1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 #include <linux/quotaops.h> 31 #include <linux/blkdev.h> 32 33 #include <cluster/masklog.h> 34 35 #include "ocfs2.h" 36 37 #include "alloc.h" 38 #include "aops.h" 39 #include "dlmglue.h" 40 #include "extent_map.h" 41 #include "file.h" 42 #include "inode.h" 43 #include "journal.h" 44 #include "suballoc.h" 45 #include "super.h" 46 #include "symlink.h" 47 #include "refcounttree.h" 48 #include "ocfs2_trace.h" 49 50 #include "buffer_head_io.h" 51 #include "dir.h" 52 #include "namei.h" 53 #include "sysfile.h" 54 55 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 56 struct buffer_head *bh_result, int create) 57 { 58 int err = -EIO; 59 int status; 60 struct ocfs2_dinode *fe = NULL; 61 struct buffer_head *bh = NULL; 62 struct buffer_head *buffer_cache_bh = NULL; 63 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 64 void *kaddr; 65 66 trace_ocfs2_symlink_get_block( 67 (unsigned long long)OCFS2_I(inode)->ip_blkno, 68 (unsigned long long)iblock, bh_result, create); 69 70 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 71 72 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 73 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 74 (unsigned long long)iblock); 75 goto bail; 76 } 77 78 status = ocfs2_read_inode_block(inode, &bh); 79 if (status < 0) { 80 mlog_errno(status); 81 goto bail; 82 } 83 fe = (struct ocfs2_dinode *) bh->b_data; 84 85 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 86 le32_to_cpu(fe->i_clusters))) { 87 err = -ENOMEM; 88 mlog(ML_ERROR, "block offset is outside the allocated size: " 89 "%llu\n", (unsigned long long)iblock); 90 goto bail; 91 } 92 93 /* We don't use the page cache to create symlink data, so if 94 * need be, copy it over from the buffer cache. */ 95 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 96 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 97 iblock; 98 buffer_cache_bh = sb_getblk(osb->sb, blkno); 99 if (!buffer_cache_bh) { 100 err = -ENOMEM; 101 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 102 goto bail; 103 } 104 105 /* we haven't locked out transactions, so a commit 106 * could've happened. Since we've got a reference on 107 * the bh, even if it commits while we're doing the 108 * copy, the data is still good. */ 109 if (buffer_jbd(buffer_cache_bh) 110 && ocfs2_inode_is_new(inode)) { 111 kaddr = kmap_atomic(bh_result->b_page); 112 if (!kaddr) { 113 mlog(ML_ERROR, "couldn't kmap!\n"); 114 goto bail; 115 } 116 memcpy(kaddr + (bh_result->b_size * iblock), 117 buffer_cache_bh->b_data, 118 bh_result->b_size); 119 kunmap_atomic(kaddr); 120 set_buffer_uptodate(bh_result); 121 } 122 brelse(buffer_cache_bh); 123 } 124 125 map_bh(bh_result, inode->i_sb, 126 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 127 128 err = 0; 129 130 bail: 131 brelse(bh); 132 133 return err; 134 } 135 136 int ocfs2_get_block(struct inode *inode, sector_t iblock, 137 struct buffer_head *bh_result, int create) 138 { 139 int err = 0; 140 unsigned int ext_flags; 141 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 142 u64 p_blkno, count, past_eof; 143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 144 145 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 146 (unsigned long long)iblock, bh_result, create); 147 148 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 149 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 150 inode, inode->i_ino); 151 152 if (S_ISLNK(inode->i_mode)) { 153 /* this always does I/O for some reason. */ 154 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 155 goto bail; 156 } 157 158 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 159 &ext_flags); 160 if (err) { 161 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 162 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 163 (unsigned long long)p_blkno); 164 goto bail; 165 } 166 167 if (max_blocks < count) 168 count = max_blocks; 169 170 /* 171 * ocfs2 never allocates in this function - the only time we 172 * need to use BH_New is when we're extending i_size on a file 173 * system which doesn't support holes, in which case BH_New 174 * allows __block_write_begin() to zero. 175 * 176 * If we see this on a sparse file system, then a truncate has 177 * raced us and removed the cluster. In this case, we clear 178 * the buffers dirty and uptodate bits and let the buffer code 179 * ignore it as a hole. 180 */ 181 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 182 clear_buffer_dirty(bh_result); 183 clear_buffer_uptodate(bh_result); 184 goto bail; 185 } 186 187 /* Treat the unwritten extent as a hole for zeroing purposes. */ 188 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 189 map_bh(bh_result, inode->i_sb, p_blkno); 190 191 bh_result->b_size = count << inode->i_blkbits; 192 193 if (!ocfs2_sparse_alloc(osb)) { 194 if (p_blkno == 0) { 195 err = -EIO; 196 mlog(ML_ERROR, 197 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 198 (unsigned long long)iblock, 199 (unsigned long long)p_blkno, 200 (unsigned long long)OCFS2_I(inode)->ip_blkno); 201 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 202 dump_stack(); 203 goto bail; 204 } 205 } 206 207 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 208 209 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 210 (unsigned long long)past_eof); 211 if (create && (iblock >= past_eof)) 212 set_buffer_new(bh_result); 213 214 bail: 215 if (err < 0) 216 err = -EIO; 217 218 return err; 219 } 220 221 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 222 struct buffer_head *di_bh) 223 { 224 void *kaddr; 225 loff_t size; 226 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 227 228 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 229 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag", 230 (unsigned long long)OCFS2_I(inode)->ip_blkno); 231 return -EROFS; 232 } 233 234 size = i_size_read(inode); 235 236 if (size > PAGE_CACHE_SIZE || 237 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 238 ocfs2_error(inode->i_sb, 239 "Inode %llu has with inline data has bad size: %Lu", 240 (unsigned long long)OCFS2_I(inode)->ip_blkno, 241 (unsigned long long)size); 242 return -EROFS; 243 } 244 245 kaddr = kmap_atomic(page); 246 if (size) 247 memcpy(kaddr, di->id2.i_data.id_data, size); 248 /* Clear the remaining part of the page */ 249 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); 250 flush_dcache_page(page); 251 kunmap_atomic(kaddr); 252 253 SetPageUptodate(page); 254 255 return 0; 256 } 257 258 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 259 { 260 int ret; 261 struct buffer_head *di_bh = NULL; 262 263 BUG_ON(!PageLocked(page)); 264 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 265 266 ret = ocfs2_read_inode_block(inode, &di_bh); 267 if (ret) { 268 mlog_errno(ret); 269 goto out; 270 } 271 272 ret = ocfs2_read_inline_data(inode, page, di_bh); 273 out: 274 unlock_page(page); 275 276 brelse(di_bh); 277 return ret; 278 } 279 280 static int ocfs2_readpage(struct file *file, struct page *page) 281 { 282 struct inode *inode = page->mapping->host; 283 struct ocfs2_inode_info *oi = OCFS2_I(inode); 284 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; 285 int ret, unlock = 1; 286 287 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 288 (page ? page->index : 0)); 289 290 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 291 if (ret != 0) { 292 if (ret == AOP_TRUNCATED_PAGE) 293 unlock = 0; 294 mlog_errno(ret); 295 goto out; 296 } 297 298 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 299 /* 300 * Unlock the page and cycle ip_alloc_sem so that we don't 301 * busyloop waiting for ip_alloc_sem to unlock 302 */ 303 ret = AOP_TRUNCATED_PAGE; 304 unlock_page(page); 305 unlock = 0; 306 down_read(&oi->ip_alloc_sem); 307 up_read(&oi->ip_alloc_sem); 308 goto out_inode_unlock; 309 } 310 311 /* 312 * i_size might have just been updated as we grabed the meta lock. We 313 * might now be discovering a truncate that hit on another node. 314 * block_read_full_page->get_block freaks out if it is asked to read 315 * beyond the end of a file, so we check here. Callers 316 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 317 * and notice that the page they just read isn't needed. 318 * 319 * XXX sys_readahead() seems to get that wrong? 320 */ 321 if (start >= i_size_read(inode)) { 322 zero_user(page, 0, PAGE_SIZE); 323 SetPageUptodate(page); 324 ret = 0; 325 goto out_alloc; 326 } 327 328 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 329 ret = ocfs2_readpage_inline(inode, page); 330 else 331 ret = block_read_full_page(page, ocfs2_get_block); 332 unlock = 0; 333 334 out_alloc: 335 up_read(&OCFS2_I(inode)->ip_alloc_sem); 336 out_inode_unlock: 337 ocfs2_inode_unlock(inode, 0); 338 out: 339 if (unlock) 340 unlock_page(page); 341 return ret; 342 } 343 344 /* 345 * This is used only for read-ahead. Failures or difficult to handle 346 * situations are safe to ignore. 347 * 348 * Right now, we don't bother with BH_Boundary - in-inode extent lists 349 * are quite large (243 extents on 4k blocks), so most inodes don't 350 * grow out to a tree. If need be, detecting boundary extents could 351 * trivially be added in a future version of ocfs2_get_block(). 352 */ 353 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 354 struct list_head *pages, unsigned nr_pages) 355 { 356 int ret, err = -EIO; 357 struct inode *inode = mapping->host; 358 struct ocfs2_inode_info *oi = OCFS2_I(inode); 359 loff_t start; 360 struct page *last; 361 362 /* 363 * Use the nonblocking flag for the dlm code to avoid page 364 * lock inversion, but don't bother with retrying. 365 */ 366 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 367 if (ret) 368 return err; 369 370 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 371 ocfs2_inode_unlock(inode, 0); 372 return err; 373 } 374 375 /* 376 * Don't bother with inline-data. There isn't anything 377 * to read-ahead in that case anyway... 378 */ 379 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 380 goto out_unlock; 381 382 /* 383 * Check whether a remote node truncated this file - we just 384 * drop out in that case as it's not worth handling here. 385 */ 386 last = list_entry(pages->prev, struct page, lru); 387 start = (loff_t)last->index << PAGE_CACHE_SHIFT; 388 if (start >= i_size_read(inode)) 389 goto out_unlock; 390 391 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 392 393 out_unlock: 394 up_read(&oi->ip_alloc_sem); 395 ocfs2_inode_unlock(inode, 0); 396 397 return err; 398 } 399 400 /* Note: Because we don't support holes, our allocation has 401 * already happened (allocation writes zeros to the file data) 402 * so we don't have to worry about ordered writes in 403 * ocfs2_writepage. 404 * 405 * ->writepage is called during the process of invalidating the page cache 406 * during blocked lock processing. It can't block on any cluster locks 407 * to during block mapping. It's relying on the fact that the block 408 * mapping can't have disappeared under the dirty pages that it is 409 * being asked to write back. 410 */ 411 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 412 { 413 trace_ocfs2_writepage( 414 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 415 page->index); 416 417 return block_write_full_page(page, ocfs2_get_block, wbc); 418 } 419 420 /* Taken from ext3. We don't necessarily need the full blown 421 * functionality yet, but IMHO it's better to cut and paste the whole 422 * thing so we can avoid introducing our own bugs (and easily pick up 423 * their fixes when they happen) --Mark */ 424 int walk_page_buffers( handle_t *handle, 425 struct buffer_head *head, 426 unsigned from, 427 unsigned to, 428 int *partial, 429 int (*fn)( handle_t *handle, 430 struct buffer_head *bh)) 431 { 432 struct buffer_head *bh; 433 unsigned block_start, block_end; 434 unsigned blocksize = head->b_size; 435 int err, ret = 0; 436 struct buffer_head *next; 437 438 for ( bh = head, block_start = 0; 439 ret == 0 && (bh != head || !block_start); 440 block_start = block_end, bh = next) 441 { 442 next = bh->b_this_page; 443 block_end = block_start + blocksize; 444 if (block_end <= from || block_start >= to) { 445 if (partial && !buffer_uptodate(bh)) 446 *partial = 1; 447 continue; 448 } 449 err = (*fn)(handle, bh); 450 if (!ret) 451 ret = err; 452 } 453 return ret; 454 } 455 456 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 457 { 458 sector_t status; 459 u64 p_blkno = 0; 460 int err = 0; 461 struct inode *inode = mapping->host; 462 463 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 464 (unsigned long long)block); 465 466 /* We don't need to lock journal system files, since they aren't 467 * accessed concurrently from multiple nodes. 468 */ 469 if (!INODE_JOURNAL(inode)) { 470 err = ocfs2_inode_lock(inode, NULL, 0); 471 if (err) { 472 if (err != -ENOENT) 473 mlog_errno(err); 474 goto bail; 475 } 476 down_read(&OCFS2_I(inode)->ip_alloc_sem); 477 } 478 479 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 480 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 481 NULL); 482 483 if (!INODE_JOURNAL(inode)) { 484 up_read(&OCFS2_I(inode)->ip_alloc_sem); 485 ocfs2_inode_unlock(inode, 0); 486 } 487 488 if (err) { 489 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 490 (unsigned long long)block); 491 mlog_errno(err); 492 goto bail; 493 } 494 495 bail: 496 status = err ? 0 : p_blkno; 497 498 return status; 499 } 500 501 /* 502 * TODO: Make this into a generic get_blocks function. 503 * 504 * From do_direct_io in direct-io.c: 505 * "So what we do is to permit the ->get_blocks function to populate 506 * bh.b_size with the size of IO which is permitted at this offset and 507 * this i_blkbits." 508 * 509 * This function is called directly from get_more_blocks in direct-io.c. 510 * 511 * called like this: dio->get_blocks(dio->inode, fs_startblk, 512 * fs_count, map_bh, dio->rw == WRITE); 513 */ 514 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, 515 struct buffer_head *bh_result, int create) 516 { 517 int ret; 518 u32 cpos = 0; 519 int alloc_locked = 0; 520 u64 p_blkno, inode_blocks, contig_blocks; 521 unsigned int ext_flags; 522 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 523 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; 524 unsigned long len = bh_result->b_size; 525 unsigned int clusters_to_alloc = 0; 526 527 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock); 528 529 /* This function won't even be called if the request isn't all 530 * nicely aligned and of the right size, so there's no need 531 * for us to check any of that. */ 532 533 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 534 535 /* This figures out the size of the next contiguous block, and 536 * our logical offset */ 537 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 538 &contig_blocks, &ext_flags); 539 if (ret) { 540 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 541 (unsigned long long)iblock); 542 ret = -EIO; 543 goto bail; 544 } 545 546 /* We should already CoW the refcounted extent in case of create. */ 547 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED)); 548 549 /* allocate blocks if no p_blkno is found, and create == 1 */ 550 if (!p_blkno && create) { 551 ret = ocfs2_inode_lock(inode, NULL, 1); 552 if (ret < 0) { 553 mlog_errno(ret); 554 goto bail; 555 } 556 557 alloc_locked = 1; 558 559 /* fill hole, allocate blocks can't be larger than the size 560 * of the hole */ 561 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len); 562 if (clusters_to_alloc > contig_blocks) 563 clusters_to_alloc = contig_blocks; 564 565 /* allocate extent and insert them into the extent tree */ 566 ret = ocfs2_extend_allocation(inode, cpos, 567 clusters_to_alloc, 0); 568 if (ret < 0) { 569 mlog_errno(ret); 570 goto bail; 571 } 572 573 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 574 &contig_blocks, &ext_flags); 575 if (ret < 0) { 576 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 577 (unsigned long long)iblock); 578 ret = -EIO; 579 goto bail; 580 } 581 } 582 583 /* 584 * get_more_blocks() expects us to describe a hole by clearing 585 * the mapped bit on bh_result(). 586 * 587 * Consider an unwritten extent as a hole. 588 */ 589 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 590 map_bh(bh_result, inode->i_sb, p_blkno); 591 else 592 clear_buffer_mapped(bh_result); 593 594 /* make sure we don't map more than max_blocks blocks here as 595 that's all the kernel will handle at this point. */ 596 if (max_blocks < contig_blocks) 597 contig_blocks = max_blocks; 598 bh_result->b_size = contig_blocks << blocksize_bits; 599 bail: 600 if (alloc_locked) 601 ocfs2_inode_unlock(inode, 1); 602 return ret; 603 } 604 605 /* 606 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 607 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 608 * to protect io on one node from truncation on another. 609 */ 610 static void ocfs2_dio_end_io(struct kiocb *iocb, 611 loff_t offset, 612 ssize_t bytes, 613 void *private) 614 { 615 struct inode *inode = file_inode(iocb->ki_filp); 616 int level; 617 618 /* this io's submitter should not have unlocked this before we could */ 619 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 620 621 if (ocfs2_iocb_is_sem_locked(iocb)) 622 ocfs2_iocb_clear_sem_locked(iocb); 623 624 if (ocfs2_iocb_is_unaligned_aio(iocb)) { 625 ocfs2_iocb_clear_unaligned_aio(iocb); 626 627 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio); 628 } 629 630 ocfs2_iocb_clear_rw_locked(iocb); 631 632 level = ocfs2_iocb_rw_locked_level(iocb); 633 ocfs2_rw_unlock(inode, level); 634 } 635 636 static int ocfs2_releasepage(struct page *page, gfp_t wait) 637 { 638 if (!page_has_buffers(page)) 639 return 0; 640 return try_to_free_buffers(page); 641 } 642 643 static int ocfs2_is_overwrite(struct ocfs2_super *osb, 644 struct inode *inode, loff_t offset) 645 { 646 int ret = 0; 647 u32 v_cpos = 0; 648 u32 p_cpos = 0; 649 unsigned int num_clusters = 0; 650 unsigned int ext_flags = 0; 651 652 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset); 653 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, 654 &num_clusters, &ext_flags); 655 if (ret < 0) { 656 mlog_errno(ret); 657 return ret; 658 } 659 660 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 661 return 1; 662 663 return 0; 664 } 665 666 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb, 667 struct iov_iter *iter, 668 loff_t offset) 669 { 670 ssize_t ret = 0; 671 ssize_t written = 0; 672 bool orphaned = false; 673 int is_overwrite = 0; 674 struct file *file = iocb->ki_filp; 675 struct inode *inode = file_inode(file)->i_mapping->host; 676 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 677 struct buffer_head *di_bh = NULL; 678 size_t count = iter->count; 679 journal_t *journal = osb->journal->j_journal; 680 u32 zero_len; 681 int cluster_align; 682 loff_t final_size = offset + count; 683 int append_write = offset >= i_size_read(inode) ? 1 : 0; 684 unsigned int num_clusters = 0; 685 unsigned int ext_flags = 0; 686 687 { 688 u64 o = offset; 689 690 zero_len = do_div(o, 1 << osb->s_clustersize_bits); 691 cluster_align = !zero_len; 692 } 693 694 /* 695 * when final_size > inode->i_size, inode->i_size will be 696 * updated after direct write, so add the inode to orphan 697 * dir first. 698 */ 699 if (final_size > i_size_read(inode)) { 700 ret = ocfs2_add_inode_to_orphan(osb, inode); 701 if (ret < 0) { 702 mlog_errno(ret); 703 goto out; 704 } 705 orphaned = true; 706 } 707 708 if (append_write) { 709 ret = ocfs2_inode_lock(inode, &di_bh, 1); 710 if (ret < 0) { 711 mlog_errno(ret); 712 goto clean_orphan; 713 } 714 715 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 716 ret = ocfs2_zero_extend(inode, di_bh, offset); 717 else 718 ret = ocfs2_extend_no_holes(inode, di_bh, offset, 719 offset); 720 if (ret < 0) { 721 mlog_errno(ret); 722 ocfs2_inode_unlock(inode, 1); 723 brelse(di_bh); 724 goto clean_orphan; 725 } 726 727 is_overwrite = ocfs2_is_overwrite(osb, inode, offset); 728 if (is_overwrite < 0) { 729 mlog_errno(is_overwrite); 730 ocfs2_inode_unlock(inode, 1); 731 brelse(di_bh); 732 goto clean_orphan; 733 } 734 735 ocfs2_inode_unlock(inode, 1); 736 brelse(di_bh); 737 di_bh = NULL; 738 } 739 740 written = __blockdev_direct_IO(WRITE, iocb, inode, inode->i_sb->s_bdev, 741 iter, offset, 742 ocfs2_direct_IO_get_blocks, 743 ocfs2_dio_end_io, NULL, 0); 744 if (unlikely(written < 0)) { 745 loff_t i_size = i_size_read(inode); 746 747 if (offset + count > i_size) { 748 ret = ocfs2_inode_lock(inode, &di_bh, 1); 749 if (ret < 0) { 750 mlog_errno(ret); 751 goto clean_orphan; 752 } 753 754 if (i_size == i_size_read(inode)) { 755 ret = ocfs2_truncate_file(inode, di_bh, 756 i_size); 757 if (ret < 0) { 758 if (ret != -ENOSPC) 759 mlog_errno(ret); 760 761 ocfs2_inode_unlock(inode, 1); 762 brelse(di_bh); 763 goto clean_orphan; 764 } 765 } 766 767 ocfs2_inode_unlock(inode, 1); 768 brelse(di_bh); 769 770 ret = jbd2_journal_force_commit(journal); 771 if (ret < 0) 772 mlog_errno(ret); 773 } 774 } else if (written < 0 && append_write && !is_overwrite && 775 !cluster_align) { 776 u32 p_cpos = 0; 777 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset); 778 779 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, 780 &num_clusters, &ext_flags); 781 if (ret < 0) { 782 mlog_errno(ret); 783 goto clean_orphan; 784 } 785 786 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)); 787 788 ret = blkdev_issue_zeroout(osb->sb->s_bdev, 789 p_cpos << (osb->s_clustersize_bits - 9), 790 zero_len >> 9, GFP_KERNEL, false); 791 if (ret < 0) 792 mlog_errno(ret); 793 } 794 795 clean_orphan: 796 if (orphaned) { 797 int tmp_ret; 798 int update_isize = written > 0 ? 1 : 0; 799 loff_t end = update_isize ? offset + written : 0; 800 801 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, 802 update_isize, end); 803 if (tmp_ret < 0) { 804 ret = tmp_ret; 805 goto out; 806 } 807 808 tmp_ret = jbd2_journal_force_commit(journal); 809 if (tmp_ret < 0) { 810 ret = tmp_ret; 811 mlog_errno(tmp_ret); 812 } 813 } 814 815 out: 816 if (ret >= 0) 817 ret = written; 818 return ret; 819 } 820 821 static ssize_t ocfs2_direct_IO(int rw, 822 struct kiocb *iocb, 823 struct iov_iter *iter, 824 loff_t offset) 825 { 826 struct file *file = iocb->ki_filp; 827 struct inode *inode = file_inode(file)->i_mapping->host; 828 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 829 int full_coherency = !(osb->s_mount_opt & 830 OCFS2_MOUNT_COHERENCY_BUFFERED); 831 832 /* 833 * Fallback to buffered I/O if we see an inode without 834 * extents. 835 */ 836 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 837 return 0; 838 839 /* Fallback to buffered I/O if we are appending and 840 * concurrent O_DIRECT writes are allowed. 841 */ 842 if (i_size_read(inode) <= offset && !full_coherency) 843 return 0; 844 845 if (rw == READ) 846 return __blockdev_direct_IO(rw, iocb, inode, 847 inode->i_sb->s_bdev, 848 iter, offset, 849 ocfs2_direct_IO_get_blocks, 850 ocfs2_dio_end_io, NULL, 0); 851 else 852 return ocfs2_direct_IO_write(iocb, iter, offset); 853 } 854 855 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 856 u32 cpos, 857 unsigned int *start, 858 unsigned int *end) 859 { 860 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; 861 862 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { 863 unsigned int cpp; 864 865 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); 866 867 cluster_start = cpos % cpp; 868 cluster_start = cluster_start << osb->s_clustersize_bits; 869 870 cluster_end = cluster_start + osb->s_clustersize; 871 } 872 873 BUG_ON(cluster_start > PAGE_SIZE); 874 BUG_ON(cluster_end > PAGE_SIZE); 875 876 if (start) 877 *start = cluster_start; 878 if (end) 879 *end = cluster_end; 880 } 881 882 /* 883 * 'from' and 'to' are the region in the page to avoid zeroing. 884 * 885 * If pagesize > clustersize, this function will avoid zeroing outside 886 * of the cluster boundary. 887 * 888 * from == to == 0 is code for "zero the entire cluster region" 889 */ 890 static void ocfs2_clear_page_regions(struct page *page, 891 struct ocfs2_super *osb, u32 cpos, 892 unsigned from, unsigned to) 893 { 894 void *kaddr; 895 unsigned int cluster_start, cluster_end; 896 897 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 898 899 kaddr = kmap_atomic(page); 900 901 if (from || to) { 902 if (from > cluster_start) 903 memset(kaddr + cluster_start, 0, from - cluster_start); 904 if (to < cluster_end) 905 memset(kaddr + to, 0, cluster_end - to); 906 } else { 907 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 908 } 909 910 kunmap_atomic(kaddr); 911 } 912 913 /* 914 * Nonsparse file systems fully allocate before we get to the write 915 * code. This prevents ocfs2_write() from tagging the write as an 916 * allocating one, which means ocfs2_map_page_blocks() might try to 917 * read-in the blocks at the tail of our file. Avoid reading them by 918 * testing i_size against each block offset. 919 */ 920 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 921 unsigned int block_start) 922 { 923 u64 offset = page_offset(page) + block_start; 924 925 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 926 return 1; 927 928 if (i_size_read(inode) > offset) 929 return 1; 930 931 return 0; 932 } 933 934 /* 935 * Some of this taken from __block_write_begin(). We already have our 936 * mapping by now though, and the entire write will be allocating or 937 * it won't, so not much need to use BH_New. 938 * 939 * This will also skip zeroing, which is handled externally. 940 */ 941 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 942 struct inode *inode, unsigned int from, 943 unsigned int to, int new) 944 { 945 int ret = 0; 946 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 947 unsigned int block_end, block_start; 948 unsigned int bsize = 1 << inode->i_blkbits; 949 950 if (!page_has_buffers(page)) 951 create_empty_buffers(page, bsize, 0); 952 953 head = page_buffers(page); 954 for (bh = head, block_start = 0; bh != head || !block_start; 955 bh = bh->b_this_page, block_start += bsize) { 956 block_end = block_start + bsize; 957 958 clear_buffer_new(bh); 959 960 /* 961 * Ignore blocks outside of our i/o range - 962 * they may belong to unallocated clusters. 963 */ 964 if (block_start >= to || block_end <= from) { 965 if (PageUptodate(page)) 966 set_buffer_uptodate(bh); 967 continue; 968 } 969 970 /* 971 * For an allocating write with cluster size >= page 972 * size, we always write the entire page. 973 */ 974 if (new) 975 set_buffer_new(bh); 976 977 if (!buffer_mapped(bh)) { 978 map_bh(bh, inode->i_sb, *p_blkno); 979 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 980 } 981 982 if (PageUptodate(page)) { 983 if (!buffer_uptodate(bh)) 984 set_buffer_uptodate(bh); 985 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 986 !buffer_new(bh) && 987 ocfs2_should_read_blk(inode, page, block_start) && 988 (block_start < from || block_end > to)) { 989 ll_rw_block(READ, 1, &bh); 990 *wait_bh++=bh; 991 } 992 993 *p_blkno = *p_blkno + 1; 994 } 995 996 /* 997 * If we issued read requests - let them complete. 998 */ 999 while(wait_bh > wait) { 1000 wait_on_buffer(*--wait_bh); 1001 if (!buffer_uptodate(*wait_bh)) 1002 ret = -EIO; 1003 } 1004 1005 if (ret == 0 || !new) 1006 return ret; 1007 1008 /* 1009 * If we get -EIO above, zero out any newly allocated blocks 1010 * to avoid exposing stale data. 1011 */ 1012 bh = head; 1013 block_start = 0; 1014 do { 1015 block_end = block_start + bsize; 1016 if (block_end <= from) 1017 goto next_bh; 1018 if (block_start >= to) 1019 break; 1020 1021 zero_user(page, block_start, bh->b_size); 1022 set_buffer_uptodate(bh); 1023 mark_buffer_dirty(bh); 1024 1025 next_bh: 1026 block_start = block_end; 1027 bh = bh->b_this_page; 1028 } while (bh != head); 1029 1030 return ret; 1031 } 1032 1033 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 1034 #define OCFS2_MAX_CTXT_PAGES 1 1035 #else 1036 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) 1037 #endif 1038 1039 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) 1040 1041 /* 1042 * Describe the state of a single cluster to be written to. 1043 */ 1044 struct ocfs2_write_cluster_desc { 1045 u32 c_cpos; 1046 u32 c_phys; 1047 /* 1048 * Give this a unique field because c_phys eventually gets 1049 * filled. 1050 */ 1051 unsigned c_new; 1052 unsigned c_unwritten; 1053 unsigned c_needs_zero; 1054 }; 1055 1056 struct ocfs2_write_ctxt { 1057 /* Logical cluster position / len of write */ 1058 u32 w_cpos; 1059 u32 w_clen; 1060 1061 /* First cluster allocated in a nonsparse extend */ 1062 u32 w_first_new_cpos; 1063 1064 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 1065 1066 /* 1067 * This is true if page_size > cluster_size. 1068 * 1069 * It triggers a set of special cases during write which might 1070 * have to deal with allocating writes to partial pages. 1071 */ 1072 unsigned int w_large_pages; 1073 1074 /* 1075 * Pages involved in this write. 1076 * 1077 * w_target_page is the page being written to by the user. 1078 * 1079 * w_pages is an array of pages which always contains 1080 * w_target_page, and in the case of an allocating write with 1081 * page_size < cluster size, it will contain zero'd and mapped 1082 * pages adjacent to w_target_page which need to be written 1083 * out in so that future reads from that region will get 1084 * zero's. 1085 */ 1086 unsigned int w_num_pages; 1087 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 1088 struct page *w_target_page; 1089 1090 /* 1091 * w_target_locked is used for page_mkwrite path indicating no unlocking 1092 * against w_target_page in ocfs2_write_end_nolock. 1093 */ 1094 unsigned int w_target_locked:1; 1095 1096 /* 1097 * ocfs2_write_end() uses this to know what the real range to 1098 * write in the target should be. 1099 */ 1100 unsigned int w_target_from; 1101 unsigned int w_target_to; 1102 1103 /* 1104 * We could use journal_current_handle() but this is cleaner, 1105 * IMHO -Mark 1106 */ 1107 handle_t *w_handle; 1108 1109 struct buffer_head *w_di_bh; 1110 1111 struct ocfs2_cached_dealloc_ctxt w_dealloc; 1112 }; 1113 1114 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 1115 { 1116 int i; 1117 1118 for(i = 0; i < num_pages; i++) { 1119 if (pages[i]) { 1120 unlock_page(pages[i]); 1121 mark_page_accessed(pages[i]); 1122 page_cache_release(pages[i]); 1123 } 1124 } 1125 } 1126 1127 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 1128 { 1129 int i; 1130 1131 /* 1132 * w_target_locked is only set to true in the page_mkwrite() case. 1133 * The intent is to allow us to lock the target page from write_begin() 1134 * to write_end(). The caller must hold a ref on w_target_page. 1135 */ 1136 if (wc->w_target_locked) { 1137 BUG_ON(!wc->w_target_page); 1138 for (i = 0; i < wc->w_num_pages; i++) { 1139 if (wc->w_target_page == wc->w_pages[i]) { 1140 wc->w_pages[i] = NULL; 1141 break; 1142 } 1143 } 1144 mark_page_accessed(wc->w_target_page); 1145 page_cache_release(wc->w_target_page); 1146 } 1147 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 1148 } 1149 1150 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) 1151 { 1152 ocfs2_unlock_pages(wc); 1153 brelse(wc->w_di_bh); 1154 kfree(wc); 1155 } 1156 1157 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 1158 struct ocfs2_super *osb, loff_t pos, 1159 unsigned len, struct buffer_head *di_bh) 1160 { 1161 u32 cend; 1162 struct ocfs2_write_ctxt *wc; 1163 1164 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 1165 if (!wc) 1166 return -ENOMEM; 1167 1168 wc->w_cpos = pos >> osb->s_clustersize_bits; 1169 wc->w_first_new_cpos = UINT_MAX; 1170 cend = (pos + len - 1) >> osb->s_clustersize_bits; 1171 wc->w_clen = cend - wc->w_cpos + 1; 1172 get_bh(di_bh); 1173 wc->w_di_bh = di_bh; 1174 1175 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) 1176 wc->w_large_pages = 1; 1177 else 1178 wc->w_large_pages = 0; 1179 1180 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 1181 1182 *wcp = wc; 1183 1184 return 0; 1185 } 1186 1187 /* 1188 * If a page has any new buffers, zero them out here, and mark them uptodate 1189 * and dirty so they'll be written out (in order to prevent uninitialised 1190 * block data from leaking). And clear the new bit. 1191 */ 1192 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1193 { 1194 unsigned int block_start, block_end; 1195 struct buffer_head *head, *bh; 1196 1197 BUG_ON(!PageLocked(page)); 1198 if (!page_has_buffers(page)) 1199 return; 1200 1201 bh = head = page_buffers(page); 1202 block_start = 0; 1203 do { 1204 block_end = block_start + bh->b_size; 1205 1206 if (buffer_new(bh)) { 1207 if (block_end > from && block_start < to) { 1208 if (!PageUptodate(page)) { 1209 unsigned start, end; 1210 1211 start = max(from, block_start); 1212 end = min(to, block_end); 1213 1214 zero_user_segment(page, start, end); 1215 set_buffer_uptodate(bh); 1216 } 1217 1218 clear_buffer_new(bh); 1219 mark_buffer_dirty(bh); 1220 } 1221 } 1222 1223 block_start = block_end; 1224 bh = bh->b_this_page; 1225 } while (bh != head); 1226 } 1227 1228 /* 1229 * Only called when we have a failure during allocating write to write 1230 * zero's to the newly allocated region. 1231 */ 1232 static void ocfs2_write_failure(struct inode *inode, 1233 struct ocfs2_write_ctxt *wc, 1234 loff_t user_pos, unsigned user_len) 1235 { 1236 int i; 1237 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), 1238 to = user_pos + user_len; 1239 struct page *tmppage; 1240 1241 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 1242 1243 for(i = 0; i < wc->w_num_pages; i++) { 1244 tmppage = wc->w_pages[i]; 1245 1246 if (page_has_buffers(tmppage)) { 1247 if (ocfs2_should_order_data(inode)) 1248 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1249 1250 block_commit_write(tmppage, from, to); 1251 } 1252 } 1253 } 1254 1255 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 1256 struct ocfs2_write_ctxt *wc, 1257 struct page *page, u32 cpos, 1258 loff_t user_pos, unsigned user_len, 1259 int new) 1260 { 1261 int ret; 1262 unsigned int map_from = 0, map_to = 0; 1263 unsigned int cluster_start, cluster_end; 1264 unsigned int user_data_from = 0, user_data_to = 0; 1265 1266 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 1267 &cluster_start, &cluster_end); 1268 1269 /* treat the write as new if the a hole/lseek spanned across 1270 * the page boundary. 1271 */ 1272 new = new | ((i_size_read(inode) <= page_offset(page)) && 1273 (page_offset(page) <= user_pos)); 1274 1275 if (page == wc->w_target_page) { 1276 map_from = user_pos & (PAGE_CACHE_SIZE - 1); 1277 map_to = map_from + user_len; 1278 1279 if (new) 1280 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1281 cluster_start, cluster_end, 1282 new); 1283 else 1284 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1285 map_from, map_to, new); 1286 if (ret) { 1287 mlog_errno(ret); 1288 goto out; 1289 } 1290 1291 user_data_from = map_from; 1292 user_data_to = map_to; 1293 if (new) { 1294 map_from = cluster_start; 1295 map_to = cluster_end; 1296 } 1297 } else { 1298 /* 1299 * If we haven't allocated the new page yet, we 1300 * shouldn't be writing it out without copying user 1301 * data. This is likely a math error from the caller. 1302 */ 1303 BUG_ON(!new); 1304 1305 map_from = cluster_start; 1306 map_to = cluster_end; 1307 1308 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1309 cluster_start, cluster_end, new); 1310 if (ret) { 1311 mlog_errno(ret); 1312 goto out; 1313 } 1314 } 1315 1316 /* 1317 * Parts of newly allocated pages need to be zero'd. 1318 * 1319 * Above, we have also rewritten 'to' and 'from' - as far as 1320 * the rest of the function is concerned, the entire cluster 1321 * range inside of a page needs to be written. 1322 * 1323 * We can skip this if the page is up to date - it's already 1324 * been zero'd from being read in as a hole. 1325 */ 1326 if (new && !PageUptodate(page)) 1327 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1328 cpos, user_data_from, user_data_to); 1329 1330 flush_dcache_page(page); 1331 1332 out: 1333 return ret; 1334 } 1335 1336 /* 1337 * This function will only grab one clusters worth of pages. 1338 */ 1339 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1340 struct ocfs2_write_ctxt *wc, 1341 u32 cpos, loff_t user_pos, 1342 unsigned user_len, int new, 1343 struct page *mmap_page) 1344 { 1345 int ret = 0, i; 1346 unsigned long start, target_index, end_index, index; 1347 struct inode *inode = mapping->host; 1348 loff_t last_byte; 1349 1350 target_index = user_pos >> PAGE_CACHE_SHIFT; 1351 1352 /* 1353 * Figure out how many pages we'll be manipulating here. For 1354 * non allocating write, we just change the one 1355 * page. Otherwise, we'll need a whole clusters worth. If we're 1356 * writing past i_size, we only need enough pages to cover the 1357 * last page of the write. 1358 */ 1359 if (new) { 1360 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1361 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1362 /* 1363 * We need the index *past* the last page we could possibly 1364 * touch. This is the page past the end of the write or 1365 * i_size, whichever is greater. 1366 */ 1367 last_byte = max(user_pos + user_len, i_size_read(inode)); 1368 BUG_ON(last_byte < 1); 1369 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1; 1370 if ((start + wc->w_num_pages) > end_index) 1371 wc->w_num_pages = end_index - start; 1372 } else { 1373 wc->w_num_pages = 1; 1374 start = target_index; 1375 } 1376 1377 for(i = 0; i < wc->w_num_pages; i++) { 1378 index = start + i; 1379 1380 if (index == target_index && mmap_page) { 1381 /* 1382 * ocfs2_pagemkwrite() is a little different 1383 * and wants us to directly use the page 1384 * passed in. 1385 */ 1386 lock_page(mmap_page); 1387 1388 /* Exit and let the caller retry */ 1389 if (mmap_page->mapping != mapping) { 1390 WARN_ON(mmap_page->mapping); 1391 unlock_page(mmap_page); 1392 ret = -EAGAIN; 1393 goto out; 1394 } 1395 1396 page_cache_get(mmap_page); 1397 wc->w_pages[i] = mmap_page; 1398 wc->w_target_locked = true; 1399 } else { 1400 wc->w_pages[i] = find_or_create_page(mapping, index, 1401 GFP_NOFS); 1402 if (!wc->w_pages[i]) { 1403 ret = -ENOMEM; 1404 mlog_errno(ret); 1405 goto out; 1406 } 1407 } 1408 wait_for_stable_page(wc->w_pages[i]); 1409 1410 if (index == target_index) 1411 wc->w_target_page = wc->w_pages[i]; 1412 } 1413 out: 1414 if (ret) 1415 wc->w_target_locked = false; 1416 return ret; 1417 } 1418 1419 /* 1420 * Prepare a single cluster for write one cluster into the file. 1421 */ 1422 static int ocfs2_write_cluster(struct address_space *mapping, 1423 u32 phys, unsigned int unwritten, 1424 unsigned int should_zero, 1425 struct ocfs2_alloc_context *data_ac, 1426 struct ocfs2_alloc_context *meta_ac, 1427 struct ocfs2_write_ctxt *wc, u32 cpos, 1428 loff_t user_pos, unsigned user_len) 1429 { 1430 int ret, i, new; 1431 u64 v_blkno, p_blkno; 1432 struct inode *inode = mapping->host; 1433 struct ocfs2_extent_tree et; 1434 1435 new = phys == 0 ? 1 : 0; 1436 if (new) { 1437 u32 tmp_pos; 1438 1439 /* 1440 * This is safe to call with the page locks - it won't take 1441 * any additional semaphores or cluster locks. 1442 */ 1443 tmp_pos = cpos; 1444 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1445 &tmp_pos, 1, 0, wc->w_di_bh, 1446 wc->w_handle, data_ac, 1447 meta_ac, NULL); 1448 /* 1449 * This shouldn't happen because we must have already 1450 * calculated the correct meta data allocation required. The 1451 * internal tree allocation code should know how to increase 1452 * transaction credits itself. 1453 * 1454 * If need be, we could handle -EAGAIN for a 1455 * RESTART_TRANS here. 1456 */ 1457 mlog_bug_on_msg(ret == -EAGAIN, 1458 "Inode %llu: EAGAIN return during allocation.\n", 1459 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1460 if (ret < 0) { 1461 mlog_errno(ret); 1462 goto out; 1463 } 1464 } else if (unwritten) { 1465 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1466 wc->w_di_bh); 1467 ret = ocfs2_mark_extent_written(inode, &et, 1468 wc->w_handle, cpos, 1, phys, 1469 meta_ac, &wc->w_dealloc); 1470 if (ret < 0) { 1471 mlog_errno(ret); 1472 goto out; 1473 } 1474 } 1475 1476 if (should_zero) 1477 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); 1478 else 1479 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; 1480 1481 /* 1482 * The only reason this should fail is due to an inability to 1483 * find the extent added. 1484 */ 1485 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, 1486 NULL); 1487 if (ret < 0) { 1488 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1489 "at logical block %llu", 1490 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1491 (unsigned long long)v_blkno); 1492 goto out; 1493 } 1494 1495 BUG_ON(p_blkno == 0); 1496 1497 for(i = 0; i < wc->w_num_pages; i++) { 1498 int tmpret; 1499 1500 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1501 wc->w_pages[i], cpos, 1502 user_pos, user_len, 1503 should_zero); 1504 if (tmpret) { 1505 mlog_errno(tmpret); 1506 if (ret == 0) 1507 ret = tmpret; 1508 } 1509 } 1510 1511 /* 1512 * We only have cleanup to do in case of allocating write. 1513 */ 1514 if (ret && new) 1515 ocfs2_write_failure(inode, wc, user_pos, user_len); 1516 1517 out: 1518 1519 return ret; 1520 } 1521 1522 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1523 struct ocfs2_alloc_context *data_ac, 1524 struct ocfs2_alloc_context *meta_ac, 1525 struct ocfs2_write_ctxt *wc, 1526 loff_t pos, unsigned len) 1527 { 1528 int ret, i; 1529 loff_t cluster_off; 1530 unsigned int local_len = len; 1531 struct ocfs2_write_cluster_desc *desc; 1532 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1533 1534 for (i = 0; i < wc->w_clen; i++) { 1535 desc = &wc->w_desc[i]; 1536 1537 /* 1538 * We have to make sure that the total write passed in 1539 * doesn't extend past a single cluster. 1540 */ 1541 local_len = len; 1542 cluster_off = pos & (osb->s_clustersize - 1); 1543 if ((cluster_off + local_len) > osb->s_clustersize) 1544 local_len = osb->s_clustersize - cluster_off; 1545 1546 ret = ocfs2_write_cluster(mapping, desc->c_phys, 1547 desc->c_unwritten, 1548 desc->c_needs_zero, 1549 data_ac, meta_ac, 1550 wc, desc->c_cpos, pos, local_len); 1551 if (ret) { 1552 mlog_errno(ret); 1553 goto out; 1554 } 1555 1556 len -= local_len; 1557 pos += local_len; 1558 } 1559 1560 ret = 0; 1561 out: 1562 return ret; 1563 } 1564 1565 /* 1566 * ocfs2_write_end() wants to know which parts of the target page it 1567 * should complete the write on. It's easiest to compute them ahead of 1568 * time when a more complete view of the write is available. 1569 */ 1570 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1571 struct ocfs2_write_ctxt *wc, 1572 loff_t pos, unsigned len, int alloc) 1573 { 1574 struct ocfs2_write_cluster_desc *desc; 1575 1576 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); 1577 wc->w_target_to = wc->w_target_from + len; 1578 1579 if (alloc == 0) 1580 return; 1581 1582 /* 1583 * Allocating write - we may have different boundaries based 1584 * on page size and cluster size. 1585 * 1586 * NOTE: We can no longer compute one value from the other as 1587 * the actual write length and user provided length may be 1588 * different. 1589 */ 1590 1591 if (wc->w_large_pages) { 1592 /* 1593 * We only care about the 1st and last cluster within 1594 * our range and whether they should be zero'd or not. Either 1595 * value may be extended out to the start/end of a 1596 * newly allocated cluster. 1597 */ 1598 desc = &wc->w_desc[0]; 1599 if (desc->c_needs_zero) 1600 ocfs2_figure_cluster_boundaries(osb, 1601 desc->c_cpos, 1602 &wc->w_target_from, 1603 NULL); 1604 1605 desc = &wc->w_desc[wc->w_clen - 1]; 1606 if (desc->c_needs_zero) 1607 ocfs2_figure_cluster_boundaries(osb, 1608 desc->c_cpos, 1609 NULL, 1610 &wc->w_target_to); 1611 } else { 1612 wc->w_target_from = 0; 1613 wc->w_target_to = PAGE_CACHE_SIZE; 1614 } 1615 } 1616 1617 /* 1618 * Populate each single-cluster write descriptor in the write context 1619 * with information about the i/o to be done. 1620 * 1621 * Returns the number of clusters that will have to be allocated, as 1622 * well as a worst case estimate of the number of extent records that 1623 * would have to be created during a write to an unwritten region. 1624 */ 1625 static int ocfs2_populate_write_desc(struct inode *inode, 1626 struct ocfs2_write_ctxt *wc, 1627 unsigned int *clusters_to_alloc, 1628 unsigned int *extents_to_split) 1629 { 1630 int ret; 1631 struct ocfs2_write_cluster_desc *desc; 1632 unsigned int num_clusters = 0; 1633 unsigned int ext_flags = 0; 1634 u32 phys = 0; 1635 int i; 1636 1637 *clusters_to_alloc = 0; 1638 *extents_to_split = 0; 1639 1640 for (i = 0; i < wc->w_clen; i++) { 1641 desc = &wc->w_desc[i]; 1642 desc->c_cpos = wc->w_cpos + i; 1643 1644 if (num_clusters == 0) { 1645 /* 1646 * Need to look up the next extent record. 1647 */ 1648 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1649 &num_clusters, &ext_flags); 1650 if (ret) { 1651 mlog_errno(ret); 1652 goto out; 1653 } 1654 1655 /* We should already CoW the refcountd extent. */ 1656 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1657 1658 /* 1659 * Assume worst case - that we're writing in 1660 * the middle of the extent. 1661 * 1662 * We can assume that the write proceeds from 1663 * left to right, in which case the extent 1664 * insert code is smart enough to coalesce the 1665 * next splits into the previous records created. 1666 */ 1667 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1668 *extents_to_split = *extents_to_split + 2; 1669 } else if (phys) { 1670 /* 1671 * Only increment phys if it doesn't describe 1672 * a hole. 1673 */ 1674 phys++; 1675 } 1676 1677 /* 1678 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1679 * file that got extended. w_first_new_cpos tells us 1680 * where the newly allocated clusters are so we can 1681 * zero them. 1682 */ 1683 if (desc->c_cpos >= wc->w_first_new_cpos) { 1684 BUG_ON(phys == 0); 1685 desc->c_needs_zero = 1; 1686 } 1687 1688 desc->c_phys = phys; 1689 if (phys == 0) { 1690 desc->c_new = 1; 1691 desc->c_needs_zero = 1; 1692 *clusters_to_alloc = *clusters_to_alloc + 1; 1693 } 1694 1695 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1696 desc->c_unwritten = 1; 1697 desc->c_needs_zero = 1; 1698 } 1699 1700 num_clusters--; 1701 } 1702 1703 ret = 0; 1704 out: 1705 return ret; 1706 } 1707 1708 static int ocfs2_write_begin_inline(struct address_space *mapping, 1709 struct inode *inode, 1710 struct ocfs2_write_ctxt *wc) 1711 { 1712 int ret; 1713 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1714 struct page *page; 1715 handle_t *handle; 1716 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1717 1718 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1719 if (IS_ERR(handle)) { 1720 ret = PTR_ERR(handle); 1721 mlog_errno(ret); 1722 goto out; 1723 } 1724 1725 page = find_or_create_page(mapping, 0, GFP_NOFS); 1726 if (!page) { 1727 ocfs2_commit_trans(osb, handle); 1728 ret = -ENOMEM; 1729 mlog_errno(ret); 1730 goto out; 1731 } 1732 /* 1733 * If we don't set w_num_pages then this page won't get unlocked 1734 * and freed on cleanup of the write context. 1735 */ 1736 wc->w_pages[0] = wc->w_target_page = page; 1737 wc->w_num_pages = 1; 1738 1739 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1740 OCFS2_JOURNAL_ACCESS_WRITE); 1741 if (ret) { 1742 ocfs2_commit_trans(osb, handle); 1743 1744 mlog_errno(ret); 1745 goto out; 1746 } 1747 1748 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1749 ocfs2_set_inode_data_inline(inode, di); 1750 1751 if (!PageUptodate(page)) { 1752 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1753 if (ret) { 1754 ocfs2_commit_trans(osb, handle); 1755 1756 goto out; 1757 } 1758 } 1759 1760 wc->w_handle = handle; 1761 out: 1762 return ret; 1763 } 1764 1765 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1766 { 1767 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1768 1769 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1770 return 1; 1771 return 0; 1772 } 1773 1774 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1775 struct inode *inode, loff_t pos, 1776 unsigned len, struct page *mmap_page, 1777 struct ocfs2_write_ctxt *wc) 1778 { 1779 int ret, written = 0; 1780 loff_t end = pos + len; 1781 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1782 struct ocfs2_dinode *di = NULL; 1783 1784 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1785 len, (unsigned long long)pos, 1786 oi->ip_dyn_features); 1787 1788 /* 1789 * Handle inodes which already have inline data 1st. 1790 */ 1791 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1792 if (mmap_page == NULL && 1793 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1794 goto do_inline_write; 1795 1796 /* 1797 * The write won't fit - we have to give this inode an 1798 * inline extent list now. 1799 */ 1800 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1801 if (ret) 1802 mlog_errno(ret); 1803 goto out; 1804 } 1805 1806 /* 1807 * Check whether the inode can accept inline data. 1808 */ 1809 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1810 return 0; 1811 1812 /* 1813 * Check whether the write can fit. 1814 */ 1815 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1816 if (mmap_page || 1817 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1818 return 0; 1819 1820 do_inline_write: 1821 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1822 if (ret) { 1823 mlog_errno(ret); 1824 goto out; 1825 } 1826 1827 /* 1828 * This signals to the caller that the data can be written 1829 * inline. 1830 */ 1831 written = 1; 1832 out: 1833 return written ? written : ret; 1834 } 1835 1836 /* 1837 * This function only does anything for file systems which can't 1838 * handle sparse files. 1839 * 1840 * What we want to do here is fill in any hole between the current end 1841 * of allocation and the end of our write. That way the rest of the 1842 * write path can treat it as an non-allocating write, which has no 1843 * special case code for sparse/nonsparse files. 1844 */ 1845 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1846 struct buffer_head *di_bh, 1847 loff_t pos, unsigned len, 1848 struct ocfs2_write_ctxt *wc) 1849 { 1850 int ret; 1851 loff_t newsize = pos + len; 1852 1853 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1854 1855 if (newsize <= i_size_read(inode)) 1856 return 0; 1857 1858 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1859 if (ret) 1860 mlog_errno(ret); 1861 1862 wc->w_first_new_cpos = 1863 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1864 1865 return ret; 1866 } 1867 1868 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1869 loff_t pos) 1870 { 1871 int ret = 0; 1872 1873 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1874 if (pos > i_size_read(inode)) 1875 ret = ocfs2_zero_extend(inode, di_bh, pos); 1876 1877 return ret; 1878 } 1879 1880 /* 1881 * Try to flush truncate logs if we can free enough clusters from it. 1882 * As for return value, "< 0" means error, "0" no space and "1" means 1883 * we have freed enough spaces and let the caller try to allocate again. 1884 */ 1885 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 1886 unsigned int needed) 1887 { 1888 tid_t target; 1889 int ret = 0; 1890 unsigned int truncated_clusters; 1891 1892 mutex_lock(&osb->osb_tl_inode->i_mutex); 1893 truncated_clusters = osb->truncated_clusters; 1894 mutex_unlock(&osb->osb_tl_inode->i_mutex); 1895 1896 /* 1897 * Check whether we can succeed in allocating if we free 1898 * the truncate log. 1899 */ 1900 if (truncated_clusters < needed) 1901 goto out; 1902 1903 ret = ocfs2_flush_truncate_log(osb); 1904 if (ret) { 1905 mlog_errno(ret); 1906 goto out; 1907 } 1908 1909 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 1910 jbd2_log_wait_commit(osb->journal->j_journal, target); 1911 ret = 1; 1912 } 1913 out: 1914 return ret; 1915 } 1916 1917 int ocfs2_write_begin_nolock(struct file *filp, 1918 struct address_space *mapping, 1919 loff_t pos, unsigned len, unsigned flags, 1920 struct page **pagep, void **fsdata, 1921 struct buffer_head *di_bh, struct page *mmap_page) 1922 { 1923 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1924 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1925 struct ocfs2_write_ctxt *wc; 1926 struct inode *inode = mapping->host; 1927 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1928 struct ocfs2_dinode *di; 1929 struct ocfs2_alloc_context *data_ac = NULL; 1930 struct ocfs2_alloc_context *meta_ac = NULL; 1931 handle_t *handle; 1932 struct ocfs2_extent_tree et; 1933 int try_free = 1, ret1; 1934 1935 try_again: 1936 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); 1937 if (ret) { 1938 mlog_errno(ret); 1939 return ret; 1940 } 1941 1942 if (ocfs2_supports_inline_data(osb)) { 1943 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1944 mmap_page, wc); 1945 if (ret == 1) { 1946 ret = 0; 1947 goto success; 1948 } 1949 if (ret < 0) { 1950 mlog_errno(ret); 1951 goto out; 1952 } 1953 } 1954 1955 if (ocfs2_sparse_alloc(osb)) 1956 ret = ocfs2_zero_tail(inode, di_bh, pos); 1957 else 1958 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len, 1959 wc); 1960 if (ret) { 1961 mlog_errno(ret); 1962 goto out; 1963 } 1964 1965 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1966 if (ret < 0) { 1967 mlog_errno(ret); 1968 goto out; 1969 } else if (ret == 1) { 1970 clusters_need = wc->w_clen; 1971 ret = ocfs2_refcount_cow(inode, di_bh, 1972 wc->w_cpos, wc->w_clen, UINT_MAX); 1973 if (ret) { 1974 mlog_errno(ret); 1975 goto out; 1976 } 1977 } 1978 1979 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1980 &extents_to_split); 1981 if (ret) { 1982 mlog_errno(ret); 1983 goto out; 1984 } 1985 clusters_need += clusters_to_alloc; 1986 1987 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1988 1989 trace_ocfs2_write_begin_nolock( 1990 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1991 (long long)i_size_read(inode), 1992 le32_to_cpu(di->i_clusters), 1993 pos, len, flags, mmap_page, 1994 clusters_to_alloc, extents_to_split); 1995 1996 /* 1997 * We set w_target_from, w_target_to here so that 1998 * ocfs2_write_end() knows which range in the target page to 1999 * write out. An allocation requires that we write the entire 2000 * cluster range. 2001 */ 2002 if (clusters_to_alloc || extents_to_split) { 2003 /* 2004 * XXX: We are stretching the limits of 2005 * ocfs2_lock_allocators(). It greatly over-estimates 2006 * the work to be done. 2007 */ 2008 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 2009 wc->w_di_bh); 2010 ret = ocfs2_lock_allocators(inode, &et, 2011 clusters_to_alloc, extents_to_split, 2012 &data_ac, &meta_ac); 2013 if (ret) { 2014 mlog_errno(ret); 2015 goto out; 2016 } 2017 2018 if (data_ac) 2019 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 2020 2021 credits = ocfs2_calc_extend_credits(inode->i_sb, 2022 &di->id2.i_list); 2023 2024 } 2025 2026 /* 2027 * We have to zero sparse allocated clusters, unwritten extent clusters, 2028 * and non-sparse clusters we just extended. For non-sparse writes, 2029 * we know zeros will only be needed in the first and/or last cluster. 2030 */ 2031 if (clusters_to_alloc || extents_to_split || 2032 (wc->w_clen && (wc->w_desc[0].c_needs_zero || 2033 wc->w_desc[wc->w_clen - 1].c_needs_zero))) 2034 cluster_of_pages = 1; 2035 else 2036 cluster_of_pages = 0; 2037 2038 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 2039 2040 handle = ocfs2_start_trans(osb, credits); 2041 if (IS_ERR(handle)) { 2042 ret = PTR_ERR(handle); 2043 mlog_errno(ret); 2044 goto out; 2045 } 2046 2047 wc->w_handle = handle; 2048 2049 if (clusters_to_alloc) { 2050 ret = dquot_alloc_space_nodirty(inode, 2051 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 2052 if (ret) 2053 goto out_commit; 2054 } 2055 /* 2056 * We don't want this to fail in ocfs2_write_end(), so do it 2057 * here. 2058 */ 2059 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 2060 OCFS2_JOURNAL_ACCESS_WRITE); 2061 if (ret) { 2062 mlog_errno(ret); 2063 goto out_quota; 2064 } 2065 2066 /* 2067 * Fill our page array first. That way we've grabbed enough so 2068 * that we can zero and flush if we error after adding the 2069 * extent. 2070 */ 2071 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 2072 cluster_of_pages, mmap_page); 2073 if (ret && ret != -EAGAIN) { 2074 mlog_errno(ret); 2075 goto out_quota; 2076 } 2077 2078 /* 2079 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 2080 * the target page. In this case, we exit with no error and no target 2081 * page. This will trigger the caller, page_mkwrite(), to re-try 2082 * the operation. 2083 */ 2084 if (ret == -EAGAIN) { 2085 BUG_ON(wc->w_target_page); 2086 ret = 0; 2087 goto out_quota; 2088 } 2089 2090 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 2091 len); 2092 if (ret) { 2093 mlog_errno(ret); 2094 goto out_quota; 2095 } 2096 2097 if (data_ac) 2098 ocfs2_free_alloc_context(data_ac); 2099 if (meta_ac) 2100 ocfs2_free_alloc_context(meta_ac); 2101 2102 success: 2103 *pagep = wc->w_target_page; 2104 *fsdata = wc; 2105 return 0; 2106 out_quota: 2107 if (clusters_to_alloc) 2108 dquot_free_space(inode, 2109 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 2110 out_commit: 2111 ocfs2_commit_trans(osb, handle); 2112 2113 out: 2114 ocfs2_free_write_ctxt(wc); 2115 2116 if (data_ac) { 2117 ocfs2_free_alloc_context(data_ac); 2118 data_ac = NULL; 2119 } 2120 if (meta_ac) { 2121 ocfs2_free_alloc_context(meta_ac); 2122 meta_ac = NULL; 2123 } 2124 2125 if (ret == -ENOSPC && try_free) { 2126 /* 2127 * Try to free some truncate log so that we can have enough 2128 * clusters to allocate. 2129 */ 2130 try_free = 0; 2131 2132 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 2133 if (ret1 == 1) 2134 goto try_again; 2135 2136 if (ret1 < 0) 2137 mlog_errno(ret1); 2138 } 2139 2140 return ret; 2141 } 2142 2143 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 2144 loff_t pos, unsigned len, unsigned flags, 2145 struct page **pagep, void **fsdata) 2146 { 2147 int ret; 2148 struct buffer_head *di_bh = NULL; 2149 struct inode *inode = mapping->host; 2150 2151 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2152 if (ret) { 2153 mlog_errno(ret); 2154 return ret; 2155 } 2156 2157 /* 2158 * Take alloc sem here to prevent concurrent lookups. That way 2159 * the mapping, zeroing and tree manipulation within 2160 * ocfs2_write() will be safe against ->readpage(). This 2161 * should also serve to lock out allocation from a shared 2162 * writeable region. 2163 */ 2164 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2165 2166 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep, 2167 fsdata, di_bh, NULL); 2168 if (ret) { 2169 mlog_errno(ret); 2170 goto out_fail; 2171 } 2172 2173 brelse(di_bh); 2174 2175 return 0; 2176 2177 out_fail: 2178 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2179 2180 brelse(di_bh); 2181 ocfs2_inode_unlock(inode, 1); 2182 2183 return ret; 2184 } 2185 2186 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 2187 unsigned len, unsigned *copied, 2188 struct ocfs2_dinode *di, 2189 struct ocfs2_write_ctxt *wc) 2190 { 2191 void *kaddr; 2192 2193 if (unlikely(*copied < len)) { 2194 if (!PageUptodate(wc->w_target_page)) { 2195 *copied = 0; 2196 return; 2197 } 2198 } 2199 2200 kaddr = kmap_atomic(wc->w_target_page); 2201 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 2202 kunmap_atomic(kaddr); 2203 2204 trace_ocfs2_write_end_inline( 2205 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2206 (unsigned long long)pos, *copied, 2207 le16_to_cpu(di->id2.i_data.id_count), 2208 le16_to_cpu(di->i_dyn_features)); 2209 } 2210 2211 int ocfs2_write_end_nolock(struct address_space *mapping, 2212 loff_t pos, unsigned len, unsigned copied, 2213 struct page *page, void *fsdata) 2214 { 2215 int i; 2216 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); 2217 struct inode *inode = mapping->host; 2218 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2219 struct ocfs2_write_ctxt *wc = fsdata; 2220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 2221 handle_t *handle = wc->w_handle; 2222 struct page *tmppage; 2223 2224 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2225 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 2226 goto out_write_size; 2227 } 2228 2229 if (unlikely(copied < len)) { 2230 if (!PageUptodate(wc->w_target_page)) 2231 copied = 0; 2232 2233 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 2234 start+len); 2235 } 2236 flush_dcache_page(wc->w_target_page); 2237 2238 for(i = 0; i < wc->w_num_pages; i++) { 2239 tmppage = wc->w_pages[i]; 2240 2241 if (tmppage == wc->w_target_page) { 2242 from = wc->w_target_from; 2243 to = wc->w_target_to; 2244 2245 BUG_ON(from > PAGE_CACHE_SIZE || 2246 to > PAGE_CACHE_SIZE || 2247 to < from); 2248 } else { 2249 /* 2250 * Pages adjacent to the target (if any) imply 2251 * a hole-filling write in which case we want 2252 * to flush their entire range. 2253 */ 2254 from = 0; 2255 to = PAGE_CACHE_SIZE; 2256 } 2257 2258 if (page_has_buffers(tmppage)) { 2259 if (ocfs2_should_order_data(inode)) 2260 ocfs2_jbd2_file_inode(wc->w_handle, inode); 2261 block_commit_write(tmppage, from, to); 2262 } 2263 } 2264 2265 out_write_size: 2266 pos += copied; 2267 if (pos > i_size_read(inode)) { 2268 i_size_write(inode, pos); 2269 mark_inode_dirty(inode); 2270 } 2271 inode->i_blocks = ocfs2_inode_sector_count(inode); 2272 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2273 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2274 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2275 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2276 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2277 ocfs2_journal_dirty(handle, wc->w_di_bh); 2278 2279 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2280 * lock, or it will cause a deadlock since journal commit threads holds 2281 * this lock and will ask for the page lock when flushing the data. 2282 * put it here to preserve the unlock order. 2283 */ 2284 ocfs2_unlock_pages(wc); 2285 2286 ocfs2_commit_trans(osb, handle); 2287 2288 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2289 2290 brelse(wc->w_di_bh); 2291 kfree(wc); 2292 2293 return copied; 2294 } 2295 2296 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2297 loff_t pos, unsigned len, unsigned copied, 2298 struct page *page, void *fsdata) 2299 { 2300 int ret; 2301 struct inode *inode = mapping->host; 2302 2303 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 2304 2305 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2306 ocfs2_inode_unlock(inode, 1); 2307 2308 return ret; 2309 } 2310 2311 const struct address_space_operations ocfs2_aops = { 2312 .readpage = ocfs2_readpage, 2313 .readpages = ocfs2_readpages, 2314 .writepage = ocfs2_writepage, 2315 .write_begin = ocfs2_write_begin, 2316 .write_end = ocfs2_write_end, 2317 .bmap = ocfs2_bmap, 2318 .direct_IO = ocfs2_direct_IO, 2319 .invalidatepage = block_invalidatepage, 2320 .releasepage = ocfs2_releasepage, 2321 .migratepage = buffer_migrate_page, 2322 .is_partially_uptodate = block_is_partially_uptodate, 2323 .error_remove_page = generic_error_remove_page, 2324 }; 2325