xref: /openbmc/linux/fs/ocfs2/aops.c (revision 12eb4683)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 
32 #include <cluster/masklog.h>
33 
34 #include "ocfs2.h"
35 
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
48 
49 #include "buffer_head_io.h"
50 
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 				   struct buffer_head *bh_result, int create)
53 {
54 	int err = -EIO;
55 	int status;
56 	struct ocfs2_dinode *fe = NULL;
57 	struct buffer_head *bh = NULL;
58 	struct buffer_head *buffer_cache_bh = NULL;
59 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 	void *kaddr;
61 
62 	trace_ocfs2_symlink_get_block(
63 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
64 			(unsigned long long)iblock, bh_result, create);
65 
66 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67 
68 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 		     (unsigned long long)iblock);
71 		goto bail;
72 	}
73 
74 	status = ocfs2_read_inode_block(inode, &bh);
75 	if (status < 0) {
76 		mlog_errno(status);
77 		goto bail;
78 	}
79 	fe = (struct ocfs2_dinode *) bh->b_data;
80 
81 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 						    le32_to_cpu(fe->i_clusters))) {
83 		err = -ENOMEM;
84 		mlog(ML_ERROR, "block offset is outside the allocated size: "
85 		     "%llu\n", (unsigned long long)iblock);
86 		goto bail;
87 	}
88 
89 	/* We don't use the page cache to create symlink data, so if
90 	 * need be, copy it over from the buffer cache. */
91 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
92 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
93 			    iblock;
94 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
95 		if (!buffer_cache_bh) {
96 			err = -ENOMEM;
97 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
98 			goto bail;
99 		}
100 
101 		/* we haven't locked out transactions, so a commit
102 		 * could've happened. Since we've got a reference on
103 		 * the bh, even if it commits while we're doing the
104 		 * copy, the data is still good. */
105 		if (buffer_jbd(buffer_cache_bh)
106 		    && ocfs2_inode_is_new(inode)) {
107 			kaddr = kmap_atomic(bh_result->b_page);
108 			if (!kaddr) {
109 				mlog(ML_ERROR, "couldn't kmap!\n");
110 				goto bail;
111 			}
112 			memcpy(kaddr + (bh_result->b_size * iblock),
113 			       buffer_cache_bh->b_data,
114 			       bh_result->b_size);
115 			kunmap_atomic(kaddr);
116 			set_buffer_uptodate(bh_result);
117 		}
118 		brelse(buffer_cache_bh);
119 	}
120 
121 	map_bh(bh_result, inode->i_sb,
122 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
123 
124 	err = 0;
125 
126 bail:
127 	brelse(bh);
128 
129 	return err;
130 }
131 
132 int ocfs2_get_block(struct inode *inode, sector_t iblock,
133 		    struct buffer_head *bh_result, int create)
134 {
135 	int err = 0;
136 	unsigned int ext_flags;
137 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
138 	u64 p_blkno, count, past_eof;
139 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
140 
141 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
142 			      (unsigned long long)iblock, bh_result, create);
143 
144 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
145 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
146 		     inode, inode->i_ino);
147 
148 	if (S_ISLNK(inode->i_mode)) {
149 		/* this always does I/O for some reason. */
150 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
151 		goto bail;
152 	}
153 
154 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
155 					  &ext_flags);
156 	if (err) {
157 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
158 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
159 		     (unsigned long long)p_blkno);
160 		goto bail;
161 	}
162 
163 	if (max_blocks < count)
164 		count = max_blocks;
165 
166 	/*
167 	 * ocfs2 never allocates in this function - the only time we
168 	 * need to use BH_New is when we're extending i_size on a file
169 	 * system which doesn't support holes, in which case BH_New
170 	 * allows __block_write_begin() to zero.
171 	 *
172 	 * If we see this on a sparse file system, then a truncate has
173 	 * raced us and removed the cluster. In this case, we clear
174 	 * the buffers dirty and uptodate bits and let the buffer code
175 	 * ignore it as a hole.
176 	 */
177 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
178 		clear_buffer_dirty(bh_result);
179 		clear_buffer_uptodate(bh_result);
180 		goto bail;
181 	}
182 
183 	/* Treat the unwritten extent as a hole for zeroing purposes. */
184 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
185 		map_bh(bh_result, inode->i_sb, p_blkno);
186 
187 	bh_result->b_size = count << inode->i_blkbits;
188 
189 	if (!ocfs2_sparse_alloc(osb)) {
190 		if (p_blkno == 0) {
191 			err = -EIO;
192 			mlog(ML_ERROR,
193 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
194 			     (unsigned long long)iblock,
195 			     (unsigned long long)p_blkno,
196 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
197 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
198 			dump_stack();
199 			goto bail;
200 		}
201 	}
202 
203 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
204 
205 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
206 				  (unsigned long long)past_eof);
207 	if (create && (iblock >= past_eof))
208 		set_buffer_new(bh_result);
209 
210 bail:
211 	if (err < 0)
212 		err = -EIO;
213 
214 	return err;
215 }
216 
217 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
218 			   struct buffer_head *di_bh)
219 {
220 	void *kaddr;
221 	loff_t size;
222 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
223 
224 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
225 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
226 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
227 		return -EROFS;
228 	}
229 
230 	size = i_size_read(inode);
231 
232 	if (size > PAGE_CACHE_SIZE ||
233 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
234 		ocfs2_error(inode->i_sb,
235 			    "Inode %llu has with inline data has bad size: %Lu",
236 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
237 			    (unsigned long long)size);
238 		return -EROFS;
239 	}
240 
241 	kaddr = kmap_atomic(page);
242 	if (size)
243 		memcpy(kaddr, di->id2.i_data.id_data, size);
244 	/* Clear the remaining part of the page */
245 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
246 	flush_dcache_page(page);
247 	kunmap_atomic(kaddr);
248 
249 	SetPageUptodate(page);
250 
251 	return 0;
252 }
253 
254 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
255 {
256 	int ret;
257 	struct buffer_head *di_bh = NULL;
258 
259 	BUG_ON(!PageLocked(page));
260 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
261 
262 	ret = ocfs2_read_inode_block(inode, &di_bh);
263 	if (ret) {
264 		mlog_errno(ret);
265 		goto out;
266 	}
267 
268 	ret = ocfs2_read_inline_data(inode, page, di_bh);
269 out:
270 	unlock_page(page);
271 
272 	brelse(di_bh);
273 	return ret;
274 }
275 
276 static int ocfs2_readpage(struct file *file, struct page *page)
277 {
278 	struct inode *inode = page->mapping->host;
279 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
280 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
281 	int ret, unlock = 1;
282 
283 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
284 			     (page ? page->index : 0));
285 
286 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
287 	if (ret != 0) {
288 		if (ret == AOP_TRUNCATED_PAGE)
289 			unlock = 0;
290 		mlog_errno(ret);
291 		goto out;
292 	}
293 
294 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
295 		/*
296 		 * Unlock the page and cycle ip_alloc_sem so that we don't
297 		 * busyloop waiting for ip_alloc_sem to unlock
298 		 */
299 		ret = AOP_TRUNCATED_PAGE;
300 		unlock_page(page);
301 		unlock = 0;
302 		down_read(&oi->ip_alloc_sem);
303 		up_read(&oi->ip_alloc_sem);
304 		goto out_inode_unlock;
305 	}
306 
307 	/*
308 	 * i_size might have just been updated as we grabed the meta lock.  We
309 	 * might now be discovering a truncate that hit on another node.
310 	 * block_read_full_page->get_block freaks out if it is asked to read
311 	 * beyond the end of a file, so we check here.  Callers
312 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
313 	 * and notice that the page they just read isn't needed.
314 	 *
315 	 * XXX sys_readahead() seems to get that wrong?
316 	 */
317 	if (start >= i_size_read(inode)) {
318 		zero_user(page, 0, PAGE_SIZE);
319 		SetPageUptodate(page);
320 		ret = 0;
321 		goto out_alloc;
322 	}
323 
324 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
325 		ret = ocfs2_readpage_inline(inode, page);
326 	else
327 		ret = block_read_full_page(page, ocfs2_get_block);
328 	unlock = 0;
329 
330 out_alloc:
331 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
332 out_inode_unlock:
333 	ocfs2_inode_unlock(inode, 0);
334 out:
335 	if (unlock)
336 		unlock_page(page);
337 	return ret;
338 }
339 
340 /*
341  * This is used only for read-ahead. Failures or difficult to handle
342  * situations are safe to ignore.
343  *
344  * Right now, we don't bother with BH_Boundary - in-inode extent lists
345  * are quite large (243 extents on 4k blocks), so most inodes don't
346  * grow out to a tree. If need be, detecting boundary extents could
347  * trivially be added in a future version of ocfs2_get_block().
348  */
349 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
350 			   struct list_head *pages, unsigned nr_pages)
351 {
352 	int ret, err = -EIO;
353 	struct inode *inode = mapping->host;
354 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
355 	loff_t start;
356 	struct page *last;
357 
358 	/*
359 	 * Use the nonblocking flag for the dlm code to avoid page
360 	 * lock inversion, but don't bother with retrying.
361 	 */
362 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
363 	if (ret)
364 		return err;
365 
366 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
367 		ocfs2_inode_unlock(inode, 0);
368 		return err;
369 	}
370 
371 	/*
372 	 * Don't bother with inline-data. There isn't anything
373 	 * to read-ahead in that case anyway...
374 	 */
375 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
376 		goto out_unlock;
377 
378 	/*
379 	 * Check whether a remote node truncated this file - we just
380 	 * drop out in that case as it's not worth handling here.
381 	 */
382 	last = list_entry(pages->prev, struct page, lru);
383 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
384 	if (start >= i_size_read(inode))
385 		goto out_unlock;
386 
387 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
388 
389 out_unlock:
390 	up_read(&oi->ip_alloc_sem);
391 	ocfs2_inode_unlock(inode, 0);
392 
393 	return err;
394 }
395 
396 /* Note: Because we don't support holes, our allocation has
397  * already happened (allocation writes zeros to the file data)
398  * so we don't have to worry about ordered writes in
399  * ocfs2_writepage.
400  *
401  * ->writepage is called during the process of invalidating the page cache
402  * during blocked lock processing.  It can't block on any cluster locks
403  * to during block mapping.  It's relying on the fact that the block
404  * mapping can't have disappeared under the dirty pages that it is
405  * being asked to write back.
406  */
407 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
408 {
409 	trace_ocfs2_writepage(
410 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
411 		page->index);
412 
413 	return block_write_full_page(page, ocfs2_get_block, wbc);
414 }
415 
416 /* Taken from ext3. We don't necessarily need the full blown
417  * functionality yet, but IMHO it's better to cut and paste the whole
418  * thing so we can avoid introducing our own bugs (and easily pick up
419  * their fixes when they happen) --Mark */
420 int walk_page_buffers(	handle_t *handle,
421 			struct buffer_head *head,
422 			unsigned from,
423 			unsigned to,
424 			int *partial,
425 			int (*fn)(	handle_t *handle,
426 					struct buffer_head *bh))
427 {
428 	struct buffer_head *bh;
429 	unsigned block_start, block_end;
430 	unsigned blocksize = head->b_size;
431 	int err, ret = 0;
432 	struct buffer_head *next;
433 
434 	for (	bh = head, block_start = 0;
435 		ret == 0 && (bh != head || !block_start);
436 	    	block_start = block_end, bh = next)
437 	{
438 		next = bh->b_this_page;
439 		block_end = block_start + blocksize;
440 		if (block_end <= from || block_start >= to) {
441 			if (partial && !buffer_uptodate(bh))
442 				*partial = 1;
443 			continue;
444 		}
445 		err = (*fn)(handle, bh);
446 		if (!ret)
447 			ret = err;
448 	}
449 	return ret;
450 }
451 
452 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
453 {
454 	sector_t status;
455 	u64 p_blkno = 0;
456 	int err = 0;
457 	struct inode *inode = mapping->host;
458 
459 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
460 			 (unsigned long long)block);
461 
462 	/* We don't need to lock journal system files, since they aren't
463 	 * accessed concurrently from multiple nodes.
464 	 */
465 	if (!INODE_JOURNAL(inode)) {
466 		err = ocfs2_inode_lock(inode, NULL, 0);
467 		if (err) {
468 			if (err != -ENOENT)
469 				mlog_errno(err);
470 			goto bail;
471 		}
472 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
473 	}
474 
475 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
476 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
477 						  NULL);
478 
479 	if (!INODE_JOURNAL(inode)) {
480 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
481 		ocfs2_inode_unlock(inode, 0);
482 	}
483 
484 	if (err) {
485 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
486 		     (unsigned long long)block);
487 		mlog_errno(err);
488 		goto bail;
489 	}
490 
491 bail:
492 	status = err ? 0 : p_blkno;
493 
494 	return status;
495 }
496 
497 /*
498  * TODO: Make this into a generic get_blocks function.
499  *
500  * From do_direct_io in direct-io.c:
501  *  "So what we do is to permit the ->get_blocks function to populate
502  *   bh.b_size with the size of IO which is permitted at this offset and
503  *   this i_blkbits."
504  *
505  * This function is called directly from get_more_blocks in direct-io.c.
506  *
507  * called like this: dio->get_blocks(dio->inode, fs_startblk,
508  * 					fs_count, map_bh, dio->rw == WRITE);
509  *
510  * Note that we never bother to allocate blocks here, and thus ignore the
511  * create argument.
512  */
513 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
514 				     struct buffer_head *bh_result, int create)
515 {
516 	int ret;
517 	u64 p_blkno, inode_blocks, contig_blocks;
518 	unsigned int ext_flags;
519 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
520 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
521 
522 	/* This function won't even be called if the request isn't all
523 	 * nicely aligned and of the right size, so there's no need
524 	 * for us to check any of that. */
525 
526 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
527 
528 	/* This figures out the size of the next contiguous block, and
529 	 * our logical offset */
530 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
531 					  &contig_blocks, &ext_flags);
532 	if (ret) {
533 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
534 		     (unsigned long long)iblock);
535 		ret = -EIO;
536 		goto bail;
537 	}
538 
539 	/* We should already CoW the refcounted extent in case of create. */
540 	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
541 
542 	/*
543 	 * get_more_blocks() expects us to describe a hole by clearing
544 	 * the mapped bit on bh_result().
545 	 *
546 	 * Consider an unwritten extent as a hole.
547 	 */
548 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
549 		map_bh(bh_result, inode->i_sb, p_blkno);
550 	else
551 		clear_buffer_mapped(bh_result);
552 
553 	/* make sure we don't map more than max_blocks blocks here as
554 	   that's all the kernel will handle at this point. */
555 	if (max_blocks < contig_blocks)
556 		contig_blocks = max_blocks;
557 	bh_result->b_size = contig_blocks << blocksize_bits;
558 bail:
559 	return ret;
560 }
561 
562 /*
563  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
564  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
565  * to protect io on one node from truncation on another.
566  */
567 static void ocfs2_dio_end_io(struct kiocb *iocb,
568 			     loff_t offset,
569 			     ssize_t bytes,
570 			     void *private)
571 {
572 	struct inode *inode = file_inode(iocb->ki_filp);
573 	int level;
574 	wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
575 
576 	/* this io's submitter should not have unlocked this before we could */
577 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
578 
579 	if (ocfs2_iocb_is_sem_locked(iocb))
580 		ocfs2_iocb_clear_sem_locked(iocb);
581 
582 	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
583 		ocfs2_iocb_clear_unaligned_aio(iocb);
584 
585 		if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
586 		    waitqueue_active(wq)) {
587 			wake_up_all(wq);
588 		}
589 	}
590 
591 	ocfs2_iocb_clear_rw_locked(iocb);
592 
593 	level = ocfs2_iocb_rw_locked_level(iocb);
594 	ocfs2_rw_unlock(inode, level);
595 }
596 
597 static int ocfs2_releasepage(struct page *page, gfp_t wait)
598 {
599 	if (!page_has_buffers(page))
600 		return 0;
601 	return try_to_free_buffers(page);
602 }
603 
604 static ssize_t ocfs2_direct_IO(int rw,
605 			       struct kiocb *iocb,
606 			       const struct iovec *iov,
607 			       loff_t offset,
608 			       unsigned long nr_segs)
609 {
610 	struct file *file = iocb->ki_filp;
611 	struct inode *inode = file_inode(file)->i_mapping->host;
612 
613 	/*
614 	 * Fallback to buffered I/O if we see an inode without
615 	 * extents.
616 	 */
617 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
618 		return 0;
619 
620 	/* Fallback to buffered I/O if we are appending. */
621 	if (i_size_read(inode) <= offset)
622 		return 0;
623 
624 	return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
625 				    iov, offset, nr_segs,
626 				    ocfs2_direct_IO_get_blocks,
627 				    ocfs2_dio_end_io, NULL, 0);
628 }
629 
630 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
631 					    u32 cpos,
632 					    unsigned int *start,
633 					    unsigned int *end)
634 {
635 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
636 
637 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
638 		unsigned int cpp;
639 
640 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
641 
642 		cluster_start = cpos % cpp;
643 		cluster_start = cluster_start << osb->s_clustersize_bits;
644 
645 		cluster_end = cluster_start + osb->s_clustersize;
646 	}
647 
648 	BUG_ON(cluster_start > PAGE_SIZE);
649 	BUG_ON(cluster_end > PAGE_SIZE);
650 
651 	if (start)
652 		*start = cluster_start;
653 	if (end)
654 		*end = cluster_end;
655 }
656 
657 /*
658  * 'from' and 'to' are the region in the page to avoid zeroing.
659  *
660  * If pagesize > clustersize, this function will avoid zeroing outside
661  * of the cluster boundary.
662  *
663  * from == to == 0 is code for "zero the entire cluster region"
664  */
665 static void ocfs2_clear_page_regions(struct page *page,
666 				     struct ocfs2_super *osb, u32 cpos,
667 				     unsigned from, unsigned to)
668 {
669 	void *kaddr;
670 	unsigned int cluster_start, cluster_end;
671 
672 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
673 
674 	kaddr = kmap_atomic(page);
675 
676 	if (from || to) {
677 		if (from > cluster_start)
678 			memset(kaddr + cluster_start, 0, from - cluster_start);
679 		if (to < cluster_end)
680 			memset(kaddr + to, 0, cluster_end - to);
681 	} else {
682 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
683 	}
684 
685 	kunmap_atomic(kaddr);
686 }
687 
688 /*
689  * Nonsparse file systems fully allocate before we get to the write
690  * code. This prevents ocfs2_write() from tagging the write as an
691  * allocating one, which means ocfs2_map_page_blocks() might try to
692  * read-in the blocks at the tail of our file. Avoid reading them by
693  * testing i_size against each block offset.
694  */
695 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
696 				 unsigned int block_start)
697 {
698 	u64 offset = page_offset(page) + block_start;
699 
700 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
701 		return 1;
702 
703 	if (i_size_read(inode) > offset)
704 		return 1;
705 
706 	return 0;
707 }
708 
709 /*
710  * Some of this taken from __block_write_begin(). We already have our
711  * mapping by now though, and the entire write will be allocating or
712  * it won't, so not much need to use BH_New.
713  *
714  * This will also skip zeroing, which is handled externally.
715  */
716 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
717 			  struct inode *inode, unsigned int from,
718 			  unsigned int to, int new)
719 {
720 	int ret = 0;
721 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
722 	unsigned int block_end, block_start;
723 	unsigned int bsize = 1 << inode->i_blkbits;
724 
725 	if (!page_has_buffers(page))
726 		create_empty_buffers(page, bsize, 0);
727 
728 	head = page_buffers(page);
729 	for (bh = head, block_start = 0; bh != head || !block_start;
730 	     bh = bh->b_this_page, block_start += bsize) {
731 		block_end = block_start + bsize;
732 
733 		clear_buffer_new(bh);
734 
735 		/*
736 		 * Ignore blocks outside of our i/o range -
737 		 * they may belong to unallocated clusters.
738 		 */
739 		if (block_start >= to || block_end <= from) {
740 			if (PageUptodate(page))
741 				set_buffer_uptodate(bh);
742 			continue;
743 		}
744 
745 		/*
746 		 * For an allocating write with cluster size >= page
747 		 * size, we always write the entire page.
748 		 */
749 		if (new)
750 			set_buffer_new(bh);
751 
752 		if (!buffer_mapped(bh)) {
753 			map_bh(bh, inode->i_sb, *p_blkno);
754 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
755 		}
756 
757 		if (PageUptodate(page)) {
758 			if (!buffer_uptodate(bh))
759 				set_buffer_uptodate(bh);
760 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
761 			   !buffer_new(bh) &&
762 			   ocfs2_should_read_blk(inode, page, block_start) &&
763 			   (block_start < from || block_end > to)) {
764 			ll_rw_block(READ, 1, &bh);
765 			*wait_bh++=bh;
766 		}
767 
768 		*p_blkno = *p_blkno + 1;
769 	}
770 
771 	/*
772 	 * If we issued read requests - let them complete.
773 	 */
774 	while(wait_bh > wait) {
775 		wait_on_buffer(*--wait_bh);
776 		if (!buffer_uptodate(*wait_bh))
777 			ret = -EIO;
778 	}
779 
780 	if (ret == 0 || !new)
781 		return ret;
782 
783 	/*
784 	 * If we get -EIO above, zero out any newly allocated blocks
785 	 * to avoid exposing stale data.
786 	 */
787 	bh = head;
788 	block_start = 0;
789 	do {
790 		block_end = block_start + bsize;
791 		if (block_end <= from)
792 			goto next_bh;
793 		if (block_start >= to)
794 			break;
795 
796 		zero_user(page, block_start, bh->b_size);
797 		set_buffer_uptodate(bh);
798 		mark_buffer_dirty(bh);
799 
800 next_bh:
801 		block_start = block_end;
802 		bh = bh->b_this_page;
803 	} while (bh != head);
804 
805 	return ret;
806 }
807 
808 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
809 #define OCFS2_MAX_CTXT_PAGES	1
810 #else
811 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
812 #endif
813 
814 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
815 
816 /*
817  * Describe the state of a single cluster to be written to.
818  */
819 struct ocfs2_write_cluster_desc {
820 	u32		c_cpos;
821 	u32		c_phys;
822 	/*
823 	 * Give this a unique field because c_phys eventually gets
824 	 * filled.
825 	 */
826 	unsigned	c_new;
827 	unsigned	c_unwritten;
828 	unsigned	c_needs_zero;
829 };
830 
831 struct ocfs2_write_ctxt {
832 	/* Logical cluster position / len of write */
833 	u32				w_cpos;
834 	u32				w_clen;
835 
836 	/* First cluster allocated in a nonsparse extend */
837 	u32				w_first_new_cpos;
838 
839 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
840 
841 	/*
842 	 * This is true if page_size > cluster_size.
843 	 *
844 	 * It triggers a set of special cases during write which might
845 	 * have to deal with allocating writes to partial pages.
846 	 */
847 	unsigned int			w_large_pages;
848 
849 	/*
850 	 * Pages involved in this write.
851 	 *
852 	 * w_target_page is the page being written to by the user.
853 	 *
854 	 * w_pages is an array of pages which always contains
855 	 * w_target_page, and in the case of an allocating write with
856 	 * page_size < cluster size, it will contain zero'd and mapped
857 	 * pages adjacent to w_target_page which need to be written
858 	 * out in so that future reads from that region will get
859 	 * zero's.
860 	 */
861 	unsigned int			w_num_pages;
862 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
863 	struct page			*w_target_page;
864 
865 	/*
866 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
867 	 * against w_target_page in ocfs2_write_end_nolock.
868 	 */
869 	unsigned int			w_target_locked:1;
870 
871 	/*
872 	 * ocfs2_write_end() uses this to know what the real range to
873 	 * write in the target should be.
874 	 */
875 	unsigned int			w_target_from;
876 	unsigned int			w_target_to;
877 
878 	/*
879 	 * We could use journal_current_handle() but this is cleaner,
880 	 * IMHO -Mark
881 	 */
882 	handle_t			*w_handle;
883 
884 	struct buffer_head		*w_di_bh;
885 
886 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
887 };
888 
889 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
890 {
891 	int i;
892 
893 	for(i = 0; i < num_pages; i++) {
894 		if (pages[i]) {
895 			unlock_page(pages[i]);
896 			mark_page_accessed(pages[i]);
897 			page_cache_release(pages[i]);
898 		}
899 	}
900 }
901 
902 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
903 {
904 	int i;
905 
906 	/*
907 	 * w_target_locked is only set to true in the page_mkwrite() case.
908 	 * The intent is to allow us to lock the target page from write_begin()
909 	 * to write_end(). The caller must hold a ref on w_target_page.
910 	 */
911 	if (wc->w_target_locked) {
912 		BUG_ON(!wc->w_target_page);
913 		for (i = 0; i < wc->w_num_pages; i++) {
914 			if (wc->w_target_page == wc->w_pages[i]) {
915 				wc->w_pages[i] = NULL;
916 				break;
917 			}
918 		}
919 		mark_page_accessed(wc->w_target_page);
920 		page_cache_release(wc->w_target_page);
921 	}
922 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
923 
924 	brelse(wc->w_di_bh);
925 	kfree(wc);
926 }
927 
928 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
929 				  struct ocfs2_super *osb, loff_t pos,
930 				  unsigned len, struct buffer_head *di_bh)
931 {
932 	u32 cend;
933 	struct ocfs2_write_ctxt *wc;
934 
935 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
936 	if (!wc)
937 		return -ENOMEM;
938 
939 	wc->w_cpos = pos >> osb->s_clustersize_bits;
940 	wc->w_first_new_cpos = UINT_MAX;
941 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
942 	wc->w_clen = cend - wc->w_cpos + 1;
943 	get_bh(di_bh);
944 	wc->w_di_bh = di_bh;
945 
946 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
947 		wc->w_large_pages = 1;
948 	else
949 		wc->w_large_pages = 0;
950 
951 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
952 
953 	*wcp = wc;
954 
955 	return 0;
956 }
957 
958 /*
959  * If a page has any new buffers, zero them out here, and mark them uptodate
960  * and dirty so they'll be written out (in order to prevent uninitialised
961  * block data from leaking). And clear the new bit.
962  */
963 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
964 {
965 	unsigned int block_start, block_end;
966 	struct buffer_head *head, *bh;
967 
968 	BUG_ON(!PageLocked(page));
969 	if (!page_has_buffers(page))
970 		return;
971 
972 	bh = head = page_buffers(page);
973 	block_start = 0;
974 	do {
975 		block_end = block_start + bh->b_size;
976 
977 		if (buffer_new(bh)) {
978 			if (block_end > from && block_start < to) {
979 				if (!PageUptodate(page)) {
980 					unsigned start, end;
981 
982 					start = max(from, block_start);
983 					end = min(to, block_end);
984 
985 					zero_user_segment(page, start, end);
986 					set_buffer_uptodate(bh);
987 				}
988 
989 				clear_buffer_new(bh);
990 				mark_buffer_dirty(bh);
991 			}
992 		}
993 
994 		block_start = block_end;
995 		bh = bh->b_this_page;
996 	} while (bh != head);
997 }
998 
999 /*
1000  * Only called when we have a failure during allocating write to write
1001  * zero's to the newly allocated region.
1002  */
1003 static void ocfs2_write_failure(struct inode *inode,
1004 				struct ocfs2_write_ctxt *wc,
1005 				loff_t user_pos, unsigned user_len)
1006 {
1007 	int i;
1008 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1009 		to = user_pos + user_len;
1010 	struct page *tmppage;
1011 
1012 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1013 
1014 	for(i = 0; i < wc->w_num_pages; i++) {
1015 		tmppage = wc->w_pages[i];
1016 
1017 		if (page_has_buffers(tmppage)) {
1018 			if (ocfs2_should_order_data(inode))
1019 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1020 
1021 			block_commit_write(tmppage, from, to);
1022 		}
1023 	}
1024 }
1025 
1026 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1027 					struct ocfs2_write_ctxt *wc,
1028 					struct page *page, u32 cpos,
1029 					loff_t user_pos, unsigned user_len,
1030 					int new)
1031 {
1032 	int ret;
1033 	unsigned int map_from = 0, map_to = 0;
1034 	unsigned int cluster_start, cluster_end;
1035 	unsigned int user_data_from = 0, user_data_to = 0;
1036 
1037 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1038 					&cluster_start, &cluster_end);
1039 
1040 	/* treat the write as new if the a hole/lseek spanned across
1041 	 * the page boundary.
1042 	 */
1043 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1044 			(page_offset(page) <= user_pos));
1045 
1046 	if (page == wc->w_target_page) {
1047 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1048 		map_to = map_from + user_len;
1049 
1050 		if (new)
1051 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1052 						    cluster_start, cluster_end,
1053 						    new);
1054 		else
1055 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1056 						    map_from, map_to, new);
1057 		if (ret) {
1058 			mlog_errno(ret);
1059 			goto out;
1060 		}
1061 
1062 		user_data_from = map_from;
1063 		user_data_to = map_to;
1064 		if (new) {
1065 			map_from = cluster_start;
1066 			map_to = cluster_end;
1067 		}
1068 	} else {
1069 		/*
1070 		 * If we haven't allocated the new page yet, we
1071 		 * shouldn't be writing it out without copying user
1072 		 * data. This is likely a math error from the caller.
1073 		 */
1074 		BUG_ON(!new);
1075 
1076 		map_from = cluster_start;
1077 		map_to = cluster_end;
1078 
1079 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1080 					    cluster_start, cluster_end, new);
1081 		if (ret) {
1082 			mlog_errno(ret);
1083 			goto out;
1084 		}
1085 	}
1086 
1087 	/*
1088 	 * Parts of newly allocated pages need to be zero'd.
1089 	 *
1090 	 * Above, we have also rewritten 'to' and 'from' - as far as
1091 	 * the rest of the function is concerned, the entire cluster
1092 	 * range inside of a page needs to be written.
1093 	 *
1094 	 * We can skip this if the page is up to date - it's already
1095 	 * been zero'd from being read in as a hole.
1096 	 */
1097 	if (new && !PageUptodate(page))
1098 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1099 					 cpos, user_data_from, user_data_to);
1100 
1101 	flush_dcache_page(page);
1102 
1103 out:
1104 	return ret;
1105 }
1106 
1107 /*
1108  * This function will only grab one clusters worth of pages.
1109  */
1110 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1111 				      struct ocfs2_write_ctxt *wc,
1112 				      u32 cpos, loff_t user_pos,
1113 				      unsigned user_len, int new,
1114 				      struct page *mmap_page)
1115 {
1116 	int ret = 0, i;
1117 	unsigned long start, target_index, end_index, index;
1118 	struct inode *inode = mapping->host;
1119 	loff_t last_byte;
1120 
1121 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1122 
1123 	/*
1124 	 * Figure out how many pages we'll be manipulating here. For
1125 	 * non allocating write, we just change the one
1126 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1127 	 * writing past i_size, we only need enough pages to cover the
1128 	 * last page of the write.
1129 	 */
1130 	if (new) {
1131 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1132 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1133 		/*
1134 		 * We need the index *past* the last page we could possibly
1135 		 * touch.  This is the page past the end of the write or
1136 		 * i_size, whichever is greater.
1137 		 */
1138 		last_byte = max(user_pos + user_len, i_size_read(inode));
1139 		BUG_ON(last_byte < 1);
1140 		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1141 		if ((start + wc->w_num_pages) > end_index)
1142 			wc->w_num_pages = end_index - start;
1143 	} else {
1144 		wc->w_num_pages = 1;
1145 		start = target_index;
1146 	}
1147 
1148 	for(i = 0; i < wc->w_num_pages; i++) {
1149 		index = start + i;
1150 
1151 		if (index == target_index && mmap_page) {
1152 			/*
1153 			 * ocfs2_pagemkwrite() is a little different
1154 			 * and wants us to directly use the page
1155 			 * passed in.
1156 			 */
1157 			lock_page(mmap_page);
1158 
1159 			/* Exit and let the caller retry */
1160 			if (mmap_page->mapping != mapping) {
1161 				WARN_ON(mmap_page->mapping);
1162 				unlock_page(mmap_page);
1163 				ret = -EAGAIN;
1164 				goto out;
1165 			}
1166 
1167 			page_cache_get(mmap_page);
1168 			wc->w_pages[i] = mmap_page;
1169 			wc->w_target_locked = true;
1170 		} else {
1171 			wc->w_pages[i] = find_or_create_page(mapping, index,
1172 							     GFP_NOFS);
1173 			if (!wc->w_pages[i]) {
1174 				ret = -ENOMEM;
1175 				mlog_errno(ret);
1176 				goto out;
1177 			}
1178 		}
1179 		wait_for_stable_page(wc->w_pages[i]);
1180 
1181 		if (index == target_index)
1182 			wc->w_target_page = wc->w_pages[i];
1183 	}
1184 out:
1185 	if (ret)
1186 		wc->w_target_locked = false;
1187 	return ret;
1188 }
1189 
1190 /*
1191  * Prepare a single cluster for write one cluster into the file.
1192  */
1193 static int ocfs2_write_cluster(struct address_space *mapping,
1194 			       u32 phys, unsigned int unwritten,
1195 			       unsigned int should_zero,
1196 			       struct ocfs2_alloc_context *data_ac,
1197 			       struct ocfs2_alloc_context *meta_ac,
1198 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1199 			       loff_t user_pos, unsigned user_len)
1200 {
1201 	int ret, i, new;
1202 	u64 v_blkno, p_blkno;
1203 	struct inode *inode = mapping->host;
1204 	struct ocfs2_extent_tree et;
1205 
1206 	new = phys == 0 ? 1 : 0;
1207 	if (new) {
1208 		u32 tmp_pos;
1209 
1210 		/*
1211 		 * This is safe to call with the page locks - it won't take
1212 		 * any additional semaphores or cluster locks.
1213 		 */
1214 		tmp_pos = cpos;
1215 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1216 					   &tmp_pos, 1, 0, wc->w_di_bh,
1217 					   wc->w_handle, data_ac,
1218 					   meta_ac, NULL);
1219 		/*
1220 		 * This shouldn't happen because we must have already
1221 		 * calculated the correct meta data allocation required. The
1222 		 * internal tree allocation code should know how to increase
1223 		 * transaction credits itself.
1224 		 *
1225 		 * If need be, we could handle -EAGAIN for a
1226 		 * RESTART_TRANS here.
1227 		 */
1228 		mlog_bug_on_msg(ret == -EAGAIN,
1229 				"Inode %llu: EAGAIN return during allocation.\n",
1230 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1231 		if (ret < 0) {
1232 			mlog_errno(ret);
1233 			goto out;
1234 		}
1235 	} else if (unwritten) {
1236 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1237 					      wc->w_di_bh);
1238 		ret = ocfs2_mark_extent_written(inode, &et,
1239 						wc->w_handle, cpos, 1, phys,
1240 						meta_ac, &wc->w_dealloc);
1241 		if (ret < 0) {
1242 			mlog_errno(ret);
1243 			goto out;
1244 		}
1245 	}
1246 
1247 	if (should_zero)
1248 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1249 	else
1250 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1251 
1252 	/*
1253 	 * The only reason this should fail is due to an inability to
1254 	 * find the extent added.
1255 	 */
1256 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1257 					  NULL);
1258 	if (ret < 0) {
1259 		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1260 			    "at logical block %llu",
1261 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1262 			    (unsigned long long)v_blkno);
1263 		goto out;
1264 	}
1265 
1266 	BUG_ON(p_blkno == 0);
1267 
1268 	for(i = 0; i < wc->w_num_pages; i++) {
1269 		int tmpret;
1270 
1271 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1272 						      wc->w_pages[i], cpos,
1273 						      user_pos, user_len,
1274 						      should_zero);
1275 		if (tmpret) {
1276 			mlog_errno(tmpret);
1277 			if (ret == 0)
1278 				ret = tmpret;
1279 		}
1280 	}
1281 
1282 	/*
1283 	 * We only have cleanup to do in case of allocating write.
1284 	 */
1285 	if (ret && new)
1286 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1287 
1288 out:
1289 
1290 	return ret;
1291 }
1292 
1293 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1294 				       struct ocfs2_alloc_context *data_ac,
1295 				       struct ocfs2_alloc_context *meta_ac,
1296 				       struct ocfs2_write_ctxt *wc,
1297 				       loff_t pos, unsigned len)
1298 {
1299 	int ret, i;
1300 	loff_t cluster_off;
1301 	unsigned int local_len = len;
1302 	struct ocfs2_write_cluster_desc *desc;
1303 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1304 
1305 	for (i = 0; i < wc->w_clen; i++) {
1306 		desc = &wc->w_desc[i];
1307 
1308 		/*
1309 		 * We have to make sure that the total write passed in
1310 		 * doesn't extend past a single cluster.
1311 		 */
1312 		local_len = len;
1313 		cluster_off = pos & (osb->s_clustersize - 1);
1314 		if ((cluster_off + local_len) > osb->s_clustersize)
1315 			local_len = osb->s_clustersize - cluster_off;
1316 
1317 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1318 					  desc->c_unwritten,
1319 					  desc->c_needs_zero,
1320 					  data_ac, meta_ac,
1321 					  wc, desc->c_cpos, pos, local_len);
1322 		if (ret) {
1323 			mlog_errno(ret);
1324 			goto out;
1325 		}
1326 
1327 		len -= local_len;
1328 		pos += local_len;
1329 	}
1330 
1331 	ret = 0;
1332 out:
1333 	return ret;
1334 }
1335 
1336 /*
1337  * ocfs2_write_end() wants to know which parts of the target page it
1338  * should complete the write on. It's easiest to compute them ahead of
1339  * time when a more complete view of the write is available.
1340  */
1341 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1342 					struct ocfs2_write_ctxt *wc,
1343 					loff_t pos, unsigned len, int alloc)
1344 {
1345 	struct ocfs2_write_cluster_desc *desc;
1346 
1347 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1348 	wc->w_target_to = wc->w_target_from + len;
1349 
1350 	if (alloc == 0)
1351 		return;
1352 
1353 	/*
1354 	 * Allocating write - we may have different boundaries based
1355 	 * on page size and cluster size.
1356 	 *
1357 	 * NOTE: We can no longer compute one value from the other as
1358 	 * the actual write length and user provided length may be
1359 	 * different.
1360 	 */
1361 
1362 	if (wc->w_large_pages) {
1363 		/*
1364 		 * We only care about the 1st and last cluster within
1365 		 * our range and whether they should be zero'd or not. Either
1366 		 * value may be extended out to the start/end of a
1367 		 * newly allocated cluster.
1368 		 */
1369 		desc = &wc->w_desc[0];
1370 		if (desc->c_needs_zero)
1371 			ocfs2_figure_cluster_boundaries(osb,
1372 							desc->c_cpos,
1373 							&wc->w_target_from,
1374 							NULL);
1375 
1376 		desc = &wc->w_desc[wc->w_clen - 1];
1377 		if (desc->c_needs_zero)
1378 			ocfs2_figure_cluster_boundaries(osb,
1379 							desc->c_cpos,
1380 							NULL,
1381 							&wc->w_target_to);
1382 	} else {
1383 		wc->w_target_from = 0;
1384 		wc->w_target_to = PAGE_CACHE_SIZE;
1385 	}
1386 }
1387 
1388 /*
1389  * Populate each single-cluster write descriptor in the write context
1390  * with information about the i/o to be done.
1391  *
1392  * Returns the number of clusters that will have to be allocated, as
1393  * well as a worst case estimate of the number of extent records that
1394  * would have to be created during a write to an unwritten region.
1395  */
1396 static int ocfs2_populate_write_desc(struct inode *inode,
1397 				     struct ocfs2_write_ctxt *wc,
1398 				     unsigned int *clusters_to_alloc,
1399 				     unsigned int *extents_to_split)
1400 {
1401 	int ret;
1402 	struct ocfs2_write_cluster_desc *desc;
1403 	unsigned int num_clusters = 0;
1404 	unsigned int ext_flags = 0;
1405 	u32 phys = 0;
1406 	int i;
1407 
1408 	*clusters_to_alloc = 0;
1409 	*extents_to_split = 0;
1410 
1411 	for (i = 0; i < wc->w_clen; i++) {
1412 		desc = &wc->w_desc[i];
1413 		desc->c_cpos = wc->w_cpos + i;
1414 
1415 		if (num_clusters == 0) {
1416 			/*
1417 			 * Need to look up the next extent record.
1418 			 */
1419 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1420 						 &num_clusters, &ext_flags);
1421 			if (ret) {
1422 				mlog_errno(ret);
1423 				goto out;
1424 			}
1425 
1426 			/* We should already CoW the refcountd extent. */
1427 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1428 
1429 			/*
1430 			 * Assume worst case - that we're writing in
1431 			 * the middle of the extent.
1432 			 *
1433 			 * We can assume that the write proceeds from
1434 			 * left to right, in which case the extent
1435 			 * insert code is smart enough to coalesce the
1436 			 * next splits into the previous records created.
1437 			 */
1438 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1439 				*extents_to_split = *extents_to_split + 2;
1440 		} else if (phys) {
1441 			/*
1442 			 * Only increment phys if it doesn't describe
1443 			 * a hole.
1444 			 */
1445 			phys++;
1446 		}
1447 
1448 		/*
1449 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1450 		 * file that got extended.  w_first_new_cpos tells us
1451 		 * where the newly allocated clusters are so we can
1452 		 * zero them.
1453 		 */
1454 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1455 			BUG_ON(phys == 0);
1456 			desc->c_needs_zero = 1;
1457 		}
1458 
1459 		desc->c_phys = phys;
1460 		if (phys == 0) {
1461 			desc->c_new = 1;
1462 			desc->c_needs_zero = 1;
1463 			*clusters_to_alloc = *clusters_to_alloc + 1;
1464 		}
1465 
1466 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1467 			desc->c_unwritten = 1;
1468 			desc->c_needs_zero = 1;
1469 		}
1470 
1471 		num_clusters--;
1472 	}
1473 
1474 	ret = 0;
1475 out:
1476 	return ret;
1477 }
1478 
1479 static int ocfs2_write_begin_inline(struct address_space *mapping,
1480 				    struct inode *inode,
1481 				    struct ocfs2_write_ctxt *wc)
1482 {
1483 	int ret;
1484 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1485 	struct page *page;
1486 	handle_t *handle;
1487 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1488 
1489 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1490 	if (!page) {
1491 		ret = -ENOMEM;
1492 		mlog_errno(ret);
1493 		goto out;
1494 	}
1495 	/*
1496 	 * If we don't set w_num_pages then this page won't get unlocked
1497 	 * and freed on cleanup of the write context.
1498 	 */
1499 	wc->w_pages[0] = wc->w_target_page = page;
1500 	wc->w_num_pages = 1;
1501 
1502 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1503 	if (IS_ERR(handle)) {
1504 		ret = PTR_ERR(handle);
1505 		mlog_errno(ret);
1506 		goto out;
1507 	}
1508 
1509 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1510 				      OCFS2_JOURNAL_ACCESS_WRITE);
1511 	if (ret) {
1512 		ocfs2_commit_trans(osb, handle);
1513 
1514 		mlog_errno(ret);
1515 		goto out;
1516 	}
1517 
1518 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1519 		ocfs2_set_inode_data_inline(inode, di);
1520 
1521 	if (!PageUptodate(page)) {
1522 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1523 		if (ret) {
1524 			ocfs2_commit_trans(osb, handle);
1525 
1526 			goto out;
1527 		}
1528 	}
1529 
1530 	wc->w_handle = handle;
1531 out:
1532 	return ret;
1533 }
1534 
1535 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1536 {
1537 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1538 
1539 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1540 		return 1;
1541 	return 0;
1542 }
1543 
1544 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1545 					  struct inode *inode, loff_t pos,
1546 					  unsigned len, struct page *mmap_page,
1547 					  struct ocfs2_write_ctxt *wc)
1548 {
1549 	int ret, written = 0;
1550 	loff_t end = pos + len;
1551 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1552 	struct ocfs2_dinode *di = NULL;
1553 
1554 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1555 					     len, (unsigned long long)pos,
1556 					     oi->ip_dyn_features);
1557 
1558 	/*
1559 	 * Handle inodes which already have inline data 1st.
1560 	 */
1561 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1562 		if (mmap_page == NULL &&
1563 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1564 			goto do_inline_write;
1565 
1566 		/*
1567 		 * The write won't fit - we have to give this inode an
1568 		 * inline extent list now.
1569 		 */
1570 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1571 		if (ret)
1572 			mlog_errno(ret);
1573 		goto out;
1574 	}
1575 
1576 	/*
1577 	 * Check whether the inode can accept inline data.
1578 	 */
1579 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1580 		return 0;
1581 
1582 	/*
1583 	 * Check whether the write can fit.
1584 	 */
1585 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1586 	if (mmap_page ||
1587 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1588 		return 0;
1589 
1590 do_inline_write:
1591 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1592 	if (ret) {
1593 		mlog_errno(ret);
1594 		goto out;
1595 	}
1596 
1597 	/*
1598 	 * This signals to the caller that the data can be written
1599 	 * inline.
1600 	 */
1601 	written = 1;
1602 out:
1603 	return written ? written : ret;
1604 }
1605 
1606 /*
1607  * This function only does anything for file systems which can't
1608  * handle sparse files.
1609  *
1610  * What we want to do here is fill in any hole between the current end
1611  * of allocation and the end of our write. That way the rest of the
1612  * write path can treat it as an non-allocating write, which has no
1613  * special case code for sparse/nonsparse files.
1614  */
1615 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1616 					struct buffer_head *di_bh,
1617 					loff_t pos, unsigned len,
1618 					struct ocfs2_write_ctxt *wc)
1619 {
1620 	int ret;
1621 	loff_t newsize = pos + len;
1622 
1623 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1624 
1625 	if (newsize <= i_size_read(inode))
1626 		return 0;
1627 
1628 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1629 	if (ret)
1630 		mlog_errno(ret);
1631 
1632 	wc->w_first_new_cpos =
1633 		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1634 
1635 	return ret;
1636 }
1637 
1638 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1639 			   loff_t pos)
1640 {
1641 	int ret = 0;
1642 
1643 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1644 	if (pos > i_size_read(inode))
1645 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1646 
1647 	return ret;
1648 }
1649 
1650 /*
1651  * Try to flush truncate logs if we can free enough clusters from it.
1652  * As for return value, "< 0" means error, "0" no space and "1" means
1653  * we have freed enough spaces and let the caller try to allocate again.
1654  */
1655 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1656 					  unsigned int needed)
1657 {
1658 	tid_t target;
1659 	int ret = 0;
1660 	unsigned int truncated_clusters;
1661 
1662 	mutex_lock(&osb->osb_tl_inode->i_mutex);
1663 	truncated_clusters = osb->truncated_clusters;
1664 	mutex_unlock(&osb->osb_tl_inode->i_mutex);
1665 
1666 	/*
1667 	 * Check whether we can succeed in allocating if we free
1668 	 * the truncate log.
1669 	 */
1670 	if (truncated_clusters < needed)
1671 		goto out;
1672 
1673 	ret = ocfs2_flush_truncate_log(osb);
1674 	if (ret) {
1675 		mlog_errno(ret);
1676 		goto out;
1677 	}
1678 
1679 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1680 		jbd2_log_wait_commit(osb->journal->j_journal, target);
1681 		ret = 1;
1682 	}
1683 out:
1684 	return ret;
1685 }
1686 
1687 int ocfs2_write_begin_nolock(struct file *filp,
1688 			     struct address_space *mapping,
1689 			     loff_t pos, unsigned len, unsigned flags,
1690 			     struct page **pagep, void **fsdata,
1691 			     struct buffer_head *di_bh, struct page *mmap_page)
1692 {
1693 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1694 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1695 	struct ocfs2_write_ctxt *wc;
1696 	struct inode *inode = mapping->host;
1697 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1698 	struct ocfs2_dinode *di;
1699 	struct ocfs2_alloc_context *data_ac = NULL;
1700 	struct ocfs2_alloc_context *meta_ac = NULL;
1701 	handle_t *handle;
1702 	struct ocfs2_extent_tree et;
1703 	int try_free = 1, ret1;
1704 
1705 try_again:
1706 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1707 	if (ret) {
1708 		mlog_errno(ret);
1709 		return ret;
1710 	}
1711 
1712 	if (ocfs2_supports_inline_data(osb)) {
1713 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1714 						     mmap_page, wc);
1715 		if (ret == 1) {
1716 			ret = 0;
1717 			goto success;
1718 		}
1719 		if (ret < 0) {
1720 			mlog_errno(ret);
1721 			goto out;
1722 		}
1723 	}
1724 
1725 	if (ocfs2_sparse_alloc(osb))
1726 		ret = ocfs2_zero_tail(inode, di_bh, pos);
1727 	else
1728 		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1729 						   wc);
1730 	if (ret) {
1731 		mlog_errno(ret);
1732 		goto out;
1733 	}
1734 
1735 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1736 	if (ret < 0) {
1737 		mlog_errno(ret);
1738 		goto out;
1739 	} else if (ret == 1) {
1740 		clusters_need = wc->w_clen;
1741 		ret = ocfs2_refcount_cow(inode, di_bh,
1742 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1743 		if (ret) {
1744 			mlog_errno(ret);
1745 			goto out;
1746 		}
1747 	}
1748 
1749 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1750 					&extents_to_split);
1751 	if (ret) {
1752 		mlog_errno(ret);
1753 		goto out;
1754 	}
1755 	clusters_need += clusters_to_alloc;
1756 
1757 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1758 
1759 	trace_ocfs2_write_begin_nolock(
1760 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1761 			(long long)i_size_read(inode),
1762 			le32_to_cpu(di->i_clusters),
1763 			pos, len, flags, mmap_page,
1764 			clusters_to_alloc, extents_to_split);
1765 
1766 	/*
1767 	 * We set w_target_from, w_target_to here so that
1768 	 * ocfs2_write_end() knows which range in the target page to
1769 	 * write out. An allocation requires that we write the entire
1770 	 * cluster range.
1771 	 */
1772 	if (clusters_to_alloc || extents_to_split) {
1773 		/*
1774 		 * XXX: We are stretching the limits of
1775 		 * ocfs2_lock_allocators(). It greatly over-estimates
1776 		 * the work to be done.
1777 		 */
1778 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1779 					      wc->w_di_bh);
1780 		ret = ocfs2_lock_allocators(inode, &et,
1781 					    clusters_to_alloc, extents_to_split,
1782 					    &data_ac, &meta_ac);
1783 		if (ret) {
1784 			mlog_errno(ret);
1785 			goto out;
1786 		}
1787 
1788 		if (data_ac)
1789 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1790 
1791 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1792 						    &di->id2.i_list);
1793 
1794 	}
1795 
1796 	/*
1797 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1798 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1799 	 * we know zeros will only be needed in the first and/or last cluster.
1800 	 */
1801 	if (clusters_to_alloc || extents_to_split ||
1802 	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1803 			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1804 		cluster_of_pages = 1;
1805 	else
1806 		cluster_of_pages = 0;
1807 
1808 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1809 
1810 	handle = ocfs2_start_trans(osb, credits);
1811 	if (IS_ERR(handle)) {
1812 		ret = PTR_ERR(handle);
1813 		mlog_errno(ret);
1814 		goto out;
1815 	}
1816 
1817 	wc->w_handle = handle;
1818 
1819 	if (clusters_to_alloc) {
1820 		ret = dquot_alloc_space_nodirty(inode,
1821 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1822 		if (ret)
1823 			goto out_commit;
1824 	}
1825 	/*
1826 	 * We don't want this to fail in ocfs2_write_end(), so do it
1827 	 * here.
1828 	 */
1829 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1830 				      OCFS2_JOURNAL_ACCESS_WRITE);
1831 	if (ret) {
1832 		mlog_errno(ret);
1833 		goto out_quota;
1834 	}
1835 
1836 	/*
1837 	 * Fill our page array first. That way we've grabbed enough so
1838 	 * that we can zero and flush if we error after adding the
1839 	 * extent.
1840 	 */
1841 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1842 					 cluster_of_pages, mmap_page);
1843 	if (ret && ret != -EAGAIN) {
1844 		mlog_errno(ret);
1845 		goto out_quota;
1846 	}
1847 
1848 	/*
1849 	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1850 	 * the target page. In this case, we exit with no error and no target
1851 	 * page. This will trigger the caller, page_mkwrite(), to re-try
1852 	 * the operation.
1853 	 */
1854 	if (ret == -EAGAIN) {
1855 		BUG_ON(wc->w_target_page);
1856 		ret = 0;
1857 		goto out_quota;
1858 	}
1859 
1860 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1861 					  len);
1862 	if (ret) {
1863 		mlog_errno(ret);
1864 		goto out_quota;
1865 	}
1866 
1867 	if (data_ac)
1868 		ocfs2_free_alloc_context(data_ac);
1869 	if (meta_ac)
1870 		ocfs2_free_alloc_context(meta_ac);
1871 
1872 success:
1873 	*pagep = wc->w_target_page;
1874 	*fsdata = wc;
1875 	return 0;
1876 out_quota:
1877 	if (clusters_to_alloc)
1878 		dquot_free_space(inode,
1879 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1880 out_commit:
1881 	ocfs2_commit_trans(osb, handle);
1882 
1883 out:
1884 	ocfs2_free_write_ctxt(wc);
1885 
1886 	if (data_ac) {
1887 		ocfs2_free_alloc_context(data_ac);
1888 		data_ac = NULL;
1889 	}
1890 	if (meta_ac) {
1891 		ocfs2_free_alloc_context(meta_ac);
1892 		meta_ac = NULL;
1893 	}
1894 
1895 	if (ret == -ENOSPC && try_free) {
1896 		/*
1897 		 * Try to free some truncate log so that we can have enough
1898 		 * clusters to allocate.
1899 		 */
1900 		try_free = 0;
1901 
1902 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1903 		if (ret1 == 1)
1904 			goto try_again;
1905 
1906 		if (ret1 < 0)
1907 			mlog_errno(ret1);
1908 	}
1909 
1910 	return ret;
1911 }
1912 
1913 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1914 			     loff_t pos, unsigned len, unsigned flags,
1915 			     struct page **pagep, void **fsdata)
1916 {
1917 	int ret;
1918 	struct buffer_head *di_bh = NULL;
1919 	struct inode *inode = mapping->host;
1920 
1921 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1922 	if (ret) {
1923 		mlog_errno(ret);
1924 		return ret;
1925 	}
1926 
1927 	/*
1928 	 * Take alloc sem here to prevent concurrent lookups. That way
1929 	 * the mapping, zeroing and tree manipulation within
1930 	 * ocfs2_write() will be safe against ->readpage(). This
1931 	 * should also serve to lock out allocation from a shared
1932 	 * writeable region.
1933 	 */
1934 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1935 
1936 	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1937 				       fsdata, di_bh, NULL);
1938 	if (ret) {
1939 		mlog_errno(ret);
1940 		goto out_fail;
1941 	}
1942 
1943 	brelse(di_bh);
1944 
1945 	return 0;
1946 
1947 out_fail:
1948 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1949 
1950 	brelse(di_bh);
1951 	ocfs2_inode_unlock(inode, 1);
1952 
1953 	return ret;
1954 }
1955 
1956 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1957 				   unsigned len, unsigned *copied,
1958 				   struct ocfs2_dinode *di,
1959 				   struct ocfs2_write_ctxt *wc)
1960 {
1961 	void *kaddr;
1962 
1963 	if (unlikely(*copied < len)) {
1964 		if (!PageUptodate(wc->w_target_page)) {
1965 			*copied = 0;
1966 			return;
1967 		}
1968 	}
1969 
1970 	kaddr = kmap_atomic(wc->w_target_page);
1971 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1972 	kunmap_atomic(kaddr);
1973 
1974 	trace_ocfs2_write_end_inline(
1975 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1976 	     (unsigned long long)pos, *copied,
1977 	     le16_to_cpu(di->id2.i_data.id_count),
1978 	     le16_to_cpu(di->i_dyn_features));
1979 }
1980 
1981 int ocfs2_write_end_nolock(struct address_space *mapping,
1982 			   loff_t pos, unsigned len, unsigned copied,
1983 			   struct page *page, void *fsdata)
1984 {
1985 	int i;
1986 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1987 	struct inode *inode = mapping->host;
1988 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1989 	struct ocfs2_write_ctxt *wc = fsdata;
1990 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1991 	handle_t *handle = wc->w_handle;
1992 	struct page *tmppage;
1993 
1994 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1995 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1996 		goto out_write_size;
1997 	}
1998 
1999 	if (unlikely(copied < len)) {
2000 		if (!PageUptodate(wc->w_target_page))
2001 			copied = 0;
2002 
2003 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2004 				       start+len);
2005 	}
2006 	flush_dcache_page(wc->w_target_page);
2007 
2008 	for(i = 0; i < wc->w_num_pages; i++) {
2009 		tmppage = wc->w_pages[i];
2010 
2011 		if (tmppage == wc->w_target_page) {
2012 			from = wc->w_target_from;
2013 			to = wc->w_target_to;
2014 
2015 			BUG_ON(from > PAGE_CACHE_SIZE ||
2016 			       to > PAGE_CACHE_SIZE ||
2017 			       to < from);
2018 		} else {
2019 			/*
2020 			 * Pages adjacent to the target (if any) imply
2021 			 * a hole-filling write in which case we want
2022 			 * to flush their entire range.
2023 			 */
2024 			from = 0;
2025 			to = PAGE_CACHE_SIZE;
2026 		}
2027 
2028 		if (page_has_buffers(tmppage)) {
2029 			if (ocfs2_should_order_data(inode))
2030 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
2031 			block_commit_write(tmppage, from, to);
2032 		}
2033 	}
2034 
2035 out_write_size:
2036 	pos += copied;
2037 	if (pos > i_size_read(inode)) {
2038 		i_size_write(inode, pos);
2039 		mark_inode_dirty(inode);
2040 	}
2041 	inode->i_blocks = ocfs2_inode_sector_count(inode);
2042 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2043 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2044 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2045 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2046 	ocfs2_journal_dirty(handle, wc->w_di_bh);
2047 
2048 	ocfs2_commit_trans(osb, handle);
2049 
2050 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2051 
2052 	ocfs2_free_write_ctxt(wc);
2053 
2054 	return copied;
2055 }
2056 
2057 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2058 			   loff_t pos, unsigned len, unsigned copied,
2059 			   struct page *page, void *fsdata)
2060 {
2061 	int ret;
2062 	struct inode *inode = mapping->host;
2063 
2064 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2065 
2066 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2067 	ocfs2_inode_unlock(inode, 1);
2068 
2069 	return ret;
2070 }
2071 
2072 const struct address_space_operations ocfs2_aops = {
2073 	.readpage		= ocfs2_readpage,
2074 	.readpages		= ocfs2_readpages,
2075 	.writepage		= ocfs2_writepage,
2076 	.write_begin		= ocfs2_write_begin,
2077 	.write_end		= ocfs2_write_end,
2078 	.bmap			= ocfs2_bmap,
2079 	.direct_IO		= ocfs2_direct_IO,
2080 	.invalidatepage		= block_invalidatepage,
2081 	.releasepage		= ocfs2_releasepage,
2082 	.migratepage		= buffer_migrate_page,
2083 	.is_partially_uptodate	= block_is_partially_uptodate,
2084 	.error_remove_page	= generic_error_remove_page,
2085 };
2086