1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 #include <linux/quotaops.h> 31 32 #include <cluster/masklog.h> 33 34 #include "ocfs2.h" 35 36 #include "alloc.h" 37 #include "aops.h" 38 #include "dlmglue.h" 39 #include "extent_map.h" 40 #include "file.h" 41 #include "inode.h" 42 #include "journal.h" 43 #include "suballoc.h" 44 #include "super.h" 45 #include "symlink.h" 46 #include "refcounttree.h" 47 #include "ocfs2_trace.h" 48 49 #include "buffer_head_io.h" 50 51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 52 struct buffer_head *bh_result, int create) 53 { 54 int err = -EIO; 55 int status; 56 struct ocfs2_dinode *fe = NULL; 57 struct buffer_head *bh = NULL; 58 struct buffer_head *buffer_cache_bh = NULL; 59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 60 void *kaddr; 61 62 trace_ocfs2_symlink_get_block( 63 (unsigned long long)OCFS2_I(inode)->ip_blkno, 64 (unsigned long long)iblock, bh_result, create); 65 66 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 67 68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 70 (unsigned long long)iblock); 71 goto bail; 72 } 73 74 status = ocfs2_read_inode_block(inode, &bh); 75 if (status < 0) { 76 mlog_errno(status); 77 goto bail; 78 } 79 fe = (struct ocfs2_dinode *) bh->b_data; 80 81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 82 le32_to_cpu(fe->i_clusters))) { 83 err = -ENOMEM; 84 mlog(ML_ERROR, "block offset is outside the allocated size: " 85 "%llu\n", (unsigned long long)iblock); 86 goto bail; 87 } 88 89 /* We don't use the page cache to create symlink data, so if 90 * need be, copy it over from the buffer cache. */ 91 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 92 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 93 iblock; 94 buffer_cache_bh = sb_getblk(osb->sb, blkno); 95 if (!buffer_cache_bh) { 96 err = -ENOMEM; 97 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 98 goto bail; 99 } 100 101 /* we haven't locked out transactions, so a commit 102 * could've happened. Since we've got a reference on 103 * the bh, even if it commits while we're doing the 104 * copy, the data is still good. */ 105 if (buffer_jbd(buffer_cache_bh) 106 && ocfs2_inode_is_new(inode)) { 107 kaddr = kmap_atomic(bh_result->b_page); 108 if (!kaddr) { 109 mlog(ML_ERROR, "couldn't kmap!\n"); 110 goto bail; 111 } 112 memcpy(kaddr + (bh_result->b_size * iblock), 113 buffer_cache_bh->b_data, 114 bh_result->b_size); 115 kunmap_atomic(kaddr); 116 set_buffer_uptodate(bh_result); 117 } 118 brelse(buffer_cache_bh); 119 } 120 121 map_bh(bh_result, inode->i_sb, 122 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 123 124 err = 0; 125 126 bail: 127 brelse(bh); 128 129 return err; 130 } 131 132 int ocfs2_get_block(struct inode *inode, sector_t iblock, 133 struct buffer_head *bh_result, int create) 134 { 135 int err = 0; 136 unsigned int ext_flags; 137 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 138 u64 p_blkno, count, past_eof; 139 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 140 141 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 142 (unsigned long long)iblock, bh_result, create); 143 144 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 145 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 146 inode, inode->i_ino); 147 148 if (S_ISLNK(inode->i_mode)) { 149 /* this always does I/O for some reason. */ 150 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 151 goto bail; 152 } 153 154 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 155 &ext_flags); 156 if (err) { 157 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 158 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 159 (unsigned long long)p_blkno); 160 goto bail; 161 } 162 163 if (max_blocks < count) 164 count = max_blocks; 165 166 /* 167 * ocfs2 never allocates in this function - the only time we 168 * need to use BH_New is when we're extending i_size on a file 169 * system which doesn't support holes, in which case BH_New 170 * allows __block_write_begin() to zero. 171 * 172 * If we see this on a sparse file system, then a truncate has 173 * raced us and removed the cluster. In this case, we clear 174 * the buffers dirty and uptodate bits and let the buffer code 175 * ignore it as a hole. 176 */ 177 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 178 clear_buffer_dirty(bh_result); 179 clear_buffer_uptodate(bh_result); 180 goto bail; 181 } 182 183 /* Treat the unwritten extent as a hole for zeroing purposes. */ 184 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 185 map_bh(bh_result, inode->i_sb, p_blkno); 186 187 bh_result->b_size = count << inode->i_blkbits; 188 189 if (!ocfs2_sparse_alloc(osb)) { 190 if (p_blkno == 0) { 191 err = -EIO; 192 mlog(ML_ERROR, 193 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 194 (unsigned long long)iblock, 195 (unsigned long long)p_blkno, 196 (unsigned long long)OCFS2_I(inode)->ip_blkno); 197 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 198 dump_stack(); 199 goto bail; 200 } 201 } 202 203 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 204 205 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 206 (unsigned long long)past_eof); 207 if (create && (iblock >= past_eof)) 208 set_buffer_new(bh_result); 209 210 bail: 211 if (err < 0) 212 err = -EIO; 213 214 return err; 215 } 216 217 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 218 struct buffer_head *di_bh) 219 { 220 void *kaddr; 221 loff_t size; 222 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 223 224 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 225 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag", 226 (unsigned long long)OCFS2_I(inode)->ip_blkno); 227 return -EROFS; 228 } 229 230 size = i_size_read(inode); 231 232 if (size > PAGE_CACHE_SIZE || 233 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 234 ocfs2_error(inode->i_sb, 235 "Inode %llu has with inline data has bad size: %Lu", 236 (unsigned long long)OCFS2_I(inode)->ip_blkno, 237 (unsigned long long)size); 238 return -EROFS; 239 } 240 241 kaddr = kmap_atomic(page); 242 if (size) 243 memcpy(kaddr, di->id2.i_data.id_data, size); 244 /* Clear the remaining part of the page */ 245 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); 246 flush_dcache_page(page); 247 kunmap_atomic(kaddr); 248 249 SetPageUptodate(page); 250 251 return 0; 252 } 253 254 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 255 { 256 int ret; 257 struct buffer_head *di_bh = NULL; 258 259 BUG_ON(!PageLocked(page)); 260 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 261 262 ret = ocfs2_read_inode_block(inode, &di_bh); 263 if (ret) { 264 mlog_errno(ret); 265 goto out; 266 } 267 268 ret = ocfs2_read_inline_data(inode, page, di_bh); 269 out: 270 unlock_page(page); 271 272 brelse(di_bh); 273 return ret; 274 } 275 276 static int ocfs2_readpage(struct file *file, struct page *page) 277 { 278 struct inode *inode = page->mapping->host; 279 struct ocfs2_inode_info *oi = OCFS2_I(inode); 280 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; 281 int ret, unlock = 1; 282 283 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 284 (page ? page->index : 0)); 285 286 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 287 if (ret != 0) { 288 if (ret == AOP_TRUNCATED_PAGE) 289 unlock = 0; 290 mlog_errno(ret); 291 goto out; 292 } 293 294 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 295 /* 296 * Unlock the page and cycle ip_alloc_sem so that we don't 297 * busyloop waiting for ip_alloc_sem to unlock 298 */ 299 ret = AOP_TRUNCATED_PAGE; 300 unlock_page(page); 301 unlock = 0; 302 down_read(&oi->ip_alloc_sem); 303 up_read(&oi->ip_alloc_sem); 304 goto out_inode_unlock; 305 } 306 307 /* 308 * i_size might have just been updated as we grabed the meta lock. We 309 * might now be discovering a truncate that hit on another node. 310 * block_read_full_page->get_block freaks out if it is asked to read 311 * beyond the end of a file, so we check here. Callers 312 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 313 * and notice that the page they just read isn't needed. 314 * 315 * XXX sys_readahead() seems to get that wrong? 316 */ 317 if (start >= i_size_read(inode)) { 318 zero_user(page, 0, PAGE_SIZE); 319 SetPageUptodate(page); 320 ret = 0; 321 goto out_alloc; 322 } 323 324 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 325 ret = ocfs2_readpage_inline(inode, page); 326 else 327 ret = block_read_full_page(page, ocfs2_get_block); 328 unlock = 0; 329 330 out_alloc: 331 up_read(&OCFS2_I(inode)->ip_alloc_sem); 332 out_inode_unlock: 333 ocfs2_inode_unlock(inode, 0); 334 out: 335 if (unlock) 336 unlock_page(page); 337 return ret; 338 } 339 340 /* 341 * This is used only for read-ahead. Failures or difficult to handle 342 * situations are safe to ignore. 343 * 344 * Right now, we don't bother with BH_Boundary - in-inode extent lists 345 * are quite large (243 extents on 4k blocks), so most inodes don't 346 * grow out to a tree. If need be, detecting boundary extents could 347 * trivially be added in a future version of ocfs2_get_block(). 348 */ 349 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 350 struct list_head *pages, unsigned nr_pages) 351 { 352 int ret, err = -EIO; 353 struct inode *inode = mapping->host; 354 struct ocfs2_inode_info *oi = OCFS2_I(inode); 355 loff_t start; 356 struct page *last; 357 358 /* 359 * Use the nonblocking flag for the dlm code to avoid page 360 * lock inversion, but don't bother with retrying. 361 */ 362 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 363 if (ret) 364 return err; 365 366 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 367 ocfs2_inode_unlock(inode, 0); 368 return err; 369 } 370 371 /* 372 * Don't bother with inline-data. There isn't anything 373 * to read-ahead in that case anyway... 374 */ 375 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 376 goto out_unlock; 377 378 /* 379 * Check whether a remote node truncated this file - we just 380 * drop out in that case as it's not worth handling here. 381 */ 382 last = list_entry(pages->prev, struct page, lru); 383 start = (loff_t)last->index << PAGE_CACHE_SHIFT; 384 if (start >= i_size_read(inode)) 385 goto out_unlock; 386 387 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 388 389 out_unlock: 390 up_read(&oi->ip_alloc_sem); 391 ocfs2_inode_unlock(inode, 0); 392 393 return err; 394 } 395 396 /* Note: Because we don't support holes, our allocation has 397 * already happened (allocation writes zeros to the file data) 398 * so we don't have to worry about ordered writes in 399 * ocfs2_writepage. 400 * 401 * ->writepage is called during the process of invalidating the page cache 402 * during blocked lock processing. It can't block on any cluster locks 403 * to during block mapping. It's relying on the fact that the block 404 * mapping can't have disappeared under the dirty pages that it is 405 * being asked to write back. 406 */ 407 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 408 { 409 trace_ocfs2_writepage( 410 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 411 page->index); 412 413 return block_write_full_page(page, ocfs2_get_block, wbc); 414 } 415 416 /* Taken from ext3. We don't necessarily need the full blown 417 * functionality yet, but IMHO it's better to cut and paste the whole 418 * thing so we can avoid introducing our own bugs (and easily pick up 419 * their fixes when they happen) --Mark */ 420 int walk_page_buffers( handle_t *handle, 421 struct buffer_head *head, 422 unsigned from, 423 unsigned to, 424 int *partial, 425 int (*fn)( handle_t *handle, 426 struct buffer_head *bh)) 427 { 428 struct buffer_head *bh; 429 unsigned block_start, block_end; 430 unsigned blocksize = head->b_size; 431 int err, ret = 0; 432 struct buffer_head *next; 433 434 for ( bh = head, block_start = 0; 435 ret == 0 && (bh != head || !block_start); 436 block_start = block_end, bh = next) 437 { 438 next = bh->b_this_page; 439 block_end = block_start + blocksize; 440 if (block_end <= from || block_start >= to) { 441 if (partial && !buffer_uptodate(bh)) 442 *partial = 1; 443 continue; 444 } 445 err = (*fn)(handle, bh); 446 if (!ret) 447 ret = err; 448 } 449 return ret; 450 } 451 452 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 453 { 454 sector_t status; 455 u64 p_blkno = 0; 456 int err = 0; 457 struct inode *inode = mapping->host; 458 459 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 460 (unsigned long long)block); 461 462 /* We don't need to lock journal system files, since they aren't 463 * accessed concurrently from multiple nodes. 464 */ 465 if (!INODE_JOURNAL(inode)) { 466 err = ocfs2_inode_lock(inode, NULL, 0); 467 if (err) { 468 if (err != -ENOENT) 469 mlog_errno(err); 470 goto bail; 471 } 472 down_read(&OCFS2_I(inode)->ip_alloc_sem); 473 } 474 475 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 476 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 477 NULL); 478 479 if (!INODE_JOURNAL(inode)) { 480 up_read(&OCFS2_I(inode)->ip_alloc_sem); 481 ocfs2_inode_unlock(inode, 0); 482 } 483 484 if (err) { 485 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 486 (unsigned long long)block); 487 mlog_errno(err); 488 goto bail; 489 } 490 491 bail: 492 status = err ? 0 : p_blkno; 493 494 return status; 495 } 496 497 /* 498 * TODO: Make this into a generic get_blocks function. 499 * 500 * From do_direct_io in direct-io.c: 501 * "So what we do is to permit the ->get_blocks function to populate 502 * bh.b_size with the size of IO which is permitted at this offset and 503 * this i_blkbits." 504 * 505 * This function is called directly from get_more_blocks in direct-io.c. 506 * 507 * called like this: dio->get_blocks(dio->inode, fs_startblk, 508 * fs_count, map_bh, dio->rw == WRITE); 509 * 510 * Note that we never bother to allocate blocks here, and thus ignore the 511 * create argument. 512 */ 513 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, 514 struct buffer_head *bh_result, int create) 515 { 516 int ret; 517 u64 p_blkno, inode_blocks, contig_blocks; 518 unsigned int ext_flags; 519 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 520 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; 521 522 /* This function won't even be called if the request isn't all 523 * nicely aligned and of the right size, so there's no need 524 * for us to check any of that. */ 525 526 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 527 528 /* This figures out the size of the next contiguous block, and 529 * our logical offset */ 530 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 531 &contig_blocks, &ext_flags); 532 if (ret) { 533 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 534 (unsigned long long)iblock); 535 ret = -EIO; 536 goto bail; 537 } 538 539 /* We should already CoW the refcounted extent in case of create. */ 540 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED)); 541 542 /* 543 * get_more_blocks() expects us to describe a hole by clearing 544 * the mapped bit on bh_result(). 545 * 546 * Consider an unwritten extent as a hole. 547 */ 548 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 549 map_bh(bh_result, inode->i_sb, p_blkno); 550 else 551 clear_buffer_mapped(bh_result); 552 553 /* make sure we don't map more than max_blocks blocks here as 554 that's all the kernel will handle at this point. */ 555 if (max_blocks < contig_blocks) 556 contig_blocks = max_blocks; 557 bh_result->b_size = contig_blocks << blocksize_bits; 558 bail: 559 return ret; 560 } 561 562 /* 563 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 564 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 565 * to protect io on one node from truncation on another. 566 */ 567 static void ocfs2_dio_end_io(struct kiocb *iocb, 568 loff_t offset, 569 ssize_t bytes, 570 void *private) 571 { 572 struct inode *inode = file_inode(iocb->ki_filp); 573 int level; 574 wait_queue_head_t *wq = ocfs2_ioend_wq(inode); 575 576 /* this io's submitter should not have unlocked this before we could */ 577 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 578 579 if (ocfs2_iocb_is_sem_locked(iocb)) 580 ocfs2_iocb_clear_sem_locked(iocb); 581 582 if (ocfs2_iocb_is_unaligned_aio(iocb)) { 583 ocfs2_iocb_clear_unaligned_aio(iocb); 584 585 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) && 586 waitqueue_active(wq)) { 587 wake_up_all(wq); 588 } 589 } 590 591 ocfs2_iocb_clear_rw_locked(iocb); 592 593 level = ocfs2_iocb_rw_locked_level(iocb); 594 ocfs2_rw_unlock(inode, level); 595 } 596 597 static int ocfs2_releasepage(struct page *page, gfp_t wait) 598 { 599 if (!page_has_buffers(page)) 600 return 0; 601 return try_to_free_buffers(page); 602 } 603 604 static ssize_t ocfs2_direct_IO(int rw, 605 struct kiocb *iocb, 606 const struct iovec *iov, 607 loff_t offset, 608 unsigned long nr_segs) 609 { 610 struct file *file = iocb->ki_filp; 611 struct inode *inode = file_inode(file)->i_mapping->host; 612 613 /* 614 * Fallback to buffered I/O if we see an inode without 615 * extents. 616 */ 617 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 618 return 0; 619 620 /* Fallback to buffered I/O if we are appending. */ 621 if (i_size_read(inode) <= offset) 622 return 0; 623 624 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, 625 iov, offset, nr_segs, 626 ocfs2_direct_IO_get_blocks, 627 ocfs2_dio_end_io, NULL, 0); 628 } 629 630 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 631 u32 cpos, 632 unsigned int *start, 633 unsigned int *end) 634 { 635 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; 636 637 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { 638 unsigned int cpp; 639 640 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); 641 642 cluster_start = cpos % cpp; 643 cluster_start = cluster_start << osb->s_clustersize_bits; 644 645 cluster_end = cluster_start + osb->s_clustersize; 646 } 647 648 BUG_ON(cluster_start > PAGE_SIZE); 649 BUG_ON(cluster_end > PAGE_SIZE); 650 651 if (start) 652 *start = cluster_start; 653 if (end) 654 *end = cluster_end; 655 } 656 657 /* 658 * 'from' and 'to' are the region in the page to avoid zeroing. 659 * 660 * If pagesize > clustersize, this function will avoid zeroing outside 661 * of the cluster boundary. 662 * 663 * from == to == 0 is code for "zero the entire cluster region" 664 */ 665 static void ocfs2_clear_page_regions(struct page *page, 666 struct ocfs2_super *osb, u32 cpos, 667 unsigned from, unsigned to) 668 { 669 void *kaddr; 670 unsigned int cluster_start, cluster_end; 671 672 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 673 674 kaddr = kmap_atomic(page); 675 676 if (from || to) { 677 if (from > cluster_start) 678 memset(kaddr + cluster_start, 0, from - cluster_start); 679 if (to < cluster_end) 680 memset(kaddr + to, 0, cluster_end - to); 681 } else { 682 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 683 } 684 685 kunmap_atomic(kaddr); 686 } 687 688 /* 689 * Nonsparse file systems fully allocate before we get to the write 690 * code. This prevents ocfs2_write() from tagging the write as an 691 * allocating one, which means ocfs2_map_page_blocks() might try to 692 * read-in the blocks at the tail of our file. Avoid reading them by 693 * testing i_size against each block offset. 694 */ 695 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 696 unsigned int block_start) 697 { 698 u64 offset = page_offset(page) + block_start; 699 700 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 701 return 1; 702 703 if (i_size_read(inode) > offset) 704 return 1; 705 706 return 0; 707 } 708 709 /* 710 * Some of this taken from __block_write_begin(). We already have our 711 * mapping by now though, and the entire write will be allocating or 712 * it won't, so not much need to use BH_New. 713 * 714 * This will also skip zeroing, which is handled externally. 715 */ 716 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 717 struct inode *inode, unsigned int from, 718 unsigned int to, int new) 719 { 720 int ret = 0; 721 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 722 unsigned int block_end, block_start; 723 unsigned int bsize = 1 << inode->i_blkbits; 724 725 if (!page_has_buffers(page)) 726 create_empty_buffers(page, bsize, 0); 727 728 head = page_buffers(page); 729 for (bh = head, block_start = 0; bh != head || !block_start; 730 bh = bh->b_this_page, block_start += bsize) { 731 block_end = block_start + bsize; 732 733 clear_buffer_new(bh); 734 735 /* 736 * Ignore blocks outside of our i/o range - 737 * they may belong to unallocated clusters. 738 */ 739 if (block_start >= to || block_end <= from) { 740 if (PageUptodate(page)) 741 set_buffer_uptodate(bh); 742 continue; 743 } 744 745 /* 746 * For an allocating write with cluster size >= page 747 * size, we always write the entire page. 748 */ 749 if (new) 750 set_buffer_new(bh); 751 752 if (!buffer_mapped(bh)) { 753 map_bh(bh, inode->i_sb, *p_blkno); 754 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 755 } 756 757 if (PageUptodate(page)) { 758 if (!buffer_uptodate(bh)) 759 set_buffer_uptodate(bh); 760 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 761 !buffer_new(bh) && 762 ocfs2_should_read_blk(inode, page, block_start) && 763 (block_start < from || block_end > to)) { 764 ll_rw_block(READ, 1, &bh); 765 *wait_bh++=bh; 766 } 767 768 *p_blkno = *p_blkno + 1; 769 } 770 771 /* 772 * If we issued read requests - let them complete. 773 */ 774 while(wait_bh > wait) { 775 wait_on_buffer(*--wait_bh); 776 if (!buffer_uptodate(*wait_bh)) 777 ret = -EIO; 778 } 779 780 if (ret == 0 || !new) 781 return ret; 782 783 /* 784 * If we get -EIO above, zero out any newly allocated blocks 785 * to avoid exposing stale data. 786 */ 787 bh = head; 788 block_start = 0; 789 do { 790 block_end = block_start + bsize; 791 if (block_end <= from) 792 goto next_bh; 793 if (block_start >= to) 794 break; 795 796 zero_user(page, block_start, bh->b_size); 797 set_buffer_uptodate(bh); 798 mark_buffer_dirty(bh); 799 800 next_bh: 801 block_start = block_end; 802 bh = bh->b_this_page; 803 } while (bh != head); 804 805 return ret; 806 } 807 808 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 809 #define OCFS2_MAX_CTXT_PAGES 1 810 #else 811 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) 812 #endif 813 814 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) 815 816 /* 817 * Describe the state of a single cluster to be written to. 818 */ 819 struct ocfs2_write_cluster_desc { 820 u32 c_cpos; 821 u32 c_phys; 822 /* 823 * Give this a unique field because c_phys eventually gets 824 * filled. 825 */ 826 unsigned c_new; 827 unsigned c_unwritten; 828 unsigned c_needs_zero; 829 }; 830 831 struct ocfs2_write_ctxt { 832 /* Logical cluster position / len of write */ 833 u32 w_cpos; 834 u32 w_clen; 835 836 /* First cluster allocated in a nonsparse extend */ 837 u32 w_first_new_cpos; 838 839 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 840 841 /* 842 * This is true if page_size > cluster_size. 843 * 844 * It triggers a set of special cases during write which might 845 * have to deal with allocating writes to partial pages. 846 */ 847 unsigned int w_large_pages; 848 849 /* 850 * Pages involved in this write. 851 * 852 * w_target_page is the page being written to by the user. 853 * 854 * w_pages is an array of pages which always contains 855 * w_target_page, and in the case of an allocating write with 856 * page_size < cluster size, it will contain zero'd and mapped 857 * pages adjacent to w_target_page which need to be written 858 * out in so that future reads from that region will get 859 * zero's. 860 */ 861 unsigned int w_num_pages; 862 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 863 struct page *w_target_page; 864 865 /* 866 * w_target_locked is used for page_mkwrite path indicating no unlocking 867 * against w_target_page in ocfs2_write_end_nolock. 868 */ 869 unsigned int w_target_locked:1; 870 871 /* 872 * ocfs2_write_end() uses this to know what the real range to 873 * write in the target should be. 874 */ 875 unsigned int w_target_from; 876 unsigned int w_target_to; 877 878 /* 879 * We could use journal_current_handle() but this is cleaner, 880 * IMHO -Mark 881 */ 882 handle_t *w_handle; 883 884 struct buffer_head *w_di_bh; 885 886 struct ocfs2_cached_dealloc_ctxt w_dealloc; 887 }; 888 889 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 890 { 891 int i; 892 893 for(i = 0; i < num_pages; i++) { 894 if (pages[i]) { 895 unlock_page(pages[i]); 896 mark_page_accessed(pages[i]); 897 page_cache_release(pages[i]); 898 } 899 } 900 } 901 902 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) 903 { 904 int i; 905 906 /* 907 * w_target_locked is only set to true in the page_mkwrite() case. 908 * The intent is to allow us to lock the target page from write_begin() 909 * to write_end(). The caller must hold a ref on w_target_page. 910 */ 911 if (wc->w_target_locked) { 912 BUG_ON(!wc->w_target_page); 913 for (i = 0; i < wc->w_num_pages; i++) { 914 if (wc->w_target_page == wc->w_pages[i]) { 915 wc->w_pages[i] = NULL; 916 break; 917 } 918 } 919 mark_page_accessed(wc->w_target_page); 920 page_cache_release(wc->w_target_page); 921 } 922 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 923 924 brelse(wc->w_di_bh); 925 kfree(wc); 926 } 927 928 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 929 struct ocfs2_super *osb, loff_t pos, 930 unsigned len, struct buffer_head *di_bh) 931 { 932 u32 cend; 933 struct ocfs2_write_ctxt *wc; 934 935 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 936 if (!wc) 937 return -ENOMEM; 938 939 wc->w_cpos = pos >> osb->s_clustersize_bits; 940 wc->w_first_new_cpos = UINT_MAX; 941 cend = (pos + len - 1) >> osb->s_clustersize_bits; 942 wc->w_clen = cend - wc->w_cpos + 1; 943 get_bh(di_bh); 944 wc->w_di_bh = di_bh; 945 946 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) 947 wc->w_large_pages = 1; 948 else 949 wc->w_large_pages = 0; 950 951 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 952 953 *wcp = wc; 954 955 return 0; 956 } 957 958 /* 959 * If a page has any new buffers, zero them out here, and mark them uptodate 960 * and dirty so they'll be written out (in order to prevent uninitialised 961 * block data from leaking). And clear the new bit. 962 */ 963 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 964 { 965 unsigned int block_start, block_end; 966 struct buffer_head *head, *bh; 967 968 BUG_ON(!PageLocked(page)); 969 if (!page_has_buffers(page)) 970 return; 971 972 bh = head = page_buffers(page); 973 block_start = 0; 974 do { 975 block_end = block_start + bh->b_size; 976 977 if (buffer_new(bh)) { 978 if (block_end > from && block_start < to) { 979 if (!PageUptodate(page)) { 980 unsigned start, end; 981 982 start = max(from, block_start); 983 end = min(to, block_end); 984 985 zero_user_segment(page, start, end); 986 set_buffer_uptodate(bh); 987 } 988 989 clear_buffer_new(bh); 990 mark_buffer_dirty(bh); 991 } 992 } 993 994 block_start = block_end; 995 bh = bh->b_this_page; 996 } while (bh != head); 997 } 998 999 /* 1000 * Only called when we have a failure during allocating write to write 1001 * zero's to the newly allocated region. 1002 */ 1003 static void ocfs2_write_failure(struct inode *inode, 1004 struct ocfs2_write_ctxt *wc, 1005 loff_t user_pos, unsigned user_len) 1006 { 1007 int i; 1008 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), 1009 to = user_pos + user_len; 1010 struct page *tmppage; 1011 1012 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 1013 1014 for(i = 0; i < wc->w_num_pages; i++) { 1015 tmppage = wc->w_pages[i]; 1016 1017 if (page_has_buffers(tmppage)) { 1018 if (ocfs2_should_order_data(inode)) 1019 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1020 1021 block_commit_write(tmppage, from, to); 1022 } 1023 } 1024 } 1025 1026 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 1027 struct ocfs2_write_ctxt *wc, 1028 struct page *page, u32 cpos, 1029 loff_t user_pos, unsigned user_len, 1030 int new) 1031 { 1032 int ret; 1033 unsigned int map_from = 0, map_to = 0; 1034 unsigned int cluster_start, cluster_end; 1035 unsigned int user_data_from = 0, user_data_to = 0; 1036 1037 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 1038 &cluster_start, &cluster_end); 1039 1040 /* treat the write as new if the a hole/lseek spanned across 1041 * the page boundary. 1042 */ 1043 new = new | ((i_size_read(inode) <= page_offset(page)) && 1044 (page_offset(page) <= user_pos)); 1045 1046 if (page == wc->w_target_page) { 1047 map_from = user_pos & (PAGE_CACHE_SIZE - 1); 1048 map_to = map_from + user_len; 1049 1050 if (new) 1051 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1052 cluster_start, cluster_end, 1053 new); 1054 else 1055 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1056 map_from, map_to, new); 1057 if (ret) { 1058 mlog_errno(ret); 1059 goto out; 1060 } 1061 1062 user_data_from = map_from; 1063 user_data_to = map_to; 1064 if (new) { 1065 map_from = cluster_start; 1066 map_to = cluster_end; 1067 } 1068 } else { 1069 /* 1070 * If we haven't allocated the new page yet, we 1071 * shouldn't be writing it out without copying user 1072 * data. This is likely a math error from the caller. 1073 */ 1074 BUG_ON(!new); 1075 1076 map_from = cluster_start; 1077 map_to = cluster_end; 1078 1079 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1080 cluster_start, cluster_end, new); 1081 if (ret) { 1082 mlog_errno(ret); 1083 goto out; 1084 } 1085 } 1086 1087 /* 1088 * Parts of newly allocated pages need to be zero'd. 1089 * 1090 * Above, we have also rewritten 'to' and 'from' - as far as 1091 * the rest of the function is concerned, the entire cluster 1092 * range inside of a page needs to be written. 1093 * 1094 * We can skip this if the page is up to date - it's already 1095 * been zero'd from being read in as a hole. 1096 */ 1097 if (new && !PageUptodate(page)) 1098 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1099 cpos, user_data_from, user_data_to); 1100 1101 flush_dcache_page(page); 1102 1103 out: 1104 return ret; 1105 } 1106 1107 /* 1108 * This function will only grab one clusters worth of pages. 1109 */ 1110 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1111 struct ocfs2_write_ctxt *wc, 1112 u32 cpos, loff_t user_pos, 1113 unsigned user_len, int new, 1114 struct page *mmap_page) 1115 { 1116 int ret = 0, i; 1117 unsigned long start, target_index, end_index, index; 1118 struct inode *inode = mapping->host; 1119 loff_t last_byte; 1120 1121 target_index = user_pos >> PAGE_CACHE_SHIFT; 1122 1123 /* 1124 * Figure out how many pages we'll be manipulating here. For 1125 * non allocating write, we just change the one 1126 * page. Otherwise, we'll need a whole clusters worth. If we're 1127 * writing past i_size, we only need enough pages to cover the 1128 * last page of the write. 1129 */ 1130 if (new) { 1131 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1132 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1133 /* 1134 * We need the index *past* the last page we could possibly 1135 * touch. This is the page past the end of the write or 1136 * i_size, whichever is greater. 1137 */ 1138 last_byte = max(user_pos + user_len, i_size_read(inode)); 1139 BUG_ON(last_byte < 1); 1140 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1; 1141 if ((start + wc->w_num_pages) > end_index) 1142 wc->w_num_pages = end_index - start; 1143 } else { 1144 wc->w_num_pages = 1; 1145 start = target_index; 1146 } 1147 1148 for(i = 0; i < wc->w_num_pages; i++) { 1149 index = start + i; 1150 1151 if (index == target_index && mmap_page) { 1152 /* 1153 * ocfs2_pagemkwrite() is a little different 1154 * and wants us to directly use the page 1155 * passed in. 1156 */ 1157 lock_page(mmap_page); 1158 1159 /* Exit and let the caller retry */ 1160 if (mmap_page->mapping != mapping) { 1161 WARN_ON(mmap_page->mapping); 1162 unlock_page(mmap_page); 1163 ret = -EAGAIN; 1164 goto out; 1165 } 1166 1167 page_cache_get(mmap_page); 1168 wc->w_pages[i] = mmap_page; 1169 wc->w_target_locked = true; 1170 } else { 1171 wc->w_pages[i] = find_or_create_page(mapping, index, 1172 GFP_NOFS); 1173 if (!wc->w_pages[i]) { 1174 ret = -ENOMEM; 1175 mlog_errno(ret); 1176 goto out; 1177 } 1178 } 1179 wait_for_stable_page(wc->w_pages[i]); 1180 1181 if (index == target_index) 1182 wc->w_target_page = wc->w_pages[i]; 1183 } 1184 out: 1185 if (ret) 1186 wc->w_target_locked = false; 1187 return ret; 1188 } 1189 1190 /* 1191 * Prepare a single cluster for write one cluster into the file. 1192 */ 1193 static int ocfs2_write_cluster(struct address_space *mapping, 1194 u32 phys, unsigned int unwritten, 1195 unsigned int should_zero, 1196 struct ocfs2_alloc_context *data_ac, 1197 struct ocfs2_alloc_context *meta_ac, 1198 struct ocfs2_write_ctxt *wc, u32 cpos, 1199 loff_t user_pos, unsigned user_len) 1200 { 1201 int ret, i, new; 1202 u64 v_blkno, p_blkno; 1203 struct inode *inode = mapping->host; 1204 struct ocfs2_extent_tree et; 1205 1206 new = phys == 0 ? 1 : 0; 1207 if (new) { 1208 u32 tmp_pos; 1209 1210 /* 1211 * This is safe to call with the page locks - it won't take 1212 * any additional semaphores or cluster locks. 1213 */ 1214 tmp_pos = cpos; 1215 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1216 &tmp_pos, 1, 0, wc->w_di_bh, 1217 wc->w_handle, data_ac, 1218 meta_ac, NULL); 1219 /* 1220 * This shouldn't happen because we must have already 1221 * calculated the correct meta data allocation required. The 1222 * internal tree allocation code should know how to increase 1223 * transaction credits itself. 1224 * 1225 * If need be, we could handle -EAGAIN for a 1226 * RESTART_TRANS here. 1227 */ 1228 mlog_bug_on_msg(ret == -EAGAIN, 1229 "Inode %llu: EAGAIN return during allocation.\n", 1230 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1231 if (ret < 0) { 1232 mlog_errno(ret); 1233 goto out; 1234 } 1235 } else if (unwritten) { 1236 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1237 wc->w_di_bh); 1238 ret = ocfs2_mark_extent_written(inode, &et, 1239 wc->w_handle, cpos, 1, phys, 1240 meta_ac, &wc->w_dealloc); 1241 if (ret < 0) { 1242 mlog_errno(ret); 1243 goto out; 1244 } 1245 } 1246 1247 if (should_zero) 1248 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); 1249 else 1250 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; 1251 1252 /* 1253 * The only reason this should fail is due to an inability to 1254 * find the extent added. 1255 */ 1256 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, 1257 NULL); 1258 if (ret < 0) { 1259 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, " 1260 "at logical block %llu", 1261 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1262 (unsigned long long)v_blkno); 1263 goto out; 1264 } 1265 1266 BUG_ON(p_blkno == 0); 1267 1268 for(i = 0; i < wc->w_num_pages; i++) { 1269 int tmpret; 1270 1271 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1272 wc->w_pages[i], cpos, 1273 user_pos, user_len, 1274 should_zero); 1275 if (tmpret) { 1276 mlog_errno(tmpret); 1277 if (ret == 0) 1278 ret = tmpret; 1279 } 1280 } 1281 1282 /* 1283 * We only have cleanup to do in case of allocating write. 1284 */ 1285 if (ret && new) 1286 ocfs2_write_failure(inode, wc, user_pos, user_len); 1287 1288 out: 1289 1290 return ret; 1291 } 1292 1293 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1294 struct ocfs2_alloc_context *data_ac, 1295 struct ocfs2_alloc_context *meta_ac, 1296 struct ocfs2_write_ctxt *wc, 1297 loff_t pos, unsigned len) 1298 { 1299 int ret, i; 1300 loff_t cluster_off; 1301 unsigned int local_len = len; 1302 struct ocfs2_write_cluster_desc *desc; 1303 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1304 1305 for (i = 0; i < wc->w_clen; i++) { 1306 desc = &wc->w_desc[i]; 1307 1308 /* 1309 * We have to make sure that the total write passed in 1310 * doesn't extend past a single cluster. 1311 */ 1312 local_len = len; 1313 cluster_off = pos & (osb->s_clustersize - 1); 1314 if ((cluster_off + local_len) > osb->s_clustersize) 1315 local_len = osb->s_clustersize - cluster_off; 1316 1317 ret = ocfs2_write_cluster(mapping, desc->c_phys, 1318 desc->c_unwritten, 1319 desc->c_needs_zero, 1320 data_ac, meta_ac, 1321 wc, desc->c_cpos, pos, local_len); 1322 if (ret) { 1323 mlog_errno(ret); 1324 goto out; 1325 } 1326 1327 len -= local_len; 1328 pos += local_len; 1329 } 1330 1331 ret = 0; 1332 out: 1333 return ret; 1334 } 1335 1336 /* 1337 * ocfs2_write_end() wants to know which parts of the target page it 1338 * should complete the write on. It's easiest to compute them ahead of 1339 * time when a more complete view of the write is available. 1340 */ 1341 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1342 struct ocfs2_write_ctxt *wc, 1343 loff_t pos, unsigned len, int alloc) 1344 { 1345 struct ocfs2_write_cluster_desc *desc; 1346 1347 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); 1348 wc->w_target_to = wc->w_target_from + len; 1349 1350 if (alloc == 0) 1351 return; 1352 1353 /* 1354 * Allocating write - we may have different boundaries based 1355 * on page size and cluster size. 1356 * 1357 * NOTE: We can no longer compute one value from the other as 1358 * the actual write length and user provided length may be 1359 * different. 1360 */ 1361 1362 if (wc->w_large_pages) { 1363 /* 1364 * We only care about the 1st and last cluster within 1365 * our range and whether they should be zero'd or not. Either 1366 * value may be extended out to the start/end of a 1367 * newly allocated cluster. 1368 */ 1369 desc = &wc->w_desc[0]; 1370 if (desc->c_needs_zero) 1371 ocfs2_figure_cluster_boundaries(osb, 1372 desc->c_cpos, 1373 &wc->w_target_from, 1374 NULL); 1375 1376 desc = &wc->w_desc[wc->w_clen - 1]; 1377 if (desc->c_needs_zero) 1378 ocfs2_figure_cluster_boundaries(osb, 1379 desc->c_cpos, 1380 NULL, 1381 &wc->w_target_to); 1382 } else { 1383 wc->w_target_from = 0; 1384 wc->w_target_to = PAGE_CACHE_SIZE; 1385 } 1386 } 1387 1388 /* 1389 * Populate each single-cluster write descriptor in the write context 1390 * with information about the i/o to be done. 1391 * 1392 * Returns the number of clusters that will have to be allocated, as 1393 * well as a worst case estimate of the number of extent records that 1394 * would have to be created during a write to an unwritten region. 1395 */ 1396 static int ocfs2_populate_write_desc(struct inode *inode, 1397 struct ocfs2_write_ctxt *wc, 1398 unsigned int *clusters_to_alloc, 1399 unsigned int *extents_to_split) 1400 { 1401 int ret; 1402 struct ocfs2_write_cluster_desc *desc; 1403 unsigned int num_clusters = 0; 1404 unsigned int ext_flags = 0; 1405 u32 phys = 0; 1406 int i; 1407 1408 *clusters_to_alloc = 0; 1409 *extents_to_split = 0; 1410 1411 for (i = 0; i < wc->w_clen; i++) { 1412 desc = &wc->w_desc[i]; 1413 desc->c_cpos = wc->w_cpos + i; 1414 1415 if (num_clusters == 0) { 1416 /* 1417 * Need to look up the next extent record. 1418 */ 1419 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1420 &num_clusters, &ext_flags); 1421 if (ret) { 1422 mlog_errno(ret); 1423 goto out; 1424 } 1425 1426 /* We should already CoW the refcountd extent. */ 1427 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1428 1429 /* 1430 * Assume worst case - that we're writing in 1431 * the middle of the extent. 1432 * 1433 * We can assume that the write proceeds from 1434 * left to right, in which case the extent 1435 * insert code is smart enough to coalesce the 1436 * next splits into the previous records created. 1437 */ 1438 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1439 *extents_to_split = *extents_to_split + 2; 1440 } else if (phys) { 1441 /* 1442 * Only increment phys if it doesn't describe 1443 * a hole. 1444 */ 1445 phys++; 1446 } 1447 1448 /* 1449 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1450 * file that got extended. w_first_new_cpos tells us 1451 * where the newly allocated clusters are so we can 1452 * zero them. 1453 */ 1454 if (desc->c_cpos >= wc->w_first_new_cpos) { 1455 BUG_ON(phys == 0); 1456 desc->c_needs_zero = 1; 1457 } 1458 1459 desc->c_phys = phys; 1460 if (phys == 0) { 1461 desc->c_new = 1; 1462 desc->c_needs_zero = 1; 1463 *clusters_to_alloc = *clusters_to_alloc + 1; 1464 } 1465 1466 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1467 desc->c_unwritten = 1; 1468 desc->c_needs_zero = 1; 1469 } 1470 1471 num_clusters--; 1472 } 1473 1474 ret = 0; 1475 out: 1476 return ret; 1477 } 1478 1479 static int ocfs2_write_begin_inline(struct address_space *mapping, 1480 struct inode *inode, 1481 struct ocfs2_write_ctxt *wc) 1482 { 1483 int ret; 1484 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1485 struct page *page; 1486 handle_t *handle; 1487 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1488 1489 page = find_or_create_page(mapping, 0, GFP_NOFS); 1490 if (!page) { 1491 ret = -ENOMEM; 1492 mlog_errno(ret); 1493 goto out; 1494 } 1495 /* 1496 * If we don't set w_num_pages then this page won't get unlocked 1497 * and freed on cleanup of the write context. 1498 */ 1499 wc->w_pages[0] = wc->w_target_page = page; 1500 wc->w_num_pages = 1; 1501 1502 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1503 if (IS_ERR(handle)) { 1504 ret = PTR_ERR(handle); 1505 mlog_errno(ret); 1506 goto out; 1507 } 1508 1509 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1510 OCFS2_JOURNAL_ACCESS_WRITE); 1511 if (ret) { 1512 ocfs2_commit_trans(osb, handle); 1513 1514 mlog_errno(ret); 1515 goto out; 1516 } 1517 1518 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1519 ocfs2_set_inode_data_inline(inode, di); 1520 1521 if (!PageUptodate(page)) { 1522 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1523 if (ret) { 1524 ocfs2_commit_trans(osb, handle); 1525 1526 goto out; 1527 } 1528 } 1529 1530 wc->w_handle = handle; 1531 out: 1532 return ret; 1533 } 1534 1535 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1536 { 1537 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1538 1539 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1540 return 1; 1541 return 0; 1542 } 1543 1544 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1545 struct inode *inode, loff_t pos, 1546 unsigned len, struct page *mmap_page, 1547 struct ocfs2_write_ctxt *wc) 1548 { 1549 int ret, written = 0; 1550 loff_t end = pos + len; 1551 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1552 struct ocfs2_dinode *di = NULL; 1553 1554 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1555 len, (unsigned long long)pos, 1556 oi->ip_dyn_features); 1557 1558 /* 1559 * Handle inodes which already have inline data 1st. 1560 */ 1561 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1562 if (mmap_page == NULL && 1563 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1564 goto do_inline_write; 1565 1566 /* 1567 * The write won't fit - we have to give this inode an 1568 * inline extent list now. 1569 */ 1570 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1571 if (ret) 1572 mlog_errno(ret); 1573 goto out; 1574 } 1575 1576 /* 1577 * Check whether the inode can accept inline data. 1578 */ 1579 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1580 return 0; 1581 1582 /* 1583 * Check whether the write can fit. 1584 */ 1585 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1586 if (mmap_page || 1587 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1588 return 0; 1589 1590 do_inline_write: 1591 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1592 if (ret) { 1593 mlog_errno(ret); 1594 goto out; 1595 } 1596 1597 /* 1598 * This signals to the caller that the data can be written 1599 * inline. 1600 */ 1601 written = 1; 1602 out: 1603 return written ? written : ret; 1604 } 1605 1606 /* 1607 * This function only does anything for file systems which can't 1608 * handle sparse files. 1609 * 1610 * What we want to do here is fill in any hole between the current end 1611 * of allocation and the end of our write. That way the rest of the 1612 * write path can treat it as an non-allocating write, which has no 1613 * special case code for sparse/nonsparse files. 1614 */ 1615 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1616 struct buffer_head *di_bh, 1617 loff_t pos, unsigned len, 1618 struct ocfs2_write_ctxt *wc) 1619 { 1620 int ret; 1621 loff_t newsize = pos + len; 1622 1623 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1624 1625 if (newsize <= i_size_read(inode)) 1626 return 0; 1627 1628 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1629 if (ret) 1630 mlog_errno(ret); 1631 1632 wc->w_first_new_cpos = 1633 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1634 1635 return ret; 1636 } 1637 1638 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1639 loff_t pos) 1640 { 1641 int ret = 0; 1642 1643 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1644 if (pos > i_size_read(inode)) 1645 ret = ocfs2_zero_extend(inode, di_bh, pos); 1646 1647 return ret; 1648 } 1649 1650 /* 1651 * Try to flush truncate logs if we can free enough clusters from it. 1652 * As for return value, "< 0" means error, "0" no space and "1" means 1653 * we have freed enough spaces and let the caller try to allocate again. 1654 */ 1655 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 1656 unsigned int needed) 1657 { 1658 tid_t target; 1659 int ret = 0; 1660 unsigned int truncated_clusters; 1661 1662 mutex_lock(&osb->osb_tl_inode->i_mutex); 1663 truncated_clusters = osb->truncated_clusters; 1664 mutex_unlock(&osb->osb_tl_inode->i_mutex); 1665 1666 /* 1667 * Check whether we can succeed in allocating if we free 1668 * the truncate log. 1669 */ 1670 if (truncated_clusters < needed) 1671 goto out; 1672 1673 ret = ocfs2_flush_truncate_log(osb); 1674 if (ret) { 1675 mlog_errno(ret); 1676 goto out; 1677 } 1678 1679 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 1680 jbd2_log_wait_commit(osb->journal->j_journal, target); 1681 ret = 1; 1682 } 1683 out: 1684 return ret; 1685 } 1686 1687 int ocfs2_write_begin_nolock(struct file *filp, 1688 struct address_space *mapping, 1689 loff_t pos, unsigned len, unsigned flags, 1690 struct page **pagep, void **fsdata, 1691 struct buffer_head *di_bh, struct page *mmap_page) 1692 { 1693 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1694 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1695 struct ocfs2_write_ctxt *wc; 1696 struct inode *inode = mapping->host; 1697 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1698 struct ocfs2_dinode *di; 1699 struct ocfs2_alloc_context *data_ac = NULL; 1700 struct ocfs2_alloc_context *meta_ac = NULL; 1701 handle_t *handle; 1702 struct ocfs2_extent_tree et; 1703 int try_free = 1, ret1; 1704 1705 try_again: 1706 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); 1707 if (ret) { 1708 mlog_errno(ret); 1709 return ret; 1710 } 1711 1712 if (ocfs2_supports_inline_data(osb)) { 1713 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1714 mmap_page, wc); 1715 if (ret == 1) { 1716 ret = 0; 1717 goto success; 1718 } 1719 if (ret < 0) { 1720 mlog_errno(ret); 1721 goto out; 1722 } 1723 } 1724 1725 if (ocfs2_sparse_alloc(osb)) 1726 ret = ocfs2_zero_tail(inode, di_bh, pos); 1727 else 1728 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len, 1729 wc); 1730 if (ret) { 1731 mlog_errno(ret); 1732 goto out; 1733 } 1734 1735 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1736 if (ret < 0) { 1737 mlog_errno(ret); 1738 goto out; 1739 } else if (ret == 1) { 1740 clusters_need = wc->w_clen; 1741 ret = ocfs2_refcount_cow(inode, di_bh, 1742 wc->w_cpos, wc->w_clen, UINT_MAX); 1743 if (ret) { 1744 mlog_errno(ret); 1745 goto out; 1746 } 1747 } 1748 1749 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1750 &extents_to_split); 1751 if (ret) { 1752 mlog_errno(ret); 1753 goto out; 1754 } 1755 clusters_need += clusters_to_alloc; 1756 1757 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1758 1759 trace_ocfs2_write_begin_nolock( 1760 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1761 (long long)i_size_read(inode), 1762 le32_to_cpu(di->i_clusters), 1763 pos, len, flags, mmap_page, 1764 clusters_to_alloc, extents_to_split); 1765 1766 /* 1767 * We set w_target_from, w_target_to here so that 1768 * ocfs2_write_end() knows which range in the target page to 1769 * write out. An allocation requires that we write the entire 1770 * cluster range. 1771 */ 1772 if (clusters_to_alloc || extents_to_split) { 1773 /* 1774 * XXX: We are stretching the limits of 1775 * ocfs2_lock_allocators(). It greatly over-estimates 1776 * the work to be done. 1777 */ 1778 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1779 wc->w_di_bh); 1780 ret = ocfs2_lock_allocators(inode, &et, 1781 clusters_to_alloc, extents_to_split, 1782 &data_ac, &meta_ac); 1783 if (ret) { 1784 mlog_errno(ret); 1785 goto out; 1786 } 1787 1788 if (data_ac) 1789 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1790 1791 credits = ocfs2_calc_extend_credits(inode->i_sb, 1792 &di->id2.i_list); 1793 1794 } 1795 1796 /* 1797 * We have to zero sparse allocated clusters, unwritten extent clusters, 1798 * and non-sparse clusters we just extended. For non-sparse writes, 1799 * we know zeros will only be needed in the first and/or last cluster. 1800 */ 1801 if (clusters_to_alloc || extents_to_split || 1802 (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1803 wc->w_desc[wc->w_clen - 1].c_needs_zero))) 1804 cluster_of_pages = 1; 1805 else 1806 cluster_of_pages = 0; 1807 1808 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1809 1810 handle = ocfs2_start_trans(osb, credits); 1811 if (IS_ERR(handle)) { 1812 ret = PTR_ERR(handle); 1813 mlog_errno(ret); 1814 goto out; 1815 } 1816 1817 wc->w_handle = handle; 1818 1819 if (clusters_to_alloc) { 1820 ret = dquot_alloc_space_nodirty(inode, 1821 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1822 if (ret) 1823 goto out_commit; 1824 } 1825 /* 1826 * We don't want this to fail in ocfs2_write_end(), so do it 1827 * here. 1828 */ 1829 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1830 OCFS2_JOURNAL_ACCESS_WRITE); 1831 if (ret) { 1832 mlog_errno(ret); 1833 goto out_quota; 1834 } 1835 1836 /* 1837 * Fill our page array first. That way we've grabbed enough so 1838 * that we can zero and flush if we error after adding the 1839 * extent. 1840 */ 1841 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1842 cluster_of_pages, mmap_page); 1843 if (ret && ret != -EAGAIN) { 1844 mlog_errno(ret); 1845 goto out_quota; 1846 } 1847 1848 /* 1849 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 1850 * the target page. In this case, we exit with no error and no target 1851 * page. This will trigger the caller, page_mkwrite(), to re-try 1852 * the operation. 1853 */ 1854 if (ret == -EAGAIN) { 1855 BUG_ON(wc->w_target_page); 1856 ret = 0; 1857 goto out_quota; 1858 } 1859 1860 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1861 len); 1862 if (ret) { 1863 mlog_errno(ret); 1864 goto out_quota; 1865 } 1866 1867 if (data_ac) 1868 ocfs2_free_alloc_context(data_ac); 1869 if (meta_ac) 1870 ocfs2_free_alloc_context(meta_ac); 1871 1872 success: 1873 *pagep = wc->w_target_page; 1874 *fsdata = wc; 1875 return 0; 1876 out_quota: 1877 if (clusters_to_alloc) 1878 dquot_free_space(inode, 1879 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1880 out_commit: 1881 ocfs2_commit_trans(osb, handle); 1882 1883 out: 1884 ocfs2_free_write_ctxt(wc); 1885 1886 if (data_ac) { 1887 ocfs2_free_alloc_context(data_ac); 1888 data_ac = NULL; 1889 } 1890 if (meta_ac) { 1891 ocfs2_free_alloc_context(meta_ac); 1892 meta_ac = NULL; 1893 } 1894 1895 if (ret == -ENOSPC && try_free) { 1896 /* 1897 * Try to free some truncate log so that we can have enough 1898 * clusters to allocate. 1899 */ 1900 try_free = 0; 1901 1902 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1903 if (ret1 == 1) 1904 goto try_again; 1905 1906 if (ret1 < 0) 1907 mlog_errno(ret1); 1908 } 1909 1910 return ret; 1911 } 1912 1913 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1914 loff_t pos, unsigned len, unsigned flags, 1915 struct page **pagep, void **fsdata) 1916 { 1917 int ret; 1918 struct buffer_head *di_bh = NULL; 1919 struct inode *inode = mapping->host; 1920 1921 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1922 if (ret) { 1923 mlog_errno(ret); 1924 return ret; 1925 } 1926 1927 /* 1928 * Take alloc sem here to prevent concurrent lookups. That way 1929 * the mapping, zeroing and tree manipulation within 1930 * ocfs2_write() will be safe against ->readpage(). This 1931 * should also serve to lock out allocation from a shared 1932 * writeable region. 1933 */ 1934 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1935 1936 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep, 1937 fsdata, di_bh, NULL); 1938 if (ret) { 1939 mlog_errno(ret); 1940 goto out_fail; 1941 } 1942 1943 brelse(di_bh); 1944 1945 return 0; 1946 1947 out_fail: 1948 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1949 1950 brelse(di_bh); 1951 ocfs2_inode_unlock(inode, 1); 1952 1953 return ret; 1954 } 1955 1956 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1957 unsigned len, unsigned *copied, 1958 struct ocfs2_dinode *di, 1959 struct ocfs2_write_ctxt *wc) 1960 { 1961 void *kaddr; 1962 1963 if (unlikely(*copied < len)) { 1964 if (!PageUptodate(wc->w_target_page)) { 1965 *copied = 0; 1966 return; 1967 } 1968 } 1969 1970 kaddr = kmap_atomic(wc->w_target_page); 1971 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1972 kunmap_atomic(kaddr); 1973 1974 trace_ocfs2_write_end_inline( 1975 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1976 (unsigned long long)pos, *copied, 1977 le16_to_cpu(di->id2.i_data.id_count), 1978 le16_to_cpu(di->i_dyn_features)); 1979 } 1980 1981 int ocfs2_write_end_nolock(struct address_space *mapping, 1982 loff_t pos, unsigned len, unsigned copied, 1983 struct page *page, void *fsdata) 1984 { 1985 int i; 1986 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); 1987 struct inode *inode = mapping->host; 1988 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1989 struct ocfs2_write_ctxt *wc = fsdata; 1990 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1991 handle_t *handle = wc->w_handle; 1992 struct page *tmppage; 1993 1994 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1995 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1996 goto out_write_size; 1997 } 1998 1999 if (unlikely(copied < len)) { 2000 if (!PageUptodate(wc->w_target_page)) 2001 copied = 0; 2002 2003 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 2004 start+len); 2005 } 2006 flush_dcache_page(wc->w_target_page); 2007 2008 for(i = 0; i < wc->w_num_pages; i++) { 2009 tmppage = wc->w_pages[i]; 2010 2011 if (tmppage == wc->w_target_page) { 2012 from = wc->w_target_from; 2013 to = wc->w_target_to; 2014 2015 BUG_ON(from > PAGE_CACHE_SIZE || 2016 to > PAGE_CACHE_SIZE || 2017 to < from); 2018 } else { 2019 /* 2020 * Pages adjacent to the target (if any) imply 2021 * a hole-filling write in which case we want 2022 * to flush their entire range. 2023 */ 2024 from = 0; 2025 to = PAGE_CACHE_SIZE; 2026 } 2027 2028 if (page_has_buffers(tmppage)) { 2029 if (ocfs2_should_order_data(inode)) 2030 ocfs2_jbd2_file_inode(wc->w_handle, inode); 2031 block_commit_write(tmppage, from, to); 2032 } 2033 } 2034 2035 out_write_size: 2036 pos += copied; 2037 if (pos > i_size_read(inode)) { 2038 i_size_write(inode, pos); 2039 mark_inode_dirty(inode); 2040 } 2041 inode->i_blocks = ocfs2_inode_sector_count(inode); 2042 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2043 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2044 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2045 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2046 ocfs2_journal_dirty(handle, wc->w_di_bh); 2047 2048 ocfs2_commit_trans(osb, handle); 2049 2050 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2051 2052 ocfs2_free_write_ctxt(wc); 2053 2054 return copied; 2055 } 2056 2057 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2058 loff_t pos, unsigned len, unsigned copied, 2059 struct page *page, void *fsdata) 2060 { 2061 int ret; 2062 struct inode *inode = mapping->host; 2063 2064 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 2065 2066 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2067 ocfs2_inode_unlock(inode, 1); 2068 2069 return ret; 2070 } 2071 2072 const struct address_space_operations ocfs2_aops = { 2073 .readpage = ocfs2_readpage, 2074 .readpages = ocfs2_readpages, 2075 .writepage = ocfs2_writepage, 2076 .write_begin = ocfs2_write_begin, 2077 .write_end = ocfs2_write_end, 2078 .bmap = ocfs2_bmap, 2079 .direct_IO = ocfs2_direct_IO, 2080 .invalidatepage = block_invalidatepage, 2081 .releasepage = ocfs2_releasepage, 2082 .migratepage = buffer_migrate_page, 2083 .is_partially_uptodate = block_is_partially_uptodate, 2084 .error_remove_page = generic_error_remove_page, 2085 }; 2086