1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 #include <linux/quotaops.h> 31 #include <linux/blkdev.h> 32 #include <linux/uio.h> 33 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "dlmglue.h" 41 #include "extent_map.h" 42 #include "file.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "suballoc.h" 46 #include "super.h" 47 #include "symlink.h" 48 #include "refcounttree.h" 49 #include "ocfs2_trace.h" 50 51 #include "buffer_head_io.h" 52 #include "dir.h" 53 #include "namei.h" 54 #include "sysfile.h" 55 56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 57 struct buffer_head *bh_result, int create) 58 { 59 int err = -EIO; 60 int status; 61 struct ocfs2_dinode *fe = NULL; 62 struct buffer_head *bh = NULL; 63 struct buffer_head *buffer_cache_bh = NULL; 64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 65 void *kaddr; 66 67 trace_ocfs2_symlink_get_block( 68 (unsigned long long)OCFS2_I(inode)->ip_blkno, 69 (unsigned long long)iblock, bh_result, create); 70 71 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 72 73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 75 (unsigned long long)iblock); 76 goto bail; 77 } 78 79 status = ocfs2_read_inode_block(inode, &bh); 80 if (status < 0) { 81 mlog_errno(status); 82 goto bail; 83 } 84 fe = (struct ocfs2_dinode *) bh->b_data; 85 86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 87 le32_to_cpu(fe->i_clusters))) { 88 err = -ENOMEM; 89 mlog(ML_ERROR, "block offset is outside the allocated size: " 90 "%llu\n", (unsigned long long)iblock); 91 goto bail; 92 } 93 94 /* We don't use the page cache to create symlink data, so if 95 * need be, copy it over from the buffer cache. */ 96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 98 iblock; 99 buffer_cache_bh = sb_getblk(osb->sb, blkno); 100 if (!buffer_cache_bh) { 101 err = -ENOMEM; 102 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 103 goto bail; 104 } 105 106 /* we haven't locked out transactions, so a commit 107 * could've happened. Since we've got a reference on 108 * the bh, even if it commits while we're doing the 109 * copy, the data is still good. */ 110 if (buffer_jbd(buffer_cache_bh) 111 && ocfs2_inode_is_new(inode)) { 112 kaddr = kmap_atomic(bh_result->b_page); 113 if (!kaddr) { 114 mlog(ML_ERROR, "couldn't kmap!\n"); 115 goto bail; 116 } 117 memcpy(kaddr + (bh_result->b_size * iblock), 118 buffer_cache_bh->b_data, 119 bh_result->b_size); 120 kunmap_atomic(kaddr); 121 set_buffer_uptodate(bh_result); 122 } 123 brelse(buffer_cache_bh); 124 } 125 126 map_bh(bh_result, inode->i_sb, 127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 128 129 err = 0; 130 131 bail: 132 brelse(bh); 133 134 return err; 135 } 136 137 int ocfs2_get_block(struct inode *inode, sector_t iblock, 138 struct buffer_head *bh_result, int create) 139 { 140 int err = 0; 141 unsigned int ext_flags; 142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 143 u64 p_blkno, count, past_eof; 144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 145 146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 147 (unsigned long long)iblock, bh_result, create); 148 149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 151 inode, inode->i_ino); 152 153 if (S_ISLNK(inode->i_mode)) { 154 /* this always does I/O for some reason. */ 155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 156 goto bail; 157 } 158 159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 160 &ext_flags); 161 if (err) { 162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 164 (unsigned long long)p_blkno); 165 goto bail; 166 } 167 168 if (max_blocks < count) 169 count = max_blocks; 170 171 /* 172 * ocfs2 never allocates in this function - the only time we 173 * need to use BH_New is when we're extending i_size on a file 174 * system which doesn't support holes, in which case BH_New 175 * allows __block_write_begin() to zero. 176 * 177 * If we see this on a sparse file system, then a truncate has 178 * raced us and removed the cluster. In this case, we clear 179 * the buffers dirty and uptodate bits and let the buffer code 180 * ignore it as a hole. 181 */ 182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 183 clear_buffer_dirty(bh_result); 184 clear_buffer_uptodate(bh_result); 185 goto bail; 186 } 187 188 /* Treat the unwritten extent as a hole for zeroing purposes. */ 189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 190 map_bh(bh_result, inode->i_sb, p_blkno); 191 192 bh_result->b_size = count << inode->i_blkbits; 193 194 if (!ocfs2_sparse_alloc(osb)) { 195 if (p_blkno == 0) { 196 err = -EIO; 197 mlog(ML_ERROR, 198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 199 (unsigned long long)iblock, 200 (unsigned long long)p_blkno, 201 (unsigned long long)OCFS2_I(inode)->ip_blkno); 202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 203 dump_stack(); 204 goto bail; 205 } 206 } 207 208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 209 210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 211 (unsigned long long)past_eof); 212 if (create && (iblock >= past_eof)) 213 set_buffer_new(bh_result); 214 215 bail: 216 if (err < 0) 217 err = -EIO; 218 219 return err; 220 } 221 222 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 223 struct buffer_head *di_bh) 224 { 225 void *kaddr; 226 loff_t size; 227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 228 229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 231 (unsigned long long)OCFS2_I(inode)->ip_blkno); 232 return -EROFS; 233 } 234 235 size = i_size_read(inode); 236 237 if (size > PAGE_CACHE_SIZE || 238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 239 ocfs2_error(inode->i_sb, 240 "Inode %llu has with inline data has bad size: %Lu\n", 241 (unsigned long long)OCFS2_I(inode)->ip_blkno, 242 (unsigned long long)size); 243 return -EROFS; 244 } 245 246 kaddr = kmap_atomic(page); 247 if (size) 248 memcpy(kaddr, di->id2.i_data.id_data, size); 249 /* Clear the remaining part of the page */ 250 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); 251 flush_dcache_page(page); 252 kunmap_atomic(kaddr); 253 254 SetPageUptodate(page); 255 256 return 0; 257 } 258 259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 260 { 261 int ret; 262 struct buffer_head *di_bh = NULL; 263 264 BUG_ON(!PageLocked(page)); 265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 266 267 ret = ocfs2_read_inode_block(inode, &di_bh); 268 if (ret) { 269 mlog_errno(ret); 270 goto out; 271 } 272 273 ret = ocfs2_read_inline_data(inode, page, di_bh); 274 out: 275 unlock_page(page); 276 277 brelse(di_bh); 278 return ret; 279 } 280 281 static int ocfs2_readpage(struct file *file, struct page *page) 282 { 283 struct inode *inode = page->mapping->host; 284 struct ocfs2_inode_info *oi = OCFS2_I(inode); 285 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; 286 int ret, unlock = 1; 287 288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 289 (page ? page->index : 0)); 290 291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 292 if (ret != 0) { 293 if (ret == AOP_TRUNCATED_PAGE) 294 unlock = 0; 295 mlog_errno(ret); 296 goto out; 297 } 298 299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 300 /* 301 * Unlock the page and cycle ip_alloc_sem so that we don't 302 * busyloop waiting for ip_alloc_sem to unlock 303 */ 304 ret = AOP_TRUNCATED_PAGE; 305 unlock_page(page); 306 unlock = 0; 307 down_read(&oi->ip_alloc_sem); 308 up_read(&oi->ip_alloc_sem); 309 goto out_inode_unlock; 310 } 311 312 /* 313 * i_size might have just been updated as we grabed the meta lock. We 314 * might now be discovering a truncate that hit on another node. 315 * block_read_full_page->get_block freaks out if it is asked to read 316 * beyond the end of a file, so we check here. Callers 317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 318 * and notice that the page they just read isn't needed. 319 * 320 * XXX sys_readahead() seems to get that wrong? 321 */ 322 if (start >= i_size_read(inode)) { 323 zero_user(page, 0, PAGE_SIZE); 324 SetPageUptodate(page); 325 ret = 0; 326 goto out_alloc; 327 } 328 329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 330 ret = ocfs2_readpage_inline(inode, page); 331 else 332 ret = block_read_full_page(page, ocfs2_get_block); 333 unlock = 0; 334 335 out_alloc: 336 up_read(&OCFS2_I(inode)->ip_alloc_sem); 337 out_inode_unlock: 338 ocfs2_inode_unlock(inode, 0); 339 out: 340 if (unlock) 341 unlock_page(page); 342 return ret; 343 } 344 345 /* 346 * This is used only for read-ahead. Failures or difficult to handle 347 * situations are safe to ignore. 348 * 349 * Right now, we don't bother with BH_Boundary - in-inode extent lists 350 * are quite large (243 extents on 4k blocks), so most inodes don't 351 * grow out to a tree. If need be, detecting boundary extents could 352 * trivially be added in a future version of ocfs2_get_block(). 353 */ 354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 355 struct list_head *pages, unsigned nr_pages) 356 { 357 int ret, err = -EIO; 358 struct inode *inode = mapping->host; 359 struct ocfs2_inode_info *oi = OCFS2_I(inode); 360 loff_t start; 361 struct page *last; 362 363 /* 364 * Use the nonblocking flag for the dlm code to avoid page 365 * lock inversion, but don't bother with retrying. 366 */ 367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 368 if (ret) 369 return err; 370 371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 372 ocfs2_inode_unlock(inode, 0); 373 return err; 374 } 375 376 /* 377 * Don't bother with inline-data. There isn't anything 378 * to read-ahead in that case anyway... 379 */ 380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 381 goto out_unlock; 382 383 /* 384 * Check whether a remote node truncated this file - we just 385 * drop out in that case as it's not worth handling here. 386 */ 387 last = list_entry(pages->prev, struct page, lru); 388 start = (loff_t)last->index << PAGE_CACHE_SHIFT; 389 if (start >= i_size_read(inode)) 390 goto out_unlock; 391 392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 393 394 out_unlock: 395 up_read(&oi->ip_alloc_sem); 396 ocfs2_inode_unlock(inode, 0); 397 398 return err; 399 } 400 401 /* Note: Because we don't support holes, our allocation has 402 * already happened (allocation writes zeros to the file data) 403 * so we don't have to worry about ordered writes in 404 * ocfs2_writepage. 405 * 406 * ->writepage is called during the process of invalidating the page cache 407 * during blocked lock processing. It can't block on any cluster locks 408 * to during block mapping. It's relying on the fact that the block 409 * mapping can't have disappeared under the dirty pages that it is 410 * being asked to write back. 411 */ 412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 413 { 414 trace_ocfs2_writepage( 415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 416 page->index); 417 418 return block_write_full_page(page, ocfs2_get_block, wbc); 419 } 420 421 /* Taken from ext3. We don't necessarily need the full blown 422 * functionality yet, but IMHO it's better to cut and paste the whole 423 * thing so we can avoid introducing our own bugs (and easily pick up 424 * their fixes when they happen) --Mark */ 425 int walk_page_buffers( handle_t *handle, 426 struct buffer_head *head, 427 unsigned from, 428 unsigned to, 429 int *partial, 430 int (*fn)( handle_t *handle, 431 struct buffer_head *bh)) 432 { 433 struct buffer_head *bh; 434 unsigned block_start, block_end; 435 unsigned blocksize = head->b_size; 436 int err, ret = 0; 437 struct buffer_head *next; 438 439 for ( bh = head, block_start = 0; 440 ret == 0 && (bh != head || !block_start); 441 block_start = block_end, bh = next) 442 { 443 next = bh->b_this_page; 444 block_end = block_start + blocksize; 445 if (block_end <= from || block_start >= to) { 446 if (partial && !buffer_uptodate(bh)) 447 *partial = 1; 448 continue; 449 } 450 err = (*fn)(handle, bh); 451 if (!ret) 452 ret = err; 453 } 454 return ret; 455 } 456 457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 458 { 459 sector_t status; 460 u64 p_blkno = 0; 461 int err = 0; 462 struct inode *inode = mapping->host; 463 464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 465 (unsigned long long)block); 466 467 /* We don't need to lock journal system files, since they aren't 468 * accessed concurrently from multiple nodes. 469 */ 470 if (!INODE_JOURNAL(inode)) { 471 err = ocfs2_inode_lock(inode, NULL, 0); 472 if (err) { 473 if (err != -ENOENT) 474 mlog_errno(err); 475 goto bail; 476 } 477 down_read(&OCFS2_I(inode)->ip_alloc_sem); 478 } 479 480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 482 NULL); 483 484 if (!INODE_JOURNAL(inode)) { 485 up_read(&OCFS2_I(inode)->ip_alloc_sem); 486 ocfs2_inode_unlock(inode, 0); 487 } 488 489 if (err) { 490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 491 (unsigned long long)block); 492 mlog_errno(err); 493 goto bail; 494 } 495 496 bail: 497 status = err ? 0 : p_blkno; 498 499 return status; 500 } 501 502 /* 503 * TODO: Make this into a generic get_blocks function. 504 * 505 * From do_direct_io in direct-io.c: 506 * "So what we do is to permit the ->get_blocks function to populate 507 * bh.b_size with the size of IO which is permitted at this offset and 508 * this i_blkbits." 509 * 510 * This function is called directly from get_more_blocks in direct-io.c. 511 * 512 * called like this: dio->get_blocks(dio->inode, fs_startblk, 513 * fs_count, map_bh, dio->rw == WRITE); 514 */ 515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, 516 struct buffer_head *bh_result, int create) 517 { 518 int ret; 519 u32 cpos = 0; 520 int alloc_locked = 0; 521 u64 p_blkno, inode_blocks, contig_blocks; 522 unsigned int ext_flags; 523 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 524 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; 525 unsigned long len = bh_result->b_size; 526 unsigned int clusters_to_alloc = 0, contig_clusters = 0; 527 528 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock); 529 530 /* This function won't even be called if the request isn't all 531 * nicely aligned and of the right size, so there's no need 532 * for us to check any of that. */ 533 534 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 535 536 down_read(&OCFS2_I(inode)->ip_alloc_sem); 537 538 /* This figures out the size of the next contiguous block, and 539 * our logical offset */ 540 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 541 &contig_blocks, &ext_flags); 542 up_read(&OCFS2_I(inode)->ip_alloc_sem); 543 544 if (ret) { 545 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 546 (unsigned long long)iblock); 547 ret = -EIO; 548 goto bail; 549 } 550 551 /* We should already CoW the refcounted extent in case of create. */ 552 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED)); 553 554 /* allocate blocks if no p_blkno is found, and create == 1 */ 555 if (!p_blkno && create) { 556 ret = ocfs2_inode_lock(inode, NULL, 1); 557 if (ret < 0) { 558 mlog_errno(ret); 559 goto bail; 560 } 561 562 alloc_locked = 1; 563 564 down_write(&OCFS2_I(inode)->ip_alloc_sem); 565 566 /* fill hole, allocate blocks can't be larger than the size 567 * of the hole */ 568 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len); 569 contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb, 570 contig_blocks); 571 if (clusters_to_alloc > contig_clusters) 572 clusters_to_alloc = contig_clusters; 573 574 /* allocate extent and insert them into the extent tree */ 575 ret = ocfs2_extend_allocation(inode, cpos, 576 clusters_to_alloc, 0); 577 if (ret < 0) { 578 up_write(&OCFS2_I(inode)->ip_alloc_sem); 579 mlog_errno(ret); 580 goto bail; 581 } 582 583 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 584 &contig_blocks, &ext_flags); 585 if (ret < 0) { 586 up_write(&OCFS2_I(inode)->ip_alloc_sem); 587 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 588 (unsigned long long)iblock); 589 ret = -EIO; 590 goto bail; 591 } 592 set_buffer_new(bh_result); 593 up_write(&OCFS2_I(inode)->ip_alloc_sem); 594 } 595 596 /* 597 * get_more_blocks() expects us to describe a hole by clearing 598 * the mapped bit on bh_result(). 599 * 600 * Consider an unwritten extent as a hole. 601 */ 602 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 603 map_bh(bh_result, inode->i_sb, p_blkno); 604 else 605 clear_buffer_mapped(bh_result); 606 607 /* make sure we don't map more than max_blocks blocks here as 608 that's all the kernel will handle at this point. */ 609 if (max_blocks < contig_blocks) 610 contig_blocks = max_blocks; 611 bh_result->b_size = contig_blocks << blocksize_bits; 612 bail: 613 if (alloc_locked) 614 ocfs2_inode_unlock(inode, 1); 615 return ret; 616 } 617 618 /* 619 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 620 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 621 * to protect io on one node from truncation on another. 622 */ 623 static void ocfs2_dio_end_io(struct kiocb *iocb, 624 loff_t offset, 625 ssize_t bytes, 626 void *private) 627 { 628 struct inode *inode = file_inode(iocb->ki_filp); 629 int level; 630 631 /* this io's submitter should not have unlocked this before we could */ 632 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 633 634 if (ocfs2_iocb_is_unaligned_aio(iocb)) { 635 ocfs2_iocb_clear_unaligned_aio(iocb); 636 637 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio); 638 } 639 640 /* Let rw unlock to be done later to protect append direct io write */ 641 if (offset + bytes <= i_size_read(inode)) { 642 ocfs2_iocb_clear_rw_locked(iocb); 643 644 level = ocfs2_iocb_rw_locked_level(iocb); 645 ocfs2_rw_unlock(inode, level); 646 } 647 } 648 649 static int ocfs2_releasepage(struct page *page, gfp_t wait) 650 { 651 if (!page_has_buffers(page)) 652 return 0; 653 return try_to_free_buffers(page); 654 } 655 656 static int ocfs2_is_overwrite(struct ocfs2_super *osb, 657 struct inode *inode, loff_t offset) 658 { 659 int ret = 0; 660 u32 v_cpos = 0; 661 u32 p_cpos = 0; 662 unsigned int num_clusters = 0; 663 unsigned int ext_flags = 0; 664 665 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset); 666 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, 667 &num_clusters, &ext_flags); 668 if (ret < 0) { 669 mlog_errno(ret); 670 return ret; 671 } 672 673 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 674 return 1; 675 676 return 0; 677 } 678 679 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb, 680 struct inode *inode, loff_t offset, 681 u64 zero_len, int cluster_align) 682 { 683 u32 p_cpos = 0; 684 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode)); 685 unsigned int num_clusters = 0; 686 unsigned int ext_flags = 0; 687 int ret = 0; 688 689 if (offset <= i_size_read(inode) || cluster_align) 690 return 0; 691 692 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters, 693 &ext_flags); 694 if (ret < 0) { 695 mlog_errno(ret); 696 return ret; 697 } 698 699 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 700 u64 s = i_size_read(inode); 701 sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) + 702 (do_div(s, osb->s_clustersize) >> 9); 703 704 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector, 705 zero_len >> 9, GFP_NOFS, false); 706 if (ret < 0) 707 mlog_errno(ret); 708 } 709 710 return ret; 711 } 712 713 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb, 714 struct inode *inode, loff_t offset) 715 { 716 u64 zero_start, zero_len, total_zero_len; 717 u32 p_cpos = 0, clusters_to_add; 718 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode)); 719 unsigned int num_clusters = 0; 720 unsigned int ext_flags = 0; 721 u32 size_div, offset_div; 722 int ret = 0; 723 724 { 725 u64 o = offset; 726 u64 s = i_size_read(inode); 727 728 offset_div = do_div(o, osb->s_clustersize); 729 size_div = do_div(s, osb->s_clustersize); 730 } 731 732 if (offset <= i_size_read(inode)) 733 return 0; 734 735 clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) - 736 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode)); 737 total_zero_len = offset - i_size_read(inode); 738 if (clusters_to_add) 739 total_zero_len -= offset_div; 740 741 /* Allocate clusters to fill out holes, and this is only needed 742 * when we add more than one clusters. Otherwise the cluster will 743 * be allocated during direct IO */ 744 if (clusters_to_add > 1) { 745 ret = ocfs2_extend_allocation(inode, 746 OCFS2_I(inode)->ip_clusters, 747 clusters_to_add - 1, 0); 748 if (ret) { 749 mlog_errno(ret); 750 goto out; 751 } 752 } 753 754 while (total_zero_len) { 755 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters, 756 &ext_flags); 757 if (ret < 0) { 758 mlog_errno(ret); 759 goto out; 760 } 761 762 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) + 763 size_div; 764 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) - 765 size_div; 766 zero_len = min(total_zero_len, zero_len); 767 768 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 769 ret = blkdev_issue_zeroout(osb->sb->s_bdev, 770 zero_start >> 9, zero_len >> 9, 771 GFP_NOFS, false); 772 if (ret < 0) { 773 mlog_errno(ret); 774 goto out; 775 } 776 } 777 778 total_zero_len -= zero_len; 779 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div); 780 781 /* Only at first iteration can be cluster not aligned. 782 * So set size_div to 0 for the rest */ 783 size_div = 0; 784 } 785 786 out: 787 return ret; 788 } 789 790 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb, 791 struct iov_iter *iter, 792 loff_t offset) 793 { 794 ssize_t ret = 0; 795 ssize_t written = 0; 796 bool orphaned = false; 797 int is_overwrite = 0; 798 struct file *file = iocb->ki_filp; 799 struct inode *inode = file_inode(file)->i_mapping->host; 800 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 801 struct buffer_head *di_bh = NULL; 802 size_t count = iter->count; 803 journal_t *journal = osb->journal->j_journal; 804 u64 zero_len_head, zero_len_tail; 805 int cluster_align_head, cluster_align_tail; 806 loff_t final_size = offset + count; 807 int append_write = offset >= i_size_read(inode) ? 1 : 0; 808 unsigned int num_clusters = 0; 809 unsigned int ext_flags = 0; 810 811 { 812 u64 o = offset; 813 u64 s = i_size_read(inode); 814 815 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits); 816 cluster_align_head = !zero_len_head; 817 818 zero_len_tail = osb->s_clustersize - 819 do_div(s, osb->s_clustersize); 820 if ((offset - i_size_read(inode)) < zero_len_tail) 821 zero_len_tail = offset - i_size_read(inode); 822 cluster_align_tail = !zero_len_tail; 823 } 824 825 /* 826 * when final_size > inode->i_size, inode->i_size will be 827 * updated after direct write, so add the inode to orphan 828 * dir first. 829 */ 830 if (final_size > i_size_read(inode)) { 831 ret = ocfs2_add_inode_to_orphan(osb, inode); 832 if (ret < 0) { 833 mlog_errno(ret); 834 goto out; 835 } 836 orphaned = true; 837 } 838 839 if (append_write) { 840 ret = ocfs2_inode_lock(inode, NULL, 1); 841 if (ret < 0) { 842 mlog_errno(ret); 843 goto clean_orphan; 844 } 845 846 /* zeroing out the previously allocated cluster tail 847 * that but not zeroed */ 848 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) { 849 down_read(&OCFS2_I(inode)->ip_alloc_sem); 850 ret = ocfs2_direct_IO_zero_extend(osb, inode, offset, 851 zero_len_tail, cluster_align_tail); 852 up_read(&OCFS2_I(inode)->ip_alloc_sem); 853 } else { 854 down_write(&OCFS2_I(inode)->ip_alloc_sem); 855 ret = ocfs2_direct_IO_extend_no_holes(osb, inode, 856 offset); 857 up_write(&OCFS2_I(inode)->ip_alloc_sem); 858 } 859 if (ret < 0) { 860 mlog_errno(ret); 861 ocfs2_inode_unlock(inode, 1); 862 goto clean_orphan; 863 } 864 865 is_overwrite = ocfs2_is_overwrite(osb, inode, offset); 866 if (is_overwrite < 0) { 867 mlog_errno(is_overwrite); 868 ret = is_overwrite; 869 ocfs2_inode_unlock(inode, 1); 870 goto clean_orphan; 871 } 872 873 ocfs2_inode_unlock(inode, 1); 874 } 875 876 written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 877 offset, ocfs2_direct_IO_get_blocks, 878 ocfs2_dio_end_io, NULL, 0); 879 /* overwrite aio may return -EIOCBQUEUED, and it is not an error */ 880 if ((written < 0) && (written != -EIOCBQUEUED)) { 881 loff_t i_size = i_size_read(inode); 882 883 if (offset + count > i_size) { 884 ret = ocfs2_inode_lock(inode, &di_bh, 1); 885 if (ret < 0) { 886 mlog_errno(ret); 887 goto clean_orphan; 888 } 889 890 if (i_size == i_size_read(inode)) { 891 ret = ocfs2_truncate_file(inode, di_bh, 892 i_size); 893 if (ret < 0) { 894 if (ret != -ENOSPC) 895 mlog_errno(ret); 896 897 ocfs2_inode_unlock(inode, 1); 898 brelse(di_bh); 899 di_bh = NULL; 900 goto clean_orphan; 901 } 902 } 903 904 ocfs2_inode_unlock(inode, 1); 905 brelse(di_bh); 906 di_bh = NULL; 907 908 ret = jbd2_journal_force_commit(journal); 909 if (ret < 0) 910 mlog_errno(ret); 911 } 912 } else if (written > 0 && append_write && !is_overwrite && 913 !cluster_align_head) { 914 /* zeroing out the allocated cluster head */ 915 u32 p_cpos = 0; 916 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset); 917 918 ret = ocfs2_inode_lock(inode, NULL, 0); 919 if (ret < 0) { 920 mlog_errno(ret); 921 goto clean_orphan; 922 } 923 924 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, 925 &num_clusters, &ext_flags); 926 if (ret < 0) { 927 mlog_errno(ret); 928 ocfs2_inode_unlock(inode, 0); 929 goto clean_orphan; 930 } 931 932 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)); 933 934 ret = blkdev_issue_zeroout(osb->sb->s_bdev, 935 (u64)p_cpos << (osb->s_clustersize_bits - 9), 936 zero_len_head >> 9, GFP_NOFS, false); 937 if (ret < 0) 938 mlog_errno(ret); 939 940 ocfs2_inode_unlock(inode, 0); 941 } 942 943 clean_orphan: 944 if (orphaned) { 945 int tmp_ret; 946 int update_isize = written > 0 ? 1 : 0; 947 loff_t end = update_isize ? offset + written : 0; 948 949 tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1); 950 if (tmp_ret < 0) { 951 ret = tmp_ret; 952 mlog_errno(ret); 953 goto out; 954 } 955 956 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 957 update_isize, end); 958 if (tmp_ret < 0) { 959 ocfs2_inode_unlock(inode, 1); 960 ret = tmp_ret; 961 mlog_errno(ret); 962 brelse(di_bh); 963 goto out; 964 } 965 966 ocfs2_inode_unlock(inode, 1); 967 brelse(di_bh); 968 969 tmp_ret = jbd2_journal_force_commit(journal); 970 if (tmp_ret < 0) { 971 ret = tmp_ret; 972 mlog_errno(tmp_ret); 973 } 974 } 975 976 out: 977 if (ret >= 0) 978 ret = written; 979 return ret; 980 } 981 982 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 983 loff_t offset) 984 { 985 struct file *file = iocb->ki_filp; 986 struct inode *inode = file_inode(file)->i_mapping->host; 987 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 988 int full_coherency = !(osb->s_mount_opt & 989 OCFS2_MOUNT_COHERENCY_BUFFERED); 990 991 /* 992 * Fallback to buffered I/O if we see an inode without 993 * extents. 994 */ 995 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 996 return 0; 997 998 /* Fallback to buffered I/O if we are appending and 999 * concurrent O_DIRECT writes are allowed. 1000 */ 1001 if (i_size_read(inode) <= offset && !full_coherency) 1002 return 0; 1003 1004 if (iov_iter_rw(iter) == READ) 1005 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 1006 iter, offset, 1007 ocfs2_direct_IO_get_blocks, 1008 ocfs2_dio_end_io, NULL, 0); 1009 else 1010 return ocfs2_direct_IO_write(iocb, iter, offset); 1011 } 1012 1013 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 1014 u32 cpos, 1015 unsigned int *start, 1016 unsigned int *end) 1017 { 1018 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; 1019 1020 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { 1021 unsigned int cpp; 1022 1023 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); 1024 1025 cluster_start = cpos % cpp; 1026 cluster_start = cluster_start << osb->s_clustersize_bits; 1027 1028 cluster_end = cluster_start + osb->s_clustersize; 1029 } 1030 1031 BUG_ON(cluster_start > PAGE_SIZE); 1032 BUG_ON(cluster_end > PAGE_SIZE); 1033 1034 if (start) 1035 *start = cluster_start; 1036 if (end) 1037 *end = cluster_end; 1038 } 1039 1040 /* 1041 * 'from' and 'to' are the region in the page to avoid zeroing. 1042 * 1043 * If pagesize > clustersize, this function will avoid zeroing outside 1044 * of the cluster boundary. 1045 * 1046 * from == to == 0 is code for "zero the entire cluster region" 1047 */ 1048 static void ocfs2_clear_page_regions(struct page *page, 1049 struct ocfs2_super *osb, u32 cpos, 1050 unsigned from, unsigned to) 1051 { 1052 void *kaddr; 1053 unsigned int cluster_start, cluster_end; 1054 1055 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 1056 1057 kaddr = kmap_atomic(page); 1058 1059 if (from || to) { 1060 if (from > cluster_start) 1061 memset(kaddr + cluster_start, 0, from - cluster_start); 1062 if (to < cluster_end) 1063 memset(kaddr + to, 0, cluster_end - to); 1064 } else { 1065 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 1066 } 1067 1068 kunmap_atomic(kaddr); 1069 } 1070 1071 /* 1072 * Nonsparse file systems fully allocate before we get to the write 1073 * code. This prevents ocfs2_write() from tagging the write as an 1074 * allocating one, which means ocfs2_map_page_blocks() might try to 1075 * read-in the blocks at the tail of our file. Avoid reading them by 1076 * testing i_size against each block offset. 1077 */ 1078 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 1079 unsigned int block_start) 1080 { 1081 u64 offset = page_offset(page) + block_start; 1082 1083 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1084 return 1; 1085 1086 if (i_size_read(inode) > offset) 1087 return 1; 1088 1089 return 0; 1090 } 1091 1092 /* 1093 * Some of this taken from __block_write_begin(). We already have our 1094 * mapping by now though, and the entire write will be allocating or 1095 * it won't, so not much need to use BH_New. 1096 * 1097 * This will also skip zeroing, which is handled externally. 1098 */ 1099 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 1100 struct inode *inode, unsigned int from, 1101 unsigned int to, int new) 1102 { 1103 int ret = 0; 1104 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 1105 unsigned int block_end, block_start; 1106 unsigned int bsize = 1 << inode->i_blkbits; 1107 1108 if (!page_has_buffers(page)) 1109 create_empty_buffers(page, bsize, 0); 1110 1111 head = page_buffers(page); 1112 for (bh = head, block_start = 0; bh != head || !block_start; 1113 bh = bh->b_this_page, block_start += bsize) { 1114 block_end = block_start + bsize; 1115 1116 clear_buffer_new(bh); 1117 1118 /* 1119 * Ignore blocks outside of our i/o range - 1120 * they may belong to unallocated clusters. 1121 */ 1122 if (block_start >= to || block_end <= from) { 1123 if (PageUptodate(page)) 1124 set_buffer_uptodate(bh); 1125 continue; 1126 } 1127 1128 /* 1129 * For an allocating write with cluster size >= page 1130 * size, we always write the entire page. 1131 */ 1132 if (new) 1133 set_buffer_new(bh); 1134 1135 if (!buffer_mapped(bh)) { 1136 map_bh(bh, inode->i_sb, *p_blkno); 1137 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 1138 } 1139 1140 if (PageUptodate(page)) { 1141 if (!buffer_uptodate(bh)) 1142 set_buffer_uptodate(bh); 1143 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1144 !buffer_new(bh) && 1145 ocfs2_should_read_blk(inode, page, block_start) && 1146 (block_start < from || block_end > to)) { 1147 ll_rw_block(READ, 1, &bh); 1148 *wait_bh++=bh; 1149 } 1150 1151 *p_blkno = *p_blkno + 1; 1152 } 1153 1154 /* 1155 * If we issued read requests - let them complete. 1156 */ 1157 while(wait_bh > wait) { 1158 wait_on_buffer(*--wait_bh); 1159 if (!buffer_uptodate(*wait_bh)) 1160 ret = -EIO; 1161 } 1162 1163 if (ret == 0 || !new) 1164 return ret; 1165 1166 /* 1167 * If we get -EIO above, zero out any newly allocated blocks 1168 * to avoid exposing stale data. 1169 */ 1170 bh = head; 1171 block_start = 0; 1172 do { 1173 block_end = block_start + bsize; 1174 if (block_end <= from) 1175 goto next_bh; 1176 if (block_start >= to) 1177 break; 1178 1179 zero_user(page, block_start, bh->b_size); 1180 set_buffer_uptodate(bh); 1181 mark_buffer_dirty(bh); 1182 1183 next_bh: 1184 block_start = block_end; 1185 bh = bh->b_this_page; 1186 } while (bh != head); 1187 1188 return ret; 1189 } 1190 1191 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 1192 #define OCFS2_MAX_CTXT_PAGES 1 1193 #else 1194 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) 1195 #endif 1196 1197 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) 1198 1199 /* 1200 * Describe the state of a single cluster to be written to. 1201 */ 1202 struct ocfs2_write_cluster_desc { 1203 u32 c_cpos; 1204 u32 c_phys; 1205 /* 1206 * Give this a unique field because c_phys eventually gets 1207 * filled. 1208 */ 1209 unsigned c_new; 1210 unsigned c_unwritten; 1211 unsigned c_needs_zero; 1212 }; 1213 1214 struct ocfs2_write_ctxt { 1215 /* Logical cluster position / len of write */ 1216 u32 w_cpos; 1217 u32 w_clen; 1218 1219 /* First cluster allocated in a nonsparse extend */ 1220 u32 w_first_new_cpos; 1221 1222 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 1223 1224 /* 1225 * This is true if page_size > cluster_size. 1226 * 1227 * It triggers a set of special cases during write which might 1228 * have to deal with allocating writes to partial pages. 1229 */ 1230 unsigned int w_large_pages; 1231 1232 /* 1233 * Pages involved in this write. 1234 * 1235 * w_target_page is the page being written to by the user. 1236 * 1237 * w_pages is an array of pages which always contains 1238 * w_target_page, and in the case of an allocating write with 1239 * page_size < cluster size, it will contain zero'd and mapped 1240 * pages adjacent to w_target_page which need to be written 1241 * out in so that future reads from that region will get 1242 * zero's. 1243 */ 1244 unsigned int w_num_pages; 1245 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 1246 struct page *w_target_page; 1247 1248 /* 1249 * w_target_locked is used for page_mkwrite path indicating no unlocking 1250 * against w_target_page in ocfs2_write_end_nolock. 1251 */ 1252 unsigned int w_target_locked:1; 1253 1254 /* 1255 * ocfs2_write_end() uses this to know what the real range to 1256 * write in the target should be. 1257 */ 1258 unsigned int w_target_from; 1259 unsigned int w_target_to; 1260 1261 /* 1262 * We could use journal_current_handle() but this is cleaner, 1263 * IMHO -Mark 1264 */ 1265 handle_t *w_handle; 1266 1267 struct buffer_head *w_di_bh; 1268 1269 struct ocfs2_cached_dealloc_ctxt w_dealloc; 1270 }; 1271 1272 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 1273 { 1274 int i; 1275 1276 for(i = 0; i < num_pages; i++) { 1277 if (pages[i]) { 1278 unlock_page(pages[i]); 1279 mark_page_accessed(pages[i]); 1280 page_cache_release(pages[i]); 1281 } 1282 } 1283 } 1284 1285 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 1286 { 1287 int i; 1288 1289 /* 1290 * w_target_locked is only set to true in the page_mkwrite() case. 1291 * The intent is to allow us to lock the target page from write_begin() 1292 * to write_end(). The caller must hold a ref on w_target_page. 1293 */ 1294 if (wc->w_target_locked) { 1295 BUG_ON(!wc->w_target_page); 1296 for (i = 0; i < wc->w_num_pages; i++) { 1297 if (wc->w_target_page == wc->w_pages[i]) { 1298 wc->w_pages[i] = NULL; 1299 break; 1300 } 1301 } 1302 mark_page_accessed(wc->w_target_page); 1303 page_cache_release(wc->w_target_page); 1304 } 1305 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 1306 } 1307 1308 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) 1309 { 1310 ocfs2_unlock_pages(wc); 1311 brelse(wc->w_di_bh); 1312 kfree(wc); 1313 } 1314 1315 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 1316 struct ocfs2_super *osb, loff_t pos, 1317 unsigned len, struct buffer_head *di_bh) 1318 { 1319 u32 cend; 1320 struct ocfs2_write_ctxt *wc; 1321 1322 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 1323 if (!wc) 1324 return -ENOMEM; 1325 1326 wc->w_cpos = pos >> osb->s_clustersize_bits; 1327 wc->w_first_new_cpos = UINT_MAX; 1328 cend = (pos + len - 1) >> osb->s_clustersize_bits; 1329 wc->w_clen = cend - wc->w_cpos + 1; 1330 get_bh(di_bh); 1331 wc->w_di_bh = di_bh; 1332 1333 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) 1334 wc->w_large_pages = 1; 1335 else 1336 wc->w_large_pages = 0; 1337 1338 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 1339 1340 *wcp = wc; 1341 1342 return 0; 1343 } 1344 1345 /* 1346 * If a page has any new buffers, zero them out here, and mark them uptodate 1347 * and dirty so they'll be written out (in order to prevent uninitialised 1348 * block data from leaking). And clear the new bit. 1349 */ 1350 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1351 { 1352 unsigned int block_start, block_end; 1353 struct buffer_head *head, *bh; 1354 1355 BUG_ON(!PageLocked(page)); 1356 if (!page_has_buffers(page)) 1357 return; 1358 1359 bh = head = page_buffers(page); 1360 block_start = 0; 1361 do { 1362 block_end = block_start + bh->b_size; 1363 1364 if (buffer_new(bh)) { 1365 if (block_end > from && block_start < to) { 1366 if (!PageUptodate(page)) { 1367 unsigned start, end; 1368 1369 start = max(from, block_start); 1370 end = min(to, block_end); 1371 1372 zero_user_segment(page, start, end); 1373 set_buffer_uptodate(bh); 1374 } 1375 1376 clear_buffer_new(bh); 1377 mark_buffer_dirty(bh); 1378 } 1379 } 1380 1381 block_start = block_end; 1382 bh = bh->b_this_page; 1383 } while (bh != head); 1384 } 1385 1386 /* 1387 * Only called when we have a failure during allocating write to write 1388 * zero's to the newly allocated region. 1389 */ 1390 static void ocfs2_write_failure(struct inode *inode, 1391 struct ocfs2_write_ctxt *wc, 1392 loff_t user_pos, unsigned user_len) 1393 { 1394 int i; 1395 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), 1396 to = user_pos + user_len; 1397 struct page *tmppage; 1398 1399 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 1400 1401 for(i = 0; i < wc->w_num_pages; i++) { 1402 tmppage = wc->w_pages[i]; 1403 1404 if (page_has_buffers(tmppage)) { 1405 if (ocfs2_should_order_data(inode)) 1406 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1407 1408 block_commit_write(tmppage, from, to); 1409 } 1410 } 1411 } 1412 1413 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 1414 struct ocfs2_write_ctxt *wc, 1415 struct page *page, u32 cpos, 1416 loff_t user_pos, unsigned user_len, 1417 int new) 1418 { 1419 int ret; 1420 unsigned int map_from = 0, map_to = 0; 1421 unsigned int cluster_start, cluster_end; 1422 unsigned int user_data_from = 0, user_data_to = 0; 1423 1424 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 1425 &cluster_start, &cluster_end); 1426 1427 /* treat the write as new if the a hole/lseek spanned across 1428 * the page boundary. 1429 */ 1430 new = new | ((i_size_read(inode) <= page_offset(page)) && 1431 (page_offset(page) <= user_pos)); 1432 1433 if (page == wc->w_target_page) { 1434 map_from = user_pos & (PAGE_CACHE_SIZE - 1); 1435 map_to = map_from + user_len; 1436 1437 if (new) 1438 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1439 cluster_start, cluster_end, 1440 new); 1441 else 1442 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1443 map_from, map_to, new); 1444 if (ret) { 1445 mlog_errno(ret); 1446 goto out; 1447 } 1448 1449 user_data_from = map_from; 1450 user_data_to = map_to; 1451 if (new) { 1452 map_from = cluster_start; 1453 map_to = cluster_end; 1454 } 1455 } else { 1456 /* 1457 * If we haven't allocated the new page yet, we 1458 * shouldn't be writing it out without copying user 1459 * data. This is likely a math error from the caller. 1460 */ 1461 BUG_ON(!new); 1462 1463 map_from = cluster_start; 1464 map_to = cluster_end; 1465 1466 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1467 cluster_start, cluster_end, new); 1468 if (ret) { 1469 mlog_errno(ret); 1470 goto out; 1471 } 1472 } 1473 1474 /* 1475 * Parts of newly allocated pages need to be zero'd. 1476 * 1477 * Above, we have also rewritten 'to' and 'from' - as far as 1478 * the rest of the function is concerned, the entire cluster 1479 * range inside of a page needs to be written. 1480 * 1481 * We can skip this if the page is up to date - it's already 1482 * been zero'd from being read in as a hole. 1483 */ 1484 if (new && !PageUptodate(page)) 1485 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1486 cpos, user_data_from, user_data_to); 1487 1488 flush_dcache_page(page); 1489 1490 out: 1491 return ret; 1492 } 1493 1494 /* 1495 * This function will only grab one clusters worth of pages. 1496 */ 1497 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1498 struct ocfs2_write_ctxt *wc, 1499 u32 cpos, loff_t user_pos, 1500 unsigned user_len, int new, 1501 struct page *mmap_page) 1502 { 1503 int ret = 0, i; 1504 unsigned long start, target_index, end_index, index; 1505 struct inode *inode = mapping->host; 1506 loff_t last_byte; 1507 1508 target_index = user_pos >> PAGE_CACHE_SHIFT; 1509 1510 /* 1511 * Figure out how many pages we'll be manipulating here. For 1512 * non allocating write, we just change the one 1513 * page. Otherwise, we'll need a whole clusters worth. If we're 1514 * writing past i_size, we only need enough pages to cover the 1515 * last page of the write. 1516 */ 1517 if (new) { 1518 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1519 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1520 /* 1521 * We need the index *past* the last page we could possibly 1522 * touch. This is the page past the end of the write or 1523 * i_size, whichever is greater. 1524 */ 1525 last_byte = max(user_pos + user_len, i_size_read(inode)); 1526 BUG_ON(last_byte < 1); 1527 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1; 1528 if ((start + wc->w_num_pages) > end_index) 1529 wc->w_num_pages = end_index - start; 1530 } else { 1531 wc->w_num_pages = 1; 1532 start = target_index; 1533 } 1534 1535 for(i = 0; i < wc->w_num_pages; i++) { 1536 index = start + i; 1537 1538 if (index == target_index && mmap_page) { 1539 /* 1540 * ocfs2_pagemkwrite() is a little different 1541 * and wants us to directly use the page 1542 * passed in. 1543 */ 1544 lock_page(mmap_page); 1545 1546 /* Exit and let the caller retry */ 1547 if (mmap_page->mapping != mapping) { 1548 WARN_ON(mmap_page->mapping); 1549 unlock_page(mmap_page); 1550 ret = -EAGAIN; 1551 goto out; 1552 } 1553 1554 page_cache_get(mmap_page); 1555 wc->w_pages[i] = mmap_page; 1556 wc->w_target_locked = true; 1557 } else { 1558 wc->w_pages[i] = find_or_create_page(mapping, index, 1559 GFP_NOFS); 1560 if (!wc->w_pages[i]) { 1561 ret = -ENOMEM; 1562 mlog_errno(ret); 1563 goto out; 1564 } 1565 } 1566 wait_for_stable_page(wc->w_pages[i]); 1567 1568 if (index == target_index) 1569 wc->w_target_page = wc->w_pages[i]; 1570 } 1571 out: 1572 if (ret) 1573 wc->w_target_locked = false; 1574 return ret; 1575 } 1576 1577 /* 1578 * Prepare a single cluster for write one cluster into the file. 1579 */ 1580 static int ocfs2_write_cluster(struct address_space *mapping, 1581 u32 phys, unsigned int unwritten, 1582 unsigned int should_zero, 1583 struct ocfs2_alloc_context *data_ac, 1584 struct ocfs2_alloc_context *meta_ac, 1585 struct ocfs2_write_ctxt *wc, u32 cpos, 1586 loff_t user_pos, unsigned user_len) 1587 { 1588 int ret, i, new; 1589 u64 v_blkno, p_blkno; 1590 struct inode *inode = mapping->host; 1591 struct ocfs2_extent_tree et; 1592 1593 new = phys == 0 ? 1 : 0; 1594 if (new) { 1595 u32 tmp_pos; 1596 1597 /* 1598 * This is safe to call with the page locks - it won't take 1599 * any additional semaphores or cluster locks. 1600 */ 1601 tmp_pos = cpos; 1602 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1603 &tmp_pos, 1, 0, wc->w_di_bh, 1604 wc->w_handle, data_ac, 1605 meta_ac, NULL); 1606 /* 1607 * This shouldn't happen because we must have already 1608 * calculated the correct meta data allocation required. The 1609 * internal tree allocation code should know how to increase 1610 * transaction credits itself. 1611 * 1612 * If need be, we could handle -EAGAIN for a 1613 * RESTART_TRANS here. 1614 */ 1615 mlog_bug_on_msg(ret == -EAGAIN, 1616 "Inode %llu: EAGAIN return during allocation.\n", 1617 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1618 if (ret < 0) { 1619 mlog_errno(ret); 1620 goto out; 1621 } 1622 } else if (unwritten) { 1623 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1624 wc->w_di_bh); 1625 ret = ocfs2_mark_extent_written(inode, &et, 1626 wc->w_handle, cpos, 1, phys, 1627 meta_ac, &wc->w_dealloc); 1628 if (ret < 0) { 1629 mlog_errno(ret); 1630 goto out; 1631 } 1632 } 1633 1634 if (should_zero) 1635 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); 1636 else 1637 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; 1638 1639 /* 1640 * The only reason this should fail is due to an inability to 1641 * find the extent added. 1642 */ 1643 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, 1644 NULL); 1645 if (ret < 0) { 1646 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1647 "at logical block %llu", 1648 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1649 (unsigned long long)v_blkno); 1650 goto out; 1651 } 1652 1653 BUG_ON(p_blkno == 0); 1654 1655 for(i = 0; i < wc->w_num_pages; i++) { 1656 int tmpret; 1657 1658 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1659 wc->w_pages[i], cpos, 1660 user_pos, user_len, 1661 should_zero); 1662 if (tmpret) { 1663 mlog_errno(tmpret); 1664 if (ret == 0) 1665 ret = tmpret; 1666 } 1667 } 1668 1669 /* 1670 * We only have cleanup to do in case of allocating write. 1671 */ 1672 if (ret && new) 1673 ocfs2_write_failure(inode, wc, user_pos, user_len); 1674 1675 out: 1676 1677 return ret; 1678 } 1679 1680 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1681 struct ocfs2_alloc_context *data_ac, 1682 struct ocfs2_alloc_context *meta_ac, 1683 struct ocfs2_write_ctxt *wc, 1684 loff_t pos, unsigned len) 1685 { 1686 int ret, i; 1687 loff_t cluster_off; 1688 unsigned int local_len = len; 1689 struct ocfs2_write_cluster_desc *desc; 1690 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1691 1692 for (i = 0; i < wc->w_clen; i++) { 1693 desc = &wc->w_desc[i]; 1694 1695 /* 1696 * We have to make sure that the total write passed in 1697 * doesn't extend past a single cluster. 1698 */ 1699 local_len = len; 1700 cluster_off = pos & (osb->s_clustersize - 1); 1701 if ((cluster_off + local_len) > osb->s_clustersize) 1702 local_len = osb->s_clustersize - cluster_off; 1703 1704 ret = ocfs2_write_cluster(mapping, desc->c_phys, 1705 desc->c_unwritten, 1706 desc->c_needs_zero, 1707 data_ac, meta_ac, 1708 wc, desc->c_cpos, pos, local_len); 1709 if (ret) { 1710 mlog_errno(ret); 1711 goto out; 1712 } 1713 1714 len -= local_len; 1715 pos += local_len; 1716 } 1717 1718 ret = 0; 1719 out: 1720 return ret; 1721 } 1722 1723 /* 1724 * ocfs2_write_end() wants to know which parts of the target page it 1725 * should complete the write on. It's easiest to compute them ahead of 1726 * time when a more complete view of the write is available. 1727 */ 1728 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1729 struct ocfs2_write_ctxt *wc, 1730 loff_t pos, unsigned len, int alloc) 1731 { 1732 struct ocfs2_write_cluster_desc *desc; 1733 1734 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); 1735 wc->w_target_to = wc->w_target_from + len; 1736 1737 if (alloc == 0) 1738 return; 1739 1740 /* 1741 * Allocating write - we may have different boundaries based 1742 * on page size and cluster size. 1743 * 1744 * NOTE: We can no longer compute one value from the other as 1745 * the actual write length and user provided length may be 1746 * different. 1747 */ 1748 1749 if (wc->w_large_pages) { 1750 /* 1751 * We only care about the 1st and last cluster within 1752 * our range and whether they should be zero'd or not. Either 1753 * value may be extended out to the start/end of a 1754 * newly allocated cluster. 1755 */ 1756 desc = &wc->w_desc[0]; 1757 if (desc->c_needs_zero) 1758 ocfs2_figure_cluster_boundaries(osb, 1759 desc->c_cpos, 1760 &wc->w_target_from, 1761 NULL); 1762 1763 desc = &wc->w_desc[wc->w_clen - 1]; 1764 if (desc->c_needs_zero) 1765 ocfs2_figure_cluster_boundaries(osb, 1766 desc->c_cpos, 1767 NULL, 1768 &wc->w_target_to); 1769 } else { 1770 wc->w_target_from = 0; 1771 wc->w_target_to = PAGE_CACHE_SIZE; 1772 } 1773 } 1774 1775 /* 1776 * Populate each single-cluster write descriptor in the write context 1777 * with information about the i/o to be done. 1778 * 1779 * Returns the number of clusters that will have to be allocated, as 1780 * well as a worst case estimate of the number of extent records that 1781 * would have to be created during a write to an unwritten region. 1782 */ 1783 static int ocfs2_populate_write_desc(struct inode *inode, 1784 struct ocfs2_write_ctxt *wc, 1785 unsigned int *clusters_to_alloc, 1786 unsigned int *extents_to_split) 1787 { 1788 int ret; 1789 struct ocfs2_write_cluster_desc *desc; 1790 unsigned int num_clusters = 0; 1791 unsigned int ext_flags = 0; 1792 u32 phys = 0; 1793 int i; 1794 1795 *clusters_to_alloc = 0; 1796 *extents_to_split = 0; 1797 1798 for (i = 0; i < wc->w_clen; i++) { 1799 desc = &wc->w_desc[i]; 1800 desc->c_cpos = wc->w_cpos + i; 1801 1802 if (num_clusters == 0) { 1803 /* 1804 * Need to look up the next extent record. 1805 */ 1806 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1807 &num_clusters, &ext_flags); 1808 if (ret) { 1809 mlog_errno(ret); 1810 goto out; 1811 } 1812 1813 /* We should already CoW the refcountd extent. */ 1814 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1815 1816 /* 1817 * Assume worst case - that we're writing in 1818 * the middle of the extent. 1819 * 1820 * We can assume that the write proceeds from 1821 * left to right, in which case the extent 1822 * insert code is smart enough to coalesce the 1823 * next splits into the previous records created. 1824 */ 1825 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1826 *extents_to_split = *extents_to_split + 2; 1827 } else if (phys) { 1828 /* 1829 * Only increment phys if it doesn't describe 1830 * a hole. 1831 */ 1832 phys++; 1833 } 1834 1835 /* 1836 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1837 * file that got extended. w_first_new_cpos tells us 1838 * where the newly allocated clusters are so we can 1839 * zero them. 1840 */ 1841 if (desc->c_cpos >= wc->w_first_new_cpos) { 1842 BUG_ON(phys == 0); 1843 desc->c_needs_zero = 1; 1844 } 1845 1846 desc->c_phys = phys; 1847 if (phys == 0) { 1848 desc->c_new = 1; 1849 desc->c_needs_zero = 1; 1850 *clusters_to_alloc = *clusters_to_alloc + 1; 1851 } 1852 1853 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1854 desc->c_unwritten = 1; 1855 desc->c_needs_zero = 1; 1856 } 1857 1858 num_clusters--; 1859 } 1860 1861 ret = 0; 1862 out: 1863 return ret; 1864 } 1865 1866 static int ocfs2_write_begin_inline(struct address_space *mapping, 1867 struct inode *inode, 1868 struct ocfs2_write_ctxt *wc) 1869 { 1870 int ret; 1871 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1872 struct page *page; 1873 handle_t *handle; 1874 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1875 1876 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1877 if (IS_ERR(handle)) { 1878 ret = PTR_ERR(handle); 1879 mlog_errno(ret); 1880 goto out; 1881 } 1882 1883 page = find_or_create_page(mapping, 0, GFP_NOFS); 1884 if (!page) { 1885 ocfs2_commit_trans(osb, handle); 1886 ret = -ENOMEM; 1887 mlog_errno(ret); 1888 goto out; 1889 } 1890 /* 1891 * If we don't set w_num_pages then this page won't get unlocked 1892 * and freed on cleanup of the write context. 1893 */ 1894 wc->w_pages[0] = wc->w_target_page = page; 1895 wc->w_num_pages = 1; 1896 1897 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1898 OCFS2_JOURNAL_ACCESS_WRITE); 1899 if (ret) { 1900 ocfs2_commit_trans(osb, handle); 1901 1902 mlog_errno(ret); 1903 goto out; 1904 } 1905 1906 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1907 ocfs2_set_inode_data_inline(inode, di); 1908 1909 if (!PageUptodate(page)) { 1910 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1911 if (ret) { 1912 ocfs2_commit_trans(osb, handle); 1913 1914 goto out; 1915 } 1916 } 1917 1918 wc->w_handle = handle; 1919 out: 1920 return ret; 1921 } 1922 1923 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1924 { 1925 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1926 1927 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1928 return 1; 1929 return 0; 1930 } 1931 1932 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1933 struct inode *inode, loff_t pos, 1934 unsigned len, struct page *mmap_page, 1935 struct ocfs2_write_ctxt *wc) 1936 { 1937 int ret, written = 0; 1938 loff_t end = pos + len; 1939 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1940 struct ocfs2_dinode *di = NULL; 1941 1942 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1943 len, (unsigned long long)pos, 1944 oi->ip_dyn_features); 1945 1946 /* 1947 * Handle inodes which already have inline data 1st. 1948 */ 1949 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1950 if (mmap_page == NULL && 1951 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1952 goto do_inline_write; 1953 1954 /* 1955 * The write won't fit - we have to give this inode an 1956 * inline extent list now. 1957 */ 1958 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1959 if (ret) 1960 mlog_errno(ret); 1961 goto out; 1962 } 1963 1964 /* 1965 * Check whether the inode can accept inline data. 1966 */ 1967 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1968 return 0; 1969 1970 /* 1971 * Check whether the write can fit. 1972 */ 1973 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1974 if (mmap_page || 1975 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1976 return 0; 1977 1978 do_inline_write: 1979 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1980 if (ret) { 1981 mlog_errno(ret); 1982 goto out; 1983 } 1984 1985 /* 1986 * This signals to the caller that the data can be written 1987 * inline. 1988 */ 1989 written = 1; 1990 out: 1991 return written ? written : ret; 1992 } 1993 1994 /* 1995 * This function only does anything for file systems which can't 1996 * handle sparse files. 1997 * 1998 * What we want to do here is fill in any hole between the current end 1999 * of allocation and the end of our write. That way the rest of the 2000 * write path can treat it as an non-allocating write, which has no 2001 * special case code for sparse/nonsparse files. 2002 */ 2003 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 2004 struct buffer_head *di_bh, 2005 loff_t pos, unsigned len, 2006 struct ocfs2_write_ctxt *wc) 2007 { 2008 int ret; 2009 loff_t newsize = pos + len; 2010 2011 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 2012 2013 if (newsize <= i_size_read(inode)) 2014 return 0; 2015 2016 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 2017 if (ret) 2018 mlog_errno(ret); 2019 2020 wc->w_first_new_cpos = 2021 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 2022 2023 return ret; 2024 } 2025 2026 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 2027 loff_t pos) 2028 { 2029 int ret = 0; 2030 2031 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 2032 if (pos > i_size_read(inode)) 2033 ret = ocfs2_zero_extend(inode, di_bh, pos); 2034 2035 return ret; 2036 } 2037 2038 /* 2039 * Try to flush truncate logs if we can free enough clusters from it. 2040 * As for return value, "< 0" means error, "0" no space and "1" means 2041 * we have freed enough spaces and let the caller try to allocate again. 2042 */ 2043 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 2044 unsigned int needed) 2045 { 2046 tid_t target; 2047 int ret = 0; 2048 unsigned int truncated_clusters; 2049 2050 inode_lock(osb->osb_tl_inode); 2051 truncated_clusters = osb->truncated_clusters; 2052 inode_unlock(osb->osb_tl_inode); 2053 2054 /* 2055 * Check whether we can succeed in allocating if we free 2056 * the truncate log. 2057 */ 2058 if (truncated_clusters < needed) 2059 goto out; 2060 2061 ret = ocfs2_flush_truncate_log(osb); 2062 if (ret) { 2063 mlog_errno(ret); 2064 goto out; 2065 } 2066 2067 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 2068 jbd2_log_wait_commit(osb->journal->j_journal, target); 2069 ret = 1; 2070 } 2071 out: 2072 return ret; 2073 } 2074 2075 int ocfs2_write_begin_nolock(struct file *filp, 2076 struct address_space *mapping, 2077 loff_t pos, unsigned len, unsigned flags, 2078 struct page **pagep, void **fsdata, 2079 struct buffer_head *di_bh, struct page *mmap_page) 2080 { 2081 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 2082 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 2083 struct ocfs2_write_ctxt *wc; 2084 struct inode *inode = mapping->host; 2085 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2086 struct ocfs2_dinode *di; 2087 struct ocfs2_alloc_context *data_ac = NULL; 2088 struct ocfs2_alloc_context *meta_ac = NULL; 2089 handle_t *handle; 2090 struct ocfs2_extent_tree et; 2091 int try_free = 1, ret1; 2092 2093 try_again: 2094 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); 2095 if (ret) { 2096 mlog_errno(ret); 2097 return ret; 2098 } 2099 2100 if (ocfs2_supports_inline_data(osb)) { 2101 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 2102 mmap_page, wc); 2103 if (ret == 1) { 2104 ret = 0; 2105 goto success; 2106 } 2107 if (ret < 0) { 2108 mlog_errno(ret); 2109 goto out; 2110 } 2111 } 2112 2113 if (ocfs2_sparse_alloc(osb)) 2114 ret = ocfs2_zero_tail(inode, di_bh, pos); 2115 else 2116 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len, 2117 wc); 2118 if (ret) { 2119 mlog_errno(ret); 2120 goto out; 2121 } 2122 2123 ret = ocfs2_check_range_for_refcount(inode, pos, len); 2124 if (ret < 0) { 2125 mlog_errno(ret); 2126 goto out; 2127 } else if (ret == 1) { 2128 clusters_need = wc->w_clen; 2129 ret = ocfs2_refcount_cow(inode, di_bh, 2130 wc->w_cpos, wc->w_clen, UINT_MAX); 2131 if (ret) { 2132 mlog_errno(ret); 2133 goto out; 2134 } 2135 } 2136 2137 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 2138 &extents_to_split); 2139 if (ret) { 2140 mlog_errno(ret); 2141 goto out; 2142 } 2143 clusters_need += clusters_to_alloc; 2144 2145 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 2146 2147 trace_ocfs2_write_begin_nolock( 2148 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2149 (long long)i_size_read(inode), 2150 le32_to_cpu(di->i_clusters), 2151 pos, len, flags, mmap_page, 2152 clusters_to_alloc, extents_to_split); 2153 2154 /* 2155 * We set w_target_from, w_target_to here so that 2156 * ocfs2_write_end() knows which range in the target page to 2157 * write out. An allocation requires that we write the entire 2158 * cluster range. 2159 */ 2160 if (clusters_to_alloc || extents_to_split) { 2161 /* 2162 * XXX: We are stretching the limits of 2163 * ocfs2_lock_allocators(). It greatly over-estimates 2164 * the work to be done. 2165 */ 2166 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 2167 wc->w_di_bh); 2168 ret = ocfs2_lock_allocators(inode, &et, 2169 clusters_to_alloc, extents_to_split, 2170 &data_ac, &meta_ac); 2171 if (ret) { 2172 mlog_errno(ret); 2173 goto out; 2174 } 2175 2176 if (data_ac) 2177 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 2178 2179 credits = ocfs2_calc_extend_credits(inode->i_sb, 2180 &di->id2.i_list); 2181 2182 } 2183 2184 /* 2185 * We have to zero sparse allocated clusters, unwritten extent clusters, 2186 * and non-sparse clusters we just extended. For non-sparse writes, 2187 * we know zeros will only be needed in the first and/or last cluster. 2188 */ 2189 if (clusters_to_alloc || extents_to_split || 2190 (wc->w_clen && (wc->w_desc[0].c_needs_zero || 2191 wc->w_desc[wc->w_clen - 1].c_needs_zero))) 2192 cluster_of_pages = 1; 2193 else 2194 cluster_of_pages = 0; 2195 2196 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 2197 2198 handle = ocfs2_start_trans(osb, credits); 2199 if (IS_ERR(handle)) { 2200 ret = PTR_ERR(handle); 2201 mlog_errno(ret); 2202 goto out; 2203 } 2204 2205 wc->w_handle = handle; 2206 2207 if (clusters_to_alloc) { 2208 ret = dquot_alloc_space_nodirty(inode, 2209 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 2210 if (ret) 2211 goto out_commit; 2212 } 2213 2214 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 2215 OCFS2_JOURNAL_ACCESS_WRITE); 2216 if (ret) { 2217 mlog_errno(ret); 2218 goto out_quota; 2219 } 2220 2221 /* 2222 * Fill our page array first. That way we've grabbed enough so 2223 * that we can zero and flush if we error after adding the 2224 * extent. 2225 */ 2226 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 2227 cluster_of_pages, mmap_page); 2228 if (ret && ret != -EAGAIN) { 2229 mlog_errno(ret); 2230 goto out_quota; 2231 } 2232 2233 /* 2234 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 2235 * the target page. In this case, we exit with no error and no target 2236 * page. This will trigger the caller, page_mkwrite(), to re-try 2237 * the operation. 2238 */ 2239 if (ret == -EAGAIN) { 2240 BUG_ON(wc->w_target_page); 2241 ret = 0; 2242 goto out_quota; 2243 } 2244 2245 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 2246 len); 2247 if (ret) { 2248 mlog_errno(ret); 2249 goto out_quota; 2250 } 2251 2252 if (data_ac) 2253 ocfs2_free_alloc_context(data_ac); 2254 if (meta_ac) 2255 ocfs2_free_alloc_context(meta_ac); 2256 2257 success: 2258 *pagep = wc->w_target_page; 2259 *fsdata = wc; 2260 return 0; 2261 out_quota: 2262 if (clusters_to_alloc) 2263 dquot_free_space(inode, 2264 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 2265 out_commit: 2266 ocfs2_commit_trans(osb, handle); 2267 2268 out: 2269 ocfs2_free_write_ctxt(wc); 2270 2271 if (data_ac) { 2272 ocfs2_free_alloc_context(data_ac); 2273 data_ac = NULL; 2274 } 2275 if (meta_ac) { 2276 ocfs2_free_alloc_context(meta_ac); 2277 meta_ac = NULL; 2278 } 2279 2280 if (ret == -ENOSPC && try_free) { 2281 /* 2282 * Try to free some truncate log so that we can have enough 2283 * clusters to allocate. 2284 */ 2285 try_free = 0; 2286 2287 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 2288 if (ret1 == 1) 2289 goto try_again; 2290 2291 if (ret1 < 0) 2292 mlog_errno(ret1); 2293 } 2294 2295 return ret; 2296 } 2297 2298 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 2299 loff_t pos, unsigned len, unsigned flags, 2300 struct page **pagep, void **fsdata) 2301 { 2302 int ret; 2303 struct buffer_head *di_bh = NULL; 2304 struct inode *inode = mapping->host; 2305 2306 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2307 if (ret) { 2308 mlog_errno(ret); 2309 return ret; 2310 } 2311 2312 /* 2313 * Take alloc sem here to prevent concurrent lookups. That way 2314 * the mapping, zeroing and tree manipulation within 2315 * ocfs2_write() will be safe against ->readpage(). This 2316 * should also serve to lock out allocation from a shared 2317 * writeable region. 2318 */ 2319 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2320 2321 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep, 2322 fsdata, di_bh, NULL); 2323 if (ret) { 2324 mlog_errno(ret); 2325 goto out_fail; 2326 } 2327 2328 brelse(di_bh); 2329 2330 return 0; 2331 2332 out_fail: 2333 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2334 2335 brelse(di_bh); 2336 ocfs2_inode_unlock(inode, 1); 2337 2338 return ret; 2339 } 2340 2341 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 2342 unsigned len, unsigned *copied, 2343 struct ocfs2_dinode *di, 2344 struct ocfs2_write_ctxt *wc) 2345 { 2346 void *kaddr; 2347 2348 if (unlikely(*copied < len)) { 2349 if (!PageUptodate(wc->w_target_page)) { 2350 *copied = 0; 2351 return; 2352 } 2353 } 2354 2355 kaddr = kmap_atomic(wc->w_target_page); 2356 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 2357 kunmap_atomic(kaddr); 2358 2359 trace_ocfs2_write_end_inline( 2360 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2361 (unsigned long long)pos, *copied, 2362 le16_to_cpu(di->id2.i_data.id_count), 2363 le16_to_cpu(di->i_dyn_features)); 2364 } 2365 2366 int ocfs2_write_end_nolock(struct address_space *mapping, 2367 loff_t pos, unsigned len, unsigned copied, 2368 struct page *page, void *fsdata) 2369 { 2370 int i, ret; 2371 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); 2372 struct inode *inode = mapping->host; 2373 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2374 struct ocfs2_write_ctxt *wc = fsdata; 2375 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 2376 handle_t *handle = wc->w_handle; 2377 struct page *tmppage; 2378 2379 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 2380 OCFS2_JOURNAL_ACCESS_WRITE); 2381 if (ret) { 2382 copied = ret; 2383 mlog_errno(ret); 2384 goto out; 2385 } 2386 2387 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2388 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 2389 goto out_write_size; 2390 } 2391 2392 if (unlikely(copied < len)) { 2393 if (!PageUptodate(wc->w_target_page)) 2394 copied = 0; 2395 2396 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 2397 start+len); 2398 } 2399 flush_dcache_page(wc->w_target_page); 2400 2401 for(i = 0; i < wc->w_num_pages; i++) { 2402 tmppage = wc->w_pages[i]; 2403 2404 if (tmppage == wc->w_target_page) { 2405 from = wc->w_target_from; 2406 to = wc->w_target_to; 2407 2408 BUG_ON(from > PAGE_CACHE_SIZE || 2409 to > PAGE_CACHE_SIZE || 2410 to < from); 2411 } else { 2412 /* 2413 * Pages adjacent to the target (if any) imply 2414 * a hole-filling write in which case we want 2415 * to flush their entire range. 2416 */ 2417 from = 0; 2418 to = PAGE_CACHE_SIZE; 2419 } 2420 2421 if (page_has_buffers(tmppage)) { 2422 if (ocfs2_should_order_data(inode)) 2423 ocfs2_jbd2_file_inode(wc->w_handle, inode); 2424 block_commit_write(tmppage, from, to); 2425 } 2426 } 2427 2428 out_write_size: 2429 pos += copied; 2430 if (pos > i_size_read(inode)) { 2431 i_size_write(inode, pos); 2432 mark_inode_dirty(inode); 2433 } 2434 inode->i_blocks = ocfs2_inode_sector_count(inode); 2435 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2436 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2437 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2438 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2439 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2440 ocfs2_journal_dirty(handle, wc->w_di_bh); 2441 2442 out: 2443 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2444 * lock, or it will cause a deadlock since journal commit threads holds 2445 * this lock and will ask for the page lock when flushing the data. 2446 * put it here to preserve the unlock order. 2447 */ 2448 ocfs2_unlock_pages(wc); 2449 2450 ocfs2_commit_trans(osb, handle); 2451 2452 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2453 2454 brelse(wc->w_di_bh); 2455 kfree(wc); 2456 2457 return copied; 2458 } 2459 2460 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2461 loff_t pos, unsigned len, unsigned copied, 2462 struct page *page, void *fsdata) 2463 { 2464 int ret; 2465 struct inode *inode = mapping->host; 2466 2467 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 2468 2469 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2470 ocfs2_inode_unlock(inode, 1); 2471 2472 return ret; 2473 } 2474 2475 const struct address_space_operations ocfs2_aops = { 2476 .readpage = ocfs2_readpage, 2477 .readpages = ocfs2_readpages, 2478 .writepage = ocfs2_writepage, 2479 .write_begin = ocfs2_write_begin, 2480 .write_end = ocfs2_write_end, 2481 .bmap = ocfs2_bmap, 2482 .direct_IO = ocfs2_direct_IO, 2483 .invalidatepage = block_invalidatepage, 2484 .releasepage = ocfs2_releasepage, 2485 .migratepage = buffer_migrate_page, 2486 .is_partially_uptodate = block_is_partially_uptodate, 2487 .error_remove_page = generic_error_remove_page, 2488 }; 2489