xref: /openbmc/linux/fs/ocfs2/aops.c (revision 22246614)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 
31 #define MLOG_MASK_PREFIX ML_FILE_IO
32 #include <cluster/masklog.h>
33 
34 #include "ocfs2.h"
35 
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 
47 #include "buffer_head_io.h"
48 
49 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
50 				   struct buffer_head *bh_result, int create)
51 {
52 	int err = -EIO;
53 	int status;
54 	struct ocfs2_dinode *fe = NULL;
55 	struct buffer_head *bh = NULL;
56 	struct buffer_head *buffer_cache_bh = NULL;
57 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58 	void *kaddr;
59 
60 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
61 		   (unsigned long long)iblock, bh_result, create);
62 
63 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64 
65 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
66 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
67 		     (unsigned long long)iblock);
68 		goto bail;
69 	}
70 
71 	status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
72 				  OCFS2_I(inode)->ip_blkno,
73 				  &bh, OCFS2_BH_CACHED, inode);
74 	if (status < 0) {
75 		mlog_errno(status);
76 		goto bail;
77 	}
78 	fe = (struct ocfs2_dinode *) bh->b_data;
79 
80 	if (!OCFS2_IS_VALID_DINODE(fe)) {
81 		mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
82 		     (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
83 		     fe->i_signature);
84 		goto bail;
85 	}
86 
87 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
88 						    le32_to_cpu(fe->i_clusters))) {
89 		mlog(ML_ERROR, "block offset is outside the allocated size: "
90 		     "%llu\n", (unsigned long long)iblock);
91 		goto bail;
92 	}
93 
94 	/* We don't use the page cache to create symlink data, so if
95 	 * need be, copy it over from the buffer cache. */
96 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 			    iblock;
99 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 		if (!buffer_cache_bh) {
101 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
102 			goto bail;
103 		}
104 
105 		/* we haven't locked out transactions, so a commit
106 		 * could've happened. Since we've got a reference on
107 		 * the bh, even if it commits while we're doing the
108 		 * copy, the data is still good. */
109 		if (buffer_jbd(buffer_cache_bh)
110 		    && ocfs2_inode_is_new(inode)) {
111 			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
112 			if (!kaddr) {
113 				mlog(ML_ERROR, "couldn't kmap!\n");
114 				goto bail;
115 			}
116 			memcpy(kaddr + (bh_result->b_size * iblock),
117 			       buffer_cache_bh->b_data,
118 			       bh_result->b_size);
119 			kunmap_atomic(kaddr, KM_USER0);
120 			set_buffer_uptodate(bh_result);
121 		}
122 		brelse(buffer_cache_bh);
123 	}
124 
125 	map_bh(bh_result, inode->i_sb,
126 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127 
128 	err = 0;
129 
130 bail:
131 	if (bh)
132 		brelse(bh);
133 
134 	mlog_exit(err);
135 	return err;
136 }
137 
138 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
139 			   struct buffer_head *bh_result, int create)
140 {
141 	int err = 0;
142 	unsigned int ext_flags;
143 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
144 	u64 p_blkno, count, past_eof;
145 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
146 
147 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
148 		   (unsigned long long)iblock, bh_result, create);
149 
150 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
151 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
152 		     inode, inode->i_ino);
153 
154 	if (S_ISLNK(inode->i_mode)) {
155 		/* this always does I/O for some reason. */
156 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
157 		goto bail;
158 	}
159 
160 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
161 					  &ext_flags);
162 	if (err) {
163 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
164 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
165 		     (unsigned long long)p_blkno);
166 		goto bail;
167 	}
168 
169 	if (max_blocks < count)
170 		count = max_blocks;
171 
172 	/*
173 	 * ocfs2 never allocates in this function - the only time we
174 	 * need to use BH_New is when we're extending i_size on a file
175 	 * system which doesn't support holes, in which case BH_New
176 	 * allows block_prepare_write() to zero.
177 	 */
178 	mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
179 			"ino %lu, iblock %llu\n", inode->i_ino,
180 			(unsigned long long)iblock);
181 
182 	/* Treat the unwritten extent as a hole for zeroing purposes. */
183 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
184 		map_bh(bh_result, inode->i_sb, p_blkno);
185 
186 	bh_result->b_size = count << inode->i_blkbits;
187 
188 	if (!ocfs2_sparse_alloc(osb)) {
189 		if (p_blkno == 0) {
190 			err = -EIO;
191 			mlog(ML_ERROR,
192 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
193 			     (unsigned long long)iblock,
194 			     (unsigned long long)p_blkno,
195 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
196 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
197 			dump_stack();
198 		}
199 
200 		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
201 		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
202 		     (unsigned long long)past_eof);
203 
204 		if (create && (iblock >= past_eof))
205 			set_buffer_new(bh_result);
206 	}
207 
208 bail:
209 	if (err < 0)
210 		err = -EIO;
211 
212 	mlog_exit(err);
213 	return err;
214 }
215 
216 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
217 			   struct buffer_head *di_bh)
218 {
219 	void *kaddr;
220 	loff_t size;
221 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
222 
223 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
224 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
225 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
226 		return -EROFS;
227 	}
228 
229 	size = i_size_read(inode);
230 
231 	if (size > PAGE_CACHE_SIZE ||
232 	    size > ocfs2_max_inline_data(inode->i_sb)) {
233 		ocfs2_error(inode->i_sb,
234 			    "Inode %llu has with inline data has bad size: %Lu",
235 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
236 			    (unsigned long long)size);
237 		return -EROFS;
238 	}
239 
240 	kaddr = kmap_atomic(page, KM_USER0);
241 	if (size)
242 		memcpy(kaddr, di->id2.i_data.id_data, size);
243 	/* Clear the remaining part of the page */
244 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
245 	flush_dcache_page(page);
246 	kunmap_atomic(kaddr, KM_USER0);
247 
248 	SetPageUptodate(page);
249 
250 	return 0;
251 }
252 
253 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
254 {
255 	int ret;
256 	struct buffer_head *di_bh = NULL;
257 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
258 
259 	BUG_ON(!PageLocked(page));
260 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
261 
262 	ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh,
263 			       OCFS2_BH_CACHED, inode);
264 	if (ret) {
265 		mlog_errno(ret);
266 		goto out;
267 	}
268 
269 	ret = ocfs2_read_inline_data(inode, page, di_bh);
270 out:
271 	unlock_page(page);
272 
273 	brelse(di_bh);
274 	return ret;
275 }
276 
277 static int ocfs2_readpage(struct file *file, struct page *page)
278 {
279 	struct inode *inode = page->mapping->host;
280 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
281 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
282 	int ret, unlock = 1;
283 
284 	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
285 
286 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
287 	if (ret != 0) {
288 		if (ret == AOP_TRUNCATED_PAGE)
289 			unlock = 0;
290 		mlog_errno(ret);
291 		goto out;
292 	}
293 
294 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
295 		ret = AOP_TRUNCATED_PAGE;
296 		goto out_inode_unlock;
297 	}
298 
299 	/*
300 	 * i_size might have just been updated as we grabed the meta lock.  We
301 	 * might now be discovering a truncate that hit on another node.
302 	 * block_read_full_page->get_block freaks out if it is asked to read
303 	 * beyond the end of a file, so we check here.  Callers
304 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
305 	 * and notice that the page they just read isn't needed.
306 	 *
307 	 * XXX sys_readahead() seems to get that wrong?
308 	 */
309 	if (start >= i_size_read(inode)) {
310 		zero_user(page, 0, PAGE_SIZE);
311 		SetPageUptodate(page);
312 		ret = 0;
313 		goto out_alloc;
314 	}
315 
316 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
317 		ret = ocfs2_readpage_inline(inode, page);
318 	else
319 		ret = block_read_full_page(page, ocfs2_get_block);
320 	unlock = 0;
321 
322 out_alloc:
323 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
324 out_inode_unlock:
325 	ocfs2_inode_unlock(inode, 0);
326 out:
327 	if (unlock)
328 		unlock_page(page);
329 	mlog_exit(ret);
330 	return ret;
331 }
332 
333 /*
334  * This is used only for read-ahead. Failures or difficult to handle
335  * situations are safe to ignore.
336  *
337  * Right now, we don't bother with BH_Boundary - in-inode extent lists
338  * are quite large (243 extents on 4k blocks), so most inodes don't
339  * grow out to a tree. If need be, detecting boundary extents could
340  * trivially be added in a future version of ocfs2_get_block().
341  */
342 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
343 			   struct list_head *pages, unsigned nr_pages)
344 {
345 	int ret, err = -EIO;
346 	struct inode *inode = mapping->host;
347 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
348 	loff_t start;
349 	struct page *last;
350 
351 	/*
352 	 * Use the nonblocking flag for the dlm code to avoid page
353 	 * lock inversion, but don't bother with retrying.
354 	 */
355 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
356 	if (ret)
357 		return err;
358 
359 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
360 		ocfs2_inode_unlock(inode, 0);
361 		return err;
362 	}
363 
364 	/*
365 	 * Don't bother with inline-data. There isn't anything
366 	 * to read-ahead in that case anyway...
367 	 */
368 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
369 		goto out_unlock;
370 
371 	/*
372 	 * Check whether a remote node truncated this file - we just
373 	 * drop out in that case as it's not worth handling here.
374 	 */
375 	last = list_entry(pages->prev, struct page, lru);
376 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
377 	if (start >= i_size_read(inode))
378 		goto out_unlock;
379 
380 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
381 
382 out_unlock:
383 	up_read(&oi->ip_alloc_sem);
384 	ocfs2_inode_unlock(inode, 0);
385 
386 	return err;
387 }
388 
389 /* Note: Because we don't support holes, our allocation has
390  * already happened (allocation writes zeros to the file data)
391  * so we don't have to worry about ordered writes in
392  * ocfs2_writepage.
393  *
394  * ->writepage is called during the process of invalidating the page cache
395  * during blocked lock processing.  It can't block on any cluster locks
396  * to during block mapping.  It's relying on the fact that the block
397  * mapping can't have disappeared under the dirty pages that it is
398  * being asked to write back.
399  */
400 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
401 {
402 	int ret;
403 
404 	mlog_entry("(0x%p)\n", page);
405 
406 	ret = block_write_full_page(page, ocfs2_get_block, wbc);
407 
408 	mlog_exit(ret);
409 
410 	return ret;
411 }
412 
413 /*
414  * This is called from ocfs2_write_zero_page() which has handled it's
415  * own cluster locking and has ensured allocation exists for those
416  * blocks to be written.
417  */
418 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
419 			       unsigned from, unsigned to)
420 {
421 	int ret;
422 
423 	ret = block_prepare_write(page, from, to, ocfs2_get_block);
424 
425 	return ret;
426 }
427 
428 /* Taken from ext3. We don't necessarily need the full blown
429  * functionality yet, but IMHO it's better to cut and paste the whole
430  * thing so we can avoid introducing our own bugs (and easily pick up
431  * their fixes when they happen) --Mark */
432 int walk_page_buffers(	handle_t *handle,
433 			struct buffer_head *head,
434 			unsigned from,
435 			unsigned to,
436 			int *partial,
437 			int (*fn)(	handle_t *handle,
438 					struct buffer_head *bh))
439 {
440 	struct buffer_head *bh;
441 	unsigned block_start, block_end;
442 	unsigned blocksize = head->b_size;
443 	int err, ret = 0;
444 	struct buffer_head *next;
445 
446 	for (	bh = head, block_start = 0;
447 		ret == 0 && (bh != head || !block_start);
448 	    	block_start = block_end, bh = next)
449 	{
450 		next = bh->b_this_page;
451 		block_end = block_start + blocksize;
452 		if (block_end <= from || block_start >= to) {
453 			if (partial && !buffer_uptodate(bh))
454 				*partial = 1;
455 			continue;
456 		}
457 		err = (*fn)(handle, bh);
458 		if (!ret)
459 			ret = err;
460 	}
461 	return ret;
462 }
463 
464 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
465 							 struct page *page,
466 							 unsigned from,
467 							 unsigned to)
468 {
469 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
470 	handle_t *handle;
471 	int ret = 0;
472 
473 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
474 	if (IS_ERR(handle)) {
475 		ret = -ENOMEM;
476 		mlog_errno(ret);
477 		goto out;
478 	}
479 
480 	if (ocfs2_should_order_data(inode)) {
481 		ret = walk_page_buffers(handle,
482 					page_buffers(page),
483 					from, to, NULL,
484 					ocfs2_journal_dirty_data);
485 		if (ret < 0)
486 			mlog_errno(ret);
487 	}
488 out:
489 	if (ret) {
490 		if (!IS_ERR(handle))
491 			ocfs2_commit_trans(osb, handle);
492 		handle = ERR_PTR(ret);
493 	}
494 	return handle;
495 }
496 
497 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
498 {
499 	sector_t status;
500 	u64 p_blkno = 0;
501 	int err = 0;
502 	struct inode *inode = mapping->host;
503 
504 	mlog_entry("(block = %llu)\n", (unsigned long long)block);
505 
506 	/* We don't need to lock journal system files, since they aren't
507 	 * accessed concurrently from multiple nodes.
508 	 */
509 	if (!INODE_JOURNAL(inode)) {
510 		err = ocfs2_inode_lock(inode, NULL, 0);
511 		if (err) {
512 			if (err != -ENOENT)
513 				mlog_errno(err);
514 			goto bail;
515 		}
516 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
517 	}
518 
519 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
520 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
521 						  NULL);
522 
523 	if (!INODE_JOURNAL(inode)) {
524 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
525 		ocfs2_inode_unlock(inode, 0);
526 	}
527 
528 	if (err) {
529 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
530 		     (unsigned long long)block);
531 		mlog_errno(err);
532 		goto bail;
533 	}
534 
535 bail:
536 	status = err ? 0 : p_blkno;
537 
538 	mlog_exit((int)status);
539 
540 	return status;
541 }
542 
543 /*
544  * TODO: Make this into a generic get_blocks function.
545  *
546  * From do_direct_io in direct-io.c:
547  *  "So what we do is to permit the ->get_blocks function to populate
548  *   bh.b_size with the size of IO which is permitted at this offset and
549  *   this i_blkbits."
550  *
551  * This function is called directly from get_more_blocks in direct-io.c.
552  *
553  * called like this: dio->get_blocks(dio->inode, fs_startblk,
554  * 					fs_count, map_bh, dio->rw == WRITE);
555  */
556 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
557 				     struct buffer_head *bh_result, int create)
558 {
559 	int ret;
560 	u64 p_blkno, inode_blocks, contig_blocks;
561 	unsigned int ext_flags;
562 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
563 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
564 
565 	/* This function won't even be called if the request isn't all
566 	 * nicely aligned and of the right size, so there's no need
567 	 * for us to check any of that. */
568 
569 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
570 
571 	/*
572 	 * Any write past EOF is not allowed because we'd be extending.
573 	 */
574 	if (create && (iblock + max_blocks) > inode_blocks) {
575 		ret = -EIO;
576 		goto bail;
577 	}
578 
579 	/* This figures out the size of the next contiguous block, and
580 	 * our logical offset */
581 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
582 					  &contig_blocks, &ext_flags);
583 	if (ret) {
584 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
585 		     (unsigned long long)iblock);
586 		ret = -EIO;
587 		goto bail;
588 	}
589 
590 	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
591 		ocfs2_error(inode->i_sb,
592 			    "Inode %llu has a hole at block %llu\n",
593 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
594 			    (unsigned long long)iblock);
595 		ret = -EROFS;
596 		goto bail;
597 	}
598 
599 	/*
600 	 * get_more_blocks() expects us to describe a hole by clearing
601 	 * the mapped bit on bh_result().
602 	 *
603 	 * Consider an unwritten extent as a hole.
604 	 */
605 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
606 		map_bh(bh_result, inode->i_sb, p_blkno);
607 	else {
608 		/*
609 		 * ocfs2_prepare_inode_for_write() should have caught
610 		 * the case where we'd be filling a hole and triggered
611 		 * a buffered write instead.
612 		 */
613 		if (create) {
614 			ret = -EIO;
615 			mlog_errno(ret);
616 			goto bail;
617 		}
618 
619 		clear_buffer_mapped(bh_result);
620 	}
621 
622 	/* make sure we don't map more than max_blocks blocks here as
623 	   that's all the kernel will handle at this point. */
624 	if (max_blocks < contig_blocks)
625 		contig_blocks = max_blocks;
626 	bh_result->b_size = contig_blocks << blocksize_bits;
627 bail:
628 	return ret;
629 }
630 
631 /*
632  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
633  * particularly interested in the aio/dio case.  Like the core uses
634  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
635  * truncation on another.
636  */
637 static void ocfs2_dio_end_io(struct kiocb *iocb,
638 			     loff_t offset,
639 			     ssize_t bytes,
640 			     void *private)
641 {
642 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
643 	int level;
644 
645 	/* this io's submitter should not have unlocked this before we could */
646 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
647 
648 	ocfs2_iocb_clear_rw_locked(iocb);
649 
650 	level = ocfs2_iocb_rw_locked_level(iocb);
651 	if (!level)
652 		up_read(&inode->i_alloc_sem);
653 	ocfs2_rw_unlock(inode, level);
654 }
655 
656 /*
657  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
658  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
659  * do journalled data.
660  */
661 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
662 {
663 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
664 
665 	journal_invalidatepage(journal, page, offset);
666 }
667 
668 static int ocfs2_releasepage(struct page *page, gfp_t wait)
669 {
670 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
671 
672 	if (!page_has_buffers(page))
673 		return 0;
674 	return journal_try_to_free_buffers(journal, page, wait);
675 }
676 
677 static ssize_t ocfs2_direct_IO(int rw,
678 			       struct kiocb *iocb,
679 			       const struct iovec *iov,
680 			       loff_t offset,
681 			       unsigned long nr_segs)
682 {
683 	struct file *file = iocb->ki_filp;
684 	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
685 	int ret;
686 
687 	mlog_entry_void();
688 
689 	/*
690 	 * Fallback to buffered I/O if we see an inode without
691 	 * extents.
692 	 */
693 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
694 		return 0;
695 
696 	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
697 					    inode->i_sb->s_bdev, iov, offset,
698 					    nr_segs,
699 					    ocfs2_direct_IO_get_blocks,
700 					    ocfs2_dio_end_io);
701 
702 	mlog_exit(ret);
703 	return ret;
704 }
705 
706 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
707 					    u32 cpos,
708 					    unsigned int *start,
709 					    unsigned int *end)
710 {
711 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
712 
713 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
714 		unsigned int cpp;
715 
716 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
717 
718 		cluster_start = cpos % cpp;
719 		cluster_start = cluster_start << osb->s_clustersize_bits;
720 
721 		cluster_end = cluster_start + osb->s_clustersize;
722 	}
723 
724 	BUG_ON(cluster_start > PAGE_SIZE);
725 	BUG_ON(cluster_end > PAGE_SIZE);
726 
727 	if (start)
728 		*start = cluster_start;
729 	if (end)
730 		*end = cluster_end;
731 }
732 
733 /*
734  * 'from' and 'to' are the region in the page to avoid zeroing.
735  *
736  * If pagesize > clustersize, this function will avoid zeroing outside
737  * of the cluster boundary.
738  *
739  * from == to == 0 is code for "zero the entire cluster region"
740  */
741 static void ocfs2_clear_page_regions(struct page *page,
742 				     struct ocfs2_super *osb, u32 cpos,
743 				     unsigned from, unsigned to)
744 {
745 	void *kaddr;
746 	unsigned int cluster_start, cluster_end;
747 
748 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
749 
750 	kaddr = kmap_atomic(page, KM_USER0);
751 
752 	if (from || to) {
753 		if (from > cluster_start)
754 			memset(kaddr + cluster_start, 0, from - cluster_start);
755 		if (to < cluster_end)
756 			memset(kaddr + to, 0, cluster_end - to);
757 	} else {
758 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
759 	}
760 
761 	kunmap_atomic(kaddr, KM_USER0);
762 }
763 
764 /*
765  * Nonsparse file systems fully allocate before we get to the write
766  * code. This prevents ocfs2_write() from tagging the write as an
767  * allocating one, which means ocfs2_map_page_blocks() might try to
768  * read-in the blocks at the tail of our file. Avoid reading them by
769  * testing i_size against each block offset.
770  */
771 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
772 				 unsigned int block_start)
773 {
774 	u64 offset = page_offset(page) + block_start;
775 
776 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
777 		return 1;
778 
779 	if (i_size_read(inode) > offset)
780 		return 1;
781 
782 	return 0;
783 }
784 
785 /*
786  * Some of this taken from block_prepare_write(). We already have our
787  * mapping by now though, and the entire write will be allocating or
788  * it won't, so not much need to use BH_New.
789  *
790  * This will also skip zeroing, which is handled externally.
791  */
792 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
793 			  struct inode *inode, unsigned int from,
794 			  unsigned int to, int new)
795 {
796 	int ret = 0;
797 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
798 	unsigned int block_end, block_start;
799 	unsigned int bsize = 1 << inode->i_blkbits;
800 
801 	if (!page_has_buffers(page))
802 		create_empty_buffers(page, bsize, 0);
803 
804 	head = page_buffers(page);
805 	for (bh = head, block_start = 0; bh != head || !block_start;
806 	     bh = bh->b_this_page, block_start += bsize) {
807 		block_end = block_start + bsize;
808 
809 		clear_buffer_new(bh);
810 
811 		/*
812 		 * Ignore blocks outside of our i/o range -
813 		 * they may belong to unallocated clusters.
814 		 */
815 		if (block_start >= to || block_end <= from) {
816 			if (PageUptodate(page))
817 				set_buffer_uptodate(bh);
818 			continue;
819 		}
820 
821 		/*
822 		 * For an allocating write with cluster size >= page
823 		 * size, we always write the entire page.
824 		 */
825 		if (new)
826 			set_buffer_new(bh);
827 
828 		if (!buffer_mapped(bh)) {
829 			map_bh(bh, inode->i_sb, *p_blkno);
830 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
831 		}
832 
833 		if (PageUptodate(page)) {
834 			if (!buffer_uptodate(bh))
835 				set_buffer_uptodate(bh);
836 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
837 			   !buffer_new(bh) &&
838 			   ocfs2_should_read_blk(inode, page, block_start) &&
839 			   (block_start < from || block_end > to)) {
840 			ll_rw_block(READ, 1, &bh);
841 			*wait_bh++=bh;
842 		}
843 
844 		*p_blkno = *p_blkno + 1;
845 	}
846 
847 	/*
848 	 * If we issued read requests - let them complete.
849 	 */
850 	while(wait_bh > wait) {
851 		wait_on_buffer(*--wait_bh);
852 		if (!buffer_uptodate(*wait_bh))
853 			ret = -EIO;
854 	}
855 
856 	if (ret == 0 || !new)
857 		return ret;
858 
859 	/*
860 	 * If we get -EIO above, zero out any newly allocated blocks
861 	 * to avoid exposing stale data.
862 	 */
863 	bh = head;
864 	block_start = 0;
865 	do {
866 		block_end = block_start + bsize;
867 		if (block_end <= from)
868 			goto next_bh;
869 		if (block_start >= to)
870 			break;
871 
872 		zero_user(page, block_start, bh->b_size);
873 		set_buffer_uptodate(bh);
874 		mark_buffer_dirty(bh);
875 
876 next_bh:
877 		block_start = block_end;
878 		bh = bh->b_this_page;
879 	} while (bh != head);
880 
881 	return ret;
882 }
883 
884 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
885 #define OCFS2_MAX_CTXT_PAGES	1
886 #else
887 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
888 #endif
889 
890 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
891 
892 /*
893  * Describe the state of a single cluster to be written to.
894  */
895 struct ocfs2_write_cluster_desc {
896 	u32		c_cpos;
897 	u32		c_phys;
898 	/*
899 	 * Give this a unique field because c_phys eventually gets
900 	 * filled.
901 	 */
902 	unsigned	c_new;
903 	unsigned	c_unwritten;
904 };
905 
906 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
907 {
908 	return d->c_new || d->c_unwritten;
909 }
910 
911 struct ocfs2_write_ctxt {
912 	/* Logical cluster position / len of write */
913 	u32				w_cpos;
914 	u32				w_clen;
915 
916 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
917 
918 	/*
919 	 * This is true if page_size > cluster_size.
920 	 *
921 	 * It triggers a set of special cases during write which might
922 	 * have to deal with allocating writes to partial pages.
923 	 */
924 	unsigned int			w_large_pages;
925 
926 	/*
927 	 * Pages involved in this write.
928 	 *
929 	 * w_target_page is the page being written to by the user.
930 	 *
931 	 * w_pages is an array of pages which always contains
932 	 * w_target_page, and in the case of an allocating write with
933 	 * page_size < cluster size, it will contain zero'd and mapped
934 	 * pages adjacent to w_target_page which need to be written
935 	 * out in so that future reads from that region will get
936 	 * zero's.
937 	 */
938 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
939 	unsigned int			w_num_pages;
940 	struct page			*w_target_page;
941 
942 	/*
943 	 * ocfs2_write_end() uses this to know what the real range to
944 	 * write in the target should be.
945 	 */
946 	unsigned int			w_target_from;
947 	unsigned int			w_target_to;
948 
949 	/*
950 	 * We could use journal_current_handle() but this is cleaner,
951 	 * IMHO -Mark
952 	 */
953 	handle_t			*w_handle;
954 
955 	struct buffer_head		*w_di_bh;
956 
957 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
958 };
959 
960 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
961 {
962 	int i;
963 
964 	for(i = 0; i < num_pages; i++) {
965 		if (pages[i]) {
966 			unlock_page(pages[i]);
967 			mark_page_accessed(pages[i]);
968 			page_cache_release(pages[i]);
969 		}
970 	}
971 }
972 
973 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
974 {
975 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
976 
977 	brelse(wc->w_di_bh);
978 	kfree(wc);
979 }
980 
981 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
982 				  struct ocfs2_super *osb, loff_t pos,
983 				  unsigned len, struct buffer_head *di_bh)
984 {
985 	u32 cend;
986 	struct ocfs2_write_ctxt *wc;
987 
988 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
989 	if (!wc)
990 		return -ENOMEM;
991 
992 	wc->w_cpos = pos >> osb->s_clustersize_bits;
993 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
994 	wc->w_clen = cend - wc->w_cpos + 1;
995 	get_bh(di_bh);
996 	wc->w_di_bh = di_bh;
997 
998 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
999 		wc->w_large_pages = 1;
1000 	else
1001 		wc->w_large_pages = 0;
1002 
1003 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1004 
1005 	*wcp = wc;
1006 
1007 	return 0;
1008 }
1009 
1010 /*
1011  * If a page has any new buffers, zero them out here, and mark them uptodate
1012  * and dirty so they'll be written out (in order to prevent uninitialised
1013  * block data from leaking). And clear the new bit.
1014  */
1015 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1016 {
1017 	unsigned int block_start, block_end;
1018 	struct buffer_head *head, *bh;
1019 
1020 	BUG_ON(!PageLocked(page));
1021 	if (!page_has_buffers(page))
1022 		return;
1023 
1024 	bh = head = page_buffers(page);
1025 	block_start = 0;
1026 	do {
1027 		block_end = block_start + bh->b_size;
1028 
1029 		if (buffer_new(bh)) {
1030 			if (block_end > from && block_start < to) {
1031 				if (!PageUptodate(page)) {
1032 					unsigned start, end;
1033 
1034 					start = max(from, block_start);
1035 					end = min(to, block_end);
1036 
1037 					zero_user_segment(page, start, end);
1038 					set_buffer_uptodate(bh);
1039 				}
1040 
1041 				clear_buffer_new(bh);
1042 				mark_buffer_dirty(bh);
1043 			}
1044 		}
1045 
1046 		block_start = block_end;
1047 		bh = bh->b_this_page;
1048 	} while (bh != head);
1049 }
1050 
1051 /*
1052  * Only called when we have a failure during allocating write to write
1053  * zero's to the newly allocated region.
1054  */
1055 static void ocfs2_write_failure(struct inode *inode,
1056 				struct ocfs2_write_ctxt *wc,
1057 				loff_t user_pos, unsigned user_len)
1058 {
1059 	int i;
1060 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1061 		to = user_pos + user_len;
1062 	struct page *tmppage;
1063 
1064 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1065 
1066 	for(i = 0; i < wc->w_num_pages; i++) {
1067 		tmppage = wc->w_pages[i];
1068 
1069 		if (ocfs2_should_order_data(inode))
1070 			walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1071 					  from, to, NULL,
1072 					  ocfs2_journal_dirty_data);
1073 
1074 		block_commit_write(tmppage, from, to);
1075 	}
1076 }
1077 
1078 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1079 					struct ocfs2_write_ctxt *wc,
1080 					struct page *page, u32 cpos,
1081 					loff_t user_pos, unsigned user_len,
1082 					int new)
1083 {
1084 	int ret;
1085 	unsigned int map_from = 0, map_to = 0;
1086 	unsigned int cluster_start, cluster_end;
1087 	unsigned int user_data_from = 0, user_data_to = 0;
1088 
1089 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1090 					&cluster_start, &cluster_end);
1091 
1092 	if (page == wc->w_target_page) {
1093 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1094 		map_to = map_from + user_len;
1095 
1096 		if (new)
1097 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1098 						    cluster_start, cluster_end,
1099 						    new);
1100 		else
1101 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1102 						    map_from, map_to, new);
1103 		if (ret) {
1104 			mlog_errno(ret);
1105 			goto out;
1106 		}
1107 
1108 		user_data_from = map_from;
1109 		user_data_to = map_to;
1110 		if (new) {
1111 			map_from = cluster_start;
1112 			map_to = cluster_end;
1113 		}
1114 	} else {
1115 		/*
1116 		 * If we haven't allocated the new page yet, we
1117 		 * shouldn't be writing it out without copying user
1118 		 * data. This is likely a math error from the caller.
1119 		 */
1120 		BUG_ON(!new);
1121 
1122 		map_from = cluster_start;
1123 		map_to = cluster_end;
1124 
1125 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1126 					    cluster_start, cluster_end, new);
1127 		if (ret) {
1128 			mlog_errno(ret);
1129 			goto out;
1130 		}
1131 	}
1132 
1133 	/*
1134 	 * Parts of newly allocated pages need to be zero'd.
1135 	 *
1136 	 * Above, we have also rewritten 'to' and 'from' - as far as
1137 	 * the rest of the function is concerned, the entire cluster
1138 	 * range inside of a page needs to be written.
1139 	 *
1140 	 * We can skip this if the page is up to date - it's already
1141 	 * been zero'd from being read in as a hole.
1142 	 */
1143 	if (new && !PageUptodate(page))
1144 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1145 					 cpos, user_data_from, user_data_to);
1146 
1147 	flush_dcache_page(page);
1148 
1149 out:
1150 	return ret;
1151 }
1152 
1153 /*
1154  * This function will only grab one clusters worth of pages.
1155  */
1156 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1157 				      struct ocfs2_write_ctxt *wc,
1158 				      u32 cpos, loff_t user_pos, int new,
1159 				      struct page *mmap_page)
1160 {
1161 	int ret = 0, i;
1162 	unsigned long start, target_index, index;
1163 	struct inode *inode = mapping->host;
1164 
1165 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1166 
1167 	/*
1168 	 * Figure out how many pages we'll be manipulating here. For
1169 	 * non allocating write, we just change the one
1170 	 * page. Otherwise, we'll need a whole clusters worth.
1171 	 */
1172 	if (new) {
1173 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1174 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1175 	} else {
1176 		wc->w_num_pages = 1;
1177 		start = target_index;
1178 	}
1179 
1180 	for(i = 0; i < wc->w_num_pages; i++) {
1181 		index = start + i;
1182 
1183 		if (index == target_index && mmap_page) {
1184 			/*
1185 			 * ocfs2_pagemkwrite() is a little different
1186 			 * and wants us to directly use the page
1187 			 * passed in.
1188 			 */
1189 			lock_page(mmap_page);
1190 
1191 			if (mmap_page->mapping != mapping) {
1192 				unlock_page(mmap_page);
1193 				/*
1194 				 * Sanity check - the locking in
1195 				 * ocfs2_pagemkwrite() should ensure
1196 				 * that this code doesn't trigger.
1197 				 */
1198 				ret = -EINVAL;
1199 				mlog_errno(ret);
1200 				goto out;
1201 			}
1202 
1203 			page_cache_get(mmap_page);
1204 			wc->w_pages[i] = mmap_page;
1205 		} else {
1206 			wc->w_pages[i] = find_or_create_page(mapping, index,
1207 							     GFP_NOFS);
1208 			if (!wc->w_pages[i]) {
1209 				ret = -ENOMEM;
1210 				mlog_errno(ret);
1211 				goto out;
1212 			}
1213 		}
1214 
1215 		if (index == target_index)
1216 			wc->w_target_page = wc->w_pages[i];
1217 	}
1218 out:
1219 	return ret;
1220 }
1221 
1222 /*
1223  * Prepare a single cluster for write one cluster into the file.
1224  */
1225 static int ocfs2_write_cluster(struct address_space *mapping,
1226 			       u32 phys, unsigned int unwritten,
1227 			       struct ocfs2_alloc_context *data_ac,
1228 			       struct ocfs2_alloc_context *meta_ac,
1229 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1230 			       loff_t user_pos, unsigned user_len)
1231 {
1232 	int ret, i, new, should_zero = 0;
1233 	u64 v_blkno, p_blkno;
1234 	struct inode *inode = mapping->host;
1235 
1236 	new = phys == 0 ? 1 : 0;
1237 	if (new || unwritten)
1238 		should_zero = 1;
1239 
1240 	if (new) {
1241 		u32 tmp_pos;
1242 
1243 		/*
1244 		 * This is safe to call with the page locks - it won't take
1245 		 * any additional semaphores or cluster locks.
1246 		 */
1247 		tmp_pos = cpos;
1248 		ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1249 						 &tmp_pos, 1, 0, wc->w_di_bh,
1250 						 wc->w_handle, data_ac,
1251 						 meta_ac, NULL);
1252 		/*
1253 		 * This shouldn't happen because we must have already
1254 		 * calculated the correct meta data allocation required. The
1255 		 * internal tree allocation code should know how to increase
1256 		 * transaction credits itself.
1257 		 *
1258 		 * If need be, we could handle -EAGAIN for a
1259 		 * RESTART_TRANS here.
1260 		 */
1261 		mlog_bug_on_msg(ret == -EAGAIN,
1262 				"Inode %llu: EAGAIN return during allocation.\n",
1263 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1264 		if (ret < 0) {
1265 			mlog_errno(ret);
1266 			goto out;
1267 		}
1268 	} else if (unwritten) {
1269 		ret = ocfs2_mark_extent_written(inode, wc->w_di_bh,
1270 						wc->w_handle, cpos, 1, phys,
1271 						meta_ac, &wc->w_dealloc);
1272 		if (ret < 0) {
1273 			mlog_errno(ret);
1274 			goto out;
1275 		}
1276 	}
1277 
1278 	if (should_zero)
1279 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1280 	else
1281 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1282 
1283 	/*
1284 	 * The only reason this should fail is due to an inability to
1285 	 * find the extent added.
1286 	 */
1287 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1288 					  NULL);
1289 	if (ret < 0) {
1290 		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1291 			    "at logical block %llu",
1292 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1293 			    (unsigned long long)v_blkno);
1294 		goto out;
1295 	}
1296 
1297 	BUG_ON(p_blkno == 0);
1298 
1299 	for(i = 0; i < wc->w_num_pages; i++) {
1300 		int tmpret;
1301 
1302 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1303 						      wc->w_pages[i], cpos,
1304 						      user_pos, user_len,
1305 						      should_zero);
1306 		if (tmpret) {
1307 			mlog_errno(tmpret);
1308 			if (ret == 0)
1309 				tmpret = ret;
1310 		}
1311 	}
1312 
1313 	/*
1314 	 * We only have cleanup to do in case of allocating write.
1315 	 */
1316 	if (ret && new)
1317 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1318 
1319 out:
1320 
1321 	return ret;
1322 }
1323 
1324 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1325 				       struct ocfs2_alloc_context *data_ac,
1326 				       struct ocfs2_alloc_context *meta_ac,
1327 				       struct ocfs2_write_ctxt *wc,
1328 				       loff_t pos, unsigned len)
1329 {
1330 	int ret, i;
1331 	loff_t cluster_off;
1332 	unsigned int local_len = len;
1333 	struct ocfs2_write_cluster_desc *desc;
1334 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1335 
1336 	for (i = 0; i < wc->w_clen; i++) {
1337 		desc = &wc->w_desc[i];
1338 
1339 		/*
1340 		 * We have to make sure that the total write passed in
1341 		 * doesn't extend past a single cluster.
1342 		 */
1343 		local_len = len;
1344 		cluster_off = pos & (osb->s_clustersize - 1);
1345 		if ((cluster_off + local_len) > osb->s_clustersize)
1346 			local_len = osb->s_clustersize - cluster_off;
1347 
1348 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1349 					  desc->c_unwritten, data_ac, meta_ac,
1350 					  wc, desc->c_cpos, pos, local_len);
1351 		if (ret) {
1352 			mlog_errno(ret);
1353 			goto out;
1354 		}
1355 
1356 		len -= local_len;
1357 		pos += local_len;
1358 	}
1359 
1360 	ret = 0;
1361 out:
1362 	return ret;
1363 }
1364 
1365 /*
1366  * ocfs2_write_end() wants to know which parts of the target page it
1367  * should complete the write on. It's easiest to compute them ahead of
1368  * time when a more complete view of the write is available.
1369  */
1370 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1371 					struct ocfs2_write_ctxt *wc,
1372 					loff_t pos, unsigned len, int alloc)
1373 {
1374 	struct ocfs2_write_cluster_desc *desc;
1375 
1376 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1377 	wc->w_target_to = wc->w_target_from + len;
1378 
1379 	if (alloc == 0)
1380 		return;
1381 
1382 	/*
1383 	 * Allocating write - we may have different boundaries based
1384 	 * on page size and cluster size.
1385 	 *
1386 	 * NOTE: We can no longer compute one value from the other as
1387 	 * the actual write length and user provided length may be
1388 	 * different.
1389 	 */
1390 
1391 	if (wc->w_large_pages) {
1392 		/*
1393 		 * We only care about the 1st and last cluster within
1394 		 * our range and whether they should be zero'd or not. Either
1395 		 * value may be extended out to the start/end of a
1396 		 * newly allocated cluster.
1397 		 */
1398 		desc = &wc->w_desc[0];
1399 		if (ocfs2_should_zero_cluster(desc))
1400 			ocfs2_figure_cluster_boundaries(osb,
1401 							desc->c_cpos,
1402 							&wc->w_target_from,
1403 							NULL);
1404 
1405 		desc = &wc->w_desc[wc->w_clen - 1];
1406 		if (ocfs2_should_zero_cluster(desc))
1407 			ocfs2_figure_cluster_boundaries(osb,
1408 							desc->c_cpos,
1409 							NULL,
1410 							&wc->w_target_to);
1411 	} else {
1412 		wc->w_target_from = 0;
1413 		wc->w_target_to = PAGE_CACHE_SIZE;
1414 	}
1415 }
1416 
1417 /*
1418  * Populate each single-cluster write descriptor in the write context
1419  * with information about the i/o to be done.
1420  *
1421  * Returns the number of clusters that will have to be allocated, as
1422  * well as a worst case estimate of the number of extent records that
1423  * would have to be created during a write to an unwritten region.
1424  */
1425 static int ocfs2_populate_write_desc(struct inode *inode,
1426 				     struct ocfs2_write_ctxt *wc,
1427 				     unsigned int *clusters_to_alloc,
1428 				     unsigned int *extents_to_split)
1429 {
1430 	int ret;
1431 	struct ocfs2_write_cluster_desc *desc;
1432 	unsigned int num_clusters = 0;
1433 	unsigned int ext_flags = 0;
1434 	u32 phys = 0;
1435 	int i;
1436 
1437 	*clusters_to_alloc = 0;
1438 	*extents_to_split = 0;
1439 
1440 	for (i = 0; i < wc->w_clen; i++) {
1441 		desc = &wc->w_desc[i];
1442 		desc->c_cpos = wc->w_cpos + i;
1443 
1444 		if (num_clusters == 0) {
1445 			/*
1446 			 * Need to look up the next extent record.
1447 			 */
1448 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1449 						 &num_clusters, &ext_flags);
1450 			if (ret) {
1451 				mlog_errno(ret);
1452 				goto out;
1453 			}
1454 
1455 			/*
1456 			 * Assume worst case - that we're writing in
1457 			 * the middle of the extent.
1458 			 *
1459 			 * We can assume that the write proceeds from
1460 			 * left to right, in which case the extent
1461 			 * insert code is smart enough to coalesce the
1462 			 * next splits into the previous records created.
1463 			 */
1464 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1465 				*extents_to_split = *extents_to_split + 2;
1466 		} else if (phys) {
1467 			/*
1468 			 * Only increment phys if it doesn't describe
1469 			 * a hole.
1470 			 */
1471 			phys++;
1472 		}
1473 
1474 		desc->c_phys = phys;
1475 		if (phys == 0) {
1476 			desc->c_new = 1;
1477 			*clusters_to_alloc = *clusters_to_alloc + 1;
1478 		}
1479 		if (ext_flags & OCFS2_EXT_UNWRITTEN)
1480 			desc->c_unwritten = 1;
1481 
1482 		num_clusters--;
1483 	}
1484 
1485 	ret = 0;
1486 out:
1487 	return ret;
1488 }
1489 
1490 static int ocfs2_write_begin_inline(struct address_space *mapping,
1491 				    struct inode *inode,
1492 				    struct ocfs2_write_ctxt *wc)
1493 {
1494 	int ret;
1495 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1496 	struct page *page;
1497 	handle_t *handle;
1498 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1499 
1500 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1501 	if (!page) {
1502 		ret = -ENOMEM;
1503 		mlog_errno(ret);
1504 		goto out;
1505 	}
1506 	/*
1507 	 * If we don't set w_num_pages then this page won't get unlocked
1508 	 * and freed on cleanup of the write context.
1509 	 */
1510 	wc->w_pages[0] = wc->w_target_page = page;
1511 	wc->w_num_pages = 1;
1512 
1513 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1514 	if (IS_ERR(handle)) {
1515 		ret = PTR_ERR(handle);
1516 		mlog_errno(ret);
1517 		goto out;
1518 	}
1519 
1520 	ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1521 				   OCFS2_JOURNAL_ACCESS_WRITE);
1522 	if (ret) {
1523 		ocfs2_commit_trans(osb, handle);
1524 
1525 		mlog_errno(ret);
1526 		goto out;
1527 	}
1528 
1529 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1530 		ocfs2_set_inode_data_inline(inode, di);
1531 
1532 	if (!PageUptodate(page)) {
1533 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1534 		if (ret) {
1535 			ocfs2_commit_trans(osb, handle);
1536 
1537 			goto out;
1538 		}
1539 	}
1540 
1541 	wc->w_handle = handle;
1542 out:
1543 	return ret;
1544 }
1545 
1546 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1547 {
1548 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1549 
1550 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1551 		return 1;
1552 	return 0;
1553 }
1554 
1555 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1556 					  struct inode *inode, loff_t pos,
1557 					  unsigned len, struct page *mmap_page,
1558 					  struct ocfs2_write_ctxt *wc)
1559 {
1560 	int ret, written = 0;
1561 	loff_t end = pos + len;
1562 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1563 
1564 	mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1565 	     (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1566 	     oi->ip_dyn_features);
1567 
1568 	/*
1569 	 * Handle inodes which already have inline data 1st.
1570 	 */
1571 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1572 		if (mmap_page == NULL &&
1573 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1574 			goto do_inline_write;
1575 
1576 		/*
1577 		 * The write won't fit - we have to give this inode an
1578 		 * inline extent list now.
1579 		 */
1580 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1581 		if (ret)
1582 			mlog_errno(ret);
1583 		goto out;
1584 	}
1585 
1586 	/*
1587 	 * Check whether the inode can accept inline data.
1588 	 */
1589 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1590 		return 0;
1591 
1592 	/*
1593 	 * Check whether the write can fit.
1594 	 */
1595 	if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1596 		return 0;
1597 
1598 do_inline_write:
1599 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1600 	if (ret) {
1601 		mlog_errno(ret);
1602 		goto out;
1603 	}
1604 
1605 	/*
1606 	 * This signals to the caller that the data can be written
1607 	 * inline.
1608 	 */
1609 	written = 1;
1610 out:
1611 	return written ? written : ret;
1612 }
1613 
1614 /*
1615  * This function only does anything for file systems which can't
1616  * handle sparse files.
1617  *
1618  * What we want to do here is fill in any hole between the current end
1619  * of allocation and the end of our write. That way the rest of the
1620  * write path can treat it as an non-allocating write, which has no
1621  * special case code for sparse/nonsparse files.
1622  */
1623 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1624 					unsigned len,
1625 					struct ocfs2_write_ctxt *wc)
1626 {
1627 	int ret;
1628 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1629 	loff_t newsize = pos + len;
1630 
1631 	if (ocfs2_sparse_alloc(osb))
1632 		return 0;
1633 
1634 	if (newsize <= i_size_read(inode))
1635 		return 0;
1636 
1637 	ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1638 	if (ret)
1639 		mlog_errno(ret);
1640 
1641 	return ret;
1642 }
1643 
1644 int ocfs2_write_begin_nolock(struct address_space *mapping,
1645 			     loff_t pos, unsigned len, unsigned flags,
1646 			     struct page **pagep, void **fsdata,
1647 			     struct buffer_head *di_bh, struct page *mmap_page)
1648 {
1649 	int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1650 	unsigned int clusters_to_alloc, extents_to_split;
1651 	struct ocfs2_write_ctxt *wc;
1652 	struct inode *inode = mapping->host;
1653 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1654 	struct ocfs2_dinode *di;
1655 	struct ocfs2_alloc_context *data_ac = NULL;
1656 	struct ocfs2_alloc_context *meta_ac = NULL;
1657 	handle_t *handle;
1658 
1659 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1660 	if (ret) {
1661 		mlog_errno(ret);
1662 		return ret;
1663 	}
1664 
1665 	if (ocfs2_supports_inline_data(osb)) {
1666 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1667 						     mmap_page, wc);
1668 		if (ret == 1) {
1669 			ret = 0;
1670 			goto success;
1671 		}
1672 		if (ret < 0) {
1673 			mlog_errno(ret);
1674 			goto out;
1675 		}
1676 	}
1677 
1678 	ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1679 	if (ret) {
1680 		mlog_errno(ret);
1681 		goto out;
1682 	}
1683 
1684 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1685 					&extents_to_split);
1686 	if (ret) {
1687 		mlog_errno(ret);
1688 		goto out;
1689 	}
1690 
1691 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1692 
1693 	/*
1694 	 * We set w_target_from, w_target_to here so that
1695 	 * ocfs2_write_end() knows which range in the target page to
1696 	 * write out. An allocation requires that we write the entire
1697 	 * cluster range.
1698 	 */
1699 	if (clusters_to_alloc || extents_to_split) {
1700 		/*
1701 		 * XXX: We are stretching the limits of
1702 		 * ocfs2_lock_allocators(). It greatly over-estimates
1703 		 * the work to be done.
1704 		 */
1705 		ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
1706 					    extents_to_split, &data_ac, &meta_ac);
1707 		if (ret) {
1708 			mlog_errno(ret);
1709 			goto out;
1710 		}
1711 
1712 		credits = ocfs2_calc_extend_credits(inode->i_sb, di,
1713 						    clusters_to_alloc);
1714 
1715 	}
1716 
1717 	ocfs2_set_target_boundaries(osb, wc, pos, len,
1718 				    clusters_to_alloc + extents_to_split);
1719 
1720 	handle = ocfs2_start_trans(osb, credits);
1721 	if (IS_ERR(handle)) {
1722 		ret = PTR_ERR(handle);
1723 		mlog_errno(ret);
1724 		goto out;
1725 	}
1726 
1727 	wc->w_handle = handle;
1728 
1729 	/*
1730 	 * We don't want this to fail in ocfs2_write_end(), so do it
1731 	 * here.
1732 	 */
1733 	ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1734 				   OCFS2_JOURNAL_ACCESS_WRITE);
1735 	if (ret) {
1736 		mlog_errno(ret);
1737 		goto out_commit;
1738 	}
1739 
1740 	/*
1741 	 * Fill our page array first. That way we've grabbed enough so
1742 	 * that we can zero and flush if we error after adding the
1743 	 * extent.
1744 	 */
1745 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1746 					 clusters_to_alloc + extents_to_split,
1747 					 mmap_page);
1748 	if (ret) {
1749 		mlog_errno(ret);
1750 		goto out_commit;
1751 	}
1752 
1753 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1754 					  len);
1755 	if (ret) {
1756 		mlog_errno(ret);
1757 		goto out_commit;
1758 	}
1759 
1760 	if (data_ac)
1761 		ocfs2_free_alloc_context(data_ac);
1762 	if (meta_ac)
1763 		ocfs2_free_alloc_context(meta_ac);
1764 
1765 success:
1766 	*pagep = wc->w_target_page;
1767 	*fsdata = wc;
1768 	return 0;
1769 out_commit:
1770 	ocfs2_commit_trans(osb, handle);
1771 
1772 out:
1773 	ocfs2_free_write_ctxt(wc);
1774 
1775 	if (data_ac)
1776 		ocfs2_free_alloc_context(data_ac);
1777 	if (meta_ac)
1778 		ocfs2_free_alloc_context(meta_ac);
1779 	return ret;
1780 }
1781 
1782 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1783 			     loff_t pos, unsigned len, unsigned flags,
1784 			     struct page **pagep, void **fsdata)
1785 {
1786 	int ret;
1787 	struct buffer_head *di_bh = NULL;
1788 	struct inode *inode = mapping->host;
1789 
1790 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1791 	if (ret) {
1792 		mlog_errno(ret);
1793 		return ret;
1794 	}
1795 
1796 	/*
1797 	 * Take alloc sem here to prevent concurrent lookups. That way
1798 	 * the mapping, zeroing and tree manipulation within
1799 	 * ocfs2_write() will be safe against ->readpage(). This
1800 	 * should also serve to lock out allocation from a shared
1801 	 * writeable region.
1802 	 */
1803 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1804 
1805 	ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1806 				       fsdata, di_bh, NULL);
1807 	if (ret) {
1808 		mlog_errno(ret);
1809 		goto out_fail;
1810 	}
1811 
1812 	brelse(di_bh);
1813 
1814 	return 0;
1815 
1816 out_fail:
1817 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1818 
1819 	brelse(di_bh);
1820 	ocfs2_inode_unlock(inode, 1);
1821 
1822 	return ret;
1823 }
1824 
1825 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1826 				   unsigned len, unsigned *copied,
1827 				   struct ocfs2_dinode *di,
1828 				   struct ocfs2_write_ctxt *wc)
1829 {
1830 	void *kaddr;
1831 
1832 	if (unlikely(*copied < len)) {
1833 		if (!PageUptodate(wc->w_target_page)) {
1834 			*copied = 0;
1835 			return;
1836 		}
1837 	}
1838 
1839 	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1840 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1841 	kunmap_atomic(kaddr, KM_USER0);
1842 
1843 	mlog(0, "Data written to inode at offset %llu. "
1844 	     "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1845 	     (unsigned long long)pos, *copied,
1846 	     le16_to_cpu(di->id2.i_data.id_count),
1847 	     le16_to_cpu(di->i_dyn_features));
1848 }
1849 
1850 int ocfs2_write_end_nolock(struct address_space *mapping,
1851 			   loff_t pos, unsigned len, unsigned copied,
1852 			   struct page *page, void *fsdata)
1853 {
1854 	int i;
1855 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1856 	struct inode *inode = mapping->host;
1857 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1858 	struct ocfs2_write_ctxt *wc = fsdata;
1859 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1860 	handle_t *handle = wc->w_handle;
1861 	struct page *tmppage;
1862 
1863 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1864 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1865 		goto out_write_size;
1866 	}
1867 
1868 	if (unlikely(copied < len)) {
1869 		if (!PageUptodate(wc->w_target_page))
1870 			copied = 0;
1871 
1872 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1873 				       start+len);
1874 	}
1875 	flush_dcache_page(wc->w_target_page);
1876 
1877 	for(i = 0; i < wc->w_num_pages; i++) {
1878 		tmppage = wc->w_pages[i];
1879 
1880 		if (tmppage == wc->w_target_page) {
1881 			from = wc->w_target_from;
1882 			to = wc->w_target_to;
1883 
1884 			BUG_ON(from > PAGE_CACHE_SIZE ||
1885 			       to > PAGE_CACHE_SIZE ||
1886 			       to < from);
1887 		} else {
1888 			/*
1889 			 * Pages adjacent to the target (if any) imply
1890 			 * a hole-filling write in which case we want
1891 			 * to flush their entire range.
1892 			 */
1893 			from = 0;
1894 			to = PAGE_CACHE_SIZE;
1895 		}
1896 
1897 		if (ocfs2_should_order_data(inode))
1898 			walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1899 					  from, to, NULL,
1900 					  ocfs2_journal_dirty_data);
1901 
1902 		block_commit_write(tmppage, from, to);
1903 	}
1904 
1905 out_write_size:
1906 	pos += copied;
1907 	if (pos > inode->i_size) {
1908 		i_size_write(inode, pos);
1909 		mark_inode_dirty(inode);
1910 	}
1911 	inode->i_blocks = ocfs2_inode_sector_count(inode);
1912 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1913 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1914 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1915 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1916 	ocfs2_journal_dirty(handle, wc->w_di_bh);
1917 
1918 	ocfs2_commit_trans(osb, handle);
1919 
1920 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
1921 
1922 	ocfs2_free_write_ctxt(wc);
1923 
1924 	return copied;
1925 }
1926 
1927 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1928 			   loff_t pos, unsigned len, unsigned copied,
1929 			   struct page *page, void *fsdata)
1930 {
1931 	int ret;
1932 	struct inode *inode = mapping->host;
1933 
1934 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1935 
1936 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1937 	ocfs2_inode_unlock(inode, 1);
1938 
1939 	return ret;
1940 }
1941 
1942 const struct address_space_operations ocfs2_aops = {
1943 	.readpage	= ocfs2_readpage,
1944 	.readpages	= ocfs2_readpages,
1945 	.writepage	= ocfs2_writepage,
1946 	.write_begin	= ocfs2_write_begin,
1947 	.write_end	= ocfs2_write_end,
1948 	.bmap		= ocfs2_bmap,
1949 	.sync_page	= block_sync_page,
1950 	.direct_IO	= ocfs2_direct_IO,
1951 	.invalidatepage	= ocfs2_invalidatepage,
1952 	.releasepage	= ocfs2_releasepage,
1953 	.migratepage	= buffer_migrate_page,
1954 };
1955