xref: /openbmc/linux/fs/ocfs2/aops.c (revision 0d3b051a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3  * vim: noexpandtab sw=8 ts=8 sts=0:
4  *
5  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
6  */
7 
8 #include <linux/fs.h>
9 #include <linux/slab.h>
10 #include <linux/highmem.h>
11 #include <linux/pagemap.h>
12 #include <asm/byteorder.h>
13 #include <linux/swap.h>
14 #include <linux/mpage.h>
15 #include <linux/quotaops.h>
16 #include <linux/blkdev.h>
17 #include <linux/uio.h>
18 #include <linux/mm.h>
19 
20 #include <cluster/masklog.h>
21 
22 #include "ocfs2.h"
23 
24 #include "alloc.h"
25 #include "aops.h"
26 #include "dlmglue.h"
27 #include "extent_map.h"
28 #include "file.h"
29 #include "inode.h"
30 #include "journal.h"
31 #include "suballoc.h"
32 #include "super.h"
33 #include "symlink.h"
34 #include "refcounttree.h"
35 #include "ocfs2_trace.h"
36 
37 #include "buffer_head_io.h"
38 #include "dir.h"
39 #include "namei.h"
40 #include "sysfile.h"
41 
42 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
43 				   struct buffer_head *bh_result, int create)
44 {
45 	int err = -EIO;
46 	int status;
47 	struct ocfs2_dinode *fe = NULL;
48 	struct buffer_head *bh = NULL;
49 	struct buffer_head *buffer_cache_bh = NULL;
50 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
51 	void *kaddr;
52 
53 	trace_ocfs2_symlink_get_block(
54 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
55 			(unsigned long long)iblock, bh_result, create);
56 
57 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
58 
59 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
60 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
61 		     (unsigned long long)iblock);
62 		goto bail;
63 	}
64 
65 	status = ocfs2_read_inode_block(inode, &bh);
66 	if (status < 0) {
67 		mlog_errno(status);
68 		goto bail;
69 	}
70 	fe = (struct ocfs2_dinode *) bh->b_data;
71 
72 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
73 						    le32_to_cpu(fe->i_clusters))) {
74 		err = -ENOMEM;
75 		mlog(ML_ERROR, "block offset is outside the allocated size: "
76 		     "%llu\n", (unsigned long long)iblock);
77 		goto bail;
78 	}
79 
80 	/* We don't use the page cache to create symlink data, so if
81 	 * need be, copy it over from the buffer cache. */
82 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
83 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
84 			    iblock;
85 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
86 		if (!buffer_cache_bh) {
87 			err = -ENOMEM;
88 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
89 			goto bail;
90 		}
91 
92 		/* we haven't locked out transactions, so a commit
93 		 * could've happened. Since we've got a reference on
94 		 * the bh, even if it commits while we're doing the
95 		 * copy, the data is still good. */
96 		if (buffer_jbd(buffer_cache_bh)
97 		    && ocfs2_inode_is_new(inode)) {
98 			kaddr = kmap_atomic(bh_result->b_page);
99 			if (!kaddr) {
100 				mlog(ML_ERROR, "couldn't kmap!\n");
101 				goto bail;
102 			}
103 			memcpy(kaddr + (bh_result->b_size * iblock),
104 			       buffer_cache_bh->b_data,
105 			       bh_result->b_size);
106 			kunmap_atomic(kaddr);
107 			set_buffer_uptodate(bh_result);
108 		}
109 		brelse(buffer_cache_bh);
110 	}
111 
112 	map_bh(bh_result, inode->i_sb,
113 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
114 
115 	err = 0;
116 
117 bail:
118 	brelse(bh);
119 
120 	return err;
121 }
122 
123 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
124 		    struct buffer_head *bh_result, int create)
125 {
126 	int ret = 0;
127 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
128 
129 	down_read(&oi->ip_alloc_sem);
130 	ret = ocfs2_get_block(inode, iblock, bh_result, create);
131 	up_read(&oi->ip_alloc_sem);
132 
133 	return ret;
134 }
135 
136 int ocfs2_get_block(struct inode *inode, sector_t iblock,
137 		    struct buffer_head *bh_result, int create)
138 {
139 	int err = 0;
140 	unsigned int ext_flags;
141 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
142 	u64 p_blkno, count, past_eof;
143 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144 
145 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
146 			      (unsigned long long)iblock, bh_result, create);
147 
148 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150 		     inode, inode->i_ino);
151 
152 	if (S_ISLNK(inode->i_mode)) {
153 		/* this always does I/O for some reason. */
154 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155 		goto bail;
156 	}
157 
158 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
159 					  &ext_flags);
160 	if (err) {
161 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163 		     (unsigned long long)p_blkno);
164 		goto bail;
165 	}
166 
167 	if (max_blocks < count)
168 		count = max_blocks;
169 
170 	/*
171 	 * ocfs2 never allocates in this function - the only time we
172 	 * need to use BH_New is when we're extending i_size on a file
173 	 * system which doesn't support holes, in which case BH_New
174 	 * allows __block_write_begin() to zero.
175 	 *
176 	 * If we see this on a sparse file system, then a truncate has
177 	 * raced us and removed the cluster. In this case, we clear
178 	 * the buffers dirty and uptodate bits and let the buffer code
179 	 * ignore it as a hole.
180 	 */
181 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
182 		clear_buffer_dirty(bh_result);
183 		clear_buffer_uptodate(bh_result);
184 		goto bail;
185 	}
186 
187 	/* Treat the unwritten extent as a hole for zeroing purposes. */
188 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
189 		map_bh(bh_result, inode->i_sb, p_blkno);
190 
191 	bh_result->b_size = count << inode->i_blkbits;
192 
193 	if (!ocfs2_sparse_alloc(osb)) {
194 		if (p_blkno == 0) {
195 			err = -EIO;
196 			mlog(ML_ERROR,
197 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
198 			     (unsigned long long)iblock,
199 			     (unsigned long long)p_blkno,
200 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
201 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
202 			dump_stack();
203 			goto bail;
204 		}
205 	}
206 
207 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
208 
209 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
210 				  (unsigned long long)past_eof);
211 	if (create && (iblock >= past_eof))
212 		set_buffer_new(bh_result);
213 
214 bail:
215 	if (err < 0)
216 		err = -EIO;
217 
218 	return err;
219 }
220 
221 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
222 			   struct buffer_head *di_bh)
223 {
224 	void *kaddr;
225 	loff_t size;
226 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
227 
228 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
229 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
230 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
231 		return -EROFS;
232 	}
233 
234 	size = i_size_read(inode);
235 
236 	if (size > PAGE_SIZE ||
237 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
238 		ocfs2_error(inode->i_sb,
239 			    "Inode %llu has with inline data has bad size: %Lu\n",
240 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
241 			    (unsigned long long)size);
242 		return -EROFS;
243 	}
244 
245 	kaddr = kmap_atomic(page);
246 	if (size)
247 		memcpy(kaddr, di->id2.i_data.id_data, size);
248 	/* Clear the remaining part of the page */
249 	memset(kaddr + size, 0, PAGE_SIZE - size);
250 	flush_dcache_page(page);
251 	kunmap_atomic(kaddr);
252 
253 	SetPageUptodate(page);
254 
255 	return 0;
256 }
257 
258 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
259 {
260 	int ret;
261 	struct buffer_head *di_bh = NULL;
262 
263 	BUG_ON(!PageLocked(page));
264 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
265 
266 	ret = ocfs2_read_inode_block(inode, &di_bh);
267 	if (ret) {
268 		mlog_errno(ret);
269 		goto out;
270 	}
271 
272 	ret = ocfs2_read_inline_data(inode, page, di_bh);
273 out:
274 	unlock_page(page);
275 
276 	brelse(di_bh);
277 	return ret;
278 }
279 
280 static int ocfs2_readpage(struct file *file, struct page *page)
281 {
282 	struct inode *inode = page->mapping->host;
283 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
284 	loff_t start = (loff_t)page->index << PAGE_SHIFT;
285 	int ret, unlock = 1;
286 
287 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
288 			     (page ? page->index : 0));
289 
290 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
291 	if (ret != 0) {
292 		if (ret == AOP_TRUNCATED_PAGE)
293 			unlock = 0;
294 		mlog_errno(ret);
295 		goto out;
296 	}
297 
298 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
299 		/*
300 		 * Unlock the page and cycle ip_alloc_sem so that we don't
301 		 * busyloop waiting for ip_alloc_sem to unlock
302 		 */
303 		ret = AOP_TRUNCATED_PAGE;
304 		unlock_page(page);
305 		unlock = 0;
306 		down_read(&oi->ip_alloc_sem);
307 		up_read(&oi->ip_alloc_sem);
308 		goto out_inode_unlock;
309 	}
310 
311 	/*
312 	 * i_size might have just been updated as we grabed the meta lock.  We
313 	 * might now be discovering a truncate that hit on another node.
314 	 * block_read_full_page->get_block freaks out if it is asked to read
315 	 * beyond the end of a file, so we check here.  Callers
316 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
317 	 * and notice that the page they just read isn't needed.
318 	 *
319 	 * XXX sys_readahead() seems to get that wrong?
320 	 */
321 	if (start >= i_size_read(inode)) {
322 		zero_user(page, 0, PAGE_SIZE);
323 		SetPageUptodate(page);
324 		ret = 0;
325 		goto out_alloc;
326 	}
327 
328 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
329 		ret = ocfs2_readpage_inline(inode, page);
330 	else
331 		ret = block_read_full_page(page, ocfs2_get_block);
332 	unlock = 0;
333 
334 out_alloc:
335 	up_read(&oi->ip_alloc_sem);
336 out_inode_unlock:
337 	ocfs2_inode_unlock(inode, 0);
338 out:
339 	if (unlock)
340 		unlock_page(page);
341 	return ret;
342 }
343 
344 /*
345  * This is used only for read-ahead. Failures or difficult to handle
346  * situations are safe to ignore.
347  *
348  * Right now, we don't bother with BH_Boundary - in-inode extent lists
349  * are quite large (243 extents on 4k blocks), so most inodes don't
350  * grow out to a tree. If need be, detecting boundary extents could
351  * trivially be added in a future version of ocfs2_get_block().
352  */
353 static void ocfs2_readahead(struct readahead_control *rac)
354 {
355 	int ret;
356 	struct inode *inode = rac->mapping->host;
357 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
358 
359 	/*
360 	 * Use the nonblocking flag for the dlm code to avoid page
361 	 * lock inversion, but don't bother with retrying.
362 	 */
363 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
364 	if (ret)
365 		return;
366 
367 	if (down_read_trylock(&oi->ip_alloc_sem) == 0)
368 		goto out_unlock;
369 
370 	/*
371 	 * Don't bother with inline-data. There isn't anything
372 	 * to read-ahead in that case anyway...
373 	 */
374 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
375 		goto out_up;
376 
377 	/*
378 	 * Check whether a remote node truncated this file - we just
379 	 * drop out in that case as it's not worth handling here.
380 	 */
381 	if (readahead_pos(rac) >= i_size_read(inode))
382 		goto out_up;
383 
384 	mpage_readahead(rac, ocfs2_get_block);
385 
386 out_up:
387 	up_read(&oi->ip_alloc_sem);
388 out_unlock:
389 	ocfs2_inode_unlock(inode, 0);
390 }
391 
392 /* Note: Because we don't support holes, our allocation has
393  * already happened (allocation writes zeros to the file data)
394  * so we don't have to worry about ordered writes in
395  * ocfs2_writepage.
396  *
397  * ->writepage is called during the process of invalidating the page cache
398  * during blocked lock processing.  It can't block on any cluster locks
399  * to during block mapping.  It's relying on the fact that the block
400  * mapping can't have disappeared under the dirty pages that it is
401  * being asked to write back.
402  */
403 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
404 {
405 	trace_ocfs2_writepage(
406 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
407 		page->index);
408 
409 	return block_write_full_page(page, ocfs2_get_block, wbc);
410 }
411 
412 /* Taken from ext3. We don't necessarily need the full blown
413  * functionality yet, but IMHO it's better to cut and paste the whole
414  * thing so we can avoid introducing our own bugs (and easily pick up
415  * their fixes when they happen) --Mark */
416 int walk_page_buffers(	handle_t *handle,
417 			struct buffer_head *head,
418 			unsigned from,
419 			unsigned to,
420 			int *partial,
421 			int (*fn)(	handle_t *handle,
422 					struct buffer_head *bh))
423 {
424 	struct buffer_head *bh;
425 	unsigned block_start, block_end;
426 	unsigned blocksize = head->b_size;
427 	int err, ret = 0;
428 	struct buffer_head *next;
429 
430 	for (	bh = head, block_start = 0;
431 		ret == 0 && (bh != head || !block_start);
432 	    	block_start = block_end, bh = next)
433 	{
434 		next = bh->b_this_page;
435 		block_end = block_start + blocksize;
436 		if (block_end <= from || block_start >= to) {
437 			if (partial && !buffer_uptodate(bh))
438 				*partial = 1;
439 			continue;
440 		}
441 		err = (*fn)(handle, bh);
442 		if (!ret)
443 			ret = err;
444 	}
445 	return ret;
446 }
447 
448 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
449 {
450 	sector_t status;
451 	u64 p_blkno = 0;
452 	int err = 0;
453 	struct inode *inode = mapping->host;
454 
455 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
456 			 (unsigned long long)block);
457 
458 	/*
459 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
460 	 * bypasseѕ the file system for actual I/O.  We really can't allow
461 	 * that on refcounted inodes, so we have to skip out here.  And yes,
462 	 * 0 is the magic code for a bmap error..
463 	 */
464 	if (ocfs2_is_refcount_inode(inode))
465 		return 0;
466 
467 	/* We don't need to lock journal system files, since they aren't
468 	 * accessed concurrently from multiple nodes.
469 	 */
470 	if (!INODE_JOURNAL(inode)) {
471 		err = ocfs2_inode_lock(inode, NULL, 0);
472 		if (err) {
473 			if (err != -ENOENT)
474 				mlog_errno(err);
475 			goto bail;
476 		}
477 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 	}
479 
480 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 						  NULL);
483 
484 	if (!INODE_JOURNAL(inode)) {
485 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
486 		ocfs2_inode_unlock(inode, 0);
487 	}
488 
489 	if (err) {
490 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 		     (unsigned long long)block);
492 		mlog_errno(err);
493 		goto bail;
494 	}
495 
496 bail:
497 	status = err ? 0 : p_blkno;
498 
499 	return status;
500 }
501 
502 static int ocfs2_releasepage(struct page *page, gfp_t wait)
503 {
504 	if (!page_has_buffers(page))
505 		return 0;
506 	return try_to_free_buffers(page);
507 }
508 
509 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
510 					    u32 cpos,
511 					    unsigned int *start,
512 					    unsigned int *end)
513 {
514 	unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
515 
516 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
517 		unsigned int cpp;
518 
519 		cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
520 
521 		cluster_start = cpos % cpp;
522 		cluster_start = cluster_start << osb->s_clustersize_bits;
523 
524 		cluster_end = cluster_start + osb->s_clustersize;
525 	}
526 
527 	BUG_ON(cluster_start > PAGE_SIZE);
528 	BUG_ON(cluster_end > PAGE_SIZE);
529 
530 	if (start)
531 		*start = cluster_start;
532 	if (end)
533 		*end = cluster_end;
534 }
535 
536 /*
537  * 'from' and 'to' are the region in the page to avoid zeroing.
538  *
539  * If pagesize > clustersize, this function will avoid zeroing outside
540  * of the cluster boundary.
541  *
542  * from == to == 0 is code for "zero the entire cluster region"
543  */
544 static void ocfs2_clear_page_regions(struct page *page,
545 				     struct ocfs2_super *osb, u32 cpos,
546 				     unsigned from, unsigned to)
547 {
548 	void *kaddr;
549 	unsigned int cluster_start, cluster_end;
550 
551 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
552 
553 	kaddr = kmap_atomic(page);
554 
555 	if (from || to) {
556 		if (from > cluster_start)
557 			memset(kaddr + cluster_start, 0, from - cluster_start);
558 		if (to < cluster_end)
559 			memset(kaddr + to, 0, cluster_end - to);
560 	} else {
561 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
562 	}
563 
564 	kunmap_atomic(kaddr);
565 }
566 
567 /*
568  * Nonsparse file systems fully allocate before we get to the write
569  * code. This prevents ocfs2_write() from tagging the write as an
570  * allocating one, which means ocfs2_map_page_blocks() might try to
571  * read-in the blocks at the tail of our file. Avoid reading them by
572  * testing i_size against each block offset.
573  */
574 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
575 				 unsigned int block_start)
576 {
577 	u64 offset = page_offset(page) + block_start;
578 
579 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
580 		return 1;
581 
582 	if (i_size_read(inode) > offset)
583 		return 1;
584 
585 	return 0;
586 }
587 
588 /*
589  * Some of this taken from __block_write_begin(). We already have our
590  * mapping by now though, and the entire write will be allocating or
591  * it won't, so not much need to use BH_New.
592  *
593  * This will also skip zeroing, which is handled externally.
594  */
595 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
596 			  struct inode *inode, unsigned int from,
597 			  unsigned int to, int new)
598 {
599 	int ret = 0;
600 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
601 	unsigned int block_end, block_start;
602 	unsigned int bsize = i_blocksize(inode);
603 
604 	if (!page_has_buffers(page))
605 		create_empty_buffers(page, bsize, 0);
606 
607 	head = page_buffers(page);
608 	for (bh = head, block_start = 0; bh != head || !block_start;
609 	     bh = bh->b_this_page, block_start += bsize) {
610 		block_end = block_start + bsize;
611 
612 		clear_buffer_new(bh);
613 
614 		/*
615 		 * Ignore blocks outside of our i/o range -
616 		 * they may belong to unallocated clusters.
617 		 */
618 		if (block_start >= to || block_end <= from) {
619 			if (PageUptodate(page))
620 				set_buffer_uptodate(bh);
621 			continue;
622 		}
623 
624 		/*
625 		 * For an allocating write with cluster size >= page
626 		 * size, we always write the entire page.
627 		 */
628 		if (new)
629 			set_buffer_new(bh);
630 
631 		if (!buffer_mapped(bh)) {
632 			map_bh(bh, inode->i_sb, *p_blkno);
633 			clean_bdev_bh_alias(bh);
634 		}
635 
636 		if (PageUptodate(page)) {
637 			if (!buffer_uptodate(bh))
638 				set_buffer_uptodate(bh);
639 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
640 			   !buffer_new(bh) &&
641 			   ocfs2_should_read_blk(inode, page, block_start) &&
642 			   (block_start < from || block_end > to)) {
643 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
644 			*wait_bh++=bh;
645 		}
646 
647 		*p_blkno = *p_blkno + 1;
648 	}
649 
650 	/*
651 	 * If we issued read requests - let them complete.
652 	 */
653 	while(wait_bh > wait) {
654 		wait_on_buffer(*--wait_bh);
655 		if (!buffer_uptodate(*wait_bh))
656 			ret = -EIO;
657 	}
658 
659 	if (ret == 0 || !new)
660 		return ret;
661 
662 	/*
663 	 * If we get -EIO above, zero out any newly allocated blocks
664 	 * to avoid exposing stale data.
665 	 */
666 	bh = head;
667 	block_start = 0;
668 	do {
669 		block_end = block_start + bsize;
670 		if (block_end <= from)
671 			goto next_bh;
672 		if (block_start >= to)
673 			break;
674 
675 		zero_user(page, block_start, bh->b_size);
676 		set_buffer_uptodate(bh);
677 		mark_buffer_dirty(bh);
678 
679 next_bh:
680 		block_start = block_end;
681 		bh = bh->b_this_page;
682 	} while (bh != head);
683 
684 	return ret;
685 }
686 
687 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
688 #define OCFS2_MAX_CTXT_PAGES	1
689 #else
690 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
691 #endif
692 
693 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
694 
695 struct ocfs2_unwritten_extent {
696 	struct list_head	ue_node;
697 	struct list_head	ue_ip_node;
698 	u32			ue_cpos;
699 	u32			ue_phys;
700 };
701 
702 /*
703  * Describe the state of a single cluster to be written to.
704  */
705 struct ocfs2_write_cluster_desc {
706 	u32		c_cpos;
707 	u32		c_phys;
708 	/*
709 	 * Give this a unique field because c_phys eventually gets
710 	 * filled.
711 	 */
712 	unsigned	c_new;
713 	unsigned	c_clear_unwritten;
714 	unsigned	c_needs_zero;
715 };
716 
717 struct ocfs2_write_ctxt {
718 	/* Logical cluster position / len of write */
719 	u32				w_cpos;
720 	u32				w_clen;
721 
722 	/* First cluster allocated in a nonsparse extend */
723 	u32				w_first_new_cpos;
724 
725 	/* Type of caller. Must be one of buffer, mmap, direct.  */
726 	ocfs2_write_type_t		w_type;
727 
728 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
729 
730 	/*
731 	 * This is true if page_size > cluster_size.
732 	 *
733 	 * It triggers a set of special cases during write which might
734 	 * have to deal with allocating writes to partial pages.
735 	 */
736 	unsigned int			w_large_pages;
737 
738 	/*
739 	 * Pages involved in this write.
740 	 *
741 	 * w_target_page is the page being written to by the user.
742 	 *
743 	 * w_pages is an array of pages which always contains
744 	 * w_target_page, and in the case of an allocating write with
745 	 * page_size < cluster size, it will contain zero'd and mapped
746 	 * pages adjacent to w_target_page which need to be written
747 	 * out in so that future reads from that region will get
748 	 * zero's.
749 	 */
750 	unsigned int			w_num_pages;
751 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
752 	struct page			*w_target_page;
753 
754 	/*
755 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
756 	 * against w_target_page in ocfs2_write_end_nolock.
757 	 */
758 	unsigned int			w_target_locked:1;
759 
760 	/*
761 	 * ocfs2_write_end() uses this to know what the real range to
762 	 * write in the target should be.
763 	 */
764 	unsigned int			w_target_from;
765 	unsigned int			w_target_to;
766 
767 	/*
768 	 * We could use journal_current_handle() but this is cleaner,
769 	 * IMHO -Mark
770 	 */
771 	handle_t			*w_handle;
772 
773 	struct buffer_head		*w_di_bh;
774 
775 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
776 
777 	struct list_head		w_unwritten_list;
778 	unsigned int			w_unwritten_count;
779 };
780 
781 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
782 {
783 	int i;
784 
785 	for(i = 0; i < num_pages; i++) {
786 		if (pages[i]) {
787 			unlock_page(pages[i]);
788 			mark_page_accessed(pages[i]);
789 			put_page(pages[i]);
790 		}
791 	}
792 }
793 
794 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
795 {
796 	int i;
797 
798 	/*
799 	 * w_target_locked is only set to true in the page_mkwrite() case.
800 	 * The intent is to allow us to lock the target page from write_begin()
801 	 * to write_end(). The caller must hold a ref on w_target_page.
802 	 */
803 	if (wc->w_target_locked) {
804 		BUG_ON(!wc->w_target_page);
805 		for (i = 0; i < wc->w_num_pages; i++) {
806 			if (wc->w_target_page == wc->w_pages[i]) {
807 				wc->w_pages[i] = NULL;
808 				break;
809 			}
810 		}
811 		mark_page_accessed(wc->w_target_page);
812 		put_page(wc->w_target_page);
813 	}
814 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
815 }
816 
817 static void ocfs2_free_unwritten_list(struct inode *inode,
818 				 struct list_head *head)
819 {
820 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
821 	struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
822 
823 	list_for_each_entry_safe(ue, tmp, head, ue_node) {
824 		list_del(&ue->ue_node);
825 		spin_lock(&oi->ip_lock);
826 		list_del(&ue->ue_ip_node);
827 		spin_unlock(&oi->ip_lock);
828 		kfree(ue);
829 	}
830 }
831 
832 static void ocfs2_free_write_ctxt(struct inode *inode,
833 				  struct ocfs2_write_ctxt *wc)
834 {
835 	ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
836 	ocfs2_unlock_pages(wc);
837 	brelse(wc->w_di_bh);
838 	kfree(wc);
839 }
840 
841 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
842 				  struct ocfs2_super *osb, loff_t pos,
843 				  unsigned len, ocfs2_write_type_t type,
844 				  struct buffer_head *di_bh)
845 {
846 	u32 cend;
847 	struct ocfs2_write_ctxt *wc;
848 
849 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
850 	if (!wc)
851 		return -ENOMEM;
852 
853 	wc->w_cpos = pos >> osb->s_clustersize_bits;
854 	wc->w_first_new_cpos = UINT_MAX;
855 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
856 	wc->w_clen = cend - wc->w_cpos + 1;
857 	get_bh(di_bh);
858 	wc->w_di_bh = di_bh;
859 	wc->w_type = type;
860 
861 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
862 		wc->w_large_pages = 1;
863 	else
864 		wc->w_large_pages = 0;
865 
866 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
867 	INIT_LIST_HEAD(&wc->w_unwritten_list);
868 
869 	*wcp = wc;
870 
871 	return 0;
872 }
873 
874 /*
875  * If a page has any new buffers, zero them out here, and mark them uptodate
876  * and dirty so they'll be written out (in order to prevent uninitialised
877  * block data from leaking). And clear the new bit.
878  */
879 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
880 {
881 	unsigned int block_start, block_end;
882 	struct buffer_head *head, *bh;
883 
884 	BUG_ON(!PageLocked(page));
885 	if (!page_has_buffers(page))
886 		return;
887 
888 	bh = head = page_buffers(page);
889 	block_start = 0;
890 	do {
891 		block_end = block_start + bh->b_size;
892 
893 		if (buffer_new(bh)) {
894 			if (block_end > from && block_start < to) {
895 				if (!PageUptodate(page)) {
896 					unsigned start, end;
897 
898 					start = max(from, block_start);
899 					end = min(to, block_end);
900 
901 					zero_user_segment(page, start, end);
902 					set_buffer_uptodate(bh);
903 				}
904 
905 				clear_buffer_new(bh);
906 				mark_buffer_dirty(bh);
907 			}
908 		}
909 
910 		block_start = block_end;
911 		bh = bh->b_this_page;
912 	} while (bh != head);
913 }
914 
915 /*
916  * Only called when we have a failure during allocating write to write
917  * zero's to the newly allocated region.
918  */
919 static void ocfs2_write_failure(struct inode *inode,
920 				struct ocfs2_write_ctxt *wc,
921 				loff_t user_pos, unsigned user_len)
922 {
923 	int i;
924 	unsigned from = user_pos & (PAGE_SIZE - 1),
925 		to = user_pos + user_len;
926 	struct page *tmppage;
927 
928 	if (wc->w_target_page)
929 		ocfs2_zero_new_buffers(wc->w_target_page, from, to);
930 
931 	for(i = 0; i < wc->w_num_pages; i++) {
932 		tmppage = wc->w_pages[i];
933 
934 		if (tmppage && page_has_buffers(tmppage)) {
935 			if (ocfs2_should_order_data(inode))
936 				ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
937 							   user_pos, user_len);
938 
939 			block_commit_write(tmppage, from, to);
940 		}
941 	}
942 }
943 
944 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
945 					struct ocfs2_write_ctxt *wc,
946 					struct page *page, u32 cpos,
947 					loff_t user_pos, unsigned user_len,
948 					int new)
949 {
950 	int ret;
951 	unsigned int map_from = 0, map_to = 0;
952 	unsigned int cluster_start, cluster_end;
953 	unsigned int user_data_from = 0, user_data_to = 0;
954 
955 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
956 					&cluster_start, &cluster_end);
957 
958 	/* treat the write as new if the a hole/lseek spanned across
959 	 * the page boundary.
960 	 */
961 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
962 			(page_offset(page) <= user_pos));
963 
964 	if (page == wc->w_target_page) {
965 		map_from = user_pos & (PAGE_SIZE - 1);
966 		map_to = map_from + user_len;
967 
968 		if (new)
969 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
970 						    cluster_start, cluster_end,
971 						    new);
972 		else
973 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
974 						    map_from, map_to, new);
975 		if (ret) {
976 			mlog_errno(ret);
977 			goto out;
978 		}
979 
980 		user_data_from = map_from;
981 		user_data_to = map_to;
982 		if (new) {
983 			map_from = cluster_start;
984 			map_to = cluster_end;
985 		}
986 	} else {
987 		/*
988 		 * If we haven't allocated the new page yet, we
989 		 * shouldn't be writing it out without copying user
990 		 * data. This is likely a math error from the caller.
991 		 */
992 		BUG_ON(!new);
993 
994 		map_from = cluster_start;
995 		map_to = cluster_end;
996 
997 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
998 					    cluster_start, cluster_end, new);
999 		if (ret) {
1000 			mlog_errno(ret);
1001 			goto out;
1002 		}
1003 	}
1004 
1005 	/*
1006 	 * Parts of newly allocated pages need to be zero'd.
1007 	 *
1008 	 * Above, we have also rewritten 'to' and 'from' - as far as
1009 	 * the rest of the function is concerned, the entire cluster
1010 	 * range inside of a page needs to be written.
1011 	 *
1012 	 * We can skip this if the page is up to date - it's already
1013 	 * been zero'd from being read in as a hole.
1014 	 */
1015 	if (new && !PageUptodate(page))
1016 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1017 					 cpos, user_data_from, user_data_to);
1018 
1019 	flush_dcache_page(page);
1020 
1021 out:
1022 	return ret;
1023 }
1024 
1025 /*
1026  * This function will only grab one clusters worth of pages.
1027  */
1028 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1029 				      struct ocfs2_write_ctxt *wc,
1030 				      u32 cpos, loff_t user_pos,
1031 				      unsigned user_len, int new,
1032 				      struct page *mmap_page)
1033 {
1034 	int ret = 0, i;
1035 	unsigned long start, target_index, end_index, index;
1036 	struct inode *inode = mapping->host;
1037 	loff_t last_byte;
1038 
1039 	target_index = user_pos >> PAGE_SHIFT;
1040 
1041 	/*
1042 	 * Figure out how many pages we'll be manipulating here. For
1043 	 * non allocating write, we just change the one
1044 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1045 	 * writing past i_size, we only need enough pages to cover the
1046 	 * last page of the write.
1047 	 */
1048 	if (new) {
1049 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1050 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1051 		/*
1052 		 * We need the index *past* the last page we could possibly
1053 		 * touch.  This is the page past the end of the write or
1054 		 * i_size, whichever is greater.
1055 		 */
1056 		last_byte = max(user_pos + user_len, i_size_read(inode));
1057 		BUG_ON(last_byte < 1);
1058 		end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1059 		if ((start + wc->w_num_pages) > end_index)
1060 			wc->w_num_pages = end_index - start;
1061 	} else {
1062 		wc->w_num_pages = 1;
1063 		start = target_index;
1064 	}
1065 	end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1066 
1067 	for(i = 0; i < wc->w_num_pages; i++) {
1068 		index = start + i;
1069 
1070 		if (index >= target_index && index <= end_index &&
1071 		    wc->w_type == OCFS2_WRITE_MMAP) {
1072 			/*
1073 			 * ocfs2_pagemkwrite() is a little different
1074 			 * and wants us to directly use the page
1075 			 * passed in.
1076 			 */
1077 			lock_page(mmap_page);
1078 
1079 			/* Exit and let the caller retry */
1080 			if (mmap_page->mapping != mapping) {
1081 				WARN_ON(mmap_page->mapping);
1082 				unlock_page(mmap_page);
1083 				ret = -EAGAIN;
1084 				goto out;
1085 			}
1086 
1087 			get_page(mmap_page);
1088 			wc->w_pages[i] = mmap_page;
1089 			wc->w_target_locked = true;
1090 		} else if (index >= target_index && index <= end_index &&
1091 			   wc->w_type == OCFS2_WRITE_DIRECT) {
1092 			/* Direct write has no mapping page. */
1093 			wc->w_pages[i] = NULL;
1094 			continue;
1095 		} else {
1096 			wc->w_pages[i] = find_or_create_page(mapping, index,
1097 							     GFP_NOFS);
1098 			if (!wc->w_pages[i]) {
1099 				ret = -ENOMEM;
1100 				mlog_errno(ret);
1101 				goto out;
1102 			}
1103 		}
1104 		wait_for_stable_page(wc->w_pages[i]);
1105 
1106 		if (index == target_index)
1107 			wc->w_target_page = wc->w_pages[i];
1108 	}
1109 out:
1110 	if (ret)
1111 		wc->w_target_locked = false;
1112 	return ret;
1113 }
1114 
1115 /*
1116  * Prepare a single cluster for write one cluster into the file.
1117  */
1118 static int ocfs2_write_cluster(struct address_space *mapping,
1119 			       u32 *phys, unsigned int new,
1120 			       unsigned int clear_unwritten,
1121 			       unsigned int should_zero,
1122 			       struct ocfs2_alloc_context *data_ac,
1123 			       struct ocfs2_alloc_context *meta_ac,
1124 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1125 			       loff_t user_pos, unsigned user_len)
1126 {
1127 	int ret, i;
1128 	u64 p_blkno;
1129 	struct inode *inode = mapping->host;
1130 	struct ocfs2_extent_tree et;
1131 	int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1132 
1133 	if (new) {
1134 		u32 tmp_pos;
1135 
1136 		/*
1137 		 * This is safe to call with the page locks - it won't take
1138 		 * any additional semaphores or cluster locks.
1139 		 */
1140 		tmp_pos = cpos;
1141 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1142 					   &tmp_pos, 1, !clear_unwritten,
1143 					   wc->w_di_bh, wc->w_handle,
1144 					   data_ac, meta_ac, NULL);
1145 		/*
1146 		 * This shouldn't happen because we must have already
1147 		 * calculated the correct meta data allocation required. The
1148 		 * internal tree allocation code should know how to increase
1149 		 * transaction credits itself.
1150 		 *
1151 		 * If need be, we could handle -EAGAIN for a
1152 		 * RESTART_TRANS here.
1153 		 */
1154 		mlog_bug_on_msg(ret == -EAGAIN,
1155 				"Inode %llu: EAGAIN return during allocation.\n",
1156 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1157 		if (ret < 0) {
1158 			mlog_errno(ret);
1159 			goto out;
1160 		}
1161 	} else if (clear_unwritten) {
1162 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1163 					      wc->w_di_bh);
1164 		ret = ocfs2_mark_extent_written(inode, &et,
1165 						wc->w_handle, cpos, 1, *phys,
1166 						meta_ac, &wc->w_dealloc);
1167 		if (ret < 0) {
1168 			mlog_errno(ret);
1169 			goto out;
1170 		}
1171 	}
1172 
1173 	/*
1174 	 * The only reason this should fail is due to an inability to
1175 	 * find the extent added.
1176 	 */
1177 	ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1178 	if (ret < 0) {
1179 		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1180 			    "at logical cluster %u",
1181 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1182 		goto out;
1183 	}
1184 
1185 	BUG_ON(*phys == 0);
1186 
1187 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1188 	if (!should_zero)
1189 		p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1190 
1191 	for(i = 0; i < wc->w_num_pages; i++) {
1192 		int tmpret;
1193 
1194 		/* This is the direct io target page. */
1195 		if (wc->w_pages[i] == NULL) {
1196 			p_blkno++;
1197 			continue;
1198 		}
1199 
1200 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1201 						      wc->w_pages[i], cpos,
1202 						      user_pos, user_len,
1203 						      should_zero);
1204 		if (tmpret) {
1205 			mlog_errno(tmpret);
1206 			if (ret == 0)
1207 				ret = tmpret;
1208 		}
1209 	}
1210 
1211 	/*
1212 	 * We only have cleanup to do in case of allocating write.
1213 	 */
1214 	if (ret && new)
1215 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1216 
1217 out:
1218 
1219 	return ret;
1220 }
1221 
1222 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1223 				       struct ocfs2_alloc_context *data_ac,
1224 				       struct ocfs2_alloc_context *meta_ac,
1225 				       struct ocfs2_write_ctxt *wc,
1226 				       loff_t pos, unsigned len)
1227 {
1228 	int ret, i;
1229 	loff_t cluster_off;
1230 	unsigned int local_len = len;
1231 	struct ocfs2_write_cluster_desc *desc;
1232 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1233 
1234 	for (i = 0; i < wc->w_clen; i++) {
1235 		desc = &wc->w_desc[i];
1236 
1237 		/*
1238 		 * We have to make sure that the total write passed in
1239 		 * doesn't extend past a single cluster.
1240 		 */
1241 		local_len = len;
1242 		cluster_off = pos & (osb->s_clustersize - 1);
1243 		if ((cluster_off + local_len) > osb->s_clustersize)
1244 			local_len = osb->s_clustersize - cluster_off;
1245 
1246 		ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1247 					  desc->c_new,
1248 					  desc->c_clear_unwritten,
1249 					  desc->c_needs_zero,
1250 					  data_ac, meta_ac,
1251 					  wc, desc->c_cpos, pos, local_len);
1252 		if (ret) {
1253 			mlog_errno(ret);
1254 			goto out;
1255 		}
1256 
1257 		len -= local_len;
1258 		pos += local_len;
1259 	}
1260 
1261 	ret = 0;
1262 out:
1263 	return ret;
1264 }
1265 
1266 /*
1267  * ocfs2_write_end() wants to know which parts of the target page it
1268  * should complete the write on. It's easiest to compute them ahead of
1269  * time when a more complete view of the write is available.
1270  */
1271 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1272 					struct ocfs2_write_ctxt *wc,
1273 					loff_t pos, unsigned len, int alloc)
1274 {
1275 	struct ocfs2_write_cluster_desc *desc;
1276 
1277 	wc->w_target_from = pos & (PAGE_SIZE - 1);
1278 	wc->w_target_to = wc->w_target_from + len;
1279 
1280 	if (alloc == 0)
1281 		return;
1282 
1283 	/*
1284 	 * Allocating write - we may have different boundaries based
1285 	 * on page size and cluster size.
1286 	 *
1287 	 * NOTE: We can no longer compute one value from the other as
1288 	 * the actual write length and user provided length may be
1289 	 * different.
1290 	 */
1291 
1292 	if (wc->w_large_pages) {
1293 		/*
1294 		 * We only care about the 1st and last cluster within
1295 		 * our range and whether they should be zero'd or not. Either
1296 		 * value may be extended out to the start/end of a
1297 		 * newly allocated cluster.
1298 		 */
1299 		desc = &wc->w_desc[0];
1300 		if (desc->c_needs_zero)
1301 			ocfs2_figure_cluster_boundaries(osb,
1302 							desc->c_cpos,
1303 							&wc->w_target_from,
1304 							NULL);
1305 
1306 		desc = &wc->w_desc[wc->w_clen - 1];
1307 		if (desc->c_needs_zero)
1308 			ocfs2_figure_cluster_boundaries(osb,
1309 							desc->c_cpos,
1310 							NULL,
1311 							&wc->w_target_to);
1312 	} else {
1313 		wc->w_target_from = 0;
1314 		wc->w_target_to = PAGE_SIZE;
1315 	}
1316 }
1317 
1318 /*
1319  * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1320  * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1321  * by the direct io procedure.
1322  * If this is a new extent that allocated by direct io, we should mark it in
1323  * the ip_unwritten_list.
1324  */
1325 static int ocfs2_unwritten_check(struct inode *inode,
1326 				 struct ocfs2_write_ctxt *wc,
1327 				 struct ocfs2_write_cluster_desc *desc)
1328 {
1329 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1330 	struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1331 	int ret = 0;
1332 
1333 	if (!desc->c_needs_zero)
1334 		return 0;
1335 
1336 retry:
1337 	spin_lock(&oi->ip_lock);
1338 	/* Needs not to zero no metter buffer or direct. The one who is zero
1339 	 * the cluster is doing zero. And he will clear unwritten after all
1340 	 * cluster io finished. */
1341 	list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1342 		if (desc->c_cpos == ue->ue_cpos) {
1343 			BUG_ON(desc->c_new);
1344 			desc->c_needs_zero = 0;
1345 			desc->c_clear_unwritten = 0;
1346 			goto unlock;
1347 		}
1348 	}
1349 
1350 	if (wc->w_type != OCFS2_WRITE_DIRECT)
1351 		goto unlock;
1352 
1353 	if (new == NULL) {
1354 		spin_unlock(&oi->ip_lock);
1355 		new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1356 			     GFP_NOFS);
1357 		if (new == NULL) {
1358 			ret = -ENOMEM;
1359 			goto out;
1360 		}
1361 		goto retry;
1362 	}
1363 	/* This direct write will doing zero. */
1364 	new->ue_cpos = desc->c_cpos;
1365 	new->ue_phys = desc->c_phys;
1366 	desc->c_clear_unwritten = 0;
1367 	list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1368 	list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1369 	wc->w_unwritten_count++;
1370 	new = NULL;
1371 unlock:
1372 	spin_unlock(&oi->ip_lock);
1373 out:
1374 	kfree(new);
1375 	return ret;
1376 }
1377 
1378 /*
1379  * Populate each single-cluster write descriptor in the write context
1380  * with information about the i/o to be done.
1381  *
1382  * Returns the number of clusters that will have to be allocated, as
1383  * well as a worst case estimate of the number of extent records that
1384  * would have to be created during a write to an unwritten region.
1385  */
1386 static int ocfs2_populate_write_desc(struct inode *inode,
1387 				     struct ocfs2_write_ctxt *wc,
1388 				     unsigned int *clusters_to_alloc,
1389 				     unsigned int *extents_to_split)
1390 {
1391 	int ret;
1392 	struct ocfs2_write_cluster_desc *desc;
1393 	unsigned int num_clusters = 0;
1394 	unsigned int ext_flags = 0;
1395 	u32 phys = 0;
1396 	int i;
1397 
1398 	*clusters_to_alloc = 0;
1399 	*extents_to_split = 0;
1400 
1401 	for (i = 0; i < wc->w_clen; i++) {
1402 		desc = &wc->w_desc[i];
1403 		desc->c_cpos = wc->w_cpos + i;
1404 
1405 		if (num_clusters == 0) {
1406 			/*
1407 			 * Need to look up the next extent record.
1408 			 */
1409 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1410 						 &num_clusters, &ext_flags);
1411 			if (ret) {
1412 				mlog_errno(ret);
1413 				goto out;
1414 			}
1415 
1416 			/* We should already CoW the refcountd extent. */
1417 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1418 
1419 			/*
1420 			 * Assume worst case - that we're writing in
1421 			 * the middle of the extent.
1422 			 *
1423 			 * We can assume that the write proceeds from
1424 			 * left to right, in which case the extent
1425 			 * insert code is smart enough to coalesce the
1426 			 * next splits into the previous records created.
1427 			 */
1428 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1429 				*extents_to_split = *extents_to_split + 2;
1430 		} else if (phys) {
1431 			/*
1432 			 * Only increment phys if it doesn't describe
1433 			 * a hole.
1434 			 */
1435 			phys++;
1436 		}
1437 
1438 		/*
1439 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1440 		 * file that got extended.  w_first_new_cpos tells us
1441 		 * where the newly allocated clusters are so we can
1442 		 * zero them.
1443 		 */
1444 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1445 			BUG_ON(phys == 0);
1446 			desc->c_needs_zero = 1;
1447 		}
1448 
1449 		desc->c_phys = phys;
1450 		if (phys == 0) {
1451 			desc->c_new = 1;
1452 			desc->c_needs_zero = 1;
1453 			desc->c_clear_unwritten = 1;
1454 			*clusters_to_alloc = *clusters_to_alloc + 1;
1455 		}
1456 
1457 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1458 			desc->c_clear_unwritten = 1;
1459 			desc->c_needs_zero = 1;
1460 		}
1461 
1462 		ret = ocfs2_unwritten_check(inode, wc, desc);
1463 		if (ret) {
1464 			mlog_errno(ret);
1465 			goto out;
1466 		}
1467 
1468 		num_clusters--;
1469 	}
1470 
1471 	ret = 0;
1472 out:
1473 	return ret;
1474 }
1475 
1476 static int ocfs2_write_begin_inline(struct address_space *mapping,
1477 				    struct inode *inode,
1478 				    struct ocfs2_write_ctxt *wc)
1479 {
1480 	int ret;
1481 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1482 	struct page *page;
1483 	handle_t *handle;
1484 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1485 
1486 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1487 	if (IS_ERR(handle)) {
1488 		ret = PTR_ERR(handle);
1489 		mlog_errno(ret);
1490 		goto out;
1491 	}
1492 
1493 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1494 	if (!page) {
1495 		ocfs2_commit_trans(osb, handle);
1496 		ret = -ENOMEM;
1497 		mlog_errno(ret);
1498 		goto out;
1499 	}
1500 	/*
1501 	 * If we don't set w_num_pages then this page won't get unlocked
1502 	 * and freed on cleanup of the write context.
1503 	 */
1504 	wc->w_pages[0] = wc->w_target_page = page;
1505 	wc->w_num_pages = 1;
1506 
1507 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1508 				      OCFS2_JOURNAL_ACCESS_WRITE);
1509 	if (ret) {
1510 		ocfs2_commit_trans(osb, handle);
1511 
1512 		mlog_errno(ret);
1513 		goto out;
1514 	}
1515 
1516 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1517 		ocfs2_set_inode_data_inline(inode, di);
1518 
1519 	if (!PageUptodate(page)) {
1520 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1521 		if (ret) {
1522 			ocfs2_commit_trans(osb, handle);
1523 
1524 			goto out;
1525 		}
1526 	}
1527 
1528 	wc->w_handle = handle;
1529 out:
1530 	return ret;
1531 }
1532 
1533 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1534 {
1535 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1536 
1537 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1538 		return 1;
1539 	return 0;
1540 }
1541 
1542 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1543 					  struct inode *inode, loff_t pos,
1544 					  unsigned len, struct page *mmap_page,
1545 					  struct ocfs2_write_ctxt *wc)
1546 {
1547 	int ret, written = 0;
1548 	loff_t end = pos + len;
1549 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1550 	struct ocfs2_dinode *di = NULL;
1551 
1552 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1553 					     len, (unsigned long long)pos,
1554 					     oi->ip_dyn_features);
1555 
1556 	/*
1557 	 * Handle inodes which already have inline data 1st.
1558 	 */
1559 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1560 		if (mmap_page == NULL &&
1561 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1562 			goto do_inline_write;
1563 
1564 		/*
1565 		 * The write won't fit - we have to give this inode an
1566 		 * inline extent list now.
1567 		 */
1568 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1569 		if (ret)
1570 			mlog_errno(ret);
1571 		goto out;
1572 	}
1573 
1574 	/*
1575 	 * Check whether the inode can accept inline data.
1576 	 */
1577 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1578 		return 0;
1579 
1580 	/*
1581 	 * Check whether the write can fit.
1582 	 */
1583 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1584 	if (mmap_page ||
1585 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1586 		return 0;
1587 
1588 do_inline_write:
1589 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1590 	if (ret) {
1591 		mlog_errno(ret);
1592 		goto out;
1593 	}
1594 
1595 	/*
1596 	 * This signals to the caller that the data can be written
1597 	 * inline.
1598 	 */
1599 	written = 1;
1600 out:
1601 	return written ? written : ret;
1602 }
1603 
1604 /*
1605  * This function only does anything for file systems which can't
1606  * handle sparse files.
1607  *
1608  * What we want to do here is fill in any hole between the current end
1609  * of allocation and the end of our write. That way the rest of the
1610  * write path can treat it as an non-allocating write, which has no
1611  * special case code for sparse/nonsparse files.
1612  */
1613 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1614 					struct buffer_head *di_bh,
1615 					loff_t pos, unsigned len,
1616 					struct ocfs2_write_ctxt *wc)
1617 {
1618 	int ret;
1619 	loff_t newsize = pos + len;
1620 
1621 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1622 
1623 	if (newsize <= i_size_read(inode))
1624 		return 0;
1625 
1626 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1627 	if (ret)
1628 		mlog_errno(ret);
1629 
1630 	/* There is no wc if this is call from direct. */
1631 	if (wc)
1632 		wc->w_first_new_cpos =
1633 			ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1634 
1635 	return ret;
1636 }
1637 
1638 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1639 			   loff_t pos)
1640 {
1641 	int ret = 0;
1642 
1643 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1644 	if (pos > i_size_read(inode))
1645 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1646 
1647 	return ret;
1648 }
1649 
1650 int ocfs2_write_begin_nolock(struct address_space *mapping,
1651 			     loff_t pos, unsigned len, ocfs2_write_type_t type,
1652 			     struct page **pagep, void **fsdata,
1653 			     struct buffer_head *di_bh, struct page *mmap_page)
1654 {
1655 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1656 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1657 	struct ocfs2_write_ctxt *wc;
1658 	struct inode *inode = mapping->host;
1659 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1660 	struct ocfs2_dinode *di;
1661 	struct ocfs2_alloc_context *data_ac = NULL;
1662 	struct ocfs2_alloc_context *meta_ac = NULL;
1663 	handle_t *handle;
1664 	struct ocfs2_extent_tree et;
1665 	int try_free = 1, ret1;
1666 
1667 try_again:
1668 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1669 	if (ret) {
1670 		mlog_errno(ret);
1671 		return ret;
1672 	}
1673 
1674 	if (ocfs2_supports_inline_data(osb)) {
1675 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1676 						     mmap_page, wc);
1677 		if (ret == 1) {
1678 			ret = 0;
1679 			goto success;
1680 		}
1681 		if (ret < 0) {
1682 			mlog_errno(ret);
1683 			goto out;
1684 		}
1685 	}
1686 
1687 	/* Direct io change i_size late, should not zero tail here. */
1688 	if (type != OCFS2_WRITE_DIRECT) {
1689 		if (ocfs2_sparse_alloc(osb))
1690 			ret = ocfs2_zero_tail(inode, di_bh, pos);
1691 		else
1692 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1693 							   len, wc);
1694 		if (ret) {
1695 			mlog_errno(ret);
1696 			goto out;
1697 		}
1698 	}
1699 
1700 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1701 	if (ret < 0) {
1702 		mlog_errno(ret);
1703 		goto out;
1704 	} else if (ret == 1) {
1705 		clusters_need = wc->w_clen;
1706 		ret = ocfs2_refcount_cow(inode, di_bh,
1707 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1708 		if (ret) {
1709 			mlog_errno(ret);
1710 			goto out;
1711 		}
1712 	}
1713 
1714 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1715 					&extents_to_split);
1716 	if (ret) {
1717 		mlog_errno(ret);
1718 		goto out;
1719 	}
1720 	clusters_need += clusters_to_alloc;
1721 
1722 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1723 
1724 	trace_ocfs2_write_begin_nolock(
1725 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1726 			(long long)i_size_read(inode),
1727 			le32_to_cpu(di->i_clusters),
1728 			pos, len, type, mmap_page,
1729 			clusters_to_alloc, extents_to_split);
1730 
1731 	/*
1732 	 * We set w_target_from, w_target_to here so that
1733 	 * ocfs2_write_end() knows which range in the target page to
1734 	 * write out. An allocation requires that we write the entire
1735 	 * cluster range.
1736 	 */
1737 	if (clusters_to_alloc || extents_to_split) {
1738 		/*
1739 		 * XXX: We are stretching the limits of
1740 		 * ocfs2_lock_allocators(). It greatly over-estimates
1741 		 * the work to be done.
1742 		 */
1743 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1744 					      wc->w_di_bh);
1745 		ret = ocfs2_lock_allocators(inode, &et,
1746 					    clusters_to_alloc, extents_to_split,
1747 					    &data_ac, &meta_ac);
1748 		if (ret) {
1749 			mlog_errno(ret);
1750 			goto out;
1751 		}
1752 
1753 		if (data_ac)
1754 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1755 
1756 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1757 						    &di->id2.i_list);
1758 	} else if (type == OCFS2_WRITE_DIRECT)
1759 		/* direct write needs not to start trans if no extents alloc. */
1760 		goto success;
1761 
1762 	/*
1763 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1764 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1765 	 * we know zeros will only be needed in the first and/or last cluster.
1766 	 */
1767 	if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1768 			   wc->w_desc[wc->w_clen - 1].c_needs_zero))
1769 		cluster_of_pages = 1;
1770 	else
1771 		cluster_of_pages = 0;
1772 
1773 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1774 
1775 	handle = ocfs2_start_trans(osb, credits);
1776 	if (IS_ERR(handle)) {
1777 		ret = PTR_ERR(handle);
1778 		mlog_errno(ret);
1779 		goto out;
1780 	}
1781 
1782 	wc->w_handle = handle;
1783 
1784 	if (clusters_to_alloc) {
1785 		ret = dquot_alloc_space_nodirty(inode,
1786 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1787 		if (ret)
1788 			goto out_commit;
1789 	}
1790 
1791 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1792 				      OCFS2_JOURNAL_ACCESS_WRITE);
1793 	if (ret) {
1794 		mlog_errno(ret);
1795 		goto out_quota;
1796 	}
1797 
1798 	/*
1799 	 * Fill our page array first. That way we've grabbed enough so
1800 	 * that we can zero and flush if we error after adding the
1801 	 * extent.
1802 	 */
1803 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1804 					 cluster_of_pages, mmap_page);
1805 	if (ret && ret != -EAGAIN) {
1806 		mlog_errno(ret);
1807 		goto out_quota;
1808 	}
1809 
1810 	/*
1811 	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1812 	 * the target page. In this case, we exit with no error and no target
1813 	 * page. This will trigger the caller, page_mkwrite(), to re-try
1814 	 * the operation.
1815 	 */
1816 	if (ret == -EAGAIN) {
1817 		BUG_ON(wc->w_target_page);
1818 		ret = 0;
1819 		goto out_quota;
1820 	}
1821 
1822 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1823 					  len);
1824 	if (ret) {
1825 		mlog_errno(ret);
1826 		goto out_quota;
1827 	}
1828 
1829 	if (data_ac)
1830 		ocfs2_free_alloc_context(data_ac);
1831 	if (meta_ac)
1832 		ocfs2_free_alloc_context(meta_ac);
1833 
1834 success:
1835 	if (pagep)
1836 		*pagep = wc->w_target_page;
1837 	*fsdata = wc;
1838 	return 0;
1839 out_quota:
1840 	if (clusters_to_alloc)
1841 		dquot_free_space(inode,
1842 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1843 out_commit:
1844 	ocfs2_commit_trans(osb, handle);
1845 
1846 out:
1847 	/*
1848 	 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1849 	 * even in case of error here like ENOSPC and ENOMEM. So, we need
1850 	 * to unlock the target page manually to prevent deadlocks when
1851 	 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1852 	 * to VM code.
1853 	 */
1854 	if (wc->w_target_locked)
1855 		unlock_page(mmap_page);
1856 
1857 	ocfs2_free_write_ctxt(inode, wc);
1858 
1859 	if (data_ac) {
1860 		ocfs2_free_alloc_context(data_ac);
1861 		data_ac = NULL;
1862 	}
1863 	if (meta_ac) {
1864 		ocfs2_free_alloc_context(meta_ac);
1865 		meta_ac = NULL;
1866 	}
1867 
1868 	if (ret == -ENOSPC && try_free) {
1869 		/*
1870 		 * Try to free some truncate log so that we can have enough
1871 		 * clusters to allocate.
1872 		 */
1873 		try_free = 0;
1874 
1875 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1876 		if (ret1 == 1)
1877 			goto try_again;
1878 
1879 		if (ret1 < 0)
1880 			mlog_errno(ret1);
1881 	}
1882 
1883 	return ret;
1884 }
1885 
1886 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1887 			     loff_t pos, unsigned len, unsigned flags,
1888 			     struct page **pagep, void **fsdata)
1889 {
1890 	int ret;
1891 	struct buffer_head *di_bh = NULL;
1892 	struct inode *inode = mapping->host;
1893 
1894 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1895 	if (ret) {
1896 		mlog_errno(ret);
1897 		return ret;
1898 	}
1899 
1900 	/*
1901 	 * Take alloc sem here to prevent concurrent lookups. That way
1902 	 * the mapping, zeroing and tree manipulation within
1903 	 * ocfs2_write() will be safe against ->readpage(). This
1904 	 * should also serve to lock out allocation from a shared
1905 	 * writeable region.
1906 	 */
1907 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1908 
1909 	ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1910 				       pagep, fsdata, di_bh, NULL);
1911 	if (ret) {
1912 		mlog_errno(ret);
1913 		goto out_fail;
1914 	}
1915 
1916 	brelse(di_bh);
1917 
1918 	return 0;
1919 
1920 out_fail:
1921 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1922 
1923 	brelse(di_bh);
1924 	ocfs2_inode_unlock(inode, 1);
1925 
1926 	return ret;
1927 }
1928 
1929 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1930 				   unsigned len, unsigned *copied,
1931 				   struct ocfs2_dinode *di,
1932 				   struct ocfs2_write_ctxt *wc)
1933 {
1934 	void *kaddr;
1935 
1936 	if (unlikely(*copied < len)) {
1937 		if (!PageUptodate(wc->w_target_page)) {
1938 			*copied = 0;
1939 			return;
1940 		}
1941 	}
1942 
1943 	kaddr = kmap_atomic(wc->w_target_page);
1944 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1945 	kunmap_atomic(kaddr);
1946 
1947 	trace_ocfs2_write_end_inline(
1948 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1949 	     (unsigned long long)pos, *copied,
1950 	     le16_to_cpu(di->id2.i_data.id_count),
1951 	     le16_to_cpu(di->i_dyn_features));
1952 }
1953 
1954 int ocfs2_write_end_nolock(struct address_space *mapping,
1955 			   loff_t pos, unsigned len, unsigned copied, void *fsdata)
1956 {
1957 	int i, ret;
1958 	unsigned from, to, start = pos & (PAGE_SIZE - 1);
1959 	struct inode *inode = mapping->host;
1960 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1961 	struct ocfs2_write_ctxt *wc = fsdata;
1962 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1963 	handle_t *handle = wc->w_handle;
1964 	struct page *tmppage;
1965 
1966 	BUG_ON(!list_empty(&wc->w_unwritten_list));
1967 
1968 	if (handle) {
1969 		ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1970 				wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1971 		if (ret) {
1972 			copied = ret;
1973 			mlog_errno(ret);
1974 			goto out;
1975 		}
1976 	}
1977 
1978 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1979 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1980 		goto out_write_size;
1981 	}
1982 
1983 	if (unlikely(copied < len) && wc->w_target_page) {
1984 		if (!PageUptodate(wc->w_target_page))
1985 			copied = 0;
1986 
1987 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1988 				       start+len);
1989 	}
1990 	if (wc->w_target_page)
1991 		flush_dcache_page(wc->w_target_page);
1992 
1993 	for(i = 0; i < wc->w_num_pages; i++) {
1994 		tmppage = wc->w_pages[i];
1995 
1996 		/* This is the direct io target page. */
1997 		if (tmppage == NULL)
1998 			continue;
1999 
2000 		if (tmppage == wc->w_target_page) {
2001 			from = wc->w_target_from;
2002 			to = wc->w_target_to;
2003 
2004 			BUG_ON(from > PAGE_SIZE ||
2005 			       to > PAGE_SIZE ||
2006 			       to < from);
2007 		} else {
2008 			/*
2009 			 * Pages adjacent to the target (if any) imply
2010 			 * a hole-filling write in which case we want
2011 			 * to flush their entire range.
2012 			 */
2013 			from = 0;
2014 			to = PAGE_SIZE;
2015 		}
2016 
2017 		if (page_has_buffers(tmppage)) {
2018 			if (handle && ocfs2_should_order_data(inode)) {
2019 				loff_t start_byte =
2020 					((loff_t)tmppage->index << PAGE_SHIFT) +
2021 					from;
2022 				loff_t length = to - from;
2023 				ocfs2_jbd2_inode_add_write(handle, inode,
2024 							   start_byte, length);
2025 			}
2026 			block_commit_write(tmppage, from, to);
2027 		}
2028 	}
2029 
2030 out_write_size:
2031 	/* Direct io do not update i_size here. */
2032 	if (wc->w_type != OCFS2_WRITE_DIRECT) {
2033 		pos += copied;
2034 		if (pos > i_size_read(inode)) {
2035 			i_size_write(inode, pos);
2036 			mark_inode_dirty(inode);
2037 		}
2038 		inode->i_blocks = ocfs2_inode_sector_count(inode);
2039 		di->i_size = cpu_to_le64((u64)i_size_read(inode));
2040 		inode->i_mtime = inode->i_ctime = current_time(inode);
2041 		di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2042 		di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2043 		if (handle)
2044 			ocfs2_update_inode_fsync_trans(handle, inode, 1);
2045 	}
2046 	if (handle)
2047 		ocfs2_journal_dirty(handle, wc->w_di_bh);
2048 
2049 out:
2050 	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2051 	 * lock, or it will cause a deadlock since journal commit threads holds
2052 	 * this lock and will ask for the page lock when flushing the data.
2053 	 * put it here to preserve the unlock order.
2054 	 */
2055 	ocfs2_unlock_pages(wc);
2056 
2057 	if (handle)
2058 		ocfs2_commit_trans(osb, handle);
2059 
2060 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2061 
2062 	brelse(wc->w_di_bh);
2063 	kfree(wc);
2064 
2065 	return copied;
2066 }
2067 
2068 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2069 			   loff_t pos, unsigned len, unsigned copied,
2070 			   struct page *page, void *fsdata)
2071 {
2072 	int ret;
2073 	struct inode *inode = mapping->host;
2074 
2075 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2076 
2077 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2078 	ocfs2_inode_unlock(inode, 1);
2079 
2080 	return ret;
2081 }
2082 
2083 struct ocfs2_dio_write_ctxt {
2084 	struct list_head	dw_zero_list;
2085 	unsigned		dw_zero_count;
2086 	int			dw_orphaned;
2087 	pid_t			dw_writer_pid;
2088 };
2089 
2090 static struct ocfs2_dio_write_ctxt *
2091 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2092 {
2093 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2094 
2095 	if (bh->b_private)
2096 		return bh->b_private;
2097 
2098 	dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2099 	if (dwc == NULL)
2100 		return NULL;
2101 	INIT_LIST_HEAD(&dwc->dw_zero_list);
2102 	dwc->dw_zero_count = 0;
2103 	dwc->dw_orphaned = 0;
2104 	dwc->dw_writer_pid = task_pid_nr(current);
2105 	bh->b_private = dwc;
2106 	*alloc = 1;
2107 
2108 	return dwc;
2109 }
2110 
2111 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2112 				     struct ocfs2_dio_write_ctxt *dwc)
2113 {
2114 	ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2115 	kfree(dwc);
2116 }
2117 
2118 /*
2119  * TODO: Make this into a generic get_blocks function.
2120  *
2121  * From do_direct_io in direct-io.c:
2122  *  "So what we do is to permit the ->get_blocks function to populate
2123  *   bh.b_size with the size of IO which is permitted at this offset and
2124  *   this i_blkbits."
2125  *
2126  * This function is called directly from get_more_blocks in direct-io.c.
2127  *
2128  * called like this: dio->get_blocks(dio->inode, fs_startblk,
2129  * 					fs_count, map_bh, dio->rw == WRITE);
2130  */
2131 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2132 			       struct buffer_head *bh_result, int create)
2133 {
2134 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2135 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2136 	struct ocfs2_write_ctxt *wc;
2137 	struct ocfs2_write_cluster_desc *desc = NULL;
2138 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2139 	struct buffer_head *di_bh = NULL;
2140 	u64 p_blkno;
2141 	unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2142 	loff_t pos = iblock << i_blkbits;
2143 	sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2144 	unsigned len, total_len = bh_result->b_size;
2145 	int ret = 0, first_get_block = 0;
2146 
2147 	len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2148 	len = min(total_len, len);
2149 
2150 	/*
2151 	 * bh_result->b_size is count in get_more_blocks according to write
2152 	 * "pos" and "end", we need map twice to return different buffer state:
2153 	 * 1. area in file size, not set NEW;
2154 	 * 2. area out file size, set  NEW.
2155 	 *
2156 	 *		   iblock    endblk
2157 	 * |--------|---------|---------|---------
2158 	 * |<-------area in file------->|
2159 	 */
2160 
2161 	if ((iblock <= endblk) &&
2162 	    ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2163 		len = (endblk - iblock + 1) << i_blkbits;
2164 
2165 	mlog(0, "get block of %lu at %llu:%u req %u\n",
2166 			inode->i_ino, pos, len, total_len);
2167 
2168 	/*
2169 	 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2170 	 * we may need to add it to orphan dir. So can not fall to fast path
2171 	 * while file size will be changed.
2172 	 */
2173 	if (pos + total_len <= i_size_read(inode)) {
2174 
2175 		/* This is the fast path for re-write. */
2176 		ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2177 		if (buffer_mapped(bh_result) &&
2178 		    !buffer_new(bh_result) &&
2179 		    ret == 0)
2180 			goto out;
2181 
2182 		/* Clear state set by ocfs2_get_block. */
2183 		bh_result->b_state = 0;
2184 	}
2185 
2186 	dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2187 	if (unlikely(dwc == NULL)) {
2188 		ret = -ENOMEM;
2189 		mlog_errno(ret);
2190 		goto out;
2191 	}
2192 
2193 	if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2194 	    ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2195 	    !dwc->dw_orphaned) {
2196 		/*
2197 		 * when we are going to alloc extents beyond file size, add the
2198 		 * inode to orphan dir, so we can recall those spaces when
2199 		 * system crashed during write.
2200 		 */
2201 		ret = ocfs2_add_inode_to_orphan(osb, inode);
2202 		if (ret < 0) {
2203 			mlog_errno(ret);
2204 			goto out;
2205 		}
2206 		dwc->dw_orphaned = 1;
2207 	}
2208 
2209 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2210 	if (ret) {
2211 		mlog_errno(ret);
2212 		goto out;
2213 	}
2214 
2215 	down_write(&oi->ip_alloc_sem);
2216 
2217 	if (first_get_block) {
2218 		if (ocfs2_sparse_alloc(osb))
2219 			ret = ocfs2_zero_tail(inode, di_bh, pos);
2220 		else
2221 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2222 							   total_len, NULL);
2223 		if (ret < 0) {
2224 			mlog_errno(ret);
2225 			goto unlock;
2226 		}
2227 	}
2228 
2229 	ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2230 				       OCFS2_WRITE_DIRECT, NULL,
2231 				       (void **)&wc, di_bh, NULL);
2232 	if (ret) {
2233 		mlog_errno(ret);
2234 		goto unlock;
2235 	}
2236 
2237 	desc = &wc->w_desc[0];
2238 
2239 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2240 	BUG_ON(p_blkno == 0);
2241 	p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2242 
2243 	map_bh(bh_result, inode->i_sb, p_blkno);
2244 	bh_result->b_size = len;
2245 	if (desc->c_needs_zero)
2246 		set_buffer_new(bh_result);
2247 
2248 	if (iblock > endblk)
2249 		set_buffer_new(bh_result);
2250 
2251 	/* May sleep in end_io. It should not happen in a irq context. So defer
2252 	 * it to dio work queue. */
2253 	set_buffer_defer_completion(bh_result);
2254 
2255 	if (!list_empty(&wc->w_unwritten_list)) {
2256 		struct ocfs2_unwritten_extent *ue = NULL;
2257 
2258 		ue = list_first_entry(&wc->w_unwritten_list,
2259 				      struct ocfs2_unwritten_extent,
2260 				      ue_node);
2261 		BUG_ON(ue->ue_cpos != desc->c_cpos);
2262 		/* The physical address may be 0, fill it. */
2263 		ue->ue_phys = desc->c_phys;
2264 
2265 		list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2266 		dwc->dw_zero_count += wc->w_unwritten_count;
2267 	}
2268 
2269 	ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2270 	BUG_ON(ret != len);
2271 	ret = 0;
2272 unlock:
2273 	up_write(&oi->ip_alloc_sem);
2274 	ocfs2_inode_unlock(inode, 1);
2275 	brelse(di_bh);
2276 out:
2277 	if (ret < 0)
2278 		ret = -EIO;
2279 	return ret;
2280 }
2281 
2282 static int ocfs2_dio_end_io_write(struct inode *inode,
2283 				  struct ocfs2_dio_write_ctxt *dwc,
2284 				  loff_t offset,
2285 				  ssize_t bytes)
2286 {
2287 	struct ocfs2_cached_dealloc_ctxt dealloc;
2288 	struct ocfs2_extent_tree et;
2289 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2290 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2291 	struct ocfs2_unwritten_extent *ue = NULL;
2292 	struct buffer_head *di_bh = NULL;
2293 	struct ocfs2_dinode *di;
2294 	struct ocfs2_alloc_context *data_ac = NULL;
2295 	struct ocfs2_alloc_context *meta_ac = NULL;
2296 	handle_t *handle = NULL;
2297 	loff_t end = offset + bytes;
2298 	int ret = 0, credits = 0, locked = 0;
2299 
2300 	ocfs2_init_dealloc_ctxt(&dealloc);
2301 
2302 	/* We do clear unwritten, delete orphan, change i_size here. If neither
2303 	 * of these happen, we can skip all this. */
2304 	if (list_empty(&dwc->dw_zero_list) &&
2305 	    end <= i_size_read(inode) &&
2306 	    !dwc->dw_orphaned)
2307 		goto out;
2308 
2309 	/* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2310 	 * are in that context. */
2311 	if (dwc->dw_writer_pid != task_pid_nr(current)) {
2312 		inode_lock(inode);
2313 		locked = 1;
2314 	}
2315 
2316 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2317 	if (ret < 0) {
2318 		mlog_errno(ret);
2319 		goto out;
2320 	}
2321 
2322 	down_write(&oi->ip_alloc_sem);
2323 
2324 	/* Delete orphan before acquire i_mutex. */
2325 	if (dwc->dw_orphaned) {
2326 		BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2327 
2328 		end = end > i_size_read(inode) ? end : 0;
2329 
2330 		ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2331 				!!end, end);
2332 		if (ret < 0)
2333 			mlog_errno(ret);
2334 	}
2335 
2336 	di = (struct ocfs2_dinode *)di_bh->b_data;
2337 
2338 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2339 
2340 	/* Attach dealloc with extent tree in case that we may reuse extents
2341 	 * which are already unlinked from current extent tree due to extent
2342 	 * rotation and merging.
2343 	 */
2344 	et.et_dealloc = &dealloc;
2345 
2346 	ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2347 				    &data_ac, &meta_ac);
2348 	if (ret) {
2349 		mlog_errno(ret);
2350 		goto unlock;
2351 	}
2352 
2353 	credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2354 
2355 	handle = ocfs2_start_trans(osb, credits);
2356 	if (IS_ERR(handle)) {
2357 		ret = PTR_ERR(handle);
2358 		mlog_errno(ret);
2359 		goto unlock;
2360 	}
2361 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2362 				      OCFS2_JOURNAL_ACCESS_WRITE);
2363 	if (ret) {
2364 		mlog_errno(ret);
2365 		goto commit;
2366 	}
2367 
2368 	list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2369 		ret = ocfs2_mark_extent_written(inode, &et, handle,
2370 						ue->ue_cpos, 1,
2371 						ue->ue_phys,
2372 						meta_ac, &dealloc);
2373 		if (ret < 0) {
2374 			mlog_errno(ret);
2375 			break;
2376 		}
2377 	}
2378 
2379 	if (end > i_size_read(inode)) {
2380 		ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2381 		if (ret < 0)
2382 			mlog_errno(ret);
2383 	}
2384 commit:
2385 	ocfs2_commit_trans(osb, handle);
2386 unlock:
2387 	up_write(&oi->ip_alloc_sem);
2388 	ocfs2_inode_unlock(inode, 1);
2389 	brelse(di_bh);
2390 out:
2391 	if (data_ac)
2392 		ocfs2_free_alloc_context(data_ac);
2393 	if (meta_ac)
2394 		ocfs2_free_alloc_context(meta_ac);
2395 	ocfs2_run_deallocs(osb, &dealloc);
2396 	if (locked)
2397 		inode_unlock(inode);
2398 	ocfs2_dio_free_write_ctx(inode, dwc);
2399 
2400 	return ret;
2401 }
2402 
2403 /*
2404  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2405  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2406  * to protect io on one node from truncation on another.
2407  */
2408 static int ocfs2_dio_end_io(struct kiocb *iocb,
2409 			    loff_t offset,
2410 			    ssize_t bytes,
2411 			    void *private)
2412 {
2413 	struct inode *inode = file_inode(iocb->ki_filp);
2414 	int level;
2415 	int ret = 0;
2416 
2417 	/* this io's submitter should not have unlocked this before we could */
2418 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2419 
2420 	if (bytes <= 0)
2421 		mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2422 				 (long long)bytes);
2423 	if (private) {
2424 		if (bytes > 0)
2425 			ret = ocfs2_dio_end_io_write(inode, private, offset,
2426 						     bytes);
2427 		else
2428 			ocfs2_dio_free_write_ctx(inode, private);
2429 	}
2430 
2431 	ocfs2_iocb_clear_rw_locked(iocb);
2432 
2433 	level = ocfs2_iocb_rw_locked_level(iocb);
2434 	ocfs2_rw_unlock(inode, level);
2435 	return ret;
2436 }
2437 
2438 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2439 {
2440 	struct file *file = iocb->ki_filp;
2441 	struct inode *inode = file->f_mapping->host;
2442 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2443 	get_block_t *get_block;
2444 
2445 	/*
2446 	 * Fallback to buffered I/O if we see an inode without
2447 	 * extents.
2448 	 */
2449 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2450 		return 0;
2451 
2452 	/* Fallback to buffered I/O if we do not support append dio. */
2453 	if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2454 	    !ocfs2_supports_append_dio(osb))
2455 		return 0;
2456 
2457 	if (iov_iter_rw(iter) == READ)
2458 		get_block = ocfs2_lock_get_block;
2459 	else
2460 		get_block = ocfs2_dio_wr_get_block;
2461 
2462 	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2463 				    iter, get_block,
2464 				    ocfs2_dio_end_io, NULL, 0);
2465 }
2466 
2467 const struct address_space_operations ocfs2_aops = {
2468 	.readpage		= ocfs2_readpage,
2469 	.readahead		= ocfs2_readahead,
2470 	.writepage		= ocfs2_writepage,
2471 	.write_begin		= ocfs2_write_begin,
2472 	.write_end		= ocfs2_write_end,
2473 	.bmap			= ocfs2_bmap,
2474 	.direct_IO		= ocfs2_direct_IO,
2475 	.invalidatepage		= block_invalidatepage,
2476 	.releasepage		= ocfs2_releasepage,
2477 	.migratepage		= buffer_migrate_page,
2478 	.is_partially_uptodate	= block_is_partially_uptodate,
2479 	.error_remove_page	= generic_error_remove_page,
2480 };
2481