xref: /openbmc/linux/fs/ocfs2/aops.c (revision 034f90b3)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
48 #include "ocfs2_trace.h"
49 
50 #include "buffer_head_io.h"
51 #include "dir.h"
52 #include "namei.h"
53 #include "sysfile.h"
54 
55 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
56 				   struct buffer_head *bh_result, int create)
57 {
58 	int err = -EIO;
59 	int status;
60 	struct ocfs2_dinode *fe = NULL;
61 	struct buffer_head *bh = NULL;
62 	struct buffer_head *buffer_cache_bh = NULL;
63 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
64 	void *kaddr;
65 
66 	trace_ocfs2_symlink_get_block(
67 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
68 			(unsigned long long)iblock, bh_result, create);
69 
70 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
71 
72 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
73 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
74 		     (unsigned long long)iblock);
75 		goto bail;
76 	}
77 
78 	status = ocfs2_read_inode_block(inode, &bh);
79 	if (status < 0) {
80 		mlog_errno(status);
81 		goto bail;
82 	}
83 	fe = (struct ocfs2_dinode *) bh->b_data;
84 
85 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
86 						    le32_to_cpu(fe->i_clusters))) {
87 		err = -ENOMEM;
88 		mlog(ML_ERROR, "block offset is outside the allocated size: "
89 		     "%llu\n", (unsigned long long)iblock);
90 		goto bail;
91 	}
92 
93 	/* We don't use the page cache to create symlink data, so if
94 	 * need be, copy it over from the buffer cache. */
95 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97 			    iblock;
98 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
99 		if (!buffer_cache_bh) {
100 			err = -ENOMEM;
101 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
102 			goto bail;
103 		}
104 
105 		/* we haven't locked out transactions, so a commit
106 		 * could've happened. Since we've got a reference on
107 		 * the bh, even if it commits while we're doing the
108 		 * copy, the data is still good. */
109 		if (buffer_jbd(buffer_cache_bh)
110 		    && ocfs2_inode_is_new(inode)) {
111 			kaddr = kmap_atomic(bh_result->b_page);
112 			if (!kaddr) {
113 				mlog(ML_ERROR, "couldn't kmap!\n");
114 				goto bail;
115 			}
116 			memcpy(kaddr + (bh_result->b_size * iblock),
117 			       buffer_cache_bh->b_data,
118 			       bh_result->b_size);
119 			kunmap_atomic(kaddr);
120 			set_buffer_uptodate(bh_result);
121 		}
122 		brelse(buffer_cache_bh);
123 	}
124 
125 	map_bh(bh_result, inode->i_sb,
126 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127 
128 	err = 0;
129 
130 bail:
131 	brelse(bh);
132 
133 	return err;
134 }
135 
136 int ocfs2_get_block(struct inode *inode, sector_t iblock,
137 		    struct buffer_head *bh_result, int create)
138 {
139 	int err = 0;
140 	unsigned int ext_flags;
141 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
142 	u64 p_blkno, count, past_eof;
143 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144 
145 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
146 			      (unsigned long long)iblock, bh_result, create);
147 
148 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150 		     inode, inode->i_ino);
151 
152 	if (S_ISLNK(inode->i_mode)) {
153 		/* this always does I/O for some reason. */
154 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155 		goto bail;
156 	}
157 
158 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
159 					  &ext_flags);
160 	if (err) {
161 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163 		     (unsigned long long)p_blkno);
164 		goto bail;
165 	}
166 
167 	if (max_blocks < count)
168 		count = max_blocks;
169 
170 	/*
171 	 * ocfs2 never allocates in this function - the only time we
172 	 * need to use BH_New is when we're extending i_size on a file
173 	 * system which doesn't support holes, in which case BH_New
174 	 * allows __block_write_begin() to zero.
175 	 *
176 	 * If we see this on a sparse file system, then a truncate has
177 	 * raced us and removed the cluster. In this case, we clear
178 	 * the buffers dirty and uptodate bits and let the buffer code
179 	 * ignore it as a hole.
180 	 */
181 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
182 		clear_buffer_dirty(bh_result);
183 		clear_buffer_uptodate(bh_result);
184 		goto bail;
185 	}
186 
187 	/* Treat the unwritten extent as a hole for zeroing purposes. */
188 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
189 		map_bh(bh_result, inode->i_sb, p_blkno);
190 
191 	bh_result->b_size = count << inode->i_blkbits;
192 
193 	if (!ocfs2_sparse_alloc(osb)) {
194 		if (p_blkno == 0) {
195 			err = -EIO;
196 			mlog(ML_ERROR,
197 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
198 			     (unsigned long long)iblock,
199 			     (unsigned long long)p_blkno,
200 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
201 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
202 			dump_stack();
203 			goto bail;
204 		}
205 	}
206 
207 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
208 
209 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
210 				  (unsigned long long)past_eof);
211 	if (create && (iblock >= past_eof))
212 		set_buffer_new(bh_result);
213 
214 bail:
215 	if (err < 0)
216 		err = -EIO;
217 
218 	return err;
219 }
220 
221 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
222 			   struct buffer_head *di_bh)
223 {
224 	void *kaddr;
225 	loff_t size;
226 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
227 
228 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
229 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
230 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
231 		return -EROFS;
232 	}
233 
234 	size = i_size_read(inode);
235 
236 	if (size > PAGE_CACHE_SIZE ||
237 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
238 		ocfs2_error(inode->i_sb,
239 			    "Inode %llu has with inline data has bad size: %Lu",
240 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
241 			    (unsigned long long)size);
242 		return -EROFS;
243 	}
244 
245 	kaddr = kmap_atomic(page);
246 	if (size)
247 		memcpy(kaddr, di->id2.i_data.id_data, size);
248 	/* Clear the remaining part of the page */
249 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
250 	flush_dcache_page(page);
251 	kunmap_atomic(kaddr);
252 
253 	SetPageUptodate(page);
254 
255 	return 0;
256 }
257 
258 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
259 {
260 	int ret;
261 	struct buffer_head *di_bh = NULL;
262 
263 	BUG_ON(!PageLocked(page));
264 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
265 
266 	ret = ocfs2_read_inode_block(inode, &di_bh);
267 	if (ret) {
268 		mlog_errno(ret);
269 		goto out;
270 	}
271 
272 	ret = ocfs2_read_inline_data(inode, page, di_bh);
273 out:
274 	unlock_page(page);
275 
276 	brelse(di_bh);
277 	return ret;
278 }
279 
280 static int ocfs2_readpage(struct file *file, struct page *page)
281 {
282 	struct inode *inode = page->mapping->host;
283 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
284 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
285 	int ret, unlock = 1;
286 
287 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
288 			     (page ? page->index : 0));
289 
290 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
291 	if (ret != 0) {
292 		if (ret == AOP_TRUNCATED_PAGE)
293 			unlock = 0;
294 		mlog_errno(ret);
295 		goto out;
296 	}
297 
298 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
299 		/*
300 		 * Unlock the page and cycle ip_alloc_sem so that we don't
301 		 * busyloop waiting for ip_alloc_sem to unlock
302 		 */
303 		ret = AOP_TRUNCATED_PAGE;
304 		unlock_page(page);
305 		unlock = 0;
306 		down_read(&oi->ip_alloc_sem);
307 		up_read(&oi->ip_alloc_sem);
308 		goto out_inode_unlock;
309 	}
310 
311 	/*
312 	 * i_size might have just been updated as we grabed the meta lock.  We
313 	 * might now be discovering a truncate that hit on another node.
314 	 * block_read_full_page->get_block freaks out if it is asked to read
315 	 * beyond the end of a file, so we check here.  Callers
316 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
317 	 * and notice that the page they just read isn't needed.
318 	 *
319 	 * XXX sys_readahead() seems to get that wrong?
320 	 */
321 	if (start >= i_size_read(inode)) {
322 		zero_user(page, 0, PAGE_SIZE);
323 		SetPageUptodate(page);
324 		ret = 0;
325 		goto out_alloc;
326 	}
327 
328 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
329 		ret = ocfs2_readpage_inline(inode, page);
330 	else
331 		ret = block_read_full_page(page, ocfs2_get_block);
332 	unlock = 0;
333 
334 out_alloc:
335 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
336 out_inode_unlock:
337 	ocfs2_inode_unlock(inode, 0);
338 out:
339 	if (unlock)
340 		unlock_page(page);
341 	return ret;
342 }
343 
344 /*
345  * This is used only for read-ahead. Failures or difficult to handle
346  * situations are safe to ignore.
347  *
348  * Right now, we don't bother with BH_Boundary - in-inode extent lists
349  * are quite large (243 extents on 4k blocks), so most inodes don't
350  * grow out to a tree. If need be, detecting boundary extents could
351  * trivially be added in a future version of ocfs2_get_block().
352  */
353 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
354 			   struct list_head *pages, unsigned nr_pages)
355 {
356 	int ret, err = -EIO;
357 	struct inode *inode = mapping->host;
358 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
359 	loff_t start;
360 	struct page *last;
361 
362 	/*
363 	 * Use the nonblocking flag for the dlm code to avoid page
364 	 * lock inversion, but don't bother with retrying.
365 	 */
366 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
367 	if (ret)
368 		return err;
369 
370 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
371 		ocfs2_inode_unlock(inode, 0);
372 		return err;
373 	}
374 
375 	/*
376 	 * Don't bother with inline-data. There isn't anything
377 	 * to read-ahead in that case anyway...
378 	 */
379 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
380 		goto out_unlock;
381 
382 	/*
383 	 * Check whether a remote node truncated this file - we just
384 	 * drop out in that case as it's not worth handling here.
385 	 */
386 	last = list_entry(pages->prev, struct page, lru);
387 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
388 	if (start >= i_size_read(inode))
389 		goto out_unlock;
390 
391 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
392 
393 out_unlock:
394 	up_read(&oi->ip_alloc_sem);
395 	ocfs2_inode_unlock(inode, 0);
396 
397 	return err;
398 }
399 
400 /* Note: Because we don't support holes, our allocation has
401  * already happened (allocation writes zeros to the file data)
402  * so we don't have to worry about ordered writes in
403  * ocfs2_writepage.
404  *
405  * ->writepage is called during the process of invalidating the page cache
406  * during blocked lock processing.  It can't block on any cluster locks
407  * to during block mapping.  It's relying on the fact that the block
408  * mapping can't have disappeared under the dirty pages that it is
409  * being asked to write back.
410  */
411 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
412 {
413 	trace_ocfs2_writepage(
414 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
415 		page->index);
416 
417 	return block_write_full_page(page, ocfs2_get_block, wbc);
418 }
419 
420 /* Taken from ext3. We don't necessarily need the full blown
421  * functionality yet, but IMHO it's better to cut and paste the whole
422  * thing so we can avoid introducing our own bugs (and easily pick up
423  * their fixes when they happen) --Mark */
424 int walk_page_buffers(	handle_t *handle,
425 			struct buffer_head *head,
426 			unsigned from,
427 			unsigned to,
428 			int *partial,
429 			int (*fn)(	handle_t *handle,
430 					struct buffer_head *bh))
431 {
432 	struct buffer_head *bh;
433 	unsigned block_start, block_end;
434 	unsigned blocksize = head->b_size;
435 	int err, ret = 0;
436 	struct buffer_head *next;
437 
438 	for (	bh = head, block_start = 0;
439 		ret == 0 && (bh != head || !block_start);
440 	    	block_start = block_end, bh = next)
441 	{
442 		next = bh->b_this_page;
443 		block_end = block_start + blocksize;
444 		if (block_end <= from || block_start >= to) {
445 			if (partial && !buffer_uptodate(bh))
446 				*partial = 1;
447 			continue;
448 		}
449 		err = (*fn)(handle, bh);
450 		if (!ret)
451 			ret = err;
452 	}
453 	return ret;
454 }
455 
456 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
457 {
458 	sector_t status;
459 	u64 p_blkno = 0;
460 	int err = 0;
461 	struct inode *inode = mapping->host;
462 
463 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
464 			 (unsigned long long)block);
465 
466 	/* We don't need to lock journal system files, since they aren't
467 	 * accessed concurrently from multiple nodes.
468 	 */
469 	if (!INODE_JOURNAL(inode)) {
470 		err = ocfs2_inode_lock(inode, NULL, 0);
471 		if (err) {
472 			if (err != -ENOENT)
473 				mlog_errno(err);
474 			goto bail;
475 		}
476 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
477 	}
478 
479 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
480 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
481 						  NULL);
482 
483 	if (!INODE_JOURNAL(inode)) {
484 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
485 		ocfs2_inode_unlock(inode, 0);
486 	}
487 
488 	if (err) {
489 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
490 		     (unsigned long long)block);
491 		mlog_errno(err);
492 		goto bail;
493 	}
494 
495 bail:
496 	status = err ? 0 : p_blkno;
497 
498 	return status;
499 }
500 
501 /*
502  * TODO: Make this into a generic get_blocks function.
503  *
504  * From do_direct_io in direct-io.c:
505  *  "So what we do is to permit the ->get_blocks function to populate
506  *   bh.b_size with the size of IO which is permitted at this offset and
507  *   this i_blkbits."
508  *
509  * This function is called directly from get_more_blocks in direct-io.c.
510  *
511  * called like this: dio->get_blocks(dio->inode, fs_startblk,
512  * 					fs_count, map_bh, dio->rw == WRITE);
513  */
514 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
515 				     struct buffer_head *bh_result, int create)
516 {
517 	int ret;
518 	u32 cpos = 0;
519 	int alloc_locked = 0;
520 	u64 p_blkno, inode_blocks, contig_blocks;
521 	unsigned int ext_flags;
522 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
523 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
524 	unsigned long len = bh_result->b_size;
525 	unsigned int clusters_to_alloc = 0;
526 
527 	cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
528 
529 	/* This function won't even be called if the request isn't all
530 	 * nicely aligned and of the right size, so there's no need
531 	 * for us to check any of that. */
532 
533 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
534 
535 	/* This figures out the size of the next contiguous block, and
536 	 * our logical offset */
537 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
538 					  &contig_blocks, &ext_flags);
539 	if (ret) {
540 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
541 		     (unsigned long long)iblock);
542 		ret = -EIO;
543 		goto bail;
544 	}
545 
546 	/* We should already CoW the refcounted extent in case of create. */
547 	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
548 
549 	/* allocate blocks if no p_blkno is found, and create == 1 */
550 	if (!p_blkno && create) {
551 		ret = ocfs2_inode_lock(inode, NULL, 1);
552 		if (ret < 0) {
553 			mlog_errno(ret);
554 			goto bail;
555 		}
556 
557 		alloc_locked = 1;
558 
559 		/* fill hole, allocate blocks can't be larger than the size
560 		 * of the hole */
561 		clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
562 		if (clusters_to_alloc > contig_blocks)
563 			clusters_to_alloc = contig_blocks;
564 
565 		/* allocate extent and insert them into the extent tree */
566 		ret = ocfs2_extend_allocation(inode, cpos,
567 				clusters_to_alloc, 0);
568 		if (ret < 0) {
569 			mlog_errno(ret);
570 			goto bail;
571 		}
572 
573 		ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
574 				&contig_blocks, &ext_flags);
575 		if (ret < 0) {
576 			mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
577 					(unsigned long long)iblock);
578 			ret = -EIO;
579 			goto bail;
580 		}
581 	}
582 
583 	/*
584 	 * get_more_blocks() expects us to describe a hole by clearing
585 	 * the mapped bit on bh_result().
586 	 *
587 	 * Consider an unwritten extent as a hole.
588 	 */
589 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
590 		map_bh(bh_result, inode->i_sb, p_blkno);
591 	else
592 		clear_buffer_mapped(bh_result);
593 
594 	/* make sure we don't map more than max_blocks blocks here as
595 	   that's all the kernel will handle at this point. */
596 	if (max_blocks < contig_blocks)
597 		contig_blocks = max_blocks;
598 	bh_result->b_size = contig_blocks << blocksize_bits;
599 bail:
600 	if (alloc_locked)
601 		ocfs2_inode_unlock(inode, 1);
602 	return ret;
603 }
604 
605 /*
606  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
607  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
608  * to protect io on one node from truncation on another.
609  */
610 static void ocfs2_dio_end_io(struct kiocb *iocb,
611 			     loff_t offset,
612 			     ssize_t bytes,
613 			     void *private)
614 {
615 	struct inode *inode = file_inode(iocb->ki_filp);
616 	int level;
617 
618 	/* this io's submitter should not have unlocked this before we could */
619 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
620 
621 	if (ocfs2_iocb_is_sem_locked(iocb))
622 		ocfs2_iocb_clear_sem_locked(iocb);
623 
624 	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
625 		ocfs2_iocb_clear_unaligned_aio(iocb);
626 
627 		mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
628 	}
629 
630 	ocfs2_iocb_clear_rw_locked(iocb);
631 
632 	level = ocfs2_iocb_rw_locked_level(iocb);
633 	ocfs2_rw_unlock(inode, level);
634 }
635 
636 static int ocfs2_releasepage(struct page *page, gfp_t wait)
637 {
638 	if (!page_has_buffers(page))
639 		return 0;
640 	return try_to_free_buffers(page);
641 }
642 
643 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
644 		struct inode *inode, loff_t offset)
645 {
646 	int ret = 0;
647 	u32 v_cpos = 0;
648 	u32 p_cpos = 0;
649 	unsigned int num_clusters = 0;
650 	unsigned int ext_flags = 0;
651 
652 	v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
653 	ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
654 			&num_clusters, &ext_flags);
655 	if (ret < 0) {
656 		mlog_errno(ret);
657 		return ret;
658 	}
659 
660 	if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
661 		return 1;
662 
663 	return 0;
664 }
665 
666 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
667 		struct iov_iter *iter,
668 		loff_t offset)
669 {
670 	ssize_t ret = 0;
671 	ssize_t written = 0;
672 	bool orphaned = false;
673 	int is_overwrite = 0;
674 	struct file *file = iocb->ki_filp;
675 	struct inode *inode = file_inode(file)->i_mapping->host;
676 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
677 	struct buffer_head *di_bh = NULL;
678 	size_t count = iter->count;
679 	journal_t *journal = osb->journal->j_journal;
680 	u32 zero_len;
681 	int cluster_align;
682 	loff_t final_size = offset + count;
683 	int append_write = offset >= i_size_read(inode) ? 1 : 0;
684 	unsigned int num_clusters = 0;
685 	unsigned int ext_flags = 0;
686 
687 	{
688 		u64 o = offset;
689 
690 		zero_len = do_div(o, 1 << osb->s_clustersize_bits);
691 		cluster_align = !zero_len;
692 	}
693 
694 	/*
695 	 * when final_size > inode->i_size, inode->i_size will be
696 	 * updated after direct write, so add the inode to orphan
697 	 * dir first.
698 	 */
699 	if (final_size > i_size_read(inode)) {
700 		ret = ocfs2_add_inode_to_orphan(osb, inode);
701 		if (ret < 0) {
702 			mlog_errno(ret);
703 			goto out;
704 		}
705 		orphaned = true;
706 	}
707 
708 	if (append_write) {
709 		ret = ocfs2_inode_lock(inode, &di_bh, 1);
710 		if (ret < 0) {
711 			mlog_errno(ret);
712 			goto clean_orphan;
713 		}
714 
715 		if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
716 			ret = ocfs2_zero_extend(inode, di_bh, offset);
717 		else
718 			ret = ocfs2_extend_no_holes(inode, di_bh, offset,
719 					offset);
720 		if (ret < 0) {
721 			mlog_errno(ret);
722 			ocfs2_inode_unlock(inode, 1);
723 			brelse(di_bh);
724 			goto clean_orphan;
725 		}
726 
727 		is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
728 		if (is_overwrite < 0) {
729 			mlog_errno(is_overwrite);
730 			ocfs2_inode_unlock(inode, 1);
731 			brelse(di_bh);
732 			goto clean_orphan;
733 		}
734 
735 		ocfs2_inode_unlock(inode, 1);
736 		brelse(di_bh);
737 		di_bh = NULL;
738 	}
739 
740 	written = __blockdev_direct_IO(WRITE, iocb, inode, inode->i_sb->s_bdev,
741 			iter, offset,
742 			ocfs2_direct_IO_get_blocks,
743 			ocfs2_dio_end_io, NULL, 0);
744 	if (unlikely(written < 0)) {
745 		loff_t i_size = i_size_read(inode);
746 
747 		if (offset + count > i_size) {
748 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
749 			if (ret < 0) {
750 				mlog_errno(ret);
751 				goto clean_orphan;
752 			}
753 
754 			if (i_size == i_size_read(inode)) {
755 				ret = ocfs2_truncate_file(inode, di_bh,
756 						i_size);
757 				if (ret < 0) {
758 					if (ret != -ENOSPC)
759 						mlog_errno(ret);
760 
761 					ocfs2_inode_unlock(inode, 1);
762 					brelse(di_bh);
763 					goto clean_orphan;
764 				}
765 			}
766 
767 			ocfs2_inode_unlock(inode, 1);
768 			brelse(di_bh);
769 
770 			ret = jbd2_journal_force_commit(journal);
771 			if (ret < 0)
772 				mlog_errno(ret);
773 		}
774 	} else if (written < 0 && append_write && !is_overwrite &&
775 			!cluster_align) {
776 		u32 p_cpos = 0;
777 		u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
778 
779 		ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
780 				&num_clusters, &ext_flags);
781 		if (ret < 0) {
782 			mlog_errno(ret);
783 			goto clean_orphan;
784 		}
785 
786 		BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
787 
788 		ret = blkdev_issue_zeroout(osb->sb->s_bdev,
789 				p_cpos << (osb->s_clustersize_bits - 9),
790 				zero_len >> 9, GFP_KERNEL, false);
791 		if (ret < 0)
792 			mlog_errno(ret);
793 	}
794 
795 clean_orphan:
796 	if (orphaned) {
797 		int tmp_ret;
798 		int update_isize = written > 0 ? 1 : 0;
799 		loff_t end = update_isize ? offset + written : 0;
800 
801 		tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
802 				update_isize, end);
803 		if (tmp_ret < 0) {
804 			ret = tmp_ret;
805 			goto out;
806 		}
807 
808 		tmp_ret = jbd2_journal_force_commit(journal);
809 		if (tmp_ret < 0) {
810 			ret = tmp_ret;
811 			mlog_errno(tmp_ret);
812 		}
813 	}
814 
815 out:
816 	if (ret >= 0)
817 		ret = written;
818 	return ret;
819 }
820 
821 static ssize_t ocfs2_direct_IO(int rw,
822 			       struct kiocb *iocb,
823 			       struct iov_iter *iter,
824 			       loff_t offset)
825 {
826 	struct file *file = iocb->ki_filp;
827 	struct inode *inode = file_inode(file)->i_mapping->host;
828 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
829 	int full_coherency = !(osb->s_mount_opt &
830 			OCFS2_MOUNT_COHERENCY_BUFFERED);
831 
832 	/*
833 	 * Fallback to buffered I/O if we see an inode without
834 	 * extents.
835 	 */
836 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
837 		return 0;
838 
839 	/* Fallback to buffered I/O if we are appending and
840 	 * concurrent O_DIRECT writes are allowed.
841 	 */
842 	if (i_size_read(inode) <= offset && !full_coherency)
843 		return 0;
844 
845 	if (rw == READ)
846 		return __blockdev_direct_IO(rw, iocb, inode,
847 				    inode->i_sb->s_bdev,
848 				    iter, offset,
849 				    ocfs2_direct_IO_get_blocks,
850 				    ocfs2_dio_end_io, NULL, 0);
851 	else
852 		return ocfs2_direct_IO_write(iocb, iter, offset);
853 }
854 
855 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
856 					    u32 cpos,
857 					    unsigned int *start,
858 					    unsigned int *end)
859 {
860 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
861 
862 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
863 		unsigned int cpp;
864 
865 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
866 
867 		cluster_start = cpos % cpp;
868 		cluster_start = cluster_start << osb->s_clustersize_bits;
869 
870 		cluster_end = cluster_start + osb->s_clustersize;
871 	}
872 
873 	BUG_ON(cluster_start > PAGE_SIZE);
874 	BUG_ON(cluster_end > PAGE_SIZE);
875 
876 	if (start)
877 		*start = cluster_start;
878 	if (end)
879 		*end = cluster_end;
880 }
881 
882 /*
883  * 'from' and 'to' are the region in the page to avoid zeroing.
884  *
885  * If pagesize > clustersize, this function will avoid zeroing outside
886  * of the cluster boundary.
887  *
888  * from == to == 0 is code for "zero the entire cluster region"
889  */
890 static void ocfs2_clear_page_regions(struct page *page,
891 				     struct ocfs2_super *osb, u32 cpos,
892 				     unsigned from, unsigned to)
893 {
894 	void *kaddr;
895 	unsigned int cluster_start, cluster_end;
896 
897 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
898 
899 	kaddr = kmap_atomic(page);
900 
901 	if (from || to) {
902 		if (from > cluster_start)
903 			memset(kaddr + cluster_start, 0, from - cluster_start);
904 		if (to < cluster_end)
905 			memset(kaddr + to, 0, cluster_end - to);
906 	} else {
907 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
908 	}
909 
910 	kunmap_atomic(kaddr);
911 }
912 
913 /*
914  * Nonsparse file systems fully allocate before we get to the write
915  * code. This prevents ocfs2_write() from tagging the write as an
916  * allocating one, which means ocfs2_map_page_blocks() might try to
917  * read-in the blocks at the tail of our file. Avoid reading them by
918  * testing i_size against each block offset.
919  */
920 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
921 				 unsigned int block_start)
922 {
923 	u64 offset = page_offset(page) + block_start;
924 
925 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
926 		return 1;
927 
928 	if (i_size_read(inode) > offset)
929 		return 1;
930 
931 	return 0;
932 }
933 
934 /*
935  * Some of this taken from __block_write_begin(). We already have our
936  * mapping by now though, and the entire write will be allocating or
937  * it won't, so not much need to use BH_New.
938  *
939  * This will also skip zeroing, which is handled externally.
940  */
941 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
942 			  struct inode *inode, unsigned int from,
943 			  unsigned int to, int new)
944 {
945 	int ret = 0;
946 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
947 	unsigned int block_end, block_start;
948 	unsigned int bsize = 1 << inode->i_blkbits;
949 
950 	if (!page_has_buffers(page))
951 		create_empty_buffers(page, bsize, 0);
952 
953 	head = page_buffers(page);
954 	for (bh = head, block_start = 0; bh != head || !block_start;
955 	     bh = bh->b_this_page, block_start += bsize) {
956 		block_end = block_start + bsize;
957 
958 		clear_buffer_new(bh);
959 
960 		/*
961 		 * Ignore blocks outside of our i/o range -
962 		 * they may belong to unallocated clusters.
963 		 */
964 		if (block_start >= to || block_end <= from) {
965 			if (PageUptodate(page))
966 				set_buffer_uptodate(bh);
967 			continue;
968 		}
969 
970 		/*
971 		 * For an allocating write with cluster size >= page
972 		 * size, we always write the entire page.
973 		 */
974 		if (new)
975 			set_buffer_new(bh);
976 
977 		if (!buffer_mapped(bh)) {
978 			map_bh(bh, inode->i_sb, *p_blkno);
979 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
980 		}
981 
982 		if (PageUptodate(page)) {
983 			if (!buffer_uptodate(bh))
984 				set_buffer_uptodate(bh);
985 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
986 			   !buffer_new(bh) &&
987 			   ocfs2_should_read_blk(inode, page, block_start) &&
988 			   (block_start < from || block_end > to)) {
989 			ll_rw_block(READ, 1, &bh);
990 			*wait_bh++=bh;
991 		}
992 
993 		*p_blkno = *p_blkno + 1;
994 	}
995 
996 	/*
997 	 * If we issued read requests - let them complete.
998 	 */
999 	while(wait_bh > wait) {
1000 		wait_on_buffer(*--wait_bh);
1001 		if (!buffer_uptodate(*wait_bh))
1002 			ret = -EIO;
1003 	}
1004 
1005 	if (ret == 0 || !new)
1006 		return ret;
1007 
1008 	/*
1009 	 * If we get -EIO above, zero out any newly allocated blocks
1010 	 * to avoid exposing stale data.
1011 	 */
1012 	bh = head;
1013 	block_start = 0;
1014 	do {
1015 		block_end = block_start + bsize;
1016 		if (block_end <= from)
1017 			goto next_bh;
1018 		if (block_start >= to)
1019 			break;
1020 
1021 		zero_user(page, block_start, bh->b_size);
1022 		set_buffer_uptodate(bh);
1023 		mark_buffer_dirty(bh);
1024 
1025 next_bh:
1026 		block_start = block_end;
1027 		bh = bh->b_this_page;
1028 	} while (bh != head);
1029 
1030 	return ret;
1031 }
1032 
1033 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1034 #define OCFS2_MAX_CTXT_PAGES	1
1035 #else
1036 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1037 #endif
1038 
1039 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1040 
1041 /*
1042  * Describe the state of a single cluster to be written to.
1043  */
1044 struct ocfs2_write_cluster_desc {
1045 	u32		c_cpos;
1046 	u32		c_phys;
1047 	/*
1048 	 * Give this a unique field because c_phys eventually gets
1049 	 * filled.
1050 	 */
1051 	unsigned	c_new;
1052 	unsigned	c_unwritten;
1053 	unsigned	c_needs_zero;
1054 };
1055 
1056 struct ocfs2_write_ctxt {
1057 	/* Logical cluster position / len of write */
1058 	u32				w_cpos;
1059 	u32				w_clen;
1060 
1061 	/* First cluster allocated in a nonsparse extend */
1062 	u32				w_first_new_cpos;
1063 
1064 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1065 
1066 	/*
1067 	 * This is true if page_size > cluster_size.
1068 	 *
1069 	 * It triggers a set of special cases during write which might
1070 	 * have to deal with allocating writes to partial pages.
1071 	 */
1072 	unsigned int			w_large_pages;
1073 
1074 	/*
1075 	 * Pages involved in this write.
1076 	 *
1077 	 * w_target_page is the page being written to by the user.
1078 	 *
1079 	 * w_pages is an array of pages which always contains
1080 	 * w_target_page, and in the case of an allocating write with
1081 	 * page_size < cluster size, it will contain zero'd and mapped
1082 	 * pages adjacent to w_target_page which need to be written
1083 	 * out in so that future reads from that region will get
1084 	 * zero's.
1085 	 */
1086 	unsigned int			w_num_pages;
1087 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
1088 	struct page			*w_target_page;
1089 
1090 	/*
1091 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
1092 	 * against w_target_page in ocfs2_write_end_nolock.
1093 	 */
1094 	unsigned int			w_target_locked:1;
1095 
1096 	/*
1097 	 * ocfs2_write_end() uses this to know what the real range to
1098 	 * write in the target should be.
1099 	 */
1100 	unsigned int			w_target_from;
1101 	unsigned int			w_target_to;
1102 
1103 	/*
1104 	 * We could use journal_current_handle() but this is cleaner,
1105 	 * IMHO -Mark
1106 	 */
1107 	handle_t			*w_handle;
1108 
1109 	struct buffer_head		*w_di_bh;
1110 
1111 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
1112 };
1113 
1114 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1115 {
1116 	int i;
1117 
1118 	for(i = 0; i < num_pages; i++) {
1119 		if (pages[i]) {
1120 			unlock_page(pages[i]);
1121 			mark_page_accessed(pages[i]);
1122 			page_cache_release(pages[i]);
1123 		}
1124 	}
1125 }
1126 
1127 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1128 {
1129 	int i;
1130 
1131 	/*
1132 	 * w_target_locked is only set to true in the page_mkwrite() case.
1133 	 * The intent is to allow us to lock the target page from write_begin()
1134 	 * to write_end(). The caller must hold a ref on w_target_page.
1135 	 */
1136 	if (wc->w_target_locked) {
1137 		BUG_ON(!wc->w_target_page);
1138 		for (i = 0; i < wc->w_num_pages; i++) {
1139 			if (wc->w_target_page == wc->w_pages[i]) {
1140 				wc->w_pages[i] = NULL;
1141 				break;
1142 			}
1143 		}
1144 		mark_page_accessed(wc->w_target_page);
1145 		page_cache_release(wc->w_target_page);
1146 	}
1147 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1148 }
1149 
1150 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1151 {
1152 	ocfs2_unlock_pages(wc);
1153 	brelse(wc->w_di_bh);
1154 	kfree(wc);
1155 }
1156 
1157 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1158 				  struct ocfs2_super *osb, loff_t pos,
1159 				  unsigned len, struct buffer_head *di_bh)
1160 {
1161 	u32 cend;
1162 	struct ocfs2_write_ctxt *wc;
1163 
1164 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1165 	if (!wc)
1166 		return -ENOMEM;
1167 
1168 	wc->w_cpos = pos >> osb->s_clustersize_bits;
1169 	wc->w_first_new_cpos = UINT_MAX;
1170 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
1171 	wc->w_clen = cend - wc->w_cpos + 1;
1172 	get_bh(di_bh);
1173 	wc->w_di_bh = di_bh;
1174 
1175 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1176 		wc->w_large_pages = 1;
1177 	else
1178 		wc->w_large_pages = 0;
1179 
1180 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1181 
1182 	*wcp = wc;
1183 
1184 	return 0;
1185 }
1186 
1187 /*
1188  * If a page has any new buffers, zero them out here, and mark them uptodate
1189  * and dirty so they'll be written out (in order to prevent uninitialised
1190  * block data from leaking). And clear the new bit.
1191  */
1192 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1193 {
1194 	unsigned int block_start, block_end;
1195 	struct buffer_head *head, *bh;
1196 
1197 	BUG_ON(!PageLocked(page));
1198 	if (!page_has_buffers(page))
1199 		return;
1200 
1201 	bh = head = page_buffers(page);
1202 	block_start = 0;
1203 	do {
1204 		block_end = block_start + bh->b_size;
1205 
1206 		if (buffer_new(bh)) {
1207 			if (block_end > from && block_start < to) {
1208 				if (!PageUptodate(page)) {
1209 					unsigned start, end;
1210 
1211 					start = max(from, block_start);
1212 					end = min(to, block_end);
1213 
1214 					zero_user_segment(page, start, end);
1215 					set_buffer_uptodate(bh);
1216 				}
1217 
1218 				clear_buffer_new(bh);
1219 				mark_buffer_dirty(bh);
1220 			}
1221 		}
1222 
1223 		block_start = block_end;
1224 		bh = bh->b_this_page;
1225 	} while (bh != head);
1226 }
1227 
1228 /*
1229  * Only called when we have a failure during allocating write to write
1230  * zero's to the newly allocated region.
1231  */
1232 static void ocfs2_write_failure(struct inode *inode,
1233 				struct ocfs2_write_ctxt *wc,
1234 				loff_t user_pos, unsigned user_len)
1235 {
1236 	int i;
1237 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1238 		to = user_pos + user_len;
1239 	struct page *tmppage;
1240 
1241 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1242 
1243 	for(i = 0; i < wc->w_num_pages; i++) {
1244 		tmppage = wc->w_pages[i];
1245 
1246 		if (page_has_buffers(tmppage)) {
1247 			if (ocfs2_should_order_data(inode))
1248 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1249 
1250 			block_commit_write(tmppage, from, to);
1251 		}
1252 	}
1253 }
1254 
1255 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1256 					struct ocfs2_write_ctxt *wc,
1257 					struct page *page, u32 cpos,
1258 					loff_t user_pos, unsigned user_len,
1259 					int new)
1260 {
1261 	int ret;
1262 	unsigned int map_from = 0, map_to = 0;
1263 	unsigned int cluster_start, cluster_end;
1264 	unsigned int user_data_from = 0, user_data_to = 0;
1265 
1266 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1267 					&cluster_start, &cluster_end);
1268 
1269 	/* treat the write as new if the a hole/lseek spanned across
1270 	 * the page boundary.
1271 	 */
1272 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1273 			(page_offset(page) <= user_pos));
1274 
1275 	if (page == wc->w_target_page) {
1276 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1277 		map_to = map_from + user_len;
1278 
1279 		if (new)
1280 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1281 						    cluster_start, cluster_end,
1282 						    new);
1283 		else
1284 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1285 						    map_from, map_to, new);
1286 		if (ret) {
1287 			mlog_errno(ret);
1288 			goto out;
1289 		}
1290 
1291 		user_data_from = map_from;
1292 		user_data_to = map_to;
1293 		if (new) {
1294 			map_from = cluster_start;
1295 			map_to = cluster_end;
1296 		}
1297 	} else {
1298 		/*
1299 		 * If we haven't allocated the new page yet, we
1300 		 * shouldn't be writing it out without copying user
1301 		 * data. This is likely a math error from the caller.
1302 		 */
1303 		BUG_ON(!new);
1304 
1305 		map_from = cluster_start;
1306 		map_to = cluster_end;
1307 
1308 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1309 					    cluster_start, cluster_end, new);
1310 		if (ret) {
1311 			mlog_errno(ret);
1312 			goto out;
1313 		}
1314 	}
1315 
1316 	/*
1317 	 * Parts of newly allocated pages need to be zero'd.
1318 	 *
1319 	 * Above, we have also rewritten 'to' and 'from' - as far as
1320 	 * the rest of the function is concerned, the entire cluster
1321 	 * range inside of a page needs to be written.
1322 	 *
1323 	 * We can skip this if the page is up to date - it's already
1324 	 * been zero'd from being read in as a hole.
1325 	 */
1326 	if (new && !PageUptodate(page))
1327 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1328 					 cpos, user_data_from, user_data_to);
1329 
1330 	flush_dcache_page(page);
1331 
1332 out:
1333 	return ret;
1334 }
1335 
1336 /*
1337  * This function will only grab one clusters worth of pages.
1338  */
1339 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1340 				      struct ocfs2_write_ctxt *wc,
1341 				      u32 cpos, loff_t user_pos,
1342 				      unsigned user_len, int new,
1343 				      struct page *mmap_page)
1344 {
1345 	int ret = 0, i;
1346 	unsigned long start, target_index, end_index, index;
1347 	struct inode *inode = mapping->host;
1348 	loff_t last_byte;
1349 
1350 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1351 
1352 	/*
1353 	 * Figure out how many pages we'll be manipulating here. For
1354 	 * non allocating write, we just change the one
1355 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1356 	 * writing past i_size, we only need enough pages to cover the
1357 	 * last page of the write.
1358 	 */
1359 	if (new) {
1360 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1361 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1362 		/*
1363 		 * We need the index *past* the last page we could possibly
1364 		 * touch.  This is the page past the end of the write or
1365 		 * i_size, whichever is greater.
1366 		 */
1367 		last_byte = max(user_pos + user_len, i_size_read(inode));
1368 		BUG_ON(last_byte < 1);
1369 		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1370 		if ((start + wc->w_num_pages) > end_index)
1371 			wc->w_num_pages = end_index - start;
1372 	} else {
1373 		wc->w_num_pages = 1;
1374 		start = target_index;
1375 	}
1376 
1377 	for(i = 0; i < wc->w_num_pages; i++) {
1378 		index = start + i;
1379 
1380 		if (index == target_index && mmap_page) {
1381 			/*
1382 			 * ocfs2_pagemkwrite() is a little different
1383 			 * and wants us to directly use the page
1384 			 * passed in.
1385 			 */
1386 			lock_page(mmap_page);
1387 
1388 			/* Exit and let the caller retry */
1389 			if (mmap_page->mapping != mapping) {
1390 				WARN_ON(mmap_page->mapping);
1391 				unlock_page(mmap_page);
1392 				ret = -EAGAIN;
1393 				goto out;
1394 			}
1395 
1396 			page_cache_get(mmap_page);
1397 			wc->w_pages[i] = mmap_page;
1398 			wc->w_target_locked = true;
1399 		} else {
1400 			wc->w_pages[i] = find_or_create_page(mapping, index,
1401 							     GFP_NOFS);
1402 			if (!wc->w_pages[i]) {
1403 				ret = -ENOMEM;
1404 				mlog_errno(ret);
1405 				goto out;
1406 			}
1407 		}
1408 		wait_for_stable_page(wc->w_pages[i]);
1409 
1410 		if (index == target_index)
1411 			wc->w_target_page = wc->w_pages[i];
1412 	}
1413 out:
1414 	if (ret)
1415 		wc->w_target_locked = false;
1416 	return ret;
1417 }
1418 
1419 /*
1420  * Prepare a single cluster for write one cluster into the file.
1421  */
1422 static int ocfs2_write_cluster(struct address_space *mapping,
1423 			       u32 phys, unsigned int unwritten,
1424 			       unsigned int should_zero,
1425 			       struct ocfs2_alloc_context *data_ac,
1426 			       struct ocfs2_alloc_context *meta_ac,
1427 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1428 			       loff_t user_pos, unsigned user_len)
1429 {
1430 	int ret, i, new;
1431 	u64 v_blkno, p_blkno;
1432 	struct inode *inode = mapping->host;
1433 	struct ocfs2_extent_tree et;
1434 
1435 	new = phys == 0 ? 1 : 0;
1436 	if (new) {
1437 		u32 tmp_pos;
1438 
1439 		/*
1440 		 * This is safe to call with the page locks - it won't take
1441 		 * any additional semaphores or cluster locks.
1442 		 */
1443 		tmp_pos = cpos;
1444 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1445 					   &tmp_pos, 1, 0, wc->w_di_bh,
1446 					   wc->w_handle, data_ac,
1447 					   meta_ac, NULL);
1448 		/*
1449 		 * This shouldn't happen because we must have already
1450 		 * calculated the correct meta data allocation required. The
1451 		 * internal tree allocation code should know how to increase
1452 		 * transaction credits itself.
1453 		 *
1454 		 * If need be, we could handle -EAGAIN for a
1455 		 * RESTART_TRANS here.
1456 		 */
1457 		mlog_bug_on_msg(ret == -EAGAIN,
1458 				"Inode %llu: EAGAIN return during allocation.\n",
1459 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1460 		if (ret < 0) {
1461 			mlog_errno(ret);
1462 			goto out;
1463 		}
1464 	} else if (unwritten) {
1465 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1466 					      wc->w_di_bh);
1467 		ret = ocfs2_mark_extent_written(inode, &et,
1468 						wc->w_handle, cpos, 1, phys,
1469 						meta_ac, &wc->w_dealloc);
1470 		if (ret < 0) {
1471 			mlog_errno(ret);
1472 			goto out;
1473 		}
1474 	}
1475 
1476 	if (should_zero)
1477 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1478 	else
1479 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1480 
1481 	/*
1482 	 * The only reason this should fail is due to an inability to
1483 	 * find the extent added.
1484 	 */
1485 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1486 					  NULL);
1487 	if (ret < 0) {
1488 		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1489 			    "at logical block %llu",
1490 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1491 			    (unsigned long long)v_blkno);
1492 		goto out;
1493 	}
1494 
1495 	BUG_ON(p_blkno == 0);
1496 
1497 	for(i = 0; i < wc->w_num_pages; i++) {
1498 		int tmpret;
1499 
1500 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1501 						      wc->w_pages[i], cpos,
1502 						      user_pos, user_len,
1503 						      should_zero);
1504 		if (tmpret) {
1505 			mlog_errno(tmpret);
1506 			if (ret == 0)
1507 				ret = tmpret;
1508 		}
1509 	}
1510 
1511 	/*
1512 	 * We only have cleanup to do in case of allocating write.
1513 	 */
1514 	if (ret && new)
1515 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1516 
1517 out:
1518 
1519 	return ret;
1520 }
1521 
1522 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1523 				       struct ocfs2_alloc_context *data_ac,
1524 				       struct ocfs2_alloc_context *meta_ac,
1525 				       struct ocfs2_write_ctxt *wc,
1526 				       loff_t pos, unsigned len)
1527 {
1528 	int ret, i;
1529 	loff_t cluster_off;
1530 	unsigned int local_len = len;
1531 	struct ocfs2_write_cluster_desc *desc;
1532 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1533 
1534 	for (i = 0; i < wc->w_clen; i++) {
1535 		desc = &wc->w_desc[i];
1536 
1537 		/*
1538 		 * We have to make sure that the total write passed in
1539 		 * doesn't extend past a single cluster.
1540 		 */
1541 		local_len = len;
1542 		cluster_off = pos & (osb->s_clustersize - 1);
1543 		if ((cluster_off + local_len) > osb->s_clustersize)
1544 			local_len = osb->s_clustersize - cluster_off;
1545 
1546 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1547 					  desc->c_unwritten,
1548 					  desc->c_needs_zero,
1549 					  data_ac, meta_ac,
1550 					  wc, desc->c_cpos, pos, local_len);
1551 		if (ret) {
1552 			mlog_errno(ret);
1553 			goto out;
1554 		}
1555 
1556 		len -= local_len;
1557 		pos += local_len;
1558 	}
1559 
1560 	ret = 0;
1561 out:
1562 	return ret;
1563 }
1564 
1565 /*
1566  * ocfs2_write_end() wants to know which parts of the target page it
1567  * should complete the write on. It's easiest to compute them ahead of
1568  * time when a more complete view of the write is available.
1569  */
1570 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1571 					struct ocfs2_write_ctxt *wc,
1572 					loff_t pos, unsigned len, int alloc)
1573 {
1574 	struct ocfs2_write_cluster_desc *desc;
1575 
1576 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1577 	wc->w_target_to = wc->w_target_from + len;
1578 
1579 	if (alloc == 0)
1580 		return;
1581 
1582 	/*
1583 	 * Allocating write - we may have different boundaries based
1584 	 * on page size and cluster size.
1585 	 *
1586 	 * NOTE: We can no longer compute one value from the other as
1587 	 * the actual write length and user provided length may be
1588 	 * different.
1589 	 */
1590 
1591 	if (wc->w_large_pages) {
1592 		/*
1593 		 * We only care about the 1st and last cluster within
1594 		 * our range and whether they should be zero'd or not. Either
1595 		 * value may be extended out to the start/end of a
1596 		 * newly allocated cluster.
1597 		 */
1598 		desc = &wc->w_desc[0];
1599 		if (desc->c_needs_zero)
1600 			ocfs2_figure_cluster_boundaries(osb,
1601 							desc->c_cpos,
1602 							&wc->w_target_from,
1603 							NULL);
1604 
1605 		desc = &wc->w_desc[wc->w_clen - 1];
1606 		if (desc->c_needs_zero)
1607 			ocfs2_figure_cluster_boundaries(osb,
1608 							desc->c_cpos,
1609 							NULL,
1610 							&wc->w_target_to);
1611 	} else {
1612 		wc->w_target_from = 0;
1613 		wc->w_target_to = PAGE_CACHE_SIZE;
1614 	}
1615 }
1616 
1617 /*
1618  * Populate each single-cluster write descriptor in the write context
1619  * with information about the i/o to be done.
1620  *
1621  * Returns the number of clusters that will have to be allocated, as
1622  * well as a worst case estimate of the number of extent records that
1623  * would have to be created during a write to an unwritten region.
1624  */
1625 static int ocfs2_populate_write_desc(struct inode *inode,
1626 				     struct ocfs2_write_ctxt *wc,
1627 				     unsigned int *clusters_to_alloc,
1628 				     unsigned int *extents_to_split)
1629 {
1630 	int ret;
1631 	struct ocfs2_write_cluster_desc *desc;
1632 	unsigned int num_clusters = 0;
1633 	unsigned int ext_flags = 0;
1634 	u32 phys = 0;
1635 	int i;
1636 
1637 	*clusters_to_alloc = 0;
1638 	*extents_to_split = 0;
1639 
1640 	for (i = 0; i < wc->w_clen; i++) {
1641 		desc = &wc->w_desc[i];
1642 		desc->c_cpos = wc->w_cpos + i;
1643 
1644 		if (num_clusters == 0) {
1645 			/*
1646 			 * Need to look up the next extent record.
1647 			 */
1648 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1649 						 &num_clusters, &ext_flags);
1650 			if (ret) {
1651 				mlog_errno(ret);
1652 				goto out;
1653 			}
1654 
1655 			/* We should already CoW the refcountd extent. */
1656 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1657 
1658 			/*
1659 			 * Assume worst case - that we're writing in
1660 			 * the middle of the extent.
1661 			 *
1662 			 * We can assume that the write proceeds from
1663 			 * left to right, in which case the extent
1664 			 * insert code is smart enough to coalesce the
1665 			 * next splits into the previous records created.
1666 			 */
1667 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1668 				*extents_to_split = *extents_to_split + 2;
1669 		} else if (phys) {
1670 			/*
1671 			 * Only increment phys if it doesn't describe
1672 			 * a hole.
1673 			 */
1674 			phys++;
1675 		}
1676 
1677 		/*
1678 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1679 		 * file that got extended.  w_first_new_cpos tells us
1680 		 * where the newly allocated clusters are so we can
1681 		 * zero them.
1682 		 */
1683 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1684 			BUG_ON(phys == 0);
1685 			desc->c_needs_zero = 1;
1686 		}
1687 
1688 		desc->c_phys = phys;
1689 		if (phys == 0) {
1690 			desc->c_new = 1;
1691 			desc->c_needs_zero = 1;
1692 			*clusters_to_alloc = *clusters_to_alloc + 1;
1693 		}
1694 
1695 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1696 			desc->c_unwritten = 1;
1697 			desc->c_needs_zero = 1;
1698 		}
1699 
1700 		num_clusters--;
1701 	}
1702 
1703 	ret = 0;
1704 out:
1705 	return ret;
1706 }
1707 
1708 static int ocfs2_write_begin_inline(struct address_space *mapping,
1709 				    struct inode *inode,
1710 				    struct ocfs2_write_ctxt *wc)
1711 {
1712 	int ret;
1713 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1714 	struct page *page;
1715 	handle_t *handle;
1716 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1717 
1718 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1719 	if (IS_ERR(handle)) {
1720 		ret = PTR_ERR(handle);
1721 		mlog_errno(ret);
1722 		goto out;
1723 	}
1724 
1725 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1726 	if (!page) {
1727 		ocfs2_commit_trans(osb, handle);
1728 		ret = -ENOMEM;
1729 		mlog_errno(ret);
1730 		goto out;
1731 	}
1732 	/*
1733 	 * If we don't set w_num_pages then this page won't get unlocked
1734 	 * and freed on cleanup of the write context.
1735 	 */
1736 	wc->w_pages[0] = wc->w_target_page = page;
1737 	wc->w_num_pages = 1;
1738 
1739 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1740 				      OCFS2_JOURNAL_ACCESS_WRITE);
1741 	if (ret) {
1742 		ocfs2_commit_trans(osb, handle);
1743 
1744 		mlog_errno(ret);
1745 		goto out;
1746 	}
1747 
1748 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1749 		ocfs2_set_inode_data_inline(inode, di);
1750 
1751 	if (!PageUptodate(page)) {
1752 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1753 		if (ret) {
1754 			ocfs2_commit_trans(osb, handle);
1755 
1756 			goto out;
1757 		}
1758 	}
1759 
1760 	wc->w_handle = handle;
1761 out:
1762 	return ret;
1763 }
1764 
1765 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1766 {
1767 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1768 
1769 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1770 		return 1;
1771 	return 0;
1772 }
1773 
1774 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1775 					  struct inode *inode, loff_t pos,
1776 					  unsigned len, struct page *mmap_page,
1777 					  struct ocfs2_write_ctxt *wc)
1778 {
1779 	int ret, written = 0;
1780 	loff_t end = pos + len;
1781 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1782 	struct ocfs2_dinode *di = NULL;
1783 
1784 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1785 					     len, (unsigned long long)pos,
1786 					     oi->ip_dyn_features);
1787 
1788 	/*
1789 	 * Handle inodes which already have inline data 1st.
1790 	 */
1791 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1792 		if (mmap_page == NULL &&
1793 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1794 			goto do_inline_write;
1795 
1796 		/*
1797 		 * The write won't fit - we have to give this inode an
1798 		 * inline extent list now.
1799 		 */
1800 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1801 		if (ret)
1802 			mlog_errno(ret);
1803 		goto out;
1804 	}
1805 
1806 	/*
1807 	 * Check whether the inode can accept inline data.
1808 	 */
1809 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1810 		return 0;
1811 
1812 	/*
1813 	 * Check whether the write can fit.
1814 	 */
1815 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1816 	if (mmap_page ||
1817 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1818 		return 0;
1819 
1820 do_inline_write:
1821 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1822 	if (ret) {
1823 		mlog_errno(ret);
1824 		goto out;
1825 	}
1826 
1827 	/*
1828 	 * This signals to the caller that the data can be written
1829 	 * inline.
1830 	 */
1831 	written = 1;
1832 out:
1833 	return written ? written : ret;
1834 }
1835 
1836 /*
1837  * This function only does anything for file systems which can't
1838  * handle sparse files.
1839  *
1840  * What we want to do here is fill in any hole between the current end
1841  * of allocation and the end of our write. That way the rest of the
1842  * write path can treat it as an non-allocating write, which has no
1843  * special case code for sparse/nonsparse files.
1844  */
1845 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1846 					struct buffer_head *di_bh,
1847 					loff_t pos, unsigned len,
1848 					struct ocfs2_write_ctxt *wc)
1849 {
1850 	int ret;
1851 	loff_t newsize = pos + len;
1852 
1853 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1854 
1855 	if (newsize <= i_size_read(inode))
1856 		return 0;
1857 
1858 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1859 	if (ret)
1860 		mlog_errno(ret);
1861 
1862 	wc->w_first_new_cpos =
1863 		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1864 
1865 	return ret;
1866 }
1867 
1868 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1869 			   loff_t pos)
1870 {
1871 	int ret = 0;
1872 
1873 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1874 	if (pos > i_size_read(inode))
1875 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1876 
1877 	return ret;
1878 }
1879 
1880 /*
1881  * Try to flush truncate logs if we can free enough clusters from it.
1882  * As for return value, "< 0" means error, "0" no space and "1" means
1883  * we have freed enough spaces and let the caller try to allocate again.
1884  */
1885 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1886 					  unsigned int needed)
1887 {
1888 	tid_t target;
1889 	int ret = 0;
1890 	unsigned int truncated_clusters;
1891 
1892 	mutex_lock(&osb->osb_tl_inode->i_mutex);
1893 	truncated_clusters = osb->truncated_clusters;
1894 	mutex_unlock(&osb->osb_tl_inode->i_mutex);
1895 
1896 	/*
1897 	 * Check whether we can succeed in allocating if we free
1898 	 * the truncate log.
1899 	 */
1900 	if (truncated_clusters < needed)
1901 		goto out;
1902 
1903 	ret = ocfs2_flush_truncate_log(osb);
1904 	if (ret) {
1905 		mlog_errno(ret);
1906 		goto out;
1907 	}
1908 
1909 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1910 		jbd2_log_wait_commit(osb->journal->j_journal, target);
1911 		ret = 1;
1912 	}
1913 out:
1914 	return ret;
1915 }
1916 
1917 int ocfs2_write_begin_nolock(struct file *filp,
1918 			     struct address_space *mapping,
1919 			     loff_t pos, unsigned len, unsigned flags,
1920 			     struct page **pagep, void **fsdata,
1921 			     struct buffer_head *di_bh, struct page *mmap_page)
1922 {
1923 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1924 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1925 	struct ocfs2_write_ctxt *wc;
1926 	struct inode *inode = mapping->host;
1927 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1928 	struct ocfs2_dinode *di;
1929 	struct ocfs2_alloc_context *data_ac = NULL;
1930 	struct ocfs2_alloc_context *meta_ac = NULL;
1931 	handle_t *handle;
1932 	struct ocfs2_extent_tree et;
1933 	int try_free = 1, ret1;
1934 
1935 try_again:
1936 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1937 	if (ret) {
1938 		mlog_errno(ret);
1939 		return ret;
1940 	}
1941 
1942 	if (ocfs2_supports_inline_data(osb)) {
1943 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1944 						     mmap_page, wc);
1945 		if (ret == 1) {
1946 			ret = 0;
1947 			goto success;
1948 		}
1949 		if (ret < 0) {
1950 			mlog_errno(ret);
1951 			goto out;
1952 		}
1953 	}
1954 
1955 	if (ocfs2_sparse_alloc(osb))
1956 		ret = ocfs2_zero_tail(inode, di_bh, pos);
1957 	else
1958 		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1959 						   wc);
1960 	if (ret) {
1961 		mlog_errno(ret);
1962 		goto out;
1963 	}
1964 
1965 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1966 	if (ret < 0) {
1967 		mlog_errno(ret);
1968 		goto out;
1969 	} else if (ret == 1) {
1970 		clusters_need = wc->w_clen;
1971 		ret = ocfs2_refcount_cow(inode, di_bh,
1972 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1973 		if (ret) {
1974 			mlog_errno(ret);
1975 			goto out;
1976 		}
1977 	}
1978 
1979 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1980 					&extents_to_split);
1981 	if (ret) {
1982 		mlog_errno(ret);
1983 		goto out;
1984 	}
1985 	clusters_need += clusters_to_alloc;
1986 
1987 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1988 
1989 	trace_ocfs2_write_begin_nolock(
1990 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1991 			(long long)i_size_read(inode),
1992 			le32_to_cpu(di->i_clusters),
1993 			pos, len, flags, mmap_page,
1994 			clusters_to_alloc, extents_to_split);
1995 
1996 	/*
1997 	 * We set w_target_from, w_target_to here so that
1998 	 * ocfs2_write_end() knows which range in the target page to
1999 	 * write out. An allocation requires that we write the entire
2000 	 * cluster range.
2001 	 */
2002 	if (clusters_to_alloc || extents_to_split) {
2003 		/*
2004 		 * XXX: We are stretching the limits of
2005 		 * ocfs2_lock_allocators(). It greatly over-estimates
2006 		 * the work to be done.
2007 		 */
2008 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2009 					      wc->w_di_bh);
2010 		ret = ocfs2_lock_allocators(inode, &et,
2011 					    clusters_to_alloc, extents_to_split,
2012 					    &data_ac, &meta_ac);
2013 		if (ret) {
2014 			mlog_errno(ret);
2015 			goto out;
2016 		}
2017 
2018 		if (data_ac)
2019 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2020 
2021 		credits = ocfs2_calc_extend_credits(inode->i_sb,
2022 						    &di->id2.i_list);
2023 
2024 	}
2025 
2026 	/*
2027 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
2028 	 * and non-sparse clusters we just extended.  For non-sparse writes,
2029 	 * we know zeros will only be needed in the first and/or last cluster.
2030 	 */
2031 	if (clusters_to_alloc || extents_to_split ||
2032 	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2033 			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2034 		cluster_of_pages = 1;
2035 	else
2036 		cluster_of_pages = 0;
2037 
2038 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2039 
2040 	handle = ocfs2_start_trans(osb, credits);
2041 	if (IS_ERR(handle)) {
2042 		ret = PTR_ERR(handle);
2043 		mlog_errno(ret);
2044 		goto out;
2045 	}
2046 
2047 	wc->w_handle = handle;
2048 
2049 	if (clusters_to_alloc) {
2050 		ret = dquot_alloc_space_nodirty(inode,
2051 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2052 		if (ret)
2053 			goto out_commit;
2054 	}
2055 	/*
2056 	 * We don't want this to fail in ocfs2_write_end(), so do it
2057 	 * here.
2058 	 */
2059 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2060 				      OCFS2_JOURNAL_ACCESS_WRITE);
2061 	if (ret) {
2062 		mlog_errno(ret);
2063 		goto out_quota;
2064 	}
2065 
2066 	/*
2067 	 * Fill our page array first. That way we've grabbed enough so
2068 	 * that we can zero and flush if we error after adding the
2069 	 * extent.
2070 	 */
2071 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2072 					 cluster_of_pages, mmap_page);
2073 	if (ret && ret != -EAGAIN) {
2074 		mlog_errno(ret);
2075 		goto out_quota;
2076 	}
2077 
2078 	/*
2079 	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2080 	 * the target page. In this case, we exit with no error and no target
2081 	 * page. This will trigger the caller, page_mkwrite(), to re-try
2082 	 * the operation.
2083 	 */
2084 	if (ret == -EAGAIN) {
2085 		BUG_ON(wc->w_target_page);
2086 		ret = 0;
2087 		goto out_quota;
2088 	}
2089 
2090 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2091 					  len);
2092 	if (ret) {
2093 		mlog_errno(ret);
2094 		goto out_quota;
2095 	}
2096 
2097 	if (data_ac)
2098 		ocfs2_free_alloc_context(data_ac);
2099 	if (meta_ac)
2100 		ocfs2_free_alloc_context(meta_ac);
2101 
2102 success:
2103 	*pagep = wc->w_target_page;
2104 	*fsdata = wc;
2105 	return 0;
2106 out_quota:
2107 	if (clusters_to_alloc)
2108 		dquot_free_space(inode,
2109 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2110 out_commit:
2111 	ocfs2_commit_trans(osb, handle);
2112 
2113 out:
2114 	ocfs2_free_write_ctxt(wc);
2115 
2116 	if (data_ac) {
2117 		ocfs2_free_alloc_context(data_ac);
2118 		data_ac = NULL;
2119 	}
2120 	if (meta_ac) {
2121 		ocfs2_free_alloc_context(meta_ac);
2122 		meta_ac = NULL;
2123 	}
2124 
2125 	if (ret == -ENOSPC && try_free) {
2126 		/*
2127 		 * Try to free some truncate log so that we can have enough
2128 		 * clusters to allocate.
2129 		 */
2130 		try_free = 0;
2131 
2132 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2133 		if (ret1 == 1)
2134 			goto try_again;
2135 
2136 		if (ret1 < 0)
2137 			mlog_errno(ret1);
2138 	}
2139 
2140 	return ret;
2141 }
2142 
2143 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2144 			     loff_t pos, unsigned len, unsigned flags,
2145 			     struct page **pagep, void **fsdata)
2146 {
2147 	int ret;
2148 	struct buffer_head *di_bh = NULL;
2149 	struct inode *inode = mapping->host;
2150 
2151 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2152 	if (ret) {
2153 		mlog_errno(ret);
2154 		return ret;
2155 	}
2156 
2157 	/*
2158 	 * Take alloc sem here to prevent concurrent lookups. That way
2159 	 * the mapping, zeroing and tree manipulation within
2160 	 * ocfs2_write() will be safe against ->readpage(). This
2161 	 * should also serve to lock out allocation from a shared
2162 	 * writeable region.
2163 	 */
2164 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
2165 
2166 	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2167 				       fsdata, di_bh, NULL);
2168 	if (ret) {
2169 		mlog_errno(ret);
2170 		goto out_fail;
2171 	}
2172 
2173 	brelse(di_bh);
2174 
2175 	return 0;
2176 
2177 out_fail:
2178 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2179 
2180 	brelse(di_bh);
2181 	ocfs2_inode_unlock(inode, 1);
2182 
2183 	return ret;
2184 }
2185 
2186 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2187 				   unsigned len, unsigned *copied,
2188 				   struct ocfs2_dinode *di,
2189 				   struct ocfs2_write_ctxt *wc)
2190 {
2191 	void *kaddr;
2192 
2193 	if (unlikely(*copied < len)) {
2194 		if (!PageUptodate(wc->w_target_page)) {
2195 			*copied = 0;
2196 			return;
2197 		}
2198 	}
2199 
2200 	kaddr = kmap_atomic(wc->w_target_page);
2201 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2202 	kunmap_atomic(kaddr);
2203 
2204 	trace_ocfs2_write_end_inline(
2205 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2206 	     (unsigned long long)pos, *copied,
2207 	     le16_to_cpu(di->id2.i_data.id_count),
2208 	     le16_to_cpu(di->i_dyn_features));
2209 }
2210 
2211 int ocfs2_write_end_nolock(struct address_space *mapping,
2212 			   loff_t pos, unsigned len, unsigned copied,
2213 			   struct page *page, void *fsdata)
2214 {
2215 	int i;
2216 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2217 	struct inode *inode = mapping->host;
2218 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2219 	struct ocfs2_write_ctxt *wc = fsdata;
2220 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2221 	handle_t *handle = wc->w_handle;
2222 	struct page *tmppage;
2223 
2224 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2225 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2226 		goto out_write_size;
2227 	}
2228 
2229 	if (unlikely(copied < len)) {
2230 		if (!PageUptodate(wc->w_target_page))
2231 			copied = 0;
2232 
2233 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2234 				       start+len);
2235 	}
2236 	flush_dcache_page(wc->w_target_page);
2237 
2238 	for(i = 0; i < wc->w_num_pages; i++) {
2239 		tmppage = wc->w_pages[i];
2240 
2241 		if (tmppage == wc->w_target_page) {
2242 			from = wc->w_target_from;
2243 			to = wc->w_target_to;
2244 
2245 			BUG_ON(from > PAGE_CACHE_SIZE ||
2246 			       to > PAGE_CACHE_SIZE ||
2247 			       to < from);
2248 		} else {
2249 			/*
2250 			 * Pages adjacent to the target (if any) imply
2251 			 * a hole-filling write in which case we want
2252 			 * to flush their entire range.
2253 			 */
2254 			from = 0;
2255 			to = PAGE_CACHE_SIZE;
2256 		}
2257 
2258 		if (page_has_buffers(tmppage)) {
2259 			if (ocfs2_should_order_data(inode))
2260 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
2261 			block_commit_write(tmppage, from, to);
2262 		}
2263 	}
2264 
2265 out_write_size:
2266 	pos += copied;
2267 	if (pos > i_size_read(inode)) {
2268 		i_size_write(inode, pos);
2269 		mark_inode_dirty(inode);
2270 	}
2271 	inode->i_blocks = ocfs2_inode_sector_count(inode);
2272 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2273 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2274 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2275 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2276 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
2277 	ocfs2_journal_dirty(handle, wc->w_di_bh);
2278 
2279 	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2280 	 * lock, or it will cause a deadlock since journal commit threads holds
2281 	 * this lock and will ask for the page lock when flushing the data.
2282 	 * put it here to preserve the unlock order.
2283 	 */
2284 	ocfs2_unlock_pages(wc);
2285 
2286 	ocfs2_commit_trans(osb, handle);
2287 
2288 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2289 
2290 	brelse(wc->w_di_bh);
2291 	kfree(wc);
2292 
2293 	return copied;
2294 }
2295 
2296 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2297 			   loff_t pos, unsigned len, unsigned copied,
2298 			   struct page *page, void *fsdata)
2299 {
2300 	int ret;
2301 	struct inode *inode = mapping->host;
2302 
2303 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2304 
2305 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2306 	ocfs2_inode_unlock(inode, 1);
2307 
2308 	return ret;
2309 }
2310 
2311 const struct address_space_operations ocfs2_aops = {
2312 	.readpage		= ocfs2_readpage,
2313 	.readpages		= ocfs2_readpages,
2314 	.writepage		= ocfs2_writepage,
2315 	.write_begin		= ocfs2_write_begin,
2316 	.write_end		= ocfs2_write_end,
2317 	.bmap			= ocfs2_bmap,
2318 	.direct_IO		= ocfs2_direct_IO,
2319 	.invalidatepage		= block_invalidatepage,
2320 	.releasepage		= ocfs2_releasepage,
2321 	.migratepage		= buffer_migrate_page,
2322 	.is_partially_uptodate	= block_is_partially_uptodate,
2323 	.error_remove_page	= generic_error_remove_page,
2324 };
2325