copied, 1946 le16_to_cpu(di->id2.i_data.id_count), 1947 le16_to_cpu(di->i_dyn_features)); 1948 } 1949 1950 int ocfs2_write_end_nolock(struct address_space *mapping, 1951 loff_t pos, unsigned len, unsigned copied, void *fsdata) 1952 { 1953 int i, ret; 1954 unsigned from, to, start = pos & (PAGE_SIZE - 1); 1955 struct inode *inode = mapping->host; 1956 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1957 struct ocfs2_write_ctxt *wc = fsdata; 1958 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1959 handle_t *handle = wc->w_handle; 1960 struct page *tmppage; 1961 1962 BUG_ON(!list_empty(&wc->w_unwritten_list)); 1963 1964 if (handle) { 1965 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), 1966 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); 1967 if (ret) { 1968 copied = ret; 1969 mlog_errno(ret); 1970 goto out; 1971 } 1972 } 1973 1974 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1975 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1976 goto out_write_size; 1977 } 1978 1979 if (unlikely(copied < len) && wc->w_target_page) { 1980 loff_t new_isize; 1981 1982 if (!PageUptodate(wc->w_target_page)) 1983 copied = 0; 1984 1985 new_isize = max_t(loff_t, i_size_read(inode), pos + copied); 1986 if (new_isize > page_offset(wc->w_target_page)) 1987 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1988 start+len); 1989 else { 1990 /* 1991 * When page is fully beyond new isize (data copy 1992 * failed), do not bother zeroing the page. Invalidate 1993 * it instead so that writeback does not get confused 1994 * put page & buffer dirty bits into inconsistent 1995 * state. 1996 */ 1997 block_invalidate_folio(page_folio(wc->w_target_page), 1998 0, PAGE_SIZE); 1999 } 2000 } 2001 if (wc->w_target_page) 2002 flush_dcache_page(wc->w_target_page); 2003 2004 for(i = 0; i < wc->w_num_pages; i++) { 2005 tmppage = wc->w_pages[i]; 2006 2007 /* This is the direct io target page. */ 2008 if (tmppage == NULL) 2009 continue; 2010 2011 if (tmppage == wc->w_target_page) { 2012 from = wc->w_target_from; 2013 to = wc->w_target_to; 2014 2015 BUG_ON(from > PAGE_SIZE || 2016 to > PAGE_SIZE || 2017 to < from); 2018 } else { 2019 /* 2020 * Pages adjacent to the target (if any) imply 2021 * a hole-filling write in which case we want 2022 * to flush their entire range. 2023 */ 2024 from = 0; 2025 to = PAGE_SIZE; 2026 } 2027 2028 if (page_has_buffers(tmppage)) { 2029 if (handle && ocfs2_should_order_data(inode)) { 2030 loff_t start_byte = 2031 ((loff_t)tmppage->index << PAGE_SHIFT) + 2032 from; 2033 loff_t length = to - from; 2034 ocfs2_jbd2_inode_add_write(handle, inode, 2035 start_byte, length); 2036 } 2037 block_commit_write(tmppage, from, to); 2038 } 2039 } 2040 2041 out_write_size: 2042 /* Direct io do not update i_size here. */ 2043 if (wc->w_type != OCFS2_WRITE_DIRECT) { 2044 pos += copied; 2045 if (pos > i_size_read(inode)) { 2046 i_size_write(inode, pos); 2047 mark_inode_dirty(inode); 2048 } 2049 inode->i_blocks = ocfs2_inode_sector_count(inode); 2050 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2051 inode->i_mtime = inode->i_ctime = current_time(inode); 2052 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2053 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2054 if (handle) 2055 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2056 } 2057 if (handle) 2058 ocfs2_journal_dirty(handle, wc->w_di_bh); 2059 2060 out: 2061 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2062 * lock, or it will cause a deadlock since journal commit threads holds 2063 * this lock and will ask for the page lock when flushing the data. 2064 * put it here to preserve the unlock order. 2065 */ 2066 ocfs2_unlock_pages(wc); 2067 2068 if (handle) 2069 ocfs2_commit_trans(osb, handle); 2070 2071 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2072 2073 brelse(wc->w_di_bh); 2074 kfree(wc); 2075 2076 return copied; 2077 } 2078 2079 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2080 loff_t pos, unsigned len, unsigned copied, 2081 struct page *page, void *fsdata) 2082 { 2083 int ret; 2084 struct inode *inode = mapping->host; 2085 2086 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata); 2087 2088 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2089 ocfs2_inode_unlock(inode, 1); 2090 2091 return ret; 2092 } 2093 2094 struct ocfs2_dio_write_ctxt { 2095 struct list_head dw_zero_list; 2096 unsigned dw_zero_count; 2097 int dw_orphaned; 2098 pid_t dw_writer_pid; 2099 }; 2100 2101 static struct ocfs2_dio_write_ctxt * 2102 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc) 2103 { 2104 struct ocfs2_dio_write_ctxt *dwc = NULL; 2105 2106 if (bh->b_private) 2107 return bh->b_private; 2108 2109 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS); 2110 if (dwc == NULL) 2111 return NULL; 2112 INIT_LIST_HEAD(&dwc->dw_zero_list); 2113 dwc->dw_zero_count = 0; 2114 dwc->dw_orphaned = 0; 2115 dwc->dw_writer_pid = task_pid_nr(current); 2116 bh->b_private = dwc; 2117 *alloc = 1; 2118 2119 return dwc; 2120 } 2121 2122 static void ocfs2_dio_free_write_ctx(struct inode *inode, 2123 struct ocfs2_dio_write_ctxt *dwc) 2124 { 2125 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list); 2126 kfree(dwc); 2127 } 2128 2129 /* 2130 * TODO: Make this into a generic get_blocks function. 2131 * 2132 * From do_direct_io in direct-io.c: 2133 * "So what we do is to permit the ->get_blocks function to populate 2134 * bh.b_size with the size of IO which is permitted at this offset and 2135 * this i_blkbits." 2136 * 2137 * This function is called directly from get_more_blocks in direct-io.c. 2138 * 2139 * called like this: dio->get_blocks(dio->inode, fs_startblk, 2140 * fs_count, map_bh, dio->rw == WRITE); 2141 */ 2142 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock, 2143 struct buffer_head *bh_result, int create) 2144 { 2145 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2146 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2147 struct ocfs2_write_ctxt *wc; 2148 struct ocfs2_write_cluster_desc *desc = NULL; 2149 struct ocfs2_dio_write_ctxt *dwc = NULL; 2150 struct buffer_head *di_bh = NULL; 2151 u64 p_blkno; 2152 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits; 2153 loff_t pos = iblock << i_blkbits; 2154 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits; 2155 unsigned len, total_len = bh_result->b_size; 2156 int ret = 0, first_get_block = 0; 2157 2158 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1)); 2159 len = min(total_len, len); 2160 2161 /* 2162 * bh_result->b_size is count in get_more_blocks according to write 2163 * "pos" and "end", we need map twice to return different buffer state: 2164 * 1. area in file size, not set NEW; 2165 * 2. area out file size, set NEW. 2166 * 2167 * iblock endblk 2168 * |--------|---------|---------|--------- 2169 * |<-------area in file------->| 2170 */ 2171 2172 if ((iblock <= endblk) && 2173 ((iblock + ((len - 1) >> i_blkbits)) > endblk)) 2174 len = (endblk - iblock + 1) << i_blkbits; 2175 2176 mlog(0, "get block of %lu at %llu:%u req %u\n", 2177 inode->i_ino, pos, len, total_len); 2178 2179 /* 2180 * Because we need to change file size in ocfs2_dio_end_io_write(), or 2181 * we may need to add it to orphan dir. So can not fall to fast path 2182 * while file size will be changed. 2183 */ 2184 if (pos + total_len <= i_size_read(inode)) { 2185 2186 /* This is the fast path for re-write. */ 2187 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create); 2188 if (buffer_mapped(bh_result) && 2189 !buffer_new(bh_result) && 2190 ret == 0) 2191 goto out; 2192 2193 /* Clear state set by ocfs2_get_block. */ 2194 bh_result->b_state = 0; 2195 } 2196 2197 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block); 2198 if (unlikely(dwc == NULL)) { 2199 ret = -ENOMEM; 2200 mlog_errno(ret); 2201 goto out; 2202 } 2203 2204 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) > 2205 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) && 2206 !dwc->dw_orphaned) { 2207 /* 2208 * when we are going to alloc extents beyond file size, add the 2209 * inode to orphan dir, so we can recall those spaces when 2210 * system crashed during write. 2211 */ 2212 ret = ocfs2_add_inode_to_orphan(osb, inode); 2213 if (ret < 0) { 2214 mlog_errno(ret); 2215 goto out; 2216 } 2217 dwc->dw_orphaned = 1; 2218 } 2219 2220 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2221 if (ret) { 2222 mlog_errno(ret); 2223 goto out; 2224 } 2225 2226 down_write(&oi->ip_alloc_sem); 2227 2228 if (first_get_block) { 2229 if (ocfs2_sparse_alloc(osb)) 2230 ret = ocfs2_zero_tail(inode, di_bh, pos); 2231 else 2232 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 2233 total_len, NULL); 2234 if (ret < 0) { 2235 mlog_errno(ret); 2236 goto unlock; 2237 } 2238 } 2239 2240 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len, 2241 OCFS2_WRITE_DIRECT, NULL, 2242 (void **)&wc, di_bh, NULL); 2243 if (ret) { 2244 mlog_errno(ret); 2245 goto unlock; 2246 } 2247 2248 desc = &wc->w_desc[0]; 2249 2250 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys); 2251 BUG_ON(p_blkno == 0); 2252 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1); 2253 2254 map_bh(bh_result, inode->i_sb, p_blkno); 2255 bh_result->b_size = len; 2256 if (desc->c_needs_zero) 2257 set_buffer_new(bh_result); 2258 2259 if (iblock > endblk) 2260 set_buffer_new(bh_result); 2261 2262 /* May sleep in end_io. It should not happen in a irq context. So defer 2263 * it to dio work queue. */ 2264 set_buffer_defer_completion(bh_result); 2265 2266 if (!list_empty(&wc->w_unwritten_list)) { 2267 struct ocfs2_unwritten_extent *ue = NULL; 2268 2269 ue = list_first_entry(&wc->w_unwritten_list, 2270 struct ocfs2_unwritten_extent, 2271 ue_node); 2272 BUG_ON(ue->ue_cpos != desc->c_cpos); 2273 /* The physical address may be 0, fill it. */ 2274 ue->ue_phys = desc->c_phys; 2275 2276 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list); 2277 dwc->dw_zero_count += wc->w_unwritten_count; 2278 } 2279 2280 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc); 2281 BUG_ON(ret != len); 2282 ret = 0; 2283 unlock: 2284 up_write(&oi->ip_alloc_sem); 2285 ocfs2_inode_unlock(inode, 1); 2286 brelse(di_bh); 2287 out: 2288 if (ret < 0) 2289 ret = -EIO; 2290 return ret; 2291 } 2292 2293 static int ocfs2_dio_end_io_write(struct inode *inode, 2294 struct ocfs2_dio_write_ctxt *dwc, 2295 loff_t offset, 2296 ssize_t bytes) 2297 { 2298 struct ocfs2_cached_dealloc_ctxt dealloc; 2299 struct ocfs2_extent_tree et; 2300 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2301 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2302 struct ocfs2_unwritten_extent *ue = NULL; 2303 struct buffer_head *di_bh = NULL; 2304 struct ocfs2_dinode *di; 2305 struct ocfs2_alloc_context *data_ac = NULL; 2306 struct ocfs2_alloc_context *meta_ac = NULL; 2307 handle_t *handle = NULL; 2308 loff_t end = offset + bytes; 2309 int ret = 0, credits = 0; 2310 2311 ocfs2_init_dealloc_ctxt(&dealloc); 2312 2313 /* We do clear unwritten, delete orphan, change i_size here. If neither 2314 * of these happen, we can skip all this. */ 2315 if (list_empty(&dwc->dw_zero_list) && 2316 end <= i_size_read(inode) && 2317 !dwc->dw_orphaned) 2318 goto out; 2319 2320 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2321 if (ret < 0) { 2322 mlog_errno(ret); 2323 goto out; 2324 } 2325 2326 down_write(&oi->ip_alloc_sem); 2327 2328 /* Delete orphan before acquire i_rwsem. */ 2329 if (dwc->dw_orphaned) { 2330 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current)); 2331 2332 end = end > i_size_read(inode) ? end : 0; 2333 2334 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 2335 !!end, end); 2336 if (ret < 0) 2337 mlog_errno(ret); 2338 } 2339 2340 di = (struct ocfs2_dinode *)di_bh->b_data; 2341 2342 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 2343 2344 /* Attach dealloc with extent tree in case that we may reuse extents 2345 * which are already unlinked from current extent tree due to extent 2346 * rotation and merging. 2347 */ 2348 et.et_dealloc = &dealloc; 2349 2350 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2, 2351 &data_ac, &meta_ac); 2352 if (ret) { 2353 mlog_errno(ret); 2354 goto unlock; 2355 } 2356 2357 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list); 2358 2359 handle = ocfs2_start_trans(osb, credits); 2360 if (IS_ERR(handle)) { 2361 ret = PTR_ERR(handle); 2362 mlog_errno(ret); 2363 goto unlock; 2364 } 2365 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 2366 OCFS2_JOURNAL_ACCESS_WRITE); 2367 if (ret) { 2368 mlog_errno(ret); 2369 goto commit; 2370 } 2371 2372 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) { 2373 ret = ocfs2_mark_extent_written(inode, &et, handle, 2374 ue->ue_cpos, 1, 2375 ue->ue_phys, 2376 meta_ac, &dealloc); 2377 if (ret < 0) { 2378 mlog_errno(ret); 2379 break; 2380 } 2381 } 2382 2383 if (end > i_size_read(inode)) { 2384 ret = ocfs2_set_inode_size(handle, inode, di_bh, end); 2385 if (ret < 0) 2386 mlog_errno(ret); 2387 } 2388 commit: 2389 ocfs2_commit_trans(osb, handle); 2390 unlock: 2391 up_write(&oi->ip_alloc_sem); 2392 ocfs2_inode_unlock(inode, 1); 2393 brelse(di_bh); 2394 out: 2395 if (data_ac) 2396 ocfs2_free_alloc_context(data_ac); 2397 if (meta_ac) 2398 ocfs2_free_alloc_context(meta_ac); 2399 ocfs2_run_deallocs(osb, &dealloc); 2400 ocfs2_dio_free_write_ctx(inode, dwc); 2401 2402 return ret; 2403 } 2404 2405 /* 2406 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 2407 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 2408 * to protect io on one node from truncation on another. 2409 */ 2410 static int ocfs2_dio_end_io(struct kiocb *iocb, 2411 loff_t offset, 2412 ssize_t bytes, 2413 void *private) 2414 { 2415 struct inode *inode = file_inode(iocb->ki_filp); 2416 int level; 2417 int ret = 0; 2418 2419 /* this io's submitter should not have unlocked this before we could */ 2420 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 2421 2422 if (bytes <= 0) 2423 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld", 2424 (long long)bytes); 2425 if (private) { 2426 if (bytes > 0) 2427 ret = ocfs2_dio_end_io_write(inode, private, offset, 2428 bytes); 2429 else 2430 ocfs2_dio_free_write_ctx(inode, private); 2431 } 2432 2433 ocfs2_iocb_clear_rw_locked(iocb); 2434 2435 level = ocfs2_iocb_rw_locked_level(iocb); 2436 ocfs2_rw_unlock(inode, level); 2437 return ret; 2438 } 2439 2440 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2441 { 2442 struct file *file = iocb->ki_filp; 2443 struct inode *inode = file->f_mapping->host; 2444 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2445 get_block_t *get_block; 2446 2447 /* 2448 * Fallback to buffered I/O if we see an inode without 2449 * extents. 2450 */ 2451 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2452 return 0; 2453 2454 /* Fallback to buffered I/O if we do not support append dio. */ 2455 if (iocb->ki_pos + iter->count > i_size_read(inode) && 2456 !ocfs2_supports_append_dio(osb)) 2457 return 0; 2458 2459 if (iov_iter_rw(iter) == READ) 2460 get_block = ocfs2_lock_get_block; 2461 else 2462 get_block = ocfs2_dio_wr_get_block; 2463 2464 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2465 iter, get_block, 2466 ocfs2_dio_end_io, NULL, 0); 2467 } 2468 2469 const struct address_space_operations ocfs2_aops = { 2470 .dirty_folio = block_dirty_folio, 2471 .read_folio = ocfs2_read_folio, 2472 .readahead = ocfs2_readahead, 2473 .writepage = ocfs2_writepage, 2474 .write_begin = ocfs2_write_begin, 2475 .write_end = ocfs2_write_end, 2476 .bmap = ocfs2_bmap, 2477 .direct_IO = ocfs2_direct_IO, 2478 .invalidate_folio = block_invalidate_folio, 2479 .release_folio = ocfs2_release_folio, 2480 .migrate_folio = buffer_migrate_folio, 2481 .is_partially_uptodate = block_is_partially_uptodate, 2482 .error_remove_page = generic_error_remove_page, 2483 }; 2484